Diff for /imach/src/imach.c between versions 1.2 and 1.106

version 1.2, 2001/03/13 18:10:26 version 1.106, 2006/01/19 13:24:36
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.106  2006/01/19 13:24:36  brouard
   individuals from different ages are interviewed on their health status    Some cleaning and links added in html output
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.105  2006/01/05 20:23:19  lievre
   Health expectancies are computed from the transistions observed between    *** empty log message ***
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.104  2005/09/30 16:11:43  lievre
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): sump fixed, loop imx fixed, and simplifications.
   The simplest model is the multinomial logistic model where pij is    (Module): If the status is missing at the last wave but we know
   the probabibility to be observed in state j at the second wave conditional    that the person is alive, then we can code his/her status as -2
   to be observed in state i at the first wave. Therefore the model is:    (instead of missing=-1 in earlier versions) and his/her
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    contributions to the likelihood is 1 - Prob of dying from last
   is a covariate. If you want to have a more complex model than "constant and    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   age", you should modify the program where the markup    the healthy state at last known wave). Version is 0.98
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.102  2004/09/15 17:31:30  brouard
   individual missed an interview, the information is not rounded or lost, but    Add the possibility to read data file including tab characters.
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.101  2004/09/15 10:38:38  brouard
   observed in state i at age x+h conditional to the observed state i at age    Fix on curr_time
   x. The delay 'h' can be split into an exact number (nh*stepm) of  
   unobserved intermediate  states. This elementary transition (by month or    Revision 1.100  2004/07/12 18:29:06  brouard
   quarter trimester, semester or year) is model as a multinomial logistic.    Add version for Mac OS X. Just define UNIX in Makefile
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    directly from the data i.e. without the need of knowing the health
            Institut national d'études démographiques, Paris.    state at each age, but using a Gompertz model: log u =a + b*age .
   This software have been partly granted by Euro-REVES, a concerted action    This is the basic analysis of mortality and should be done before any
   from the European Union.    other analysis, in order to test if the mortality estimated from the
   It is copyrighted identically to a GNU software product, ie programme and    cross-longitudinal survey is different from the mortality estimated
   software can be distributed freely for non commercial use. Latest version    from other sources like vital statistic data.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    The same imach parameter file can be used but the option for mle should be -3.
    
 #include <math.h>    Agnès, who wrote this part of the code, tried to keep most of the
 #include <stdio.h>    former routines in order to include the new code within the former code.
 #include <stdlib.h>  
 #include <unistd.h>    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Current limitations:
 /*#define DEBUG*/    A) Even if you enter covariates, i.e. with the
 #define windows    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 #define NINTERVMAX 8    suppressed.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.96  2003/07/15 15:38:55  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define MAXN 80000    rewritten within the same printf. Workaround: many printfs.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.95  2003/07/08 07:54:34  brouard
 #define AGEBASE 40    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 int nvar;  
 static int cptcov;    Revision 1.94  2003/06/27 13:00:02  brouard
 int cptcovn;    Just cleaning
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.93  2003/06/25 16:33:55  brouard
 int ndeath=1; /* Number of dead states */    (Module): On windows (cygwin) function asctime_r doesn't
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.92  2003/06/25 16:30:45  brouard
 int mle, weightopt;    (Module): On windows (cygwin) function asctime_r doesn't
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    exist so I changed back to asctime which exists.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.91  2003/06/25 15:30:29  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Repository): Duplicated warning errors corrected.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    (Repository): Elapsed time after each iteration is now output. It
 FILE *ficgp, *fichtm;    helps to forecast when convergence will be reached. Elapsed time
 FILE *ficreseij;    is stamped in powell.  We created a new html file for the graphs
   char filerese[FILENAMELENGTH];    concerning matrix of covariance. It has extension -cov.htm.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.90  2003/06/24 12:34:15  brouard
  FILE  *ficresvpl;    (Module): Some bugs corrected for windows. Also, when
   char fileresvpl[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   
     Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 #define NR_END 1    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FREE_ARG char*    of the covariance matrix to be input.
 #define FTOL 1.0e-10  
     Revision 1.88  2003/06/23 17:54:56  brouard
 #define NRANSI    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define ITMAX 200  
     Revision 1.87  2003/06/18 12:26:01  brouard
 #define TOL 2.0e-4    Version 0.96
   
 #define CGOLD 0.3819660    Revision 1.86  2003/06/17 20:04:08  brouard
 #define ZEPS 1.0e-10    (Module): Change position of html and gnuplot routines and added
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    routine fileappend.
   
 #define GOLD 1.618034    Revision 1.85  2003/06/17 13:12:43  brouard
 #define GLIMIT 100.0    * imach.c (Repository): Check when date of death was earlier that
 #define TINY 1.0e-20    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 static double maxarg1,maxarg2;    was wrong (infinity). We still send an "Error" but patch by
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    assuming that the date of death was just one stepm after the
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    interview.
      (Repository): Because some people have very long ID (first column)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    we changed int to long in num[] and we added a new lvector for
 #define rint(a) floor(a+0.5)    memory allocation. But we also truncated to 8 characters (left
     truncation)
 static double sqrarg;    (Repository): No more line truncation errors.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 int imx;    place. It differs from routine "prevalence" which may be called
 int stepm;    many times. Probs is memory consuming and must be used with
 /* Stepm, step in month: minimum step interpolation*/    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    Revision 1.83  2003/06/10 13:39:11  lievre
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    *** empty log message ***
 double **pmmij;  
     Revision 1.82  2003/06/05 15:57:20  brouard
 double *weight;    Add log in  imach.c and  fullversion number is now printed.
 int **s; /* Status */  
 double *agedc, **covar, idx;  */
 int **nbcode, *Tcode, *Tvar, **codtab;  /*
      Interpolated Markov Chain
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Short summary of the programme:
     
     This program computes Healthy Life Expectancies from
 /******************************************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 void replace(char *s, char*t)    interviewed on their health status or degree of disability (in the
 {    case of a health survey which is our main interest) -2- at least a
   int i;    second wave of interviews ("longitudinal") which measure each change
   int lg=20;    (if any) in individual health status.  Health expectancies are
   i=0;    computed from the time spent in each health state according to a
   lg=strlen(t);    model. More health states you consider, more time is necessary to reach the
   for(i=0; i<= lg; i++) {    Maximum Likelihood of the parameters involved in the model.  The
     (s[i] = t[i]);    simplest model is the multinomial logistic model where pij is the
     if (t[i]== '\\') s[i]='/';    probability to be observed in state j at the second wave
   }    conditional to be observed in state i at the first wave. Therefore
 }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 int nbocc(char *s, char occ)    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   int i,j=0;    you to do it.  More covariates you add, slower the
   int lg=20;    convergence.
   i=0;  
   lg=strlen(s);    The advantage of this computer programme, compared to a simple
   for(i=0; i<= lg; i++) {    multinomial logistic model, is clear when the delay between waves is not
   if  (s[i] == occ ) j++;    identical for each individual. Also, if a individual missed an
   }    intermediate interview, the information is lost, but taken into
   return j;    account using an interpolation or extrapolation.  
 }  
     hPijx is the probability to be observed in state i at age x+h
 void cutv(char *u,char *v, char*t, char occ)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   int i,lg,j,p;    states. This elementary transition (by month, quarter,
   i=0;    semester or year) is modelled as a multinomial logistic.  The hPx
   if (t[0]== occ) p=0;    matrix is simply the matrix product of nh*stepm elementary matrices
   for(j=0; j<=strlen(t)-1; j++) {    and the contribution of each individual to the likelihood is simply
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;    hPijx.
   }  
     Also this programme outputs the covariance matrix of the parameters but also
   lg=strlen(t);    of the life expectancies. It also computes the stable prevalence. 
   for(j=0; j<p; j++) {    
     (u[j] = t[j]);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     u[p]='\0';             Institut national d'études démographiques, Paris.
   }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
    for(j=0; j<= lg; j++) {    It is copyrighted identically to a GNU software product, ie programme and
     if (j>=(p+1))(v[j-p-1] = t[j]);    software can be distributed freely for non commercial use. Latest version
   }    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /********************** nrerror ********************/    
     **********************************************************************/
 void nrerror(char error_text[])  /*
 {    main
   fprintf(stderr,"ERREUR ...\n");    read parameterfile
   fprintf(stderr,"%s\n",error_text);    read datafile
   exit(1);    concatwav
 }    freqsummary
 /*********************** vector *******************/    if (mle >= 1)
 double *vector(int nl, int nh)      mlikeli
 {    print results files
   double *v;    if mle==1 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));       computes hessian
   if (!v) nrerror("allocation failure in vector");    read end of parameter file: agemin, agemax, bage, fage, estepm
   return v-nl+NR_END;        begin-prev-date,...
 }    open gnuplot file
     open html file
 /************************ free vector ******************/    stable prevalence
 void free_vector(double*v, int nl, int nh)     for age prevalim()
 {    h Pij x
   free((FREE_ARG)(v+nl-NR_END));    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /************************ivector *******************************/    Variance-covariance of DFLE
 int *ivector(long nl,long nh)    prevalence()
 {     movingaverage()
   int *v;    varevsij() 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    if popbased==1 varevsij(,popbased)
   if (!v) nrerror("allocation failure in ivector");    total life expectancies
   return v-nl+NR_END;    Variance of stable prevalence
 }   end
   */
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  
 {  
   free((FREE_ARG)(v+nl-NR_END));   
 }  #include <math.h>
   #include <stdio.h>
 /******************* imatrix *******************************/  #include <stdlib.h>
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #include <string.h>
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #include <unistd.h>
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  /* #include <sys/time.h> */
   int **m;  #include <time.h>
    #include "timeval.h"
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /* #include <libintl.h> */
   if (!m) nrerror("allocation failure 1 in matrix()");  /* #define _(String) gettext (String) */
   m += NR_END;  
   m -= nrl;  #define MAXLINE 256
    #define GNUPLOTPROGRAM "gnuplot"
    /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   /* allocate rows and set pointers to them */  #define FILENAMELENGTH 132
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /*#define DEBUG*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*#define windows*/
   m[nrl] += NR_END;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m[nrl] -= ncl;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   /* return pointer to array of pointers to rows */  
   return m;  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /****************** free_imatrix *************************/  #define NCOVMAX 8 /* Maximum number of covariates */
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define MAXN 20000
       int **m;  #define YEARM 12. /* Number of months per year */
       long nch,ncl,nrh,nrl;  #define AGESUP 130
      /* free an int matrix allocated by imatrix() */  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #ifdef UNIX
   free((FREE_ARG) (m+nrl-NR_END));  #define DIRSEPARATOR '/'
 }  #define ODIRSEPARATOR '\\'
   #else
 /******************* matrix *******************************/  #define DIRSEPARATOR '\\'
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define ODIRSEPARATOR '/'
 {  #endif
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /* $Id$ */
   /* $State$ */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  char version[]="Imach version 0.98a, January 2006, INED-EUROREVES ";
   m += NR_END;  char fullversion[]="$Revision$ $Date$"; 
   m -= nrl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int npar=NPARMAX;
   m[nrl] += NR_END;  int nlstate=2; /* Number of live states */
   m[nrl] -= ncl;  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int popbased=0;
   return m;  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /*************************free matrix ************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int mle, weightopt;
   free((FREE_ARG)(m+nrl-NR_END));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /******************* ma3x *******************************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double ***m;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int globpr; /* Global variable for printing or not */
   if (!m) nrerror("allocation failure 1 in matrix()");  double fretone; /* Only one call to likelihood */
   m += NR_END;  long ipmx; /* Number of contributions */
   m -= nrl;  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficresilk;
   m[nrl] += NR_END;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m[nrl] -= ncl;  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  FILE  *ficresvij;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char fileresv[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  FILE  *ficresvpl;
   m[nrl][ncl] -= nll;  char fileresvpl[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  char title[MAXLINE];
     m[nrl][j]=m[nrl][j-1]+nlay;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char command[FILENAMELENGTH];
     for (j=ncl+1; j<=nch; j++)  int  outcmd=0;
       m[i][j]=m[i][j-1]+nlay;  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   return m;  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /*************************free ma3x ************************/  char fileregp[FILENAMELENGTH];
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char popfile[FILENAMELENGTH];
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 }  struct timezone tzp;
   extern int gettimeofday();
 /***************** f1dim *************************/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 extern int ncom;  long time_value;
 extern double *pcom,*xicom;  extern long time();
 extern double (*nrfunc)(double []);  char strcurr[80], strfor[80];
    
 double f1dim(double x)  #define NR_END 1
 {  #define FREE_ARG char*
   int j;  #define FTOL 1.0e-10
   double f;  
   double *xt;  #define NRANSI 
    #define ITMAX 200 
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define TOL 2.0e-4 
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  #define CGOLD 0.3819660 
   return f;  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /*****************brent *************************/  #define GOLD 1.618034 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define GLIMIT 100.0 
 {  #define TINY 1.0e-20 
   int iter;  
   double a,b,d,etemp;  static double maxarg1,maxarg2;
   double fu,fv,fw,fx;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   double ftemp;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double p,q,r,tol1,tol2,u,v,w,x,xm;    
   double e=0.0;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  static double sqrarg;
   x=w=v=bx;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   fw=fv=fx=(*f)(x);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for (iter=1;iter<=ITMAX;iter++) {  int agegomp= AGEGOMP;
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int imx; 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int stepm=1;
     printf(".");fflush(stdout);  /* Stepm, step in month: minimum step interpolation*/
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int estepm;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int m,nb;
       *xmin=x;  long *num;
       return fx;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     ftemp=fu;  double **pmmij, ***probs;
     if (fabs(e) > tol1) {  double *ageexmed,*agecens;
       r=(x-w)*(fx-fv);  double dateintmean=0;
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  double *weight;
       q=2.0*(q-r);  int **s; /* Status */
       if (q > 0.0) p = -p;  double *agedc, **covar, idx;
       q=fabs(q);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       etemp=e;  double *lsurv, *lpop, *tpop;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double ftolhess; /* Tolerance for computing hessian */
       else {  
         d=p/q;  /**************** split *************************/
         u=x+d;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         if (u-a < tol2 || b-u < tol2)  {
           d=SIGN(tol1,xm-x);    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
       }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     } else {    */ 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    char  *ss;                            /* pointer */
     }    int   l1, l2;                         /* length counters */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    l1 = strlen(path );                   /* length of path */
     if (fu <= fx) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       if (u >= x) a=x; else b=x;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       SHFT(v,w,x,u)    if ( ss == NULL ) {                   /* no directory, so use current */
         SHFT(fv,fw,fx,fu)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         } else {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
           if (u < x) a=u; else b=u;      /* get current working directory */
           if (fu <= fw || w == x) {      /*    extern  char* getcwd ( char *buf , int len);*/
             v=w;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
             w=u;        return( GLOCK_ERROR_GETCWD );
             fv=fw;      }
             fw=fu;      strcpy( name, path );               /* we've got it */
           } else if (fu <= fv || v == x || v == w) {    } else {                              /* strip direcotry from path */
             v=u;      ss++;                               /* after this, the filename */
             fv=fu;      l2 = strlen( ss );                  /* length of filename */
           }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         }      strcpy( name, ss );         /* save file name */
   }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   nrerror("Too many iterations in brent");      dirc[l1-l2] = 0;                    /* add zero */
   *xmin=x;    }
   return fx;    l1 = strlen( dirc );                  /* length of directory */
 }    /*#ifdef windows
     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 /****************** mnbrak ***********************/  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #endif
             double (*func)(double))    */
 {    ss = strrchr( name, '.' );            /* find last / */
   double ulim,u,r,q, dum;    if (ss >0){
   double fu;      ss++;
        strcpy(ext,ss);                     /* save extension */
   *fa=(*func)(*ax);      l1= strlen( name);
   *fb=(*func)(*bx);      l2= strlen(ss)+1;
   if (*fb > *fa) {      strncpy( finame, name, l1-l2);
     SHFT(dum,*ax,*bx,dum)      finame[l1-l2]= 0;
       SHFT(dum,*fb,*fa,dum)    }
       }    return( 0 );                          /* we're done */
   *cx=(*bx)+GOLD*(*bx-*ax);  }
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /******************************************/
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  void replace_back_to_slash(char *s, char*t)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    int i;
     if ((*bx-u)*(u-*cx) > 0.0) {    int lg=0;
       fu=(*func)(u);    i=0;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    lg=strlen(t);
       fu=(*func)(u);    for(i=0; i<= lg; i++) {
       if (fu < *fc) {      (s[i] = t[i]);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      if (t[i]== '\\') s[i]='/';
           SHFT(*fb,*fc,fu,(*func)(u))    }
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  int nbocc(char *s, char occ)
       fu=(*func)(u);  {
     } else {    int i,j=0;
       u=(*cx)+GOLD*(*cx-*bx);    int lg=20;
       fu=(*func)(u);    i=0;
     }    lg=strlen(s);
     SHFT(*ax,*bx,*cx,u)    for(i=0; i<= lg; i++) {
       SHFT(*fa,*fb,*fc,fu)    if  (s[i] == occ ) j++;
       }    }
 }    return j;
   }
 /*************** linmin ************************/  
   void cutv(char *u,char *v, char*t, char occ)
 int ncom;  {
 double *pcom,*xicom;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 double (*nrfunc)(double []);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         gives u="abcedf" and v="ghi2j" */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    int i,lg,j,p=0;
 {    i=0;
   double brent(double ax, double bx, double cx,    for(j=0; j<=strlen(t)-1; j++) {
                double (*f)(double), double tol, double *xmin);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   double f1dim(double x);    }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    lg=strlen(t);
   int j;    for(j=0; j<p; j++) {
   double xx,xmin,bx,ax;      (u[j] = t[j]);
   double fx,fb,fa;    }
         u[p]='\0';
   ncom=n;  
   pcom=vector(1,n);     for(j=0; j<= lg; j++) {
   xicom=vector(1,n);      if (j>=(p+1))(v[j-p-1] = t[j]);
   nrfunc=func;    }
   for (j=1;j<=n;j++) {  }
     pcom[j]=p[j];  
     xicom[j]=xi[j];  /********************** nrerror ********************/
   }  
   ax=0.0;  void nrerror(char error_text[])
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    fprintf(stderr,"ERREUR ...\n");
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    fprintf(stderr,"%s\n",error_text);
 #ifdef DEBUG    exit(EXIT_FAILURE);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  /*********************** vector *******************/
   for (j=1;j<=n;j++) {  double *vector(int nl, int nh)
     xi[j] *= xmin;  {
     p[j] += xi[j];    double *v;
   }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   free_vector(xicom,1,n);    if (!v) nrerror("allocation failure in vector");
   free_vector(pcom,1,n);    return v-nl+NR_END;
 }  }
   
 /*************** powell ************************/  /************************ free vector ******************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void free_vector(double*v, int nl, int nh)
             double (*func)(double []))  {
 {    free((FREE_ARG)(v+nl-NR_END));
   void linmin(double p[], double xi[], int n, double *fret,  }
               double (*func)(double []));  
   int i,ibig,j;  /************************ivector *******************************/
   double del,t,*pt,*ptt,*xit;  int *ivector(long nl,long nh)
   double fp,fptt;  {
   double *xits;    int *v;
   pt=vector(1,n);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   ptt=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   xit=vector(1,n);    return v-nl+NR_END;
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /******************free ivector **************************/
   for (*iter=1;;++(*iter)) {  void free_ivector(int *v, long nl, long nh)
     fp=(*fret);  {
     ibig=0;    free((FREE_ARG)(v+nl-NR_END));
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /************************lvector *******************************/
       printf(" %d %.12f",i, p[i]);  long *lvector(long nl,long nh)
     printf("\n");  {
     for (i=1;i<=n;i++) {    long *v;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       fptt=(*fret);    if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /******************free lvector **************************/
       linmin(p,xit,n,fret,func);  void free_lvector(long *v, long nl, long nh)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    free((FREE_ARG)(v+nl-NR_END));
         ibig=i;  }
       }  
 #ifdef DEBUG  /******************* imatrix *******************************/
       printf("%d %.12e",i,(*fret));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       for (j=1;j<=n;j++) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  { 
         printf(" x(%d)=%.12e",j,xit[j]);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
       for(j=1;j<=n;j++)    
         printf(" p=%.12e",p[j]);    /* allocate pointers to rows */ 
       printf("\n");    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 #endif    if (!m) nrerror("allocation failure 1 in matrix()"); 
     }    m += NR_END; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m -= nrl; 
 #ifdef DEBUG    
       int k[2],l;    
       k[0]=1;    /* allocate rows and set pointers to them */ 
       k[1]=-1;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       printf("Max: %.12e",(*func)(p));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       for (j=1;j<=n;j++)    m[nrl] += NR_END; 
         printf(" %.12e",p[j]);    m[nrl] -= ncl; 
       printf("\n");    
       for(l=0;l<=1;l++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         for (j=1;j<=n;j++) {    
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    /* return pointer to array of pointers to rows */ 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return m; 
         }  } 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /****************** free_imatrix *************************/
 #endif  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
         long nch,ncl,nrh,nrl; 
       free_vector(xit,1,n);       /* free an int matrix allocated by imatrix() */ 
       free_vector(xits,1,n);  { 
       free_vector(ptt,1,n);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       free_vector(pt,1,n);    free((FREE_ARG) (m+nrl-NR_END)); 
       return;  } 
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /******************* matrix *******************************/
     for (j=1;j<=n;j++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       pt[j]=p[j];    double **m;
     }  
     fptt=(*func)(ptt);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (fptt < fp) {    if (!m) nrerror("allocation failure 1 in matrix()");
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m += NR_END;
       if (t < 0.0) {    m -= nrl;
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           xi[j][ibig]=xi[j][n];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           xi[j][n]=xit[j];    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for(j=1;j<=n;j++)    return m;
           printf(" %.12e",xit[j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         printf("\n");     */
 #endif  }
       }  
     }  /*************************free matrix ************************/
   }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /**** Prevalence limit ****************/    free((FREE_ARG)(m+nrl-NR_END));
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /******************* ma3x *******************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
      matrix by transitions matrix until convergence is reached */  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int i, ii,j,k;    double ***m;
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double **out, cov[NCOVMAX], **pmij();    if (!m) nrerror("allocation failure 1 in matrix()");
   double **newm;    m += NR_END;
   double agefin, delaymax=50 ; /* Max number of years to converge */    m -= nrl;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     newm=savm;  
     /* Covariates have to be included here again */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     cov[1]=1.;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     cov[2]=agefin;    m[nrl][ncl] += NR_END;
     if (cptcovn>0){    m[nrl][ncl] -= nll;
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    
     for (i=nrl+1; i<=nrh; i++) {
     savm=oldm;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     oldm=newm;      for (j=ncl+1; j<=nch; j++) 
     maxmax=0.;        m[i][j]=m[i][j-1]+nlay;
     for(j=1;j<=nlstate;j++){    }
       min=1.;    return m; 
       max=0.;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for(i=1; i<=nlstate; i++) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         sumnew=0;    */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /*************************free ma3x ************************/
         min=FMIN(min,prlim[i][j]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       }  {
       maxmin=max-min;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       maxmax=FMAX(maxmax,maxmin);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
     if(maxmax < ftolpl){  }
       return prlim;  
     }  /*************** function subdirf ***********/
   }  char *subdirf(char fileres[])
 }  {
     /* Caution optionfilefiname is hidden */
 /*************** transition probabilities **********/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    strcat(tmpout,fileres);
 {    return tmpout;
   double s1, s2;  }
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
     for(i=1; i<= nlstate; i++){  {
     for(j=1; j<i;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* Caution optionfilefiname is hidden */
         /*s2 += param[i][j][nc]*cov[nc];*/    strcpy(tmpout,optionfilefiname);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,"/");
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
       ps[i][j]=s2;    return tmpout;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  }
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /*************** function subdirf3 ***********/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char *subdirf3(char fileres[], char *preop, char *preop2)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    
       }    /* Caution optionfilefiname is hidden */
       ps[i][j]=s2;    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
   for(i=1; i<= nlstate; i++){    strcat(tmpout,preop2);
      s1=0;    strcat(tmpout,fileres);
     for(j=1; j<i; j++)    return tmpout;
       s1+=exp(ps[i][j]);  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  /***************** f1dim *************************/
     ps[i][i]=1./(s1+1.);  extern int ncom; 
     for(j=1; j<i; j++)  extern double *pcom,*xicom;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  extern double (*nrfunc)(double []); 
     for(j=i+1; j<=nlstate+ndeath; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];  double f1dim(double x) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  { 
   } /* end i */    int j; 
     double f;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    double *xt; 
     for(jj=1; jj<= nlstate+ndeath; jj++){   
       ps[ii][jj]=0;    xt=vector(1,ncom); 
       ps[ii][ii]=1;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
   }    free_vector(xt,1,ncom); 
     return f; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /*****************brent *************************/
    }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     printf("\n ");  { 
     }    int iter; 
     printf("\n ");printf("%lf ",cov[2]);*/    double a,b,d,etemp;
 /*    double fu,fv,fw,fx;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double ftemp;
   goto end;*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     return ps;    double e=0.0; 
 }   
     a=(ax < cx ? ax : cx); 
 /**************** Product of 2 matrices ******************/    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    fw=fv=fx=(*f)(x); 
 {    for (iter=1;iter<=ITMAX;iter++) { 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      xm=0.5*(a+b); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   /* in, b, out are matrice of pointers which should have been initialized      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
      before: only the contents of out is modified. The function returns      printf(".");fflush(stdout);
      a pointer to pointers identical to out */      fprintf(ficlog,".");fflush(ficlog);
   long i, j, k;  #ifdef DEBUG
   for(i=nrl; i<= nrh; i++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(k=ncolol; k<=ncoloh; k++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         out[i][k] +=in[i][j]*b[j][k];  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   return out;        *xmin=x; 
 }        return fx; 
       } 
       ftemp=fu;
 /************* Higher Matrix Product ***************/      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        q=(x-v)*(fx-fw); 
 {        p=(x-v)*q-(x-w)*r; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        q=2.0*(q-r); 
      duration (i.e. until        if (q > 0.0) p = -p; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        q=fabs(q); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        etemp=e; 
      (typically every 2 years instead of every month which is too big).        e=d; 
      Model is determined by parameters x and covariates have to be        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      included manually here.          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
      */          d=p/q; 
           u=x+d; 
   int i, j, d, h, k;          if (u-a < tol2 || b-u < tol2) 
   double **out, cov[NCOVMAX];            d=SIGN(tol1,xm-x); 
   double **newm;        } 
       } else { 
   /* Hstepm could be zero and should return the unit matrix */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (i=1;i<=nlstate+ndeath;i++)      } 
     for (j=1;j<=nlstate+ndeath;j++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      fu=(*f)(u); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        SHFT(v,w,x,u) 
   for(h=1; h <=nhstepm; h++){          SHFT(fv,fw,fx,fu) 
     for(d=1; d <=hstepm; d++){          } else { 
       newm=savm;            if (u < x) a=u; else b=u; 
       /* Covariates have to be included here again */            if (fu <= fw || w == x) { 
       cov[1]=1.;              v=w; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;              w=u; 
       if (cptcovn>0){              fv=fw; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/              v=u; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/              fv=fu; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,            } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          } 
       savm=oldm;    } 
       oldm=newm;    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
     for(i=1; i<=nlstate+ndeath; i++)    return fx; 
       for(j=1;j<=nlstate+ndeath;j++) {  } 
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /****************** mnbrak ***********************/
          */  
       }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   } /* end h */              double (*func)(double)) 
   return po;  { 
 }    double ulim,u,r,q, dum;
     double fu; 
    
 /*************** log-likelihood *************/    *fa=(*func)(*ax); 
 double func( double *x)    *fb=(*func)(*bx); 
 {    if (*fb > *fa) { 
   int i, ii, j, k, mi, d;      SHFT(dum,*ax,*bx,dum) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        SHFT(dum,*fb,*fa,dum) 
   double **out;        } 
   double sw; /* Sum of weights */    *cx=(*bx)+GOLD*(*bx-*ax); 
   double lli; /* Individual log likelihood */    *fc=(*func)(*cx); 
   long ipmx;    while (*fb > *fc) { 
   /*extern weight */      r=(*bx-*ax)*(*fb-*fc); 
   /* We are differentiating ll according to initial status */      q=(*bx-*cx)*(*fb-*fa); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /*for(i=1;i<imx;i++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 printf(" %d\n",s[4][i]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   */      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fu=(*func)(u); 
        for(mi=1; mi<= wav[i]-1; mi++){        if (fu < *fc) { 
       for (ii=1;ii<=nlstate+ndeath;ii++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);            SHFT(*fb,*fc,fu,(*func)(u)) 
             for(d=0; d<dh[mi][i]; d++){            } 
         newm=savm;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
           cov[1]=1.;        u=ulim; 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        fu=(*func)(u); 
           if (cptcovn>0){      } else { 
             for (k=1; k<=cptcovn;k++) {        u=(*cx)+GOLD*(*cx-*bx); 
               cov[2+k]=covar[Tvar[k]][i];        fu=(*func)(u); 
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/      } 
             }      SHFT(*ax,*bx,*cx,u) 
             }        SHFT(*fa,*fb,*fc,fu) 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        } 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  } 
           savm=oldm;  
           oldm=newm;  /*************** linmin ************************/
       } /* end mult */  
      int ncom; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  double *pcom,*xicom;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  double (*nrfunc)(double []); 
       ipmx +=1;   
       sw += weight[i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  { 
     } /* end of wave */    double brent(double ax, double bx, double cx, 
   } /* end of individual */                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */                double *fc, double (*func)(double)); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int j; 
     double xx,xmin,bx,ax; 
   return -l;    double fx,fb,fa;
 }   
     ncom=n; 
     pcom=vector(1,n); 
 /*********** Maximum Likelihood Estimation ***************/    xicom=vector(1,n); 
     nrfunc=func; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    for (j=1;j<=n;j++) { 
 {      pcom[j]=p[j]; 
   int i,j, iter;      xicom[j]=xi[j]; 
   double **xi,*delti;    } 
   double fret;    ax=0.0; 
   xi=matrix(1,npar,1,npar);    xx=1.0; 
   for (i=1;i<=npar;i++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (j=1;j<=npar;j++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       xi[i][j]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
   printf("Powell\n");    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   powell(p,xi,npar,ftol,&iter,&fret,func);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    for (j=1;j<=n;j++) { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));      xi[j] *= xmin; 
       p[j] += xi[j]; 
 }    } 
     free_vector(xicom,1,n); 
 /**** Computes Hessian and covariance matrix ***/    free_vector(pcom,1,n); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  } 
 {  
   double  **a,**y,*x,pd;  char *asc_diff_time(long time_sec, char ascdiff[])
   double **hess;  {
   int i, j,jk;    long sec_left, days, hours, minutes;
   int *indx;    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
   double hessii(double p[], double delta, int theta, double delti[]);    hours = (sec_left) / (60*60) ;
   double hessij(double p[], double delti[], int i, int j);    sec_left = (sec_left) %(60*60);
   void lubksb(double **a, int npar, int *indx, double b[]) ;    minutes = (sec_left) /60;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   hess=matrix(1,npar,1,npar);  }
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*************** powell ************************/
   for (i=1;i<=npar;i++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     printf("%d",i);fflush(stdout);              double (*func)(double [])) 
     hess[i][i]=hessii(p,ftolhess,i,delti);  { 
     /*printf(" %f ",p[i]);*/    void linmin(double p[], double xi[], int n, double *fret, 
   }                double (*func)(double [])); 
     int i,ibig,j; 
   for (i=1;i<=npar;i++) {    double del,t,*pt,*ptt,*xit;
     for (j=1;j<=npar;j++)  {    double fp,fptt;
       if (j>i) {    double *xits;
         printf(".%d%d",i,j);fflush(stdout);    int niterf, itmp;
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];    pt=vector(1,n); 
       }    ptt=vector(1,n); 
     }    xit=vector(1,n); 
   }    xits=vector(1,n); 
   printf("\n");    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for (*iter=1;;++(*iter)) { 
        fp=(*fret); 
   a=matrix(1,npar,1,npar);      ibig=0; 
   y=matrix(1,npar,1,npar);      del=0.0; 
   x=vector(1,npar);      last_time=curr_time;
   indx=ivector(1,npar);      (void) gettimeofday(&curr_time,&tzp);
   for (i=1;i<=npar;i++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   ludcmp(a,npar,indx,&pd);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
   for (j=1;j<=npar;j++) {     for (i=1;i<=n;i++) {
     for (i=1;i<=npar;i++) x[i]=0;        printf(" %d %.12f",i, p[i]);
     x[j]=1;        fprintf(ficlog," %d %.12lf",i, p[i]);
     lubksb(a,npar,indx,x);        fprintf(ficrespow," %.12lf", p[i]);
     for (i=1;i<=npar;i++){      }
       matcov[i][j]=x[i];      printf("\n");
     }      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   printf("\n#Hessian matrix#\n");        tm = *localtime(&curr_time.tv_sec);
   for (i=1;i<=npar;i++) {        strcpy(strcurr,asctime(&tm));
     for (j=1;j<=npar;j++) {  /*       asctime_r(&tm,strcurr); */
       printf("%.3e ",hess[i][j]);        forecast_time=curr_time; 
     }        itmp = strlen(strcurr);
     printf("\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /* Recompute Inverse */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++)        for(niterf=10;niterf<=30;niterf+=10){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   ludcmp(a,npar,indx,&pd);          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   /*  printf("\n#Hessian matrix recomputed#\n");          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
   for (j=1;j<=npar;j++) {          if(strfor[itmp-1]=='\n')
     for (i=1;i<=npar;i++) x[i]=0;          strfor[itmp-1]='\0';
     x[j]=1;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     lubksb(a,npar,indx,x);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (i=1;i<=npar;i++){        }
       y[i][j]=x[i];      }
       printf("%.3e ",y[i][j]);      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     printf("\n");        fptt=(*fret); 
   }  #ifdef DEBUG
   */        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   free_matrix(a,1,npar,1,npar);  #endif
   free_matrix(y,1,npar,1,npar);        printf("%d",i);fflush(stdout);
   free_vector(x,1,npar);        fprintf(ficlog,"%d",i);fflush(ficlog);
   free_ivector(indx,1,npar);        linmin(p,xit,n,fret,func); 
   free_matrix(hess,1,npar,1,npar);        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
           ibig=i; 
 }        } 
   #ifdef DEBUG
 /*************** hessian matrix ****************/        printf("%d %.12e",i,(*fret));
 double hessii( double x[], double delta, int theta, double delti[])        fprintf(ficlog,"%d %.12e",i,(*fret));
 {        for (j=1;j<=n;j++) {
   int i;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   int l=1, lmax=20;          printf(" x(%d)=%.12e",j,xit[j]);
   double k1,k2;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double p2[NPARMAX+1];        }
   double res;        for(j=1;j<=n;j++) {
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          printf(" p=%.12e",p[j]);
   double fx;          fprintf(ficlog," p=%.12e",p[j]);
   int k=0,kmax=10;        }
   double l1;        printf("\n");
         fprintf(ficlog,"\n");
   fx=func(x);  #endif
   for (i=1;i<=npar;i++) p2[i]=x[i];      } 
   for(l=0 ; l <=lmax; l++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     l1=pow(10,l);  #ifdef DEBUG
     delts=delt;        int k[2],l;
     for(k=1 ; k <kmax; k=k+1){        k[0]=1;
       delt = delta*(l1*k);        k[1]=-1;
       p2[theta]=x[theta] +delt;        printf("Max: %.12e",(*func)(p));
       k1=func(p2)-fx;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       p2[theta]=x[theta]-delt;        for (j=1;j<=n;j++) {
       k2=func(p2)-fx;          printf(" %.12e",p[j]);
       /*res= (k1-2.0*fx+k2)/delt/delt; */          fprintf(ficlog," %.12e",p[j]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        }
              printf("\n");
 #ifdef DEBUG        fprintf(ficlog,"\n");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for(l=0;l<=1;l++) {
 #endif          for (j=1;j<=n;j++) {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         k=kmax;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }          }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         k=kmax; l=lmax*10.;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  #endif
         delts=delt;  
       }  
     }        free_vector(xit,1,n); 
   }        free_vector(xits,1,n); 
   delti[theta]=delts;        free_vector(ptt,1,n); 
   return res;          free_vector(pt,1,n); 
 }        return; 
       } 
 double hessij( double x[], double delti[], int thetai,int thetaj)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 {      for (j=1;j<=n;j++) { 
   int i;        ptt[j]=2.0*p[j]-pt[j]; 
   int l=1, l1, lmax=20;        xit[j]=p[j]-pt[j]; 
   double k1,k2,k3,k4,res,fx;        pt[j]=p[j]; 
   double p2[NPARMAX+1];      } 
   int k;      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   fx=func(x);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for (k=1; k<=2; k++) {        if (t < 0.0) { 
     for (i=1;i<=npar;i++) p2[i]=x[i];          linmin(p,xit,n,fret,func); 
     p2[thetai]=x[thetai]+delti[thetai]/k;          for (j=1;j<=n;j++) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            xi[j][ibig]=xi[j][n]; 
     k1=func(p2)-fx;            xi[j][n]=xit[j]; 
            }
     p2[thetai]=x[thetai]+delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     k2=func(p2)-fx;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(j=1;j<=n;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;            printf(" %.12e",xit[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            fprintf(ficlog," %.12e",xit[j]);
     k3=func(p2)-fx;          }
            printf("\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;          fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #endif
     k4=func(p2)-fx;        }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      } 
 #ifdef DEBUG    } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  } 
 #endif  
   }  /**** Prevalence limit (stable prevalence)  ****************/
   return res;  
 }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
 /************** Inverse of matrix **************/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 void ludcmp(double **a, int n, int *indx, double *d)       matrix by transitions matrix until convergence is reached */
 {  
   int i,imax,j,k;    int i, ii,j,k;
   double big,dum,sum,temp;    double min, max, maxmin, maxmax,sumnew=0.;
   double *vv;    double **matprod2();
      double **out, cov[NCOVMAX], **pmij();
   vv=vector(1,n);    double **newm;
   *d=1.0;    double agefin, delaymax=50 ; /* Max number of years to converge */
   for (i=1;i<=n;i++) {  
     big=0.0;    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=n;j++)      for (j=1;j<=nlstate+ndeath;j++){
       if ((temp=fabs(a[i][j])) > big) big=temp;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      }
     vv[i]=1.0/big;  
   }     cov[1]=1.;
   for (j=1;j<=n;j++) {   
     for (i=1;i<j;i++) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       sum=a[i][j];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      newm=savm;
       a[i][j]=sum;      /* Covariates have to be included here again */
     }       cov[2]=agefin;
     big=0.0;    
     for (i=j;i<=n;i++) {        for (k=1; k<=cptcovn;k++) {
       sum=a[i][j];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=1;k<j;k++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (k=1; k<=cptcovprod;k++)
         big=dum;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         imax=i;  
       }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     if (j != imax) {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for (k=1;k<=n;k++) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         dum=a[imax][k];  
         a[imax][k]=a[j][k];      savm=oldm;
         a[j][k]=dum;      oldm=newm;
       }      maxmax=0.;
       *d = -(*d);      for(j=1;j<=nlstate;j++){
       vv[imax]=vv[j];        min=1.;
     }        max=0.;
     indx[j]=imax;        for(i=1; i<=nlstate; i++) {
     if (a[j][j] == 0.0) a[j][j]=TINY;          sumnew=0;
     if (j != n) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       dum=1.0/(a[j][j]);          prlim[i][j]= newm[i][j]/(1-sumnew);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
   }        }
   free_vector(vv,1,n);  /* Doesn't work */        maxmin=max-min;
 ;        maxmax=FMAX(maxmax,maxmin);
 }      }
       if(maxmax < ftolpl){
 void lubksb(double **a, int n, int *indx, double b[])        return prlim;
 {      }
   int i,ii=0,ip,j;    }
   double sum;  }
    
   for (i=1;i<=n;i++) {  /*************** transition probabilities ***************/ 
     ip=indx[i];  
     sum=b[ip];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     b[ip]=b[i];  {
     if (ii)    double s1, s2;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    /*double t34;*/
     else if (sum) ii=i;    int i,j,j1, nc, ii, jj;
     b[i]=sum;  
   }      for(i=1; i<= nlstate; i++){
   for (i=n;i>=1;i--) {        for(j=1; j<i;j++){
     sum=b[i];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            /*s2 += param[i][j][nc]*cov[nc];*/
     b[i]=sum/a[i][i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 }          }
           ps[i][j]=s2;
 /************ Frequencies ********************/  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        }
 {  /* Some frequencies */        for(j=i+1; j<=nlstate+ndeath;j++){
            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double ***freq; /* Frequencies */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   double *pp;          }
   double pos;          ps[i][j]=s2;
   FILE *ficresp;        }
   char fileresp[FILENAMELENGTH];      }
       /*ps[3][2]=1;*/
   pp=vector(1,nlstate);      
       for(i=1; i<= nlstate; i++){
   strcpy(fileresp,"p");        s1=0;
   strcat(fileresp,fileres);        for(j=1; j<i; j++)
   if((ficresp=fopen(fileresp,"w"))==NULL) {          s1+=exp(ps[i][j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for(j=i+1; j<=nlstate+ndeath; j++)
     exit(0);          s1+=exp(ps[i][j]);
   }        ps[i][i]=1./(s1+1.);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(j=1; j<i; j++)
   j1=0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
   j=cptcovn;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end i */
   for(k1=1; k1<=j;k1++){      
    for(i1=1; i1<=ncodemax[k1];i1++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
        j1++;        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
         for (i=-1; i<=nlstate+ndeath; i++)            ps[ii][ii]=1;
          for (jk=-1; jk<=nlstate+ndeath; jk++)          }
            for(m=agemin; m <= agemax+3; m++)      }
              freq[i][jk][m]=0;      
          
        for (i=1; i<=imx; i++) {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
          bool=1;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
          if  (cptcovn>0) {  /*         printf("ddd %lf ",ps[ii][jj]); */
            for (z1=1; z1<=cptcovn; z1++)  /*       } */
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;  /*       printf("\n "); */
          }  /*        } */
           if (bool==1) {  /*        printf("\n ");printf("%lf ",cov[2]); */
            for(m=firstpass; m<=lastpass-1; m++){         /*
              if(agev[m][i]==0) agev[m][i]=agemax+1;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
              if(agev[m][i]==1) agev[m][i]=agemax+2;        goto end;*/
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      return ps;
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  }
            }  
          }  /**************** Product of 2 matrices ******************/
        }  
         if  (cptcovn>0) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          fprintf(ficresp, "\n#Variable");  {
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
        fprintf(ficresp, "\n#");    /* in, b, out are matrice of pointers which should have been initialized 
        for(i=1; i<=nlstate;i++)       before: only the contents of out is modified. The function returns
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);       a pointer to pointers identical to out */
        fprintf(ficresp, "\n");    long i, j, k;
            for(i=nrl; i<= nrh; i++)
   for(i=(int)agemin; i <= (int)agemax+3; i++){      for(k=ncolol; k<=ncoloh; k++)
     if(i==(int)agemax+3)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       printf("Total");          out[i][k] +=in[i][j]*b[j][k];
     else  
       printf("Age %d", i);    return out;
     for(jk=1; jk <=nlstate ; jk++){  }
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
         pp[jk] += freq[jk][m][i];  
     }  /************* Higher Matrix Product ***************/
     for(jk=1; jk <=nlstate ; jk++){  
       for(m=-1, pos=0; m <=0 ; m++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         pos += freq[jk][m][i];  {
       if(pp[jk]>=1.e-10)    /* Computes the transition matrix starting at age 'age' over 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);       'nhstepm*hstepm*stepm' months (i.e. until
       else       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);       nhstepm*hstepm matrices. 
     }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(jk=1; jk <=nlstate ; jk++){       (typically every 2 years instead of every month which is too big 
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)       for the memory).
         pp[jk] += freq[jk][m][i];       Model is determined by parameters x and covariates have to be 
     }       included manually here. 
     for(jk=1,pos=0; jk <=nlstate ; jk++)  
       pos += pp[jk];       */
     for(jk=1; jk <=nlstate ; jk++){  
       if(pos>=1.e-5)    int i, j, d, h, k;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double **out, cov[NCOVMAX];
       else    double **newm;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
       if( i <= (int) agemax){    /* Hstepm could be zero and should return the unit matrix */
         if(pos>=1.e-5)    for (i=1;i<=nlstate+ndeath;i++)
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for (j=1;j<=nlstate+ndeath;j++){
       else        oldm[i][j]=(i==j ? 1.0 : 0.0);
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(jk=-1; jk <=nlstate+ndeath; jk++)    for(h=1; h <=nhstepm; h++){
       for(m=-1; m <=nlstate+ndeath; m++)      for(d=1; d <=hstepm; d++){
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        newm=savm;
     if(i <= (int) agemax)        /* Covariates have to be included here again */
       fprintf(ficresp,"\n");        cov[1]=1.;
     printf("\n");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        for (k=1; k<=cptcovage;k++)
  }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
   fclose(ficresp);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 }  /* End of Freq */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 /************* Waves Concatenation ***************/                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        oldm=newm;
 {      }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for(i=1; i<=nlstate+ndeath; i++)
      Death is a valid wave (if date is known).        for(j=1;j<=nlstate+ndeath;j++) {
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          po[i][j][h]=newm[i][j];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
      and mw[mi+1][i]. dh depends on stepm.           */
      */        }
     } /* end h */
   int i, mi, m;    return po;
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  }
 float sum=0.;  
   
   for(i=1; i<=imx; i++){  /*************** log-likelihood *************/
     mi=0;  double func( double *x)
     m=firstpass;  {
     while(s[m][i] <= nlstate){    int i, ii, j, k, mi, d, kk;
       if(s[m][i]>=1)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         mw[++mi][i]=m;    double **out;
       if(m >=lastpass)    double sw; /* Sum of weights */
         break;    double lli; /* Individual log likelihood */
       else    int s1, s2;
         m++;    double bbh, survp;
     }/* end while */    long ipmx;
     if (s[m][i] > nlstate){    /*extern weight */
       mi++;     /* Death is another wave */    /* We are differentiating ll according to initial status */
       /* if(mi==0)  never been interviewed correctly before death */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          /* Only death is a correct wave */    /*for(i=1;i<imx;i++) 
       mw[mi][i]=m;      printf(" %d\n",s[4][i]);
     }    */
     cov[1]=1.;
     wav[i]=mi;  
     if(mi==0)    for(k=1; k<=nlstate; k++) ll[k]=0.;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=imx; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(mi=1; mi<wav[i];mi++){        for(mi=1; mi<= wav[i]-1; mi++){
       if (stepm <=0)          for (ii=1;ii<=nlstate+ndeath;ii++)
         dh[mi][i]=1;            for (j=1;j<=nlstate+ndeath;j++){
       else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (s[mw[mi+1][i]][i] > nlstate) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j=0) j=1;  /* Survives at least one month after exam */          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            for (kk=1; kk<=cptcovage;kk++) {
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
           k=k+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j >= jmax) jmax=j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           else if (j <= jmin)jmin=j;            savm=oldm;
           sum=sum+j;            oldm=newm;
         }          } /* end mult */
         jk= j/stepm;        
         jl= j -jk*stepm;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         ju= j -(jk+1)*stepm;          /* But now since version 0.9 we anticipate for bias at large stepm.
         if(jl <= -ju)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           dh[mi][i]=jk;           * (in months) between two waves is not a multiple of stepm, we rounded to 
         else           * the nearest (and in case of equal distance, to the lowest) interval but now
           dh[mi][i]=jk+1;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         if(dh[mi][i]==0)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           dh[mi][i]=1; /* At least one step */           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);           * For stepm > 1 the results are less biased than in previous versions. 
 }           */
 /*********** Tricode ****************************/          s1=s[mw[mi][i]][i];
 void tricode(int *Tvar, int **nbcode, int imx)          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   int Ndum[80],ij, k, j, i;          /* bias bh is positive if real duration
   int cptcode=0;           * is higher than the multiple of stepm and negative otherwise.
   for (k=0; k<79; k++) Ndum[k]=0;           */
   for (k=1; k<=7; k++) ncodemax[k]=0;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
            if( s2 > nlstate){ 
   for (j=1; j<=cptcovn; j++) {            /* i.e. if s2 is a death state and if the date of death is known 
     for (i=1; i<=imx; i++) {               then the contribution to the likelihood is the probability to 
       ij=(int)(covar[Tvar[j]][i]);               die between last step unit time and current  step unit time, 
       Ndum[ij]++;               which is also equal to probability to die before dh 
       if (ij > cptcode) cptcode=ij;               minus probability to die before dh-stepm . 
     }               In version up to 0.92 likelihood was computed
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          as if date of death was unknown. Death was treated as any other
     for (i=0; i<=cptcode; i++) {          health state: the date of the interview describes the actual state
       if(Ndum[i]!=0) ncodemax[j]++;          and not the date of a change in health state. The former idea was
     }          to consider that at each interview the state was recorded
            (healthy, disable or death) and IMaCh was corrected; but when we
     ij=1;          introduced the exact date of death then we should have modified
     for (i=1; i<=ncodemax[j]; i++) {          the contribution of an exact death to the likelihood. This new
       for (k=0; k<=79; k++) {          contribution is smaller and very dependent of the step unit
         if (Ndum[k] != 0) {          stepm. It is no more the probability to die between last interview
           nbcode[Tvar[j]][ij]=k;          and month of death but the probability to survive from last
           ij++;          interview up to one month before death multiplied by the
         }          probability to die within a month. Thanks to Chris
         if (ij > ncodemax[j]) break;          Jackson for correcting this bug.  Former versions increased
       }            mortality artificially. The bad side is that we add another loop
     }          which slows down the processing. The difference can be up to 10%
   }            lower mortality.
             */
   }            lli=log(out[s1][s2] - savm[s1][s2]);
   
 /*********** Health Expectancies ****************/  
           } else if  (s2==-2) {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            for (j=1,survp=0. ; j<=nlstate; j++) 
 {              survp += out[s1][j];
   /* Health expectancies */            lli= survp;
   int i, j, nhstepm, hstepm, h;          }
   double age, agelim,hf;          
   double ***p3mat;          else if  (s2==-4) {
              for (j=3,survp=0. ; j<=nlstate; j++) 
   fprintf(ficreseij,"# Health expectancies\n");              survp += out[s1][j];
   fprintf(ficreseij,"# Age");            lli= survp;
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=nlstate;j++)          
       fprintf(ficreseij," %1d-%1d",i,j);          else if  (s2==-5) {
   fprintf(ficreseij,"\n");            for (j=1,survp=0. ; j<=2; j++) 
               survp += out[s1][j];
   hstepm=1*YEARM; /*  Every j years of age (in month) */            lli= survp;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }
   
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          else{
     /* nhstepm age range expressed in number of stepm */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     /* Typically if 20 years = 20*12/6=40 stepm */          } 
     if (stepm >= YEARM) hstepm=1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          /*if(lli ==000.0)*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          ipmx +=1;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          sw += weight[i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
     for(i=1; i<=nlstate;i++)    }  else if(mle==2){
       for(j=1; j<=nlstate;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           eij[i][j][(int)age] +=p3mat[i][j][h];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
     hf=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hf=stepm/YEARM;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"%.0f",age );            }
     for(i=1; i<=nlstate;i++)          for(d=0; d<=dh[mi][i]; d++){
       for(j=1; j<=nlstate;j++){            newm=savm;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficreseij,"\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************ Variance ******************/            oldm=newm;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          } /* end mult */
 {        
   /* Variance of health expectancies */          s1=s[mw[mi][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          s2=s[mw[mi+1][i]][i];
   double **newm;          bbh=(double)bh[mi][i]/(double)stepm; 
   double **dnewm,**doldm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i, j, nhstepm, hstepm, h;          ipmx +=1;
   int k, cptcode;          sw += weight[i];
    double *xp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **gp, **gm;        } /* end of wave */
   double ***gradg, ***trgradg;      } /* end of individual */
   double ***p3mat;    }  else if(mle==3){  /* exponential inter-extrapolation */
   double age,agelim;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int theta;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresvij,"# Age");            for (j=1;j<=nlstate+ndeath;j++){
   for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            }
   fprintf(ficresvij,"\n");          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   xp=vector(1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   dnewm=matrix(1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   doldm=matrix(1,nlstate,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   hstepm=1*YEARM; /* Every year of age */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   agelim = AGESUP;            savm=oldm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            oldm=newm;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          } /* end mult */
     if (stepm >= YEARM) hstepm=1;        
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          s1=s[mw[mi][i]][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          s2=s[mw[mi+1][i]][i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
     gp=matrix(0,nhstepm,1,nlstate);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     gm=matrix(0,nhstepm,1,nlstate);          ipmx +=1;
           sw += weight[i];
     for(theta=1; theta <=npar; theta++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=npar; i++){ /* Computes gradient */        } /* end of wave */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end of individual */
       }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<= nlstate; j++){        for(mi=1; mi<= wav[i]-1; mi++){
         for(h=0; h<=nhstepm; h++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
              for(d=0; d<dh[mi][i]; d++){
       for(i=1; i<=npar; i++) /* Computes gradient */            newm=savm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              for (kk=1; kk<=cptcovage;kk++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<= nlstate; j++){            }
         for(h=0; h<=nhstepm; h++){          
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
       }            oldm=newm;
       for(j=1; j<= nlstate; j++)          } /* end mult */
         for(h=0; h<=nhstepm; h++){        
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
     } /* End theta */          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(h=0; h<=nhstepm; h++)          }
       for(j=1; j<=nlstate;j++)          ipmx +=1;
         for(theta=1; theta <=npar; theta++)          sw += weight[i];
           trgradg[h][j][theta]=gradg[h][theta][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i=1;i<=nlstate;i++)        } /* end of wave */
       for(j=1;j<=nlstate;j++)      } /* end of individual */
         vareij[i][j][(int)age] =0.;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     for(h=0;h<=nhstepm;h++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(k=0;k<=nhstepm;k++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for(mi=1; mi<= wav[i]-1; mi++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=1;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
           for(j=1;j<=nlstate;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             vareij[i][j][(int)age] += doldm[i][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
     h=1;            newm=savm;
     if (stepm >= YEARM) h=stepm/YEARM;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficresvij,"%.0f ",age );            for (kk=1; kk<=cptcovage;kk++) {
     for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<=nlstate;j++){            }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficresvij,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_matrix(gp,0,nhstepm,1,nlstate);            savm=oldm;
     free_matrix(gm,0,nhstepm,1,nlstate);            oldm=newm;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          } /* end mult */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          s1=s[mw[mi][i]][i];
   } /* End age */          s2=s[mw[mi+1][i]][i];
            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   free_vector(xp,1,npar);          ipmx +=1;
   free_matrix(doldm,1,nlstate,1,npar);          sw += weight[i];
   free_matrix(dnewm,1,nlstate,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 }        } /* end of wave */
       } /* end of individual */
 /************ Variance of prevlim ******************/    } /* End of if */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* Variance of prevalence limit */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    return -l;
   double **newm;  }
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;  /*************** log-likelihood *************/
   int k, cptcode;  double funcone( double *x)
   double *xp;  {
   double *gp, *gm;    /* Same as likeli but slower because of a lot of printf and if */
   double **gradg, **trgradg;    int i, ii, j, k, mi, d, kk;
   double age,agelim;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   int theta;    double **out;
        double lli; /* Individual log likelihood */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    double llt;
   fprintf(ficresvpl,"# Age");    int s1, s2;
   for(i=1; i<=nlstate;i++)    double bbh, survp;
       fprintf(ficresvpl," %1d-%1d",i,i);    /*extern weight */
   fprintf(ficresvpl,"\n");    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   xp=vector(1,npar);    /*for(i=1;i<imx;i++) 
   dnewm=matrix(1,nlstate,1,npar);      printf(" %d\n",s[4][i]);
   doldm=matrix(1,nlstate,1,nlstate);    */
      cov[1]=1.;
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (stepm >= YEARM) hstepm=1;      for(mi=1; mi<= wav[i]-1; mi++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (ii=1;ii<=nlstate+ndeath;ii++)
     gradg=matrix(1,npar,1,nlstate);          for (j=1;j<=nlstate+ndeath;j++){
     gp=vector(1,nlstate);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=vector(1,nlstate);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
     for(theta=1; theta <=npar; theta++){        for(d=0; d<dh[mi][i]; d++){
       for(i=1; i<=npar; i++){ /* Computes gradient */          newm=savm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }          for (kk=1; kk<=cptcovage;kk++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1;i<=nlstate;i++)          }
         gp[i] = prlim[i][i];          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=npar; i++) /* Computes gradient */          savm=oldm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          oldm=newm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } /* end mult */
       for(i=1;i<=nlstate;i++)        
         gm[i] = prlim[i][i];        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
       for(i=1;i<=nlstate;i++)        bbh=(double)bh[mi][i]/(double)stepm; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        /* bias is positive if real duration
     } /* End theta */         * is higher than the multiple of stepm and negative otherwise.
          */
     trgradg =matrix(1,nlstate,1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
     for(j=1; j<=nlstate;j++)        } else if (mle==1){
       for(theta=1; theta <=npar; theta++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         trgradg[j][theta]=gradg[theta][j];        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(i=1;i<=nlstate;i++)        } else if(mle==3){  /* exponential inter-extrapolation */
       varpl[i][(int)age] =0.;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          lli=log(out[s1][s2]); /* Original formula */
     for(i=1;i<=nlstate;i++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
     fprintf(ficresvpl,"%.0f ",age );        ipmx +=1;
     for(i=1; i<=nlstate;i++)        sw += weight[i];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficresvpl,"\n");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     free_vector(gp,1,nlstate);        if(globpr){
     free_vector(gm,1,nlstate);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     free_matrix(gradg,1,npar,1,nlstate);   %10.6f %10.6f %10.6f ", \
     free_matrix(trgradg,1,nlstate,1,npar);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   } /* End age */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   free_vector(xp,1,npar);            llt +=ll[k]*gipmx/gsw;
   free_matrix(doldm,1,nlstate,1,npar);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   free_matrix(dnewm,1,nlstate,1,nlstate);          }
           fprintf(ficresilk," %10.6f\n", -llt);
 }        }
       } /* end of wave */
     } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 /***********************************************/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 /**************** Main Program *****************/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /***********************************************/    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
 /*int main(int argc, char *argv[])*/      gsw=sw;
 int main()    }
 {    return -l;
   }
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;  
   double agedeb, agefin,hf;  
   double agemin=1.e20, agemax=-1.e20;  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double fret;  {
   double **xi,tmp,delta;    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
   double dum; /* Dummy variable */       to check the exact contribution to the likelihood.
   double ***p3mat;       Plotting could be done.
   int *indx;     */
   char line[MAXLINE], linepar[MAXLINE];    int k;
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    if(*globpri !=0){ /* Just counts and sums, no printings */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];      strcpy(fileresilk,"ilk"); 
   char filerest[FILENAMELENGTH];      strcat(fileresilk,fileres);
   char fileregp[FILENAMELENGTH];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        printf("Problem with resultfile: %s\n", fileresilk);
   int firstobs=1, lastobs=10;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   int sdeb, sfin; /* Status at beginning and end */      }
   int c,  h , cpt,l;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int ju,jl, mi;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int i1,j1, k1,jk,aa,bb, stepsize;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   int hstepm, nhstepm;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double bage, fage, age, agelim, agebase;    }
   double ftolpl=FTOL;  
   double **prlim;    *fretone=(*funcone)(p);
   double *severity;    if(*globpri !=0){
   double ***param; /* Matrix of parameters */      fclose(ficresilk);
   double  *p;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double **matcov; /* Matrix of covariance */      fflush(fichtm); 
   double ***delti3; /* Scale */    } 
   double *delti; /* Scale */    return;
   double ***eij, ***vareij;  }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";  /*********** Maximum Likelihood Estimation ***************/
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   char z[1]="c", occ;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 #include <sys/time.h>  {
 #include <time.h>    int i,j, iter;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double **xi;
   /* long total_usecs;    double fret;
   struct timeval start_time, end_time;    double fretone; /* Only one call to likelihood */
      /*  char filerespow[FILENAMELENGTH];*/
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
   printf("\nIMACH, Version 0.63");        xi[i][j]=(i==j ? 1.0 : 0.0);
   printf("\nEnter the parameter file name: ");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
 #ifdef windows    strcat(filerespow,fileres);
   scanf("%s",pathtot);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   getcwd(pathcd, size);      printf("Problem with resultfile: %s\n", filerespow);
   cutv(path,optionfile,pathtot,'\\');      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   chdir(path);    }
   replace(pathc,path);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 #endif    for (i=1;i<=nlstate;i++)
 #ifdef unix      for(j=1;j<=nlstate+ndeath;j++)
   scanf("%s",optionfile);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 #endif    fprintf(ficrespow,"\n");
   
 /*-------- arguments in the command line --------*/    powell(p,xi,npar,ftol,&iter,&fret,func);
   
   strcpy(fileres,"r");    fclose(ficrespow);
   strcat(fileres, optionfile);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   /*---------arguments file --------*/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  }
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;  /**** Computes Hessian and covariance matrix ***/
   }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
   strcpy(filereso,"o");    double  **a,**y,*x,pd;
   strcat(filereso,fileres);    double **hess;
   if((ficparo=fopen(filereso,"w"))==NULL) {    int i, j,jk;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    int *indx;
   }  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   /* Reads comments: lines beginning with '#' */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    void lubksb(double **a, int npar, int *indx, double b[]) ;
     ungetc(c,ficpar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     fgets(line, MAXLINE, ficpar);    double gompertz(double p[]);
     puts(line);    hess=matrix(1,npar,1,npar);
     fputs(line,ficparo);  
   }    printf("\nCalculation of the hessian matrix. Wait...\n");
   ungetc(c,ficpar);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      printf("%d",i);fflush(stdout);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      fprintf(ficlog,"%d",i);fflush(ficlog);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   covar=matrix(1,NCOVMAX,1,n);          
   if (strlen(model)<=1) cptcovn=0;      /*  printf(" %f ",p[i]);
   else {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     j=0;    }
     j=nbocc(model,'+');    
     cptcovn=j+1;    for (i=1;i<=npar;i++) {
   }      for (j=1;j<=npar;j++)  {
         if (j>i) { 
   ncovmodel=2+cptcovn;          printf(".%d%d",i,j);fflush(stdout);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
            hess[i][j]=hessij(p,delti,i,j,func,npar);
   /* Read guess parameters */          
   /* Reads comments: lines beginning with '#' */          hess[j][i]=hess[i][j];    
   while((c=getc(ficpar))=='#' && c!= EOF){          /*printf(" %lf ",hess[i][j]);*/
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);    printf("\n");
   }    fprintf(ficlog,"\n");
   ungetc(c,ficpar);  
      printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(i=1; i <=nlstate; i++)    
     for(j=1; j <=nlstate+ndeath-1; j++){    a=matrix(1,npar,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    y=matrix(1,npar,1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    x=vector(1,npar);
       printf("%1d%1d",i,j);    indx=ivector(1,npar);
       for(k=1; k<=ncovmodel;k++){    for (i=1;i<=npar;i++)
         fscanf(ficpar," %lf",&param[i][j][k]);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         printf(" %lf",param[i][j][k]);    ludcmp(a,npar,indx,&pd);
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    for (j=1;j<=npar;j++) {
       fscanf(ficpar,"\n");      for (i=1;i<=npar;i++) x[i]=0;
       printf("\n");      x[j]=1;
       fprintf(ficparo,"\n");      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      }
   p=param[1][1];    }
    
   /* Reads comments: lines beginning with '#' */    printf("\n#Hessian matrix#\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"\n#Hessian matrix#\n");
     ungetc(c,ficpar);    for (i=1;i<=npar;i++) { 
     fgets(line, MAXLINE, ficpar);      for (j=1;j<=npar;j++) { 
     puts(line);        printf("%.3e ",hess[i][j]);
     fputs(line,ficparo);        fprintf(ficlog,"%.3e ",hess[i][j]);
   }      }
   ungetc(c,ficpar);      printf("\n");
       fprintf(ficlog,"\n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    /* Recompute Inverse */
     for(j=1; j <=nlstate+ndeath-1; j++){    for (i=1;i<=npar;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       printf("%1d%1d",i,j);    ludcmp(a,npar,indx,&pd);
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){    /*  printf("\n#Hessian matrix recomputed#\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);    for (j=1;j<=npar;j++) {
         fprintf(ficparo," %le",delti3[i][j][k]);      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
       fscanf(ficpar,"\n");      lubksb(a,npar,indx,x);
       printf("\n");      for (i=1;i<=npar;i++){ 
       fprintf(ficparo,"\n");        y[i][j]=x[i];
     }        printf("%.3e ",y[i][j]);
   }        fprintf(ficlog,"%.3e ",y[i][j]);
   delti=delti3[1][1];      }
        printf("\n");
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    */
     fgets(line, MAXLINE, ficpar);  
     puts(line);    free_matrix(a,1,npar,1,npar);
     fputs(line,ficparo);    free_matrix(y,1,npar,1,npar);
   }    free_vector(x,1,npar);
   ungetc(c,ficpar);    free_ivector(indx,1,npar);
      free_matrix(hess,1,npar,1,npar);
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);  }
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  /*************** hessian matrix ****************/
     for(j=1; j <=i; j++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       fscanf(ficpar," %le",&matcov[i][j]);  {
       printf(" %.5le",matcov[i][j]);    int i;
       fprintf(ficparo," %.5le",matcov[i][j]);    int l=1, lmax=20;
     }    double k1,k2;
     fscanf(ficpar,"\n");    double p2[NPARMAX+1];
     printf("\n");    double res;
     fprintf(ficparo,"\n");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   }    double fx;
   for(i=1; i <=npar; i++)    int k=0,kmax=10;
     for(j=i+1;j<=npar;j++)    double l1;
       matcov[i][j]=matcov[j][i];  
        fx=func(x);
   printf("\n");    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
    if(mle==1){      delts=delt;
     /*-------- data file ----------*/      for(k=1 ; k <kmax; k=k+1){
     if((ficres =fopen(fileres,"w"))==NULL) {        delt = delta*(l1*k);
       printf("Problem with resultfile: %s\n", fileres);goto end;        p2[theta]=x[theta] +delt;
     }        k1=func(p2)-fx;
     fprintf(ficres,"#%s\n",version);        p2[theta]=x[theta]-delt;
            k2=func(p2)-fx;
     if((fic=fopen(datafile,"r"))==NULL)    {        /*res= (k1-2.0*fx+k2)/delt/delt; */
       printf("Problem with datafile: %s\n", datafile);goto end;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     }        
   #ifdef DEBUG
     n= lastobs;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     severity = vector(1,maxwav);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     outcome=imatrix(1,maxwav+1,1,n);  #endif
     num=ivector(1,n);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     moisnais=vector(1,n);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     annais=vector(1,n);          k=kmax;
     moisdc=vector(1,n);        }
     andc=vector(1,n);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     agedc=vector(1,n);          k=kmax; l=lmax*10.;
     cod=ivector(1,n);        }
     weight=vector(1,n);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          delts=delt;
     mint=matrix(1,maxwav,1,n);        }
     anint=matrix(1,maxwav,1,n);      }
     s=imatrix(1,maxwav+1,1,n);    }
     adl=imatrix(1,maxwav+1,1,n);        delti[theta]=delts;
     tab=ivector(1,NCOVMAX);    return res; 
     ncodemax=ivector(1,NCOVMAX);    
   }
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       if ((i >= firstobs) && (i <=lastobs)) {  {
            int i;
         for (j=maxwav;j>=1;j--){    int l=1, l1, lmax=20;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    double k1,k2,k3,k4,res,fx;
           strcpy(line,stra);    double p2[NPARMAX+1];
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int k;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    fx=func(x);
            for (k=1; k<=2; k++) {
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1;i<=npar;i++) p2[i]=x[i];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      k1=func(p2)-fx;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    
       p2[thetai]=x[thetai]+delti[thetai]/k;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for (j=ncov;j>=1;j--){      k2=func(p2)-fx;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
         num[i]=atol(stra);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    
       p2[thetai]=x[thetai]-delti[thetai]/k;
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
         i=i+1;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       }  #ifdef DEBUG
     }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     /*scanf("%d",i);*/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   imx=i-1; /* Number of individuals */    }
      return res;
   /* Calculation of the number of parameter from char model*/  }
   Tvar=ivector(1,8);      
      /************** Inverse of matrix **************/
   if (strlen(model) >1){  void ludcmp(double **a, int n, int *indx, double *d) 
     j=0;  { 
     j=nbocc(model,'+');    int i,imax,j,k; 
     cptcovn=j+1;    double big,dum,sum,temp; 
      double *vv; 
     strcpy(modelsav,model);   
     if (j==0) {    vv=vector(1,n); 
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);    *d=1.0; 
     }    for (i=1;i<=n;i++) { 
     else {      big=0.0; 
       for(i=j; i>=1;i--){      for (j=1;j<=n;j++) 
         cutv(stra,strb,modelsav,'+');        if ((temp=fabs(a[i][j])) > big) big=temp; 
         if (strchr(strb,'*')) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           cutv(strd,strc,strb,'*');      vv[i]=1.0/big; 
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;    } 
           cutv(strb,strc,strd,'V');    for (j=1;j<=n;j++) { 
           for (k=1; k<=lastobs;k++)      for (i=1;i<j;i++) { 
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        sum=a[i][j]; 
         }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         else {        a[i][j]=sum; 
           cutv(strd,strc,strb,'V');      } 
           Tvar[i+1]=atoi(strc);      big=0.0; 
         }      for (i=j;i<=n;i++) { 
         strcpy(modelsav,stra);          sum=a[i][j]; 
       }        for (k=1;k<j;k++) 
       /*cutv(strd,strc,stra,'V');*/          sum -= a[i][k]*a[k][j]; 
       Tvar[1]=atoi(strc);        a[i][j]=sum; 
     }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   }          big=dum; 
   /*printf("tvar=%d ",Tvar[1]);*/          imax=i; 
   /*scanf("%d ",i);*/        } 
     fclose(fic);      } 
       if (j != imax) { 
     if (weightopt != 1) { /* Maximisation without weights*/        for (k=1;k<=n;k++) { 
       for(i=1;i<=n;i++) weight[i]=1.0;          dum=a[imax][k]; 
     }          a[imax][k]=a[j][k]; 
     /*-calculation of age at interview from date of interview and age at death -*/          a[j][k]=dum; 
     agev=matrix(1,maxwav,1,imx);        } 
            *d = -(*d); 
     for (i=1; i<=imx; i++)  {        vv[imax]=vv[j]; 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      } 
       for(m=1; (m<= maxwav); m++){      indx[j]=imax; 
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;        if (a[j][j] == 0.0) a[j][j]=TINY; 
         if(s[m][i] >0){      if (j != n) { 
           if (s[m][i] == nlstate+1) {        dum=1.0/(a[j][j]); 
             if(agedc[i]>0)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
               if(moisdc[i]!=99 && andc[i]!=9999)      } 
               agev[m][i]=agedc[i];    } 
             else{    free_vector(vv,1,n);  /* Doesn't work */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  ;
               agev[m][i]=-1;  } 
             }  
           }  void lubksb(double **a, int n, int *indx, double b[]) 
           else if(s[m][i] !=9){ /* Should no more exist */  { 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    int i,ii=0,ip,j; 
             if(mint[m][i]==99 || anint[m][i]==9999){    double sum; 
               agev[m][i]=1;   
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */    for (i=1;i<=n;i++) { 
             }      ip=indx[i]; 
             else if(agev[m][i] <agemin){      sum=b[ip]; 
               agemin=agev[m][i];      b[ip]=b[i]; 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      if (ii) 
             }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
             else if(agev[m][i] >agemax){      else if (sum) ii=i; 
               agemax=agev[m][i];      b[i]=sum; 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    } 
             }    for (i=n;i>=1;i--) { 
             /*agev[m][i]=anint[m][i]-annais[i];*/      sum=b[i]; 
             /*   agev[m][i] = age[i]+2*m;*/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           }      b[i]=sum/a[i][i]; 
           else { /* =9 */    } 
             agev[m][i]=1;  } 
             s[m][i]=-1;  
           }  /************ Frequencies ********************/
         }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         else /*= 0 Unknown */  {  /* Some frequencies */
           agev[m][i]=1;    
       }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
        int first;
     }    double ***freq; /* Frequencies */
     for (i=1; i<=imx; i++)  {    double *pp, **prop;
       for(m=1; (m<= maxwav); m++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         if (s[m][i] > (nlstate+ndeath)) {    FILE *ficresp;
           printf("Error: Wrong value in nlstate or ndeath\n");      char fileresp[FILENAMELENGTH];
           goto end;    
         }    pp=vector(1,nlstate);
       }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     }    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
     free_vector(severity,1,maxwav);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     free_imatrix(outcome,1,maxwav+1,1,n);      exit(0);
     free_vector(moisnais,1,n);    }
     free_vector(annais,1,n);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     free_matrix(mint,1,maxwav,1,n);    j1=0;
     free_matrix(anint,1,maxwav,1,n);    
     free_vector(moisdc,1,n);    j=cptcoveff;
     free_vector(andc,1,n);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
        first=1;
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    for(k1=1; k1<=j;k1++){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
     /* Concatenates waves */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
 Tcode=ivector(1,100);            for(m=iagemin; m <= iagemax+3; m++)
    nbcode=imatrix(1,nvar,1,8);                freq[i][jk][m]=0;
    ncodemax[1]=1;  
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);      for (i=1; i<=nlstate; i++)  
          for(m=iagemin; m <= iagemax+3; m++)
    codtab=imatrix(1,100,1,10);          prop[i][m]=0;
    h=0;        
    m=pow(2,cptcovn);        dateintsum=0;
          k2cpt=0;
    for(k=1;k<=cptcovn; k++){        for (i=1; i<=imx; i++) {
      for(i=1; i <=(m/pow(2,k));i++){          bool=1;
        for(j=1; j <= ncodemax[k]; j++){          if  (cptcovn>0) {
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){            for (z1=1; z1<=cptcoveff; z1++) 
            h++;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
            if (h>m) h=1;codtab[h][k]=j;                bool=0;
          }          }
        }          if (bool==1){
      }            for(m=firstpass; m<=lastpass; m++){
    }              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
    /*for(i=1; i <=m ;i++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      for(k=1; k <=cptcovn; k++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      }                if (m<lastpass) {
      printf("\n");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
    }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   scanf("%d",i);*/                }
                    
    /* Calculates basic frequencies. Computes observed prevalence at single age                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
        and prints on file fileres'p'. */                  dateintsum=dateintsum+k2;
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);                  k2cpt++;
                 }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                /*}*/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         
            /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     /* For Powell, parameters are in a vector p[] starting at p[1]  fprintf(ficresp, "#Local time at start: %s", strstart);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        if  (cptcovn>0) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          fprintf(ficresp, "\n#********** Variable "); 
     /*scanf("%d",i);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          fprintf(ficresp, "**********\n#");
         }
            for(i=1; i<=nlstate;i++) 
     /*--------- results files --------------*/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        fprintf(ficresp, "\n");
            
    jk=1;        for(i=iagemin; i <= iagemax+3; i++){
    fprintf(ficres,"# Parameters\n");          if(i==iagemax+3){
    printf("# Parameters\n");            fprintf(ficlog,"Total");
    for(i=1,jk=1; i <=nlstate; i++){          }else{
      for(k=1; k <=(nlstate+ndeath); k++){            if(first==1){
        if (k != i)              first=0;
          {              printf("See log file for details...\n");
            printf("%d%d ",i,k);            }
            fprintf(ficres,"%1d%1d ",i,k);            fprintf(ficlog,"Age %d", i);
            for(j=1; j <=ncovmodel; j++){          }
              printf("%f ",p[jk]);          for(jk=1; jk <=nlstate ; jk++){
              fprintf(ficres,"%f ",p[jk]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
              jk++;              pp[jk] += freq[jk][m][i]; 
            }          }
            printf("\n");          for(jk=1; jk <=nlstate ; jk++){
            fprintf(ficres,"\n");            for(m=-1, pos=0; m <=0 ; m++)
          }              pos += freq[jk][m][i];
      }            if(pp[jk]>=1.e-10){
    }              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     /* Computing hessian and covariance matrix */              }
     ftolhess=ftol; /* Usually correct */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     hesscov(matcov, p, npar, delti, ftolhess, func);            }else{
     fprintf(ficres,"# Scales\n");              if(first==1)
     printf("# Scales\n");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      for(i=1,jk=1; i <=nlstate; i++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j <=nlstate+ndeath; j++){            }
         if (j!=i) {          }
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);          for(jk=1; jk <=nlstate ; jk++){
           for(k=1; k<=ncovmodel;k++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             printf(" %.5e",delti[jk]);              pp[jk] += freq[jk][m][i];
             fprintf(ficres," %.5e",delti[jk]);          }       
             jk++;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           }            pos += pp[jk];
           printf("\n");            posprop += prop[jk][i];
           fprintf(ficres,"\n");          }
         }          for(jk=1; jk <=nlstate ; jk++){
       }            if(pos>=1.e-5){
       }              if(first==1)
                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     k=1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     fprintf(ficres,"# Covariance\n");            }else{
     printf("# Covariance\n");              if(first==1)
     for(i=1;i<=npar;i++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       /*  if (k>nlstate) k=1;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       i1=(i-1)/(ncovmodel*nlstate)+1;            }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            if( i <= iagemax){
       printf("%s%d%d",alph[k],i1,tab[i]);*/              if(pos>=1.e-5){
       fprintf(ficres,"%3d",i);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       printf("%3d",i);                /*probs[i][jk][j1]= pp[jk]/pos;*/
       for(j=1; j<=i;j++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         fprintf(ficres," %.5e",matcov[i][j]);              }
         printf(" %.5e",matcov[i][j]);              else
       }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       fprintf(ficres,"\n");            }
       printf("\n");          }
       k++;          
     }          for(jk=-1; jk <=nlstate+ndeath; jk++)
                for(m=-1; m <=nlstate+ndeath; m++)
     while((c=getc(ficpar))=='#' && c!= EOF){              if(freq[jk][m][i] !=0 ) {
       ungetc(c,ficpar);              if(first==1)
       fgets(line, MAXLINE, ficpar);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       puts(line);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       fputs(line,ficparo);              }
     }          if(i <= iagemax)
     ungetc(c,ficpar);            fprintf(ficresp,"\n");
            if(first==1)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            printf("Others in log...\n");
              fprintf(ficlog,"\n");
     if (fage <= 2) {        }
       bage = agemin;      }
       fage = agemax;    }
     }    dateintmean=dateintsum/k2cpt; 
    
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    fclose(ficresp);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 /*------------ gnuplot -------------*/    free_vector(pp,1,nlstate);
 chdir(pathcd);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   if((ficgp=fopen("graph.plt","w"))==NULL) {    /* End of Freq */
     printf("Problem with file graph.gp");goto end;  }
   }  
 #ifdef windows  /************ Prevalence ********************/
   fprintf(ficgp,"cd \"%s\" \n",pathc);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 #endif  {  
 m=pow(2,cptcovn);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
  /* 1eme*/       We still use firstpass and lastpass as another selection.
   for (cpt=1; cpt<= nlstate ; cpt ++) {    */
    for (k1=1; k1<= m ; k1 ++) {   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 #ifdef windows    double ***freq; /* Frequencies */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    double *pp, **prop;
 #endif    double pos,posprop; 
 #ifdef unix    double  y2; /* in fractional years */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    int iagemin, iagemax;
 #endif  
     iagemin= (int) agemin;
 for (i=1; i<= nlstate ; i ++) {    iagemax= (int) agemax;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*pp=vector(1,nlstate);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    j1=0;
     for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    j=cptcoveff;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    for(k1=1; k1<=j;k1++){
      for (i=1; i<= nlstate ; i ++) {      for(i1=1; i1<=ncodemax[k1];i1++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        j1++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        
 }          for (i=1; i<=nlstate; i++)  
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          for(m=iagemin; m <= iagemax+3; m++)
 #ifdef unix            prop[i][m]=0.0;
 fprintf(ficgp,"\nset ter gif small size 400,300");       
 #endif        for (i=1; i<=imx; i++) { /* Each individual */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          bool=1;
    }          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
   /*2 eme*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
   for (k1=1; k1<= m ; k1 ++) {          } 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          if (bool==1) { 
                for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     for (i=1; i<= nlstate+1 ; i ++) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       k=2*i;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for (j=1; j<= nlstate+1 ; j ++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 }                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                } 
       for (j=1; j<= nlstate+1 ; j ++) {              }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            } /* end selection of waves */
         else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          }
       fprintf(ficgp,"\" t\"\" w l 0,");        for(i=iagemin; i <= iagemax+3; i++){  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          
       for (j=1; j<= nlstate+1 ; j ++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            posprop += prop[jk][i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          } 
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for(jk=1; jk <=nlstate ; jk++){     
       else fprintf(ficgp,"\" t\"\" w l 0,");            if( i <=  iagemax){ 
     }              if(posprop>=1.e-5){ 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                probs[i][jk][j1]= prop[jk][i]/posprop;
   }              } 
              } 
   /*3eme*/          }/* end jk */ 
         }/* end i */ 
   for (k1=1; k1<= m ; k1 ++) {      } /* end i1 */
     for (cpt=1; cpt<= nlstate ; cpt ++) {    } /* end k1 */
       k=2+nlstate*(cpt-1);    
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for (i=1; i< nlstate ; i ++) {    /*free_vector(pp,1,nlstate);*/
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       }  }  /* End of prevalence */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }  /************* Waves Concatenation ***************/
   }  
    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   /* CV preval stat */  {
   for (k1=1; k1<= m ; k1 ++) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     for (cpt=1; cpt<nlstate ; cpt ++) {       Death is a valid wave (if date is known).
       k=3;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       for (i=1; i< nlstate ; i ++)       and mw[mi+1][i]. dh depends on stepm.
         fprintf(ficgp,"+$%d",k+i+1);       */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
          int i, mi, m;
       l=3+(nlstate+ndeath)*cpt;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);       double sum=0., jmean=0.;*/
       for (i=1; i< nlstate ; i ++) {    int first;
         l=3+(nlstate+ndeath)*cpt;    int j, k=0,jk, ju, jl;
         fprintf(ficgp,"+$%d",l+i+1);    double sum=0.;
       }    first=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      jmin=1e+5;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    jmax=-1;
     }    jmean=0.;
   }    for(i=1; i<=imx; i++){
       mi=0;
   /* proba elementaires */      m=firstpass;
   for(i=1,jk=1; i <=nlstate; i++){      while(s[m][i] <= nlstate){
     for(k=1; k <=(nlstate+ndeath); k++){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       if (k != i) {          mw[++mi][i]=m;
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/        if(m >=lastpass)
         for(j=1; j <=ncovmodel; j++){          break;
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);        else
           jk++;          m++;
           fprintf(ficgp,"\n");      }/* end while */
         }      if (s[m][i] > nlstate){
       }        mi++;     /* Death is another wave */
     }        /* if(mi==0)  never been interviewed correctly before death */
   }           /* Only death is a correct wave */
   for(jk=1; jk <=m; jk++) {        mw[mi][i]=m;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      }
   for(i=1; i <=nlstate; i++) {  
     for(k=1; k <=(nlstate+ndeath); k++){      wav[i]=mi;
       if (k != i) {      if(mi==0){
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);        nbwarn++;
         for(j=3; j <=ncovmodel; j++)        if(first==0){
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         fprintf(ficgp,")/(1");          first=1;
         for(k1=1; k1 <=(nlstate+ndeath); k1++)        }
           if (k1 != i) {        if(first==1){
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
             for(j=3; j <=ncovmodel; j++)        }
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      } /* end mi==0 */
             fprintf(ficgp,")");    } /* End individuals */
           }  
         fprintf(ficgp,") t \"p%d%d\" ", i,k);    for(i=1; i<=imx; i++){
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      for(mi=1; mi<wav[i];mi++){
       }        if (stepm <=0)
     }          dh[mi][i]=1;
   }        else{
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }            if (agedc[i] < 2*AGESUP) {
   fclose(ficgp);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                  if(j==0) j=1;  /* Survives at least one month after exam */
 chdir(path);              else if(j<0){
     free_matrix(agev,1,maxwav,1,imx);                nberr++;
     free_ivector(wav,1,imx);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                j=1; /* Temporary Dangerous patch */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                    fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_imatrix(s,1,maxwav+1,1,n);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                  }
                  k=k+1;
     free_ivector(num,1,n);              if (j >= jmax) jmax=j;
     free_vector(agedc,1,n);              if (j <= jmin) jmin=j;
     free_vector(weight,1,n);              sum=sum+j;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fclose(ficparo);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     fclose(ficres);            }
    }          }
              else{
    /*________fin mle=1_________*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
              k=k+1;
     /* No more information from the sample is required now */            if (j >= jmax) jmax=j;
   /* Reads comments: lines beginning with '#' */            else if (j <= jmin)jmin=j;
   while((c=getc(ficpar))=='#' && c!= EOF){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     ungetc(c,ficpar);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fgets(line, MAXLINE, ficpar);            if(j<0){
     puts(line);              nberr++;
     fputs(line,ficparo);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   ungetc(c,ficpar);            }
              sum=sum+j;
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          jk= j/stepm;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          jl= j -jk*stepm;
 /*--------- index.htm --------*/          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   if((fichtm=fopen("index.htm","w"))==NULL)    {            if(jl==0){
     printf("Problem with index.htm \n");goto end;              dh[mi][i]=jk;
   }              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n                    * at the price of an extra matrix product in likelihood */
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              dh[mi][i]=jk+1;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>              bh[mi][i]=ju;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>            }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          }else{
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>            if(jl <= -ju){
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>              dh[mi][i]=jk;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>              bh[mi][i]=jl;       /* bias is positive if real duration
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>                                   * is higher than the multiple of stepm and negative otherwise.
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);                                   */
             }
  fprintf(fichtm," <li>Graphs</li>\n<p>");            else{
               dh[mi][i]=jk+1;
  m=cptcovn;              bh[mi][i]=ju;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            }
             if(dh[mi][i]==0){
  j1=0;              dh[mi][i]=1; /* At least one step */
  for(k1=1; k1<=m;k1++){              bh[mi][i]=ju; /* At least one step */
    for(i1=1; i1<=ncodemax[k1];i1++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
        j1++;            }
        if (cptcovn > 0) {          } /* end if mle */
          fprintf(fichtm,"<hr>************ Results for covariates");        }
          for (cpt=1; cpt<=cptcovn;cpt++)      } /* end wave */
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);    }
          fprintf(fichtm," ************\n<hr>");    jmean=sum/k;
        }    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);       }
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  /*********** Tricode ****************************/
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  void tricode(int *Tvar, int **nbcode, int imx)
        }  {
     for(cpt=1; cpt<=nlstate;cpt++) {    
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    int Ndum[20],ij=1, k, j, i, maxncov=19;
 interval) in state (%d): v%s%d%d.gif <br>    int cptcode=0;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      cptcoveff=0; 
      }   
      for(cpt=1; cpt<=nlstate;cpt++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    for (k=1; k<=7; k++) ncodemax[k]=0;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  
      }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 health expectancies in states (1) and (2): e%s%d.gif<br>                                 modality*/ 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 fprintf(fichtm,"\n</body>");        Ndum[ij]++; /*store the modality */
    }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
  }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 fclose(fichtm);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
   /*--------------- Prevalence limit --------------*/      }
    
   strcpy(filerespl,"pl");      for (i=0; i<=cptcode; i++) {
   strcat(filerespl,fileres);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }      ij=1; 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      for (i=1; i<=ncodemax[j]; i++) {
   fprintf(ficrespl,"#Prevalence limit\n");        for (k=0; k<= maxncov; k++) {
   fprintf(ficrespl,"#Age ");          if (Ndum[k] != 0) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            nbcode[Tvar[j]][ij]=k; 
   fprintf(ficrespl,"\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              
   prlim=matrix(1,nlstate,1,nlstate);            ij++;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if (ij > ncodemax[j]) break; 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    }  
   k=0;  
   agebase=agemin;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   agelim=agemax;  
   ftolpl=1.e-10;   for (i=1; i<=ncovmodel-2; i++) { 
   i1=cptcovn;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   if (cptcovn < 1){i1=1;}     ij=Tvar[i];
      Ndum[ij]++;
   for(cptcov=1;cptcov<=i1;cptcov++){   }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;   ij=1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   for (i=1; i<= maxncov; i++) {
         fprintf(ficrespl,"\n#****** ");     if((Ndum[i]!=0) && (i<=ncovcol)){
         for(j=1;j<=cptcovn;j++)       Tvaraff[ij]=i; /*For printing */
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);       ij++;
         fprintf(ficrespl,"******\n");     }
           }
         for (age=agebase; age<=agelim; age++){   
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   cptcoveff=ij-1; /*Number of simple covariates*/
           fprintf(ficrespl,"%.0f",age );  }
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);  /*********** Health Expectancies ****************/
           fprintf(ficrespl,"\n");  
         }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
       }  
     }  {
   fclose(ficrespl);    /* Health expectancies */
   /*------------- h Pij x at various ages ------------*/    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
      double age, agelim, hf;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double ***p3mat,***varhe;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double *xp;
   }    double **gp, **gm;
   printf("Computing pij: result on file '%s' \n", filerespij);    double ***gradg, ***trgradg;
      int theta;
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=24) stepsize=2;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   agelim=AGESUP;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   hstepm=stepsize*YEARM; /* Every year of age */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    
      fprintf(ficreseij,"# Local time at start: %s", strstart);
   k=0;    fprintf(ficreseij,"# Health expectancies\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficreseij,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i<=nlstate;i++)
       k=k+1;      for(j=1; j<=nlstate;j++)
         fprintf(ficrespij,"\n#****** ");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
         for(j=1;j<=cptcovn;j++)    fprintf(ficreseij,"\n");
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    if(estepm < stepm){
              printf ("Problem %d lower than %d\n",estepm, stepm);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    else  hstepm=estepm;   
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* We compute the life expectancy from trapezoids spaced every estepm months
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * This is mainly to measure the difference between two models: for example
           oldm=oldms;savm=savms;     * if stepm=24 months pijx are given only every 2 years and by summing them
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * we are calculating an estimate of the Life Expectancy assuming a linear 
           fprintf(ficrespij,"# Age");     * progression in between and thus overestimating or underestimating according
           for(i=1; i<=nlstate;i++)     * to the curvature of the survival function. If, for the same date, we 
             for(j=1; j<=nlstate+ndeath;j++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               fprintf(ficrespij," %1d-%1d",i,j);     * to compare the new estimate of Life expectancy with the same linear 
           fprintf(ficrespij,"\n");     * hypothesis. A more precise result, taking into account a more precise
           for (h=0; h<=nhstepm; h++){     * curvature will be obtained if estepm is as small as stepm. */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)    /* For example we decided to compute the life expectancy with the smallest unit */
               for(j=1; j<=nlstate+ndeath;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       nhstepm is the number of hstepm from age to agelim 
             fprintf(ficrespij,"\n");       nstepm is the number of stepm from age to agelin. 
           }       Look at hpijx to understand the reason of that which relies in memory size
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like estepm months */
           fprintf(ficrespij,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed only each two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   fclose(ficrespij);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*---------- Health expectancies and variances ------------*/  
     agelim=AGESUP;
   strcpy(filerest,"t");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   strcat(filerest,fileres);      /* nhstepm age range expressed in number of stepm */
   if((ficrest=fopen(filerest,"w"))==NULL) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }      /* if (stepm >= YEARM) hstepm=1;*/
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   strcpy(filerese,"e");      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   strcat(filerese,fileres);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      /* Computing  Variances of health expectancies */
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
   k=0;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       k=k+1;    
       fprintf(ficrest,"\n#****** ");        cptj=0;
       for(j=1;j<=cptcovn;j++)        for(j=1; j<= nlstate; j++){
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          for(i=1; i<=nlstate; i++){
       fprintf(ficrest,"******\n");            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficreseij,"\n#****** ");              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       for(j=1;j<=cptcovn;j++)            }
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          }
       fprintf(ficreseij,"******\n");        }
        
       fprintf(ficresvij,"\n#****** ");       
       for(j=1;j<=cptcovn;j++)        for(i=1; i<=npar; i++) 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficresvij,"******\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        cptj=0;
       oldm=oldms;savm=savms;        for(j=1; j<= nlstate; j++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            for(i=1;i<=nlstate;i++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            cptj=cptj+1;
       oldm=oldms;savm=savms;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
                    gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          }
       fprintf(ficrest,"\n");        }
                for(j=1; j<= nlstate*nlstate; j++)
       hf=1;          for(h=0; h<=nhstepm-1; h++){
       if (stepm >= YEARM) hf=stepm/YEARM;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       epj=vector(1,nlstate+1);          }
       for(age=bage; age <=fage ;age++){       } 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     
         fprintf(ficrest," %.0f",age);  /* End theta */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];  
           }       for(h=0; h<=nhstepm-1; h++)
           epj[nlstate+1] +=epj[j];        for(j=1; j<=nlstate*nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
         for(i=1, vepp=0.;i <=nlstate;i++)            trgradg[h][j][theta]=gradg[h][theta][j];
           for(j=1;j <=nlstate;j++)       
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));       for(i=1;i<=nlstate*nlstate;i++)
         for(j=1;j <=nlstate;j++){        for(j=1;j<=nlstate*nlstate;j++)
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          varhe[i][j][(int)age] =0.;
         }  
         fprintf(ficrest,"\n");       printf("%d|",(int)age);fflush(stdout);
       }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }       for(h=0;h<=nhstepm-1;h++){
   }        for(k=0;k<=nhstepm-1;k++){
                  matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
  fclose(ficreseij);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  fclose(ficresvij);          for(i=1;i<=nlstate*nlstate;i++)
   fclose(ficrest);            for(j=1;j<=nlstate*nlstate;j++)
   fclose(ficpar);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   free_vector(epj,1,nlstate+1);        }
   /*  scanf("%d ",i); */      }
       /* Computing expectancies */
   /*------- Variance limit prevalence------*/        for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
 strcpy(fileresvpl,"vpl");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   strcat(fileresvpl,fileres);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     exit(0);  
   }          }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
       fprintf(ficreseij,"%3.0f",age );
  k=0;      cptj=0;
  for(cptcov=1;cptcov<=i1;cptcov++){      for(i=1; i<=nlstate;i++)
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j<=nlstate;j++){
      k=k+1;          cptj++;
      fprintf(ficresvpl,"\n#****** ");          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
      for(j=1;j<=cptcovn;j++)        }
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      fprintf(ficreseij,"\n");
      fprintf(ficresvpl,"******\n");     
            free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
      oldm=oldms;savm=savms;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
    }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  }    }
     printf("\n");
   fclose(ficresvpl);    fprintf(ficlog,"\n");
   
   /*---------- End : free ----------------*/    free_vector(xp,1,npar);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  }
    
    /************ Variance ******************/
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* Variance of health expectancies */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   free_matrix(matcov,1,npar,1,npar);    double **dnewm,**doldm;
   free_vector(delti,1,npar);    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int k, cptcode;
     double *xp;
   printf("End of Imach\n");    double **gp, **gm;  /* for var eij */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    double *gpp, *gmp; /* for var p point j */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   /*------ End -----------*/    double ***p3mat;
     double age,agelim, hf;
  end:    double ***mobaverage;
 #ifdef windows    int theta;
  chdir(pathcd);    char digit[4];
 #endif    char digitp[25];
  system("wgnuplot ../gp37mgw/graph.plt");  
     char fileresprobmorprev[FILENAMELENGTH];
 #ifdef windows  
   while (z[0] != 'q') {    if(popbased==1){
     chdir(pathcd);      if(mobilav!=0)
     printf("\nType e to edit output files, c to start again, and q for exiting: ");        strcpy(digitp,"-populbased-mobilav-");
     scanf("%s",z);      else strcpy(digitp,"-populbased-nomobil-");
     if (z[0] == 'c') system("./imach");    }
     else if (z[0] == 'e') {    else 
       chdir(path);      strcpy(digitp,"-stablbased-");
       system("index.htm");  
     }    if (mobilav!=0) {
     else if (z[0] == 'q') exit(0);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 #endif        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    fprintf(ficresvij, "#Local time at start: %s", strstart);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficresprob, "#Local time at start: %s", strstart);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a> href="#firstorder">Result files (first order: no variance)</a>\n \
      <li><a> href="#secondorder">Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name="firstorder">Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name="secondorder">Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
   lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
        for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
         for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
   
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
   
    tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
          }
      
      
          printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
   
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
   
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.2  
changed lines
  Added in v.1.106


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>