Diff for /imach/src/imach.c between versions 1.2 and 1.118

version 1.2, 2001/03/13 18:10:26 version 1.118, 2006/03/14 18:20:07
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.118  2006/03/14 18:20:07  brouard
   individuals from different ages are interviewed on their health status    (Module): varevsij Comments added explaining the second
   or degree of  disability. At least a second wave of interviews    table of variances if popbased=1 .
   ("longitudinal") should  measure each new individual health status.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Health expectancies are computed from the transistions observed between    (Module): Function pstamp added
   waves and are computed for each degree of severity of disability (number    (Module): Version 0.98d
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.117  2006/03/14 17:16:22  brouard
   The simplest model is the multinomial logistic model where pij is    (Module): varevsij Comments added explaining the second
   the probabibility to be observed in state j at the second wave conditional    table of variances if popbased=1 .
   to be observed in state i at the first wave. Therefore the model is:    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Module): Function pstamp added
   is a covariate. If you want to have a more complex model than "constant and    (Module): Version 0.98d
   age", you should modify the program where the markup  
     *Covariates have to be included here again* invites you to do it.    Revision 1.116  2006/03/06 10:29:27  brouard
   More covariates you add, less is the speed of the convergence.    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   The advantage that this computer programme claims, comes from that if the  
   delay between waves is not identical for each individual, or if some    Revision 1.115  2006/02/27 12:17:45  brouard
   individual missed an interview, the information is not rounded or lost, but    (Module): One freematrix added in mlikeli! 0.98c
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.114  2006/02/26 12:57:58  brouard
   observed in state i at age x+h conditional to the observed state i at age    (Module): Some improvements in processing parameter
   x. The delay 'h' can be split into an exact number (nh*stepm) of    filename with strsep.
   unobserved intermediate  states. This elementary transition (by month or  
   quarter trimester, semester or year) is model as a multinomial logistic.    Revision 1.113  2006/02/24 14:20:24  brouard
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Memory leaks checks with valgrind and:
   and the contribution of each individual to the likelihood is simply hPijx.    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.112  2006/01/30 09:55:26  brouard
      (Module): Back to gnuplot.exe instead of wgnuplot.exe
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.111  2006/01/25 20:38:18  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Lots of cleaning and bugs added (Gompertz)
   from the European Union.    (Module): Comments can be added in data file. Missing date values
   It is copyrighted identically to a GNU software product, ie programme and    can be a simple dot '.'.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.110  2006/01/25 00:51:50  brouard
   **********************************************************************/    (Module): Lots of cleaning and bugs added (Gompertz)
    
 #include <math.h>    Revision 1.109  2006/01/24 19:37:15  brouard
 #include <stdio.h>    (Module): Comments (lines starting with a #) are allowed in data.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 #define MAXLINE 256    To be fixed
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.107  2006/01/19 16:20:37  brouard
 #define windows    Test existence of gnuplot in imach path
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.106  2006/01/19 13:24:36  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Some cleaning and links added in html output
   
 #define NINTERVMAX 8    Revision 1.105  2006/01/05 20:23:19  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    *** empty log message ***
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.104  2005/09/30 16:11:43  lievre
 #define MAXN 80000    (Module): sump fixed, loop imx fixed, and simplifications.
 #define YEARM 12. /* Number of months per year */    (Module): If the status is missing at the last wave but we know
 #define AGESUP 130    that the person is alive, then we can code his/her status as -2
 #define AGEBASE 40    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int nvar;    the healthy state at last known wave). Version is 0.98
 static int cptcov;  
 int cptcovn;    Revision 1.103  2005/09/30 15:54:49  lievre
 int npar=NPARMAX;    (Module): sump fixed, loop imx fixed, and simplifications.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.102  2004/09/15 17:31:30  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Add the possibility to read data file including tab characters.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.101  2004/09/15 10:38:38  brouard
 int maxwav; /* Maxim number of waves */    Fix on curr_time
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.100  2004/07/12 18:29:06  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Add version for Mac OS X. Just define UNIX in Makefile
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.99  2004/06/05 08:57:40  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    *** empty log message ***
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.98  2004/05/16 15:05:56  brouard
   char filerese[FILENAMELENGTH];    New version 0.97 . First attempt to estimate force of mortality
  FILE  *ficresvij;    directly from the data i.e. without the need of knowing the health
   char fileresv[FILENAMELENGTH];    state at each age, but using a Gompertz model: log u =a + b*age .
  FILE  *ficresvpl;    This is the basic analysis of mortality and should be done before any
   char fileresvpl[FILENAMELENGTH];    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
   
     The same imach parameter file can be used but the option for mle should be -3.
 #define NR_END 1  
 #define FREE_ARG char*    Agnès, who wrote this part of the code, tried to keep most of the
 #define FTOL 1.0e-10    former routines in order to include the new code within the former code.
   
 #define NRANSI    The output is very simple: only an estimate of the intercept and of
 #define ITMAX 200    the slope with 95% confident intervals.
   
 #define TOL 2.0e-4    Current limitations:
     A) Even if you enter covariates, i.e. with the
 #define CGOLD 0.3819660    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define ZEPS 1.0e-10    B) There is no computation of Life Expectancy nor Life Table.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define GOLD 1.618034    Version 0.96d. Population forecasting command line is (temporarily)
 #define GLIMIT 100.0    suppressed.
 #define TINY 1.0e-20  
     Revision 1.96  2003/07/15 15:38:55  brouard
 static double maxarg1,maxarg2;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    rewritten within the same printf. Workaround: many printfs.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.95  2003/07/08 07:54:34  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Repository):
 #define rint(a) floor(a+0.5)    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.94  2003/06/27 13:00:02  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Just cleaning
   
 int imx;    Revision 1.93  2003/06/25 16:33:55  brouard
 int stepm;    (Module): On windows (cygwin) function asctime_r doesn't
 /* Stepm, step in month: minimum step interpolation*/    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    Revision 1.92  2003/06/25 16:30:45  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): On windows (cygwin) function asctime_r doesn't
 double **pmmij;    exist so I changed back to asctime which exists.
   
 double *weight;    Revision 1.91  2003/06/25 15:30:29  brouard
 int **s; /* Status */    * imach.c (Repository): Duplicated warning errors corrected.
 double *agedc, **covar, idx;    (Repository): Elapsed time after each iteration is now output. It
 int **nbcode, *Tcode, *Tvar, **codtab;    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    concerning matrix of covariance. It has extension -cov.htm.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 /******************************************/    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 void replace(char *s, char*t)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   int i;    (Module): Some bugs corrected for windows. Also, when
   int lg=20;    mle=-1 a template is output in file "or"mypar.txt with the design
   i=0;    of the covariance matrix to be input.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.88  2003/06/23 17:54:56  brouard
     (s[i] = t[i]);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.87  2003/06/18 12:26:01  brouard
 }    Version 0.96
   
 int nbocc(char *s, char occ)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   int i,j=0;    routine fileappend.
   int lg=20;  
   i=0;    Revision 1.85  2003/06/17 13:12:43  brouard
   lg=strlen(s);    * imach.c (Repository): Check when date of death was earlier that
   for(i=0; i<= lg; i++) {    current date of interview. It may happen when the death was just
   if  (s[i] == occ ) j++;    prior to the death. In this case, dh was negative and likelihood
   }    was wrong (infinity). We still send an "Error" but patch by
   return j;    assuming that the date of death was just one stepm after the
 }    interview.
     (Repository): Because some people have very long ID (first column)
 void cutv(char *u,char *v, char*t, char occ)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   int i,lg,j,p;    truncation)
   i=0;    (Repository): No more line truncation errors.
   if (t[0]== occ) p=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.84  2003/06/13 21:44:43  brouard
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;    * imach.c (Repository): Replace "freqsummary" at a correct
   }    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
   lg=strlen(t);    parcimony.
   for(j=0; j<p; j++) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     (u[j] = t[j]);  
     u[p]='\0';    Revision 1.83  2003/06/10 13:39:11  lievre
   }    *** empty log message ***
   
    for(j=0; j<= lg; j++) {    Revision 1.82  2003/06/05 15:57:20  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    Add log in  imach.c and  fullversion number is now printed.
   }  
 }  */
   /*
      Interpolated Markov Chain
 /********************** nrerror ********************/  
     Short summary of the programme:
 void nrerror(char error_text[])    
 {    This program computes Healthy Life Expectancies from
   fprintf(stderr,"ERREUR ...\n");    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   fprintf(stderr,"%s\n",error_text);    first survey ("cross") where individuals from different ages are
   exit(1);    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
 /*********************** vector *******************/    second wave of interviews ("longitudinal") which measure each change
 double *vector(int nl, int nh)    (if any) in individual health status.  Health expectancies are
 {    computed from the time spent in each health state according to a
   double *v;    model. More health states you consider, more time is necessary to reach the
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Maximum Likelihood of the parameters involved in the model.  The
   if (!v) nrerror("allocation failure in vector");    simplest model is the multinomial logistic model where pij is the
   return v-nl+NR_END;    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /************************ free vector ******************/    'age' is age and 'sex' is a covariate. If you want to have a more
 void free_vector(double*v, int nl, int nh)    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   free((FREE_ARG)(v+nl-NR_END));    you to do it.  More covariates you add, slower the
 }    convergence.
   
 /************************ivector *******************************/    The advantage of this computer programme, compared to a simple
 int *ivector(long nl,long nh)    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   int *v;    intermediate interview, the information is lost, but taken into
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    account using an interpolation or extrapolation.  
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    hPijx is the probability to be observed in state i at age x+h
 }    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /******************free ivector **************************/    states. This elementary transition (by month, quarter,
 void free_ivector(int *v, long nl, long nh)    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   free((FREE_ARG)(v+nl-NR_END));    and the contribution of each individual to the likelihood is simply
 }    hPijx.
   
 /******************* imatrix *******************************/    Also this programme outputs the covariance matrix of the parameters but also
 int **imatrix(long nrl, long nrh, long ncl, long nch)    of the life expectancies. It also computes the period (stable) prevalence. 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;             Institut national d'études démographiques, Paris.
   int **m;    This software have been partly granted by Euro-REVES, a concerted action
      from the European Union.
   /* allocate pointers to rows */    It is copyrighted identically to a GNU software product, ie programme and
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    software can be distributed freely for non commercial use. Latest version
   if (!m) nrerror("allocation failure 1 in matrix()");    can be accessed at http://euroreves.ined.fr/imach .
   m += NR_END;  
   m -= nrl;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   /* allocate rows and set pointers to them */    **********************************************************************/
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    main
   m[nrl] += NR_END;    read parameterfile
   m[nrl] -= ncl;    read datafile
      concatwav
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    freqsummary
      if (mle >= 1)
   /* return pointer to array of pointers to rows */      mlikeli
   return m;    print results files
 }    if mle==1 
        computes hessian
 /****************** free_imatrix *************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 void free_imatrix(m,nrl,nrh,ncl,nch)        begin-prev-date,...
       int **m;    open gnuplot file
       long nch,ncl,nrh,nrl;    open html file
      /* free an int matrix allocated by imatrix() */    period (stable) prevalence
 {     for age prevalim()
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    h Pij x
   free((FREE_ARG) (m+nrl-NR_END));    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /******************* matrix *******************************/    Variance-covariance of DFLE
 double **matrix(long nrl, long nrh, long ncl, long nch)    prevalence()
 {     movingaverage()
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    varevsij() 
   double **m;    if popbased==1 varevsij(,popbased)
     total life expectancies
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Variance of period (stable) prevalence
   if (!m) nrerror("allocation failure 1 in matrix()");   end
   m += NR_END;  */
   m -= nrl;  
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   
   m[nrl] += NR_END;  #include <math.h>
   m[nrl] -= ncl;  #include <stdio.h>
   #include <stdlib.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <string.h>
   return m;  #include <unistd.h>
 }  
   #include <limits.h>
 /*************************free matrix ************************/  #include <sys/types.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #include <sys/stat.h>
 {  #include <errno.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  extern int errno;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /* #include <sys/time.h> */
   #include <time.h>
 /******************* ma3x *******************************/  #include "timeval.h"
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  /* #include <libintl.h> */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /* #define _(String) gettext (String) */
   double ***m;  
   #define MAXLINE 256
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define GNUPLOTPROGRAM "gnuplot"
   m += NR_END;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m -= nrl;  #define FILENAMELENGTH 132
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   #define NINTERVMAX 8
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m[nrl][ncl] += NR_END;  #define NCOVMAX 8 /* Maximum number of covariates */
   m[nrl][ncl] -= nll;  #define MAXN 20000
   for (j=ncl+1; j<=nch; j++)  #define YEARM 12. /* Number of months per year */
     m[nrl][j]=m[nrl][j-1]+nlay;  #define AGESUP 130
    #define AGEBASE 40
   for (i=nrl+1; i<=nrh; i++) {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #ifdef UNIX
     for (j=ncl+1; j<=nch; j++)  #define DIRSEPARATOR '/'
       m[i][j]=m[i][j-1]+nlay;  #define CHARSEPARATOR "/"
   }  #define ODIRSEPARATOR '\\'
   return m;  #else
 }  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 /*************************free ma3x ************************/  #define ODIRSEPARATOR '/'
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #endif
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /* $Id$ */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* $State$ */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char version[]="Imach version 0.98d, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$"; 
 /***************** f1dim *************************/  char strstart[80];
 extern int ncom;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 extern double *pcom,*xicom;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 extern double (*nrfunc)(double []);  int nvar;
    int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double f1dim(double x)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   int j;  int ndeath=1; /* Number of dead states */
   double f;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double *xt;  int popbased=0;
    
   xt=vector(1,ncom);  int *wav; /* Number of waves for this individuual 0 is possible */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int maxwav; /* Maxim number of waves */
   f=(*nrfunc)(xt);  int jmin, jmax; /* min, max spacing between 2 waves */
   free_vector(xt,1,ncom);  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   return f;  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /*****************brent *************************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   int iter;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double a,b,d,etemp;  double jmean; /* Mean space between 2 waves */
   double fu,fv,fw,fx;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double ftemp;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double e=0.0;  FILE *ficlog, *ficrespow;
    int globpr; /* Global variable for printing or not */
   a=(ax < cx ? ax : cx);  double fretone; /* Only one call to likelihood */
   b=(ax > cx ? ax : cx);  long ipmx; /* Number of contributions */
   x=w=v=bx;  double sw; /* Sum of weights */
   fw=fv=fx=(*f)(x);  char filerespow[FILENAMELENGTH];
   for (iter=1;iter<=ITMAX;iter++) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     xm=0.5*(a+b);  FILE *ficresilk;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  FILE *ficresprobmorprev;
     printf(".");fflush(stdout);  FILE *fichtm, *fichtmcov; /* Html File */
 #ifdef DEBUG  FILE *ficreseij;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char filerese[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  FILE *ficresstdeij;
 #endif  char fileresstde[FILENAMELENGTH];
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE *ficrescveij;
       *xmin=x;  char filerescve[FILENAMELENGTH];
       return fx;  FILE  *ficresvij;
     }  char fileresv[FILENAMELENGTH];
     ftemp=fu;  FILE  *ficresvpl;
     if (fabs(e) > tol1) {  char fileresvpl[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  char title[MAXLINE];
       q=(x-v)*(fx-fw);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       p=(x-v)*q-(x-w)*r;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       q=2.0*(q-r);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       if (q > 0.0) p = -p;  char command[FILENAMELENGTH];
       q=fabs(q);  int  outcmd=0;
       etemp=e;  
       e=d;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filelog[FILENAMELENGTH]; /* Log file */
       else {  char filerest[FILENAMELENGTH];
         d=p/q;  char fileregp[FILENAMELENGTH];
         u=x+d;  char popfile[FILENAMELENGTH];
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       }  
     } else {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  struct timezone tzp;
     }  extern int gettimeofday();
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     fu=(*f)(u);  long time_value;
     if (fu <= fx) {  extern long time();
       if (u >= x) a=x; else b=x;  char strcurr[80], strfor[80];
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  char *endptr;
         } else {  long lval;
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  #define NR_END 1
             v=w;  #define FREE_ARG char*
             w=u;  #define FTOL 1.0e-10
             fv=fw;  
             fw=fu;  #define NRANSI 
           } else if (fu <= fv || v == x || v == w) {  #define ITMAX 200 
             v=u;  
             fv=fu;  #define TOL 2.0e-4 
           }  
         }  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
   nrerror("Too many iterations in brent");  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   *xmin=x;  
   return fx;  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /****************** mnbrak ***********************/  
   static double maxarg1,maxarg2;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
             double (*func)(double))  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   double ulim,u,r,q, dum;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double fu;  #define rint(a) floor(a+0.5)
    
   *fa=(*func)(*ax);  static double sqrarg;
   *fb=(*func)(*bx);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   if (*fb > *fa) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     SHFT(dum,*ax,*bx,dum)  int agegomp= AGEGOMP;
       SHFT(dum,*fb,*fa,dum)  
       }  int imx; 
   *cx=(*bx)+GOLD*(*bx-*ax);  int stepm=1;
   *fc=(*func)(*cx);  /* Stepm, step in month: minimum step interpolation*/
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  int estepm;
     q=(*bx-*cx)*(*fb-*fa);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int m,nb;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  long *num;
     if ((*bx-u)*(u-*cx) > 0.0) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       fu=(*func)(u);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double **pmmij, ***probs;
       fu=(*func)(u);  double *ageexmed,*agecens;
       if (fu < *fc) {  double dateintmean=0;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  double *weight;
           }  int **s; /* Status */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double *agedc, **covar, idx;
       u=ulim;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       fu=(*func)(u);  double *lsurv, *lpop, *tpop;
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       fu=(*func)(u);  double ftolhess; /* Tolerance for computing hessian */
     }  
     SHFT(*ax,*bx,*cx,u)  /**************** split *************************/
       SHFT(*fa,*fb,*fc,fu)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       }  {
 }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 /*************** linmin ************************/    */ 
     char  *ss;                            /* pointer */
 int ncom;    int   l1, l2;                         /* length counters */
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double brent(double ax, double bx, double cx,      strcpy( name, path );               /* we got the fullname name because no directory */
                double (*f)(double), double tol, double *xmin);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double f1dim(double x);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      /* get current working directory */
               double *fc, double (*func)(double));      /*    extern  char* getcwd ( char *buf , int len);*/
   int j;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double xx,xmin,bx,ax;        return( GLOCK_ERROR_GETCWD );
   double fx,fb,fa;      }
        /* got dirc from getcwd*/
   ncom=n;      printf(" DIRC = %s \n",dirc);
   pcom=vector(1,n);    } else {                              /* strip direcotry from path */
   xicom=vector(1,n);      ss++;                               /* after this, the filename */
   nrfunc=func;      l2 = strlen( ss );                  /* length of filename */
   for (j=1;j<=n;j++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     pcom[j]=p[j];      strcpy( name, ss );         /* save file name */
     xicom[j]=xi[j];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
   ax=0.0;      printf(" DIRC2 = %s \n",dirc);
   xx=1.0;    }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    /* We add a separator at the end of dirc if not exists */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    l1 = strlen( dirc );                  /* length of directory */
 #ifdef DEBUG    if( dirc[l1-1] != DIRSEPARATOR ){
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      dirc[l1] =  DIRSEPARATOR;
 #endif      dirc[l1+1] = 0; 
   for (j=1;j<=n;j++) {      printf(" DIRC3 = %s \n",dirc);
     xi[j] *= xmin;    }
     p[j] += xi[j];    ss = strrchr( name, '.' );            /* find last / */
   }    if (ss >0){
   free_vector(xicom,1,n);      ss++;
   free_vector(pcom,1,n);      strcpy(ext,ss);                     /* save extension */
 }      l1= strlen( name);
       l2= strlen(ss)+1;
 /*************** powell ************************/      strncpy( finame, name, l1-l2);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      finame[l1-l2]= 0;
             double (*func)(double []))    }
 {  
   void linmin(double p[], double xi[], int n, double *fret,    return( 0 );                          /* we're done */
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************************************/
   double *xits;  
   pt=vector(1,n);  void replace_back_to_slash(char *s, char*t)
   ptt=vector(1,n);  {
   xit=vector(1,n);    int i;
   xits=vector(1,n);    int lg=0;
   *fret=(*func)(p);    i=0;
   for (j=1;j<=n;j++) pt[j]=p[j];    lg=strlen(t);
   for (*iter=1;;++(*iter)) {    for(i=0; i<= lg; i++) {
     fp=(*fret);      (s[i] = t[i]);
     ibig=0;      if (t[i]== '\\') s[i]='/';
     del=0.0;    }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  int nbocc(char *s, char occ)
     printf("\n");  {
     for (i=1;i<=n;i++) {    int i,j=0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    int lg=20;
       fptt=(*fret);    i=0;
 #ifdef DEBUG    lg=strlen(s);
       printf("fret=%lf \n",*fret);    for(i=0; i<= lg; i++) {
 #endif    if  (s[i] == occ ) j++;
       printf("%d",i);fflush(stdout);    }
       linmin(p,xit,n,fret,func);    return j;
       if (fabs(fptt-(*fret)) > del) {  }
         del=fabs(fptt-(*fret));  
         ibig=i;  void cutv(char *u,char *v, char*t, char occ)
       }  {
 #ifdef DEBUG    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       printf("%d %.12e",i,(*fret));       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       for (j=1;j<=n;j++) {       gives u="abcedf" and v="ghi2j" */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    int i,lg,j,p=0;
         printf(" x(%d)=%.12e",j,xit[j]);    i=0;
       }    for(j=0; j<=strlen(t)-1; j++) {
       for(j=1;j<=n;j++)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         printf(" p=%.12e",p[j]);    }
       printf("\n");  
 #endif    lg=strlen(t);
     }    for(j=0; j<p; j++) {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      (u[j] = t[j]);
 #ifdef DEBUG    }
       int k[2],l;       u[p]='\0';
       k[0]=1;  
       k[1]=-1;     for(j=0; j<= lg; j++) {
       printf("Max: %.12e",(*func)(p));      if (j>=(p+1))(v[j-p-1] = t[j]);
       for (j=1;j<=n;j++)    }
         printf(" %.12e",p[j]);  }
       printf("\n");  
       for(l=0;l<=1;l++) {  /********************** nrerror ********************/
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  void nrerror(char error_text[])
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
         }    fprintf(stderr,"ERREUR ...\n");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    fprintf(stderr,"%s\n",error_text);
       }    exit(EXIT_FAILURE);
 #endif  }
   /*********************** vector *******************/
   double *vector(int nl, int nh)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    double *v;
       free_vector(ptt,1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       free_vector(pt,1,n);    if (!v) nrerror("allocation failure in vector");
       return;    return v-nl+NR_END;
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /************************ free vector ******************/
       ptt[j]=2.0*p[j]-pt[j];  void free_vector(double*v, int nl, int nh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    free((FREE_ARG)(v+nl-NR_END));
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /************************ivector *******************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int *ivector(long nl,long nh)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    int *v;
         for (j=1;j<=n;j++) {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           xi[j][ibig]=xi[j][n];    if (!v) nrerror("allocation failure in ivector");
           xi[j][n]=xit[j];    return v-nl+NR_END;
         }  }
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /******************free ivector **************************/
         for(j=1;j<=n;j++)  void free_ivector(int *v, long nl, long nh)
           printf(" %.12e",xit[j]);  {
         printf("\n");    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
       }  
     }  /************************lvector *******************************/
   }  long *lvector(long nl,long nh)
 }  {
     long *v;
 /**** Prevalence limit ****************/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return v-nl+NR_END;
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG)(v+nl-NR_END));
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /******************* imatrix *******************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (ii=1;ii<=nlstate+ndeath;ii++)  { 
     for (j=1;j<=nlstate+ndeath;j++){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    int **m; 
     }    
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* allocate pointers to rows */ 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     newm=savm;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     /* Covariates have to be included here again */    m += NR_END; 
     cov[1]=1.;    m -= nrl; 
     cov[2]=agefin;    
     if (cptcovn>0){    
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
     savm=oldm;    m[nrl] -= ncl; 
     oldm=newm;    
     maxmax=0.;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for(j=1;j<=nlstate;j++){    
       min=1.;    /* return pointer to array of pointers to rows */ 
       max=0.;    return m; 
       for(i=1; i<=nlstate; i++) {  } 
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /****************** free_imatrix *************************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  void free_imatrix(m,nrl,nrh,ncl,nch)
         max=FMAX(max,prlim[i][j]);        int **m;
         min=FMIN(min,prlim[i][j]);        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
       maxmin=max-min;  { 
       maxmax=FMAX(maxmax,maxmin);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     if(maxmax < ftolpl){  } 
       return prlim;  
     }  /******************* matrix *******************************/
   }  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*************** transition probabilities **********/    double **m;
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   double s1, s2;    m += NR_END;
   /*double t34;*/    m -= nrl;
   int i,j,j1, nc, ii, jj;  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(i=1; i<= nlstate; i++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(j=1; j<i;j++){    m[nrl] += NR_END;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl] -= ncl;
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       ps[i][j]=s2;     */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  }
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /*************************free matrix ************************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       ps[i][j]=s2;  }
     }  
   }  /******************* ma3x *******************************/
   for(i=1; i<= nlstate; i++){  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
      s1=0;  {
     for(j=1; j<i; j++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       s1+=exp(ps[i][j]);    double ***m;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     ps[i][i]=1./(s1+1.);    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=1; j<i; j++)    m += NR_END;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m -= nrl;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   } /* end i */    m[nrl] += NR_END;
     m[nrl] -= ncl;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       ps[ii][jj]=0;  
       ps[ii][ii]=1;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    for (j=ncl+1; j<=nch; j++) 
     for(jj=1; jj<= nlstate+ndeath; jj++){      m[nrl][j]=m[nrl][j-1]+nlay;
      printf("%lf ",ps[ii][jj]);    
    }    for (i=nrl+1; i<=nrh; i++) {
     printf("\n ");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
     printf("\n ");printf("%lf ",cov[2]);*/        m[i][j]=m[i][j-1]+nlay;
 /*    }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    return m; 
   goto end;*/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     return ps;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 }    */
   }
 /**************** Product of 2 matrices ******************/  
   /*************************free ma3x ************************/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 {  {
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* in, b, out are matrice of pointers which should have been initialized    free((FREE_ARG)(m+nrl-NR_END));
      before: only the contents of out is modified. The function returns  }
      a pointer to pointers identical to out */  
   long i, j, k;  /*************** function subdirf ***********/
   for(i=nrl; i<= nrh; i++)  char *subdirf(char fileres[])
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /* Caution optionfilefiname is hidden */
         out[i][k] +=in[i][j]*b[j][k];    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
   return out;    strcat(tmpout,fileres);
 }    return tmpout;
   }
   
 /************* Higher Matrix Product ***************/  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  {
 {    
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    /* Caution optionfilefiname is hidden */
      duration (i.e. until    strcpy(tmpout,optionfilefiname);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    strcat(tmpout,"/");
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    strcat(tmpout,preop);
      (typically every 2 years instead of every month which is too big).    strcat(tmpout,fileres);
      Model is determined by parameters x and covariates have to be    return tmpout;
      included manually here.  }
   
      */  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   int i, j, d, h, k;  {
   double **out, cov[NCOVMAX];    
   double **newm;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   /* Hstepm could be zero and should return the unit matrix */    strcat(tmpout,"/");
   for (i=1;i<=nlstate+ndeath;i++)    strcat(tmpout,preop);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,preop2);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    strcat(tmpout,fileres);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    return tmpout;
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /***************** f1dim *************************/
     for(d=1; d <=hstepm; d++){  extern int ncom; 
       newm=savm;  extern double *pcom,*xicom;
       /* Covariates have to be included here again */  extern double (*nrfunc)(double []); 
       cov[1]=1.;   
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  double f1dim(double x) 
       if (cptcovn>0){  { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    int j; 
     }    double f;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double *xt; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/   
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    xt=vector(1,ncom); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       savm=oldm;    f=(*nrfunc)(xt); 
       oldm=newm;    free_vector(xt,1,ncom); 
     }    return f; 
     for(i=1; i<=nlstate+ndeath; i++)  } 
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  /*****************brent *************************/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
          */  { 
       }    int iter; 
   } /* end h */    double a,b,d,etemp;
   return po;    double fu,fv,fw,fx;
 }    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
 /*************** log-likelihood *************/   
 double func( double *x)    a=(ax < cx ? ax : cx); 
 {    b=(ax > cx ? ax : cx); 
   int i, ii, j, k, mi, d;    x=w=v=bx; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    fw=fv=fx=(*f)(x); 
   double **out;    for (iter=1;iter<=ITMAX;iter++) { 
   double sw; /* Sum of weights */      xm=0.5*(a+b); 
   double lli; /* Individual log likelihood */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   long ipmx;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   /*extern weight */      printf(".");fflush(stdout);
   /* We are differentiating ll according to initial status */      fprintf(ficlog,".");fflush(ficlog);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  #ifdef DEBUG
   /*for(i=1;i<imx;i++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 printf(" %d\n",s[4][i]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
   for(k=1; k<=nlstate; k++) ll[k]=0.;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        *xmin=x; 
        for(mi=1; mi<= wav[i]-1; mi++){        return fx; 
       for (ii=1;ii<=nlstate+ndeath;ii++)      } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      ftemp=fu;
             for(d=0; d<dh[mi][i]; d++){      if (fabs(e) > tol1) { 
         newm=savm;        r=(x-w)*(fx-fv); 
           cov[1]=1.;        q=(x-v)*(fx-fw); 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        p=(x-v)*q-(x-w)*r; 
           if (cptcovn>0){        q=2.0*(q-r); 
             for (k=1; k<=cptcovn;k++) {        if (q > 0.0) p = -p; 
               cov[2+k]=covar[Tvar[k]][i];        q=fabs(q); 
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/        etemp=e; 
             }        e=d; 
             }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        else { 
           savm=oldm;          d=p/q; 
           oldm=newm;          u=x+d; 
       } /* end mult */          if (u-a < tol2 || b-u < tol2) 
                d=SIGN(tol1,xm-x); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      } else { 
       ipmx +=1;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       sw += weight[i];      } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     } /* end of wave */      fu=(*f)(u); 
   } /* end of individual */      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        SHFT(v,w,x,u) 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          SHFT(fv,fw,fx,fu) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          } else { 
             if (u < x) a=u; else b=u; 
   return -l;            if (fu <= fw || w == x) { 
 }              v=w; 
               w=u; 
               fv=fw; 
 /*********** Maximum Likelihood Estimation ***************/              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))              v=u; 
 {              fv=fu; 
   int i,j, iter;            } 
   double **xi,*delti;          } 
   double fret;    } 
   xi=matrix(1,npar,1,npar);    nrerror("Too many iterations in brent"); 
   for (i=1;i<=npar;i++)    *xmin=x; 
     for (j=1;j<=npar;j++)    return fx; 
       xi[i][j]=(i==j ? 1.0 : 0.0);  } 
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  /****************** mnbrak ***********************/
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));              double (*func)(double)) 
   { 
 }    double ulim,u,r,q, dum;
     double fu; 
 /**** Computes Hessian and covariance matrix ***/   
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    *fa=(*func)(*ax); 
 {    *fb=(*func)(*bx); 
   double  **a,**y,*x,pd;    if (*fb > *fa) { 
   double **hess;      SHFT(dum,*ax,*bx,dum) 
   int i, j,jk;        SHFT(dum,*fb,*fa,dum) 
   int *indx;        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   double hessii(double p[], double delta, int theta, double delti[]);    *fc=(*func)(*cx); 
   double hessij(double p[], double delti[], int i, int j);    while (*fb > *fc) { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      r=(*bx-*ax)*(*fb-*fc); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   hess=matrix(1,npar,1,npar);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   printf("\nCalculation of the hessian matrix. Wait...\n");        fu=(*func)(u); 
   for (i=1;i<=npar;i++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     printf("%d",i);fflush(stdout);        fu=(*func)(u); 
     hess[i][i]=hessii(p,ftolhess,i,delti);        if (fu < *fc) { 
     /*printf(" %f ",p[i]);*/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   }            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
   for (i=1;i<=npar;i++) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for (j=1;j<=npar;j++)  {        u=ulim; 
       if (j>i) {        fu=(*func)(u); 
         printf(".%d%d",i,j);fflush(stdout);      } else { 
         hess[i][j]=hessij(p,delti,i,j);        u=(*cx)+GOLD*(*cx-*bx); 
         hess[j][i]=hess[i][j];        fu=(*func)(u); 
       }      } 
     }      SHFT(*ax,*bx,*cx,u) 
   }        SHFT(*fa,*fb,*fc,fu) 
   printf("\n");        } 
   } 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
    /*************** linmin ************************/
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  int ncom; 
   x=vector(1,npar);  double *pcom,*xicom;
   indx=ivector(1,npar);  double (*nrfunc)(double []); 
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   ludcmp(a,npar,indx,&pd);  { 
     double brent(double ax, double bx, double cx, 
   for (j=1;j<=npar;j++) {                 double (*f)(double), double tol, double *xmin); 
     for (i=1;i<=npar;i++) x[i]=0;    double f1dim(double x); 
     x[j]=1;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     lubksb(a,npar,indx,x);                double *fc, double (*func)(double)); 
     for (i=1;i<=npar;i++){    int j; 
       matcov[i][j]=x[i];    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
   }   
     ncom=n; 
   printf("\n#Hessian matrix#\n");    pcom=vector(1,n); 
   for (i=1;i<=npar;i++) {    xicom=vector(1,n); 
     for (j=1;j<=npar;j++) {    nrfunc=func; 
       printf("%.3e ",hess[i][j]);    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
     printf("\n");      xicom[j]=xi[j]; 
   }    } 
     ax=0.0; 
   /* Recompute Inverse */    xx=1.0; 
   for (i=1;i<=npar;i++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   ludcmp(a,npar,indx,&pd);  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /*  printf("\n#Hessian matrix recomputed#\n");    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   for (j=1;j<=npar;j++) {    for (j=1;j<=n;j++) { 
     for (i=1;i<=npar;i++) x[i]=0;      xi[j] *= xmin; 
     x[j]=1;      p[j] += xi[j]; 
     lubksb(a,npar,indx,x);    } 
     for (i=1;i<=npar;i++){    free_vector(xicom,1,n); 
       y[i][j]=x[i];    free_vector(pcom,1,n); 
       printf("%.3e ",y[i][j]);  } 
     }  
     printf("\n");  char *asc_diff_time(long time_sec, char ascdiff[])
   }  {
   */    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   free_matrix(a,1,npar,1,npar);    sec_left = (time_sec) % (60*60*24);
   free_matrix(y,1,npar,1,npar);    hours = (sec_left) / (60*60) ;
   free_vector(x,1,npar);    sec_left = (sec_left) %(60*60);
   free_ivector(indx,1,npar);    minutes = (sec_left) /60;
   free_matrix(hess,1,npar,1,npar);    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
 }  }
   
 /*************** hessian matrix ****************/  /*************** powell ************************/
 double hessii( double x[], double delta, int theta, double delti[])  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 {              double (*func)(double [])) 
   int i;  { 
   int l=1, lmax=20;    void linmin(double p[], double xi[], int n, double *fret, 
   double k1,k2;                double (*func)(double [])); 
   double p2[NPARMAX+1];    int i,ibig,j; 
   double res;    double del,t,*pt,*ptt,*xit;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double fp,fptt;
   double fx;    double *xits;
   int k=0,kmax=10;    int niterf, itmp;
   double l1;  
     pt=vector(1,n); 
   fx=func(x);    ptt=vector(1,n); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    xit=vector(1,n); 
   for(l=0 ; l <=lmax; l++){    xits=vector(1,n); 
     l1=pow(10,l);    *fret=(*func)(p); 
     delts=delt;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for(k=1 ; k <kmax; k=k+1){    for (*iter=1;;++(*iter)) { 
       delt = delta*(l1*k);      fp=(*fret); 
       p2[theta]=x[theta] +delt;      ibig=0; 
       k1=func(p2)-fx;      del=0.0; 
       p2[theta]=x[theta]-delt;      last_time=curr_time;
       k2=func(p2)-fx;      (void) gettimeofday(&curr_time,&tzp);
       /*res= (k1-2.0*fx+k2)/delt/delt; */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
            fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 #ifdef DEBUG      */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);     for (i=1;i<=n;i++) {
 #endif        printf(" %d %.12f",i, p[i]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fprintf(ficlog," %d %.12lf",i, p[i]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        fprintf(ficrespow," %.12lf", p[i]);
         k=kmax;      }
       }      printf("\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      fprintf(ficlog,"\n");
         k=kmax; l=lmax*10.;      fprintf(ficrespow,"\n");fflush(ficrespow);
       }      if(*iter <=3){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        tm = *localtime(&curr_time.tv_sec);
         delts=delt;        strcpy(strcurr,asctime(&tm));
       }  /*       asctime_r(&tm,strcurr); */
     }        forecast_time=curr_time; 
   }        itmp = strlen(strcurr);
   delti[theta]=delts;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   return res;            strcurr[itmp-1]='\0';
 }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 double hessij( double x[], double delti[], int thetai,int thetaj)        for(niterf=10;niterf<=30;niterf+=10){
 {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   int i;          tmf = *localtime(&forecast_time.tv_sec);
   int l=1, l1, lmax=20;  /*      asctime_r(&tmf,strfor); */
   double k1,k2,k3,k4,res,fx;          strcpy(strfor,asctime(&tmf));
   double p2[NPARMAX+1];          itmp = strlen(strfor);
   int k;          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   fx=func(x);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (k=1; k<=2; k++) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (i=1;i<=npar;i++) p2[i]=x[i];        }
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (i=1;i<=n;i++) { 
     k1=func(p2)-fx;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
          fptt=(*fret); 
     p2[thetai]=x[thetai]+delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        printf("fret=%lf \n",*fret);
     k2=func(p2)-fx;        fprintf(ficlog,"fret=%lf \n",*fret);
    #endif
     p2[thetai]=x[thetai]-delti[thetai]/k;        printf("%d",i);fflush(stdout);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog,"%d",i);fflush(ficlog);
     k3=func(p2)-fx;        linmin(p,xit,n,fret,func); 
          if (fabs(fptt-(*fret)) > del) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;          del=fabs(fptt-(*fret)); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ibig=i; 
     k4=func(p2)-fx;        } 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  #ifdef DEBUG
 #ifdef DEBUG        printf("%d %.12e",i,(*fret));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        fprintf(ficlog,"%d %.12e",i,(*fret));
 #endif        for (j=1;j<=n;j++) {
   }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   return res;          printf(" x(%d)=%.12e",j,xit[j]);
 }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 /************** Inverse of matrix **************/        for(j=1;j<=n;j++) {
 void ludcmp(double **a, int n, int *indx, double *d)          printf(" p=%.12e",p[j]);
 {          fprintf(ficlog," p=%.12e",p[j]);
   int i,imax,j,k;        }
   double big,dum,sum,temp;        printf("\n");
   double *vv;        fprintf(ficlog,"\n");
    #endif
   vv=vector(1,n);      } 
   *d=1.0;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for (i=1;i<=n;i++) {  #ifdef DEBUG
     big=0.0;        int k[2],l;
     for (j=1;j<=n;j++)        k[0]=1;
       if ((temp=fabs(a[i][j])) > big) big=temp;        k[1]=-1;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        printf("Max: %.12e",(*func)(p));
     vv[i]=1.0/big;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   }        for (j=1;j<=n;j++) {
   for (j=1;j<=n;j++) {          printf(" %.12e",p[j]);
     for (i=1;i<j;i++) {          fprintf(ficlog," %.12e",p[j]);
       sum=a[i][j];        }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        printf("\n");
       a[i][j]=sum;        fprintf(ficlog,"\n");
     }        for(l=0;l<=1;l++) {
     big=0.0;          for (j=1;j<=n;j++) {
     for (i=j;i<=n;i++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       sum=a[i][j];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (k=1;k<j;k++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         sum -= a[i][k]*a[k][j];          }
       a[i][j]=sum;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       if ( (dum=vv[i]*fabs(sum)) >= big) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         big=dum;        }
         imax=i;  #endif
       }  
     }  
     if (j != imax) {        free_vector(xit,1,n); 
       for (k=1;k<=n;k++) {        free_vector(xits,1,n); 
         dum=a[imax][k];        free_vector(ptt,1,n); 
         a[imax][k]=a[j][k];        free_vector(pt,1,n); 
         a[j][k]=dum;        return; 
       }      } 
       *d = -(*d);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       vv[imax]=vv[j];      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
     indx[j]=imax;        xit[j]=p[j]-pt[j]; 
     if (a[j][j] == 0.0) a[j][j]=TINY;        pt[j]=p[j]; 
     if (j != n) {      } 
       dum=1.0/(a[j][j]);      fptt=(*func)(ptt); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      if (fptt < fp) { 
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   }        if (t < 0.0) { 
   free_vector(vv,1,n);  /* Doesn't work */          linmin(p,xit,n,fret,func); 
 ;          for (j=1;j<=n;j++) { 
 }            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
 void lubksb(double **a, int n, int *indx, double b[])          }
 {  #ifdef DEBUG
   int i,ii=0,ip,j;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   double sum;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(j=1;j<=n;j++){
   for (i=1;i<=n;i++) {            printf(" %.12e",xit[j]);
     ip=indx[i];            fprintf(ficlog," %.12e",xit[j]);
     sum=b[ip];          }
     b[ip]=b[i];          printf("\n");
     if (ii)          fprintf(ficlog,"\n");
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  #endif
     else if (sum) ii=i;        }
     b[i]=sum;      } 
   }    } 
   for (i=n;i>=1;i--) {  } 
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  /**** Prevalence limit (stable or period prevalence)  ****************/
     b[i]=sum/a[i][i];  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 }  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 /************ Frequencies ********************/       matrix by transitions matrix until convergence is reached */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)  
 {  /* Some frequencies */    int i, ii,j,k;
      double min, max, maxmin, maxmax,sumnew=0.;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double **matprod2();
   double ***freq; /* Frequencies */    double **out, cov[NCOVMAX], **pmij();
   double *pp;    double **newm;
   double pos;    double agefin, delaymax=50 ; /* Max number of years to converge */
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
   pp=vector(1,nlstate);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);     cov[1]=1.;
   if((ficresp=fopen(fileresp,"w"))==NULL) {   
     printf("Problem with prevalence resultfile: %s\n", fileresp);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     exit(0);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }      newm=savm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      /* Covariates have to be included here again */
   j1=0;       cov[2]=agefin;
     
   j=cptcovn;        for (k=1; k<=cptcovn;k++) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for(k1=1; k1<=j;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
        j1++;        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
            for(m=agemin; m <= agemax+3; m++)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
              freq[i][jk][m]=0;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
              out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
        for (i=1; i<=imx; i++) {  
          bool=1;      savm=oldm;
          if  (cptcovn>0) {      oldm=newm;
            for (z1=1; z1<=cptcovn; z1++)      maxmax=0.;
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;      for(j=1;j<=nlstate;j++){
          }        min=1.;
           if (bool==1) {        max=0.;
            for(m=firstpass; m<=lastpass-1; m++){        for(i=1; i<=nlstate; i++) {
              if(agev[m][i]==0) agev[m][i]=agemax+1;          sumnew=0;
              if(agev[m][i]==1) agev[m][i]=agemax+2;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          prlim[i][j]= newm[i][j]/(1-sumnew);
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          max=FMAX(max,prlim[i][j]);
            }          min=FMIN(min,prlim[i][j]);
          }        }
        }        maxmin=max-min;
         if  (cptcovn>0) {        maxmax=FMAX(maxmax,maxmin);
          fprintf(ficresp, "\n#Variable");      }
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);      if(maxmax < ftolpl){
        }        return prlim;
        fprintf(ficresp, "\n#");      }
        for(i=1; i<=nlstate;i++)    }
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  }
        fprintf(ficresp, "\n");  
          /*************** transition probabilities ***************/ 
   for(i=(int)agemin; i <= (int)agemax+3; i++){  
     if(i==(int)agemax+3)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       printf("Total");  {
     else    double s1, s2;
       printf("Age %d", i);    /*double t34;*/
     for(jk=1; jk <=nlstate ; jk++){    int i,j,j1, nc, ii, jj;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
         pp[jk] += freq[jk][m][i];      for(i=1; i<= nlstate; i++){
     }        for(j=1; j<i;j++){
     for(jk=1; jk <=nlstate ; jk++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for(m=-1, pos=0; m <=0 ; m++)            /*s2 += param[i][j][nc]*cov[nc];*/
         pos += freq[jk][m][i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       if(pp[jk]>=1.e-10)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          }
       else          ps[i][j]=s2;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     }        }
     for(jk=1; jk <=nlstate ; jk++){        for(j=i+1; j<=nlstate+ndeath;j++){
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         pp[jk] += freq[jk][m][i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     for(jk=1,pos=0; jk <=nlstate ; jk++)          }
       pos += pp[jk];          ps[i][j]=s2;
     for(jk=1; jk <=nlstate ; jk++){        }
       if(pos>=1.e-5)      }
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      /*ps[3][2]=1;*/
       else      
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for(i=1; i<= nlstate; i++){
       if( i <= (int) agemax){        s1=0;
         if(pos>=1.e-5)        for(j=1; j<i; j++)
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          s1+=exp(ps[i][j]);
       else        for(j=i+1; j<=nlstate+ndeath; j++)
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          s1+=exp(ps[i][j]);
       }        ps[i][i]=1./(s1+1.);
     }        for(j=1; j<i; j++)
     for(jk=-1; jk <=nlstate+ndeath; jk++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(m=-1; m <=nlstate+ndeath; m++)        for(j=i+1; j<=nlstate+ndeath; j++)
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if(i <= (int) agemax)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       fprintf(ficresp,"\n");      } /* end i */
     printf("\n");      
     }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     }        for(jj=1; jj<= nlstate+ndeath; jj++){
  }          ps[ii][jj]=0;
            ps[ii][ii]=1;
   fclose(ficresp);        }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      }
   free_vector(pp,1,nlstate);      
   
 }  /* End of Freq */  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
 /************* Waves Concatenation ***************/  /*         printf("ddd %lf ",ps[ii][jj]); */
   /*       } */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  /*       printf("\n "); */
 {  /*        } */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /*        printf("\n ");printf("%lf ",cov[2]); */
      Death is a valid wave (if date is known).         /*
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for(i=1; i<= npar; i++) printf("%f ",x[i]);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        goto end;*/
      and mw[mi+1][i]. dh depends on stepm.      return ps;
      */  }
   
   int i, mi, m;  /**************** Product of 2 matrices ******************/
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
 float sum=0.;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
   for(i=1; i<=imx; i++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     mi=0;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     m=firstpass;    /* in, b, out are matrice of pointers which should have been initialized 
     while(s[m][i] <= nlstate){       before: only the contents of out is modified. The function returns
       if(s[m][i]>=1)       a pointer to pointers identical to out */
         mw[++mi][i]=m;    long i, j, k;
       if(m >=lastpass)    for(i=nrl; i<= nrh; i++)
         break;      for(k=ncolol; k<=ncoloh; k++)
       else        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         m++;          out[i][k] +=in[i][j]*b[j][k];
     }/* end while */  
     if (s[m][i] > nlstate){    return out;
       mi++;     /* Death is another wave */  }
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */  
       mw[mi][i]=m;  /************* Higher Matrix Product ***************/
     }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     wav[i]=mi;  {
     if(mi==0)    /* Computes the transition matrix starting at age 'age' over 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);       'nhstepm*hstepm*stepm' months (i.e. until
   }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   for(i=1; i<=imx; i++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(mi=1; mi<wav[i];mi++){       (typically every 2 years instead of every month which is too big 
       if (stepm <=0)       for the memory).
         dh[mi][i]=1;       Model is determined by parameters x and covariates have to be 
       else{       included manually here. 
         if (s[mw[mi+1][i]][i] > nlstate) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       */
           if(j=0) j=1;  /* Survives at least one month after exam */  
         }    int i, j, d, h, k;
         else{    double **out, cov[NCOVMAX];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    double **newm;
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/  
     /* Hstepm could be zero and should return the unit matrix */
           k=k+1;    for (i=1;i<=nlstate+ndeath;i++)
           if (j >= jmax) jmax=j;      for (j=1;j<=nlstate+ndeath;j++){
           else if (j <= jmin)jmin=j;        oldm[i][j]=(i==j ? 1.0 : 0.0);
           sum=sum+j;        po[i][j][0]=(i==j ? 1.0 : 0.0);
         }      }
         jk= j/stepm;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         jl= j -jk*stepm;    for(h=1; h <=nhstepm; h++){
         ju= j -(jk+1)*stepm;      for(d=1; d <=hstepm; d++){
         if(jl <= -ju)        newm=savm;
           dh[mi][i]=jk;        /* Covariates have to be included here again */
         else        cov[1]=1.;
           dh[mi][i]=jk+1;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         if(dh[mi][i]==0)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           dh[mi][i]=1; /* At least one step */        for (k=1; k<=cptcovage;k++)
       }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);  
 }  
 /*********** Tricode ****************************/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 void tricode(int *Tvar, int **nbcode, int imx)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   int Ndum[80],ij, k, j, i;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   int cptcode=0;        savm=oldm;
   for (k=0; k<79; k++) Ndum[k]=0;        oldm=newm;
   for (k=1; k<=7; k++) ncodemax[k]=0;      }
        for(i=1; i<=nlstate+ndeath; i++)
   for (j=1; j<=cptcovn; j++) {        for(j=1;j<=nlstate+ndeath;j++) {
     for (i=1; i<=imx; i++) {          po[i][j][h]=newm[i][j];
       ij=(int)(covar[Tvar[j]][i]);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       Ndum[ij]++;           */
       if (ij > cptcode) cptcode=ij;        }
     }    } /* end h */
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/    return po;
     for (i=0; i<=cptcode; i++) {  }
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  
    /*************** log-likelihood *************/
     ij=1;  double func( double *x)
     for (i=1; i<=ncodemax[j]; i++) {  {
       for (k=0; k<=79; k++) {    int i, ii, j, k, mi, d, kk;
         if (Ndum[k] != 0) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           nbcode[Tvar[j]][ij]=k;    double **out;
           ij++;    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
         if (ij > ncodemax[j]) break;    int s1, s2;
       }      double bbh, survp;
     }    long ipmx;
   }      /*extern weight */
     /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
 /*********** Health Expectancies ****************/      printf(" %d\n",s[4][i]);
     */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    cov[1]=1.;
 {  
   /* Health expectancies */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int i, j, nhstepm, hstepm, h;  
   double age, agelim,hf;    if(mle==1){
   double ***p3mat;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficreseij,"# Health expectancies\n");        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficreseij,"# Age");          for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
     for(j=1; j<=nlstate;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficreseij," %1d-%1d",i,j);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"\n");            }
           for(d=0; d<dh[mi][i]; d++){
   hstepm=1*YEARM; /*  Every j years of age (in month) */            newm=savm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   agelim=AGESUP;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     /* nhstepm age range expressed in number of stepm */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* Typically if 20 years = 20*12/6=40 stepm */            savm=oldm;
     if (stepm >= YEARM) hstepm=1;            oldm=newm;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          } /* end mult */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          /* But now since version 0.9 we anticipate for bias at large stepm.
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);             * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
     for(i=1; i<=nlstate;i++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       for(j=1; j<=nlstate;j++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){           * probability in order to take into account the bias as a fraction of the way
           eij[i][j][(int)age] +=p3mat[i][j][h];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
               * For stepm=1 the results are the same as for previous versions of Imach.
     hf=1;           * For stepm > 1 the results are less biased than in previous versions. 
     if (stepm >= YEARM) hf=stepm/YEARM;           */
     fprintf(ficreseij,"%.0f",age );          s1=s[mw[mi][i]][i];
     for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
       for(j=1; j<=nlstate;j++){          bbh=(double)bh[mi][i]/(double)stepm; 
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          /* bias bh is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
     fprintf(ficreseij,"\n");           */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   }          if( s2 > nlstate){ 
 }            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
 /************ Variance ******************/               die between last step unit time and current  step unit time, 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)               which is also equal to probability to die before dh 
 {               minus probability to die before dh-stepm . 
   /* Variance of health expectancies */               In version up to 0.92 likelihood was computed
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          as if date of death was unknown. Death was treated as any other
   double **newm;          health state: the date of the interview describes the actual state
   double **dnewm,**doldm;          and not the date of a change in health state. The former idea was
   int i, j, nhstepm, hstepm, h;          to consider that at each interview the state was recorded
   int k, cptcode;          (healthy, disable or death) and IMaCh was corrected; but when we
    double *xp;          introduced the exact date of death then we should have modified
   double **gp, **gm;          the contribution of an exact death to the likelihood. This new
   double ***gradg, ***trgradg;          contribution is smaller and very dependent of the step unit
   double ***p3mat;          stepm. It is no more the probability to die between last interview
   double age,agelim;          and month of death but the probability to survive from last
   int theta;          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
    fprintf(ficresvij,"# Covariances of life expectancies\n");          Jackson for correcting this bug.  Former versions increased
   fprintf(ficresvij,"# Age");          mortality artificially. The bad side is that we add another loop
   for(i=1; i<=nlstate;i++)          which slows down the processing. The difference can be up to 10%
     for(j=1; j<=nlstate;j++)          lower mortality.
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            */
   fprintf(ficresvij,"\n");            lli=log(out[s1][s2] - savm[s1][s2]);
   
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);          } else if  (s2==-2) {
   doldm=matrix(1,nlstate,1,nlstate);            for (j=1,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   hstepm=1*YEARM; /* Every year of age */            lli= survp;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }
   agelim = AGESUP;          
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          else if  (s2==-4) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for (j=3,survp=0. ; j<=nlstate; j++) 
     if (stepm >= YEARM) hstepm=1;              survp += out[s1][j];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            lli= survp;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          
     gp=matrix(0,nhstepm,1,nlstate);          else if  (s2==-5) {
     gm=matrix(0,nhstepm,1,nlstate);            for (j=1,survp=0. ; j<=2; j++) 
               survp += out[s1][j];
     for(theta=1; theta <=npar; theta++){            lli= survp;
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            else{
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(j=1; j<= nlstate; j++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         for(h=0; h<=nhstepm; h++){          } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          /*if(lli ==000.0)*/
         }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       }          ipmx +=1;
              sw += weight[i];
       for(i=1; i<=npar; i++) /* Computes gradient */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } /* end of wave */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } /* end of individual */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }  else if(mle==2){
       for(j=1; j<= nlstate; j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(h=0; h<=nhstepm; h++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm; h++){            }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for(d=0; d<=dh[mi][i]; d++){
         }            newm=savm;
     } /* End theta */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for(h=0; h<=nhstepm; h++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(theta=1; theta <=npar; theta++)            savm=oldm;
           trgradg[h][j][theta]=gradg[h][theta][j];            oldm=newm;
           } /* end mult */
     for(i=1;i<=nlstate;i++)        
       for(j=1;j<=nlstate;j++)          s1=s[mw[mi][i]][i];
         vareij[i][j][(int)age] =0.;          s2=s[mw[mi+1][i]][i];
     for(h=0;h<=nhstepm;h++){          bbh=(double)bh[mi][i]/(double)stepm; 
       for(k=0;k<=nhstepm;k++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          ipmx +=1;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          sw += weight[i];
         for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(j=1;j<=nlstate;j++)        } /* end of wave */
             vareij[i][j][(int)age] += doldm[i][j];      } /* end of individual */
       }    }  else if(mle==3){  /* exponential inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     h=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (stepm >= YEARM) h=stepm/YEARM;        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficresvij,"%.0f ",age );          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     fprintf(ficresvij,"\n");          for(d=0; d<dh[mi][i]; d++){
     free_matrix(gp,0,nhstepm,1,nlstate);            newm=savm;
     free_matrix(gm,0,nhstepm,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   } /* End age */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(xp,1,npar);            savm=oldm;
   free_matrix(doldm,1,nlstate,1,npar);            oldm=newm;
   free_matrix(dnewm,1,nlstate,1,nlstate);          } /* end mult */
         
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /************ Variance of prevlim ******************/          bbh=(double)bh[mi][i]/(double)stepm; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {          ipmx +=1;
   /* Variance of prevalence limit */          sw += weight[i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **newm;        } /* end of wave */
   double **dnewm,**doldm;      } /* end of individual */
   int i, j, nhstepm, hstepm;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   int k, cptcode;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *xp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *gp, *gm;        for(mi=1; mi<= wav[i]-1; mi++){
   double **gradg, **trgradg;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double age,agelim;            for (j=1;j<=nlstate+ndeath;j++){
   int theta;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            }
   fprintf(ficresvpl,"# Age");          for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=nlstate;i++)            newm=savm;
       fprintf(ficresvpl," %1d-%1d",i,i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficresvpl,"\n");            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   xp=vector(1,npar);            }
   dnewm=matrix(1,nlstate,1,npar);          
   doldm=matrix(1,nlstate,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=1*YEARM; /* Every year of age */            savm=oldm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            oldm=newm;
   agelim = AGESUP;          } /* end mult */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          s1=s[mw[mi][i]][i];
     if (stepm >= YEARM) hstepm=1;          s2=s[mw[mi+1][i]][i];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          if( s2 > nlstate){ 
     gradg=matrix(1,npar,1,nlstate);            lli=log(out[s1][s2] - savm[s1][s2]);
     gp=vector(1,nlstate);          }else{
     gm=vector(1,nlstate);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
     for(theta=1; theta <=npar; theta++){          ipmx +=1;
       for(i=1; i<=npar; i++){ /* Computes gradient */          sw += weight[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } /* end of wave */
       for(i=1;i<=nlstate;i++)      } /* end of individual */
         gp[i] = prlim[i][i];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
          for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=npar; i++) /* Computes gradient */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(mi=1; mi<= wav[i]-1; mi++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
         gm[i] = prlim[i][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1;i<=nlstate;i++)            }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for(d=0; d<dh[mi][i]; d++){
     } /* End theta */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     trgradg =matrix(1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(j=1; j<=nlstate;j++)            }
       for(theta=1; theta <=npar; theta++)          
         trgradg[j][theta]=gradg[theta][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1;i<=nlstate;i++)            savm=oldm;
       varpl[i][(int)age] =0.;            oldm=newm;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          } /* end mult */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        
     for(i=1;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     fprintf(ficresvpl,"%.0f ",age );          ipmx +=1;
     for(i=1; i<=nlstate;i++)          sw += weight[i];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficresvpl,"\n");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     free_vector(gp,1,nlstate);        } /* end of wave */
     free_vector(gm,1,nlstate);      } /* end of individual */
     free_matrix(gradg,1,npar,1,nlstate);    } /* End of if */
     free_matrix(trgradg,1,nlstate,1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   } /* End age */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   free_vector(xp,1,npar);    return -l;
   free_matrix(doldm,1,nlstate,1,npar);  }
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   /*************** log-likelihood *************/
 }  double funcone( double *x)
   {
     /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
 /***********************************************/    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 /**************** Main Program *****************/    double **out;
 /***********************************************/    double lli; /* Individual log likelihood */
     double llt;
 /*int main(int argc, char *argv[])*/    int s1, s2;
 int main()    double bbh, survp;
 {    /*extern weight */
     /* We are differentiating ll according to initial status */
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double agedeb, agefin,hf;    /*for(i=1;i<imx;i++) 
   double agemin=1.e20, agemax=-1.e20;      printf(" %d\n",s[4][i]);
     */
   double fret;    cov[1]=1.;
   double **xi,tmp,delta;  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   double dum; /* Dummy variable */  
   double ***p3mat;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int *indx;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char line[MAXLINE], linepar[MAXLINE];      for(mi=1; mi<= wav[i]-1; mi++){
   char title[MAXLINE];        for (ii=1;ii<=nlstate+ndeath;ii++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          for (j=1;j<=nlstate+ndeath;j++){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char filerest[FILENAMELENGTH];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileregp[FILENAMELENGTH];          }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(d=0; d<dh[mi][i]; d++){
   int firstobs=1, lastobs=10;          newm=savm;
   int sdeb, sfin; /* Status at beginning and end */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int c,  h , cpt,l;          for (kk=1; kk<=cptcovage;kk++) {
   int ju,jl, mi;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i1,j1, k1,jk,aa,bb, stepsize;          }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int hstepm, nhstepm;          savm=oldm;
   double bage, fage, age, agelim, agebase;          oldm=newm;
   double ftolpl=FTOL;        } /* end mult */
   double **prlim;        
   double *severity;        s1=s[mw[mi][i]][i];
   double ***param; /* Matrix of parameters */        s2=s[mw[mi+1][i]][i];
   double  *p;        bbh=(double)bh[mi][i]/(double)stepm; 
   double **matcov; /* Matrix of covariance */        /* bias is positive if real duration
   double ***delti3; /* Scale */         * is higher than the multiple of stepm and negative otherwise.
   double *delti; /* Scale */         */
   double ***eij, ***vareij;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double **varpl; /* Variances of prevalence limits by age */          lli=log(out[s1][s2] - savm[s1][s2]);
   double *epj, vepp;        } else if (mle==1){
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   char *alph[]={"a","a","b","c","d","e"}, str[4];        } else if(mle==2){
   char z[1]="c", occ;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 #include <sys/time.h>        } else if(mle==3){  /* exponential inter-extrapolation */
 #include <time.h>          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /* long total_usecs;          lli=log(out[s1][s2]); /* Original formula */
   struct timeval start_time, end_time;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
            lli=log(out[s1][s2]); /* Original formula */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        } /* End of if */
         ipmx +=1;
         sw += weight[i];
   printf("\nIMACH, Version 0.63");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   printf("\nEnter the parameter file name: ");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
 #ifdef windows          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   scanf("%s",pathtot);   %10.6f %10.6f %10.6f ", \
   getcwd(pathcd, size);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   cutv(path,optionfile,pathtot,'\\');                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   chdir(path);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   replace(pathc,path);            llt +=ll[k]*gipmx/gsw;
 #endif            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 #ifdef unix          }
   scanf("%s",optionfile);          fprintf(ficresilk," %10.6f\n", -llt);
 #endif        }
       } /* end of wave */
 /*-------- arguments in the command line --------*/    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   strcpy(fileres,"r");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   strcat(fileres, optionfile);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   /*---------arguments file --------*/      gipmx=ipmx;
       gsw=sw;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    }
     printf("Problem with optionfile %s\n",optionfile);    return -l;
     goto end;  }
   }  
   
   strcpy(filereso,"o");  /*************** function likelione ***********/
   strcat(filereso,fileres);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   if((ficparo=fopen(filereso,"w"))==NULL) {  {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /* This routine should help understanding what is done with 
   }       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
   /* Reads comments: lines beginning with '#' */       Plotting could be done.
   while((c=getc(ficpar))=='#' && c!= EOF){     */
     ungetc(c,ficpar);    int k;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    if(*globpri !=0){ /* Just counts and sums, no printings */
     fputs(line,ficparo);      strcpy(fileresilk,"ilk"); 
   }      strcat(fileresilk,fileres);
   ungetc(c,ficpar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);      }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   covar=matrix(1,NCOVMAX,1,n);          /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   if (strlen(model)<=1) cptcovn=0;      for(k=1; k<=nlstate; k++) 
   else {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     j=0;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     j=nbocc(model,'+');    }
     cptcovn=j+1;  
   }    *fretone=(*funcone)(p);
     if(*globpri !=0){
   ncovmodel=2+cptcovn;      fclose(ficresilk);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        fflush(fichtm); 
   /* Read guess parameters */    } 
   /* Reads comments: lines beginning with '#' */    return;
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /*********** Maximum Likelihood Estimation ***************/
     fputs(line,ficparo);  
   }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   ungetc(c,ficpar);  {
      int i,j, iter;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double **xi;
     for(i=1; i <=nlstate; i++)    double fret;
     for(j=1; j <=nlstate+ndeath-1; j++){    double fretone; /* Only one call to likelihood */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /*  char filerespow[FILENAMELENGTH];*/
       fprintf(ficparo,"%1d%1d",i1,j1);    xi=matrix(1,npar,1,npar);
       printf("%1d%1d",i,j);    for (i=1;i<=npar;i++)
       for(k=1; k<=ncovmodel;k++){      for (j=1;j<=npar;j++)
         fscanf(ficpar," %lf",&param[i][j][k]);        xi[i][j]=(i==j ? 1.0 : 0.0);
         printf(" %lf",param[i][j][k]);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         fprintf(ficparo," %lf",param[i][j][k]);    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
       fscanf(ficpar,"\n");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("\n");      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficparo,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }    }
      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    for (i=1;i<=nlstate;i++)
   p=param[1][1];      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   /* Reads comments: lines beginning with '#' */    fprintf(ficrespow,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    powell(p,xi,npar,ftol,&iter,&fret,func);
     fgets(line, MAXLINE, ficpar);  
     puts(line);    free_matrix(xi,1,npar,1,npar);
     fputs(line,ficparo);    fclose(ficrespow);
   }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   ungetc(c,ficpar);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  }
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){  /**** Computes Hessian and covariance matrix ***/
       fscanf(ficpar,"%1d%1d",&i1,&j1);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       printf("%1d%1d",i,j);  {
       fprintf(ficparo,"%1d%1d",i1,j1);    double  **a,**y,*x,pd;
       for(k=1; k<=ncovmodel;k++){    double **hess;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    int i, j,jk;
         printf(" %le",delti3[i][j][k]);    int *indx;
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       fscanf(ficpar,"\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       printf("\n");    void lubksb(double **a, int npar, int *indx, double b[]) ;
       fprintf(ficparo,"\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
     }    double gompertz(double p[]);
   }    hess=matrix(1,npar,1,npar);
   delti=delti3[1][1];  
      printf("\nCalculation of the hessian matrix. Wait...\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1;i<=npar;i++){
     ungetc(c,ficpar);      printf("%d",i);fflush(stdout);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"%d",i);fflush(ficlog);
     puts(line);     
     fputs(line,ficparo);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   }      
   ungetc(c,ficpar);      /*  printf(" %f ",p[i]);
            printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   matcov=matrix(1,npar,1,npar);    }
   for(i=1; i <=npar; i++){    
     fscanf(ficpar,"%s",&str);    for (i=1;i<=npar;i++) {
     printf("%s",str);      for (j=1;j<=npar;j++)  {
     fprintf(ficparo,"%s",str);        if (j>i) { 
     for(j=1; j <=i; j++){          printf(".%d%d",i,j);fflush(stdout);
       fscanf(ficpar," %le",&matcov[i][j]);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       printf(" %.5le",matcov[i][j]);          hess[i][j]=hessij(p,delti,i,j,func,npar);
       fprintf(ficparo," %.5le",matcov[i][j]);          
     }          hess[j][i]=hess[i][j];    
     fscanf(ficpar,"\n");          /*printf(" %lf ",hess[i][j]);*/
     printf("\n");        }
     fprintf(ficparo,"\n");      }
   }    }
   for(i=1; i <=npar; i++)    printf("\n");
     for(j=i+1;j<=npar;j++)    fprintf(ficlog,"\n");
       matcov[i][j]=matcov[j][i];  
        printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   printf("\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
     a=matrix(1,npar,1,npar);
    if(mle==1){    y=matrix(1,npar,1,npar);
     /*-------- data file ----------*/    x=vector(1,npar);
     if((ficres =fopen(fileres,"w"))==NULL) {    indx=ivector(1,npar);
       printf("Problem with resultfile: %s\n", fileres);goto end;    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     fprintf(ficres,"#%s\n",version);    ludcmp(a,npar,indx,&pd);
      
     if((fic=fopen(datafile,"r"))==NULL)    {    for (j=1;j<=npar;j++) {
       printf("Problem with datafile: %s\n", datafile);goto end;      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
       lubksb(a,npar,indx,x);
     n= lastobs;      for (i=1;i<=npar;i++){ 
     severity = vector(1,maxwav);        matcov[i][j]=x[i];
     outcome=imatrix(1,maxwav+1,1,n);      }
     num=ivector(1,n);    }
     moisnais=vector(1,n);  
     annais=vector(1,n);    printf("\n#Hessian matrix#\n");
     moisdc=vector(1,n);    fprintf(ficlog,"\n#Hessian matrix#\n");
     andc=vector(1,n);    for (i=1;i<=npar;i++) { 
     agedc=vector(1,n);      for (j=1;j<=npar;j++) { 
     cod=ivector(1,n);        printf("%.3e ",hess[i][j]);
     weight=vector(1,n);        fprintf(ficlog,"%.3e ",hess[i][j]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      }
     mint=matrix(1,maxwav,1,n);      printf("\n");
     anint=matrix(1,maxwav,1,n);      fprintf(ficlog,"\n");
     s=imatrix(1,maxwav+1,1,n);    }
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);    /* Recompute Inverse */
     ncodemax=ivector(1,NCOVMAX);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     i=1;    ludcmp(a,npar,indx,&pd);
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {    /*  printf("\n#Hessian matrix recomputed#\n");
          
         for (j=maxwav;j>=1;j--){    for (j=1;j<=npar;j++) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      for (i=1;i<=npar;i++) x[i]=0;
           strcpy(line,stra);      x[j]=1;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      lubksb(a,npar,indx,x);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=1;i<=npar;i++){ 
         }        y[i][j]=x[i];
                printf("%.3e ",y[i][j]);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficlog,"%.3e ",y[i][j]);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      }
       printf("\n");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    }
     */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncov;j>=1;j--){    free_matrix(a,1,npar,1,npar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(y,1,npar,1,npar);
         }    free_vector(x,1,npar);
         num[i]=atol(stra);    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  
   
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/  }
   
         i=i+1;  /*************** hessian matrix ****************/
       }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     }  {
     /*scanf("%d",i);*/    int i;
     int l=1, lmax=20;
   imx=i-1; /* Number of individuals */    double k1,k2;
      double p2[NPARMAX+1];
   /* Calculation of the number of parameter from char model*/    double res;
   Tvar=ivector(1,8);        double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
        double fx;
   if (strlen(model) >1){    int k=0,kmax=10;
     j=0;    double l1;
     j=nbocc(model,'+');  
     cptcovn=j+1;    fx=func(x);
      for (i=1;i<=npar;i++) p2[i]=x[i];
     strcpy(modelsav,model);    for(l=0 ; l <=lmax; l++){
     if (j==0) {      l1=pow(10,l);
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);      delts=delt;
     }      for(k=1 ; k <kmax; k=k+1){
     else {        delt = delta*(l1*k);
       for(i=j; i>=1;i--){        p2[theta]=x[theta] +delt;
         cutv(stra,strb,modelsav,'+');        k1=func(p2)-fx;
         if (strchr(strb,'*')) {        p2[theta]=x[theta]-delt;
           cutv(strd,strc,strb,'*');        k2=func(p2)-fx;
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
           cutv(strb,strc,strd,'V');        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           for (k=1; k<=lastobs;k++)        
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  #ifdef DEBUG
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         else {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           cutv(strd,strc,strb,'V');  #endif
           Tvar[i+1]=atoi(strc);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         strcpy(modelsav,stra);            k=kmax;
       }        }
       /*cutv(strd,strc,stra,'V');*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       Tvar[1]=atoi(strc);          k=kmax; l=lmax*10.;
     }        }
   }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   /*printf("tvar=%d ",Tvar[1]);*/          delts=delt;
   /*scanf("%d ",i);*/        }
     fclose(fic);      }
     }
     if (weightopt != 1) { /* Maximisation without weights*/    delti[theta]=delts;
       for(i=1;i<=n;i++) weight[i]=1.0;    return res; 
     }    
     /*-calculation of age at interview from date of interview and age at death -*/  }
     agev=matrix(1,maxwav,1,imx);  
      double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     for (i=1; i<=imx; i++)  {  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    int i;
       for(m=1; (m<= maxwav); m++){    int l=1, l1, lmax=20;
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;      double k1,k2,k3,k4,res,fx;
         if(s[m][i] >0){    double p2[NPARMAX+1];
           if (s[m][i] == nlstate+1) {    int k;
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)    fx=func(x);
               agev[m][i]=agedc[i];    for (k=1; k<=2; k++) {
             else{      for (i=1;i<=npar;i++) p2[i]=x[i];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      p2[thetai]=x[thetai]+delti[thetai]/k;
               agev[m][i]=-1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             }      k1=func(p2)-fx;
           }    
           else if(s[m][i] !=9){ /* Should no more exist */      p2[thetai]=x[thetai]+delti[thetai]/k;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             if(mint[m][i]==99 || anint[m][i]==9999){      k2=func(p2)-fx;
               agev[m][i]=1;    
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */      p2[thetai]=x[thetai]-delti[thetai]/k;
             }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             else if(agev[m][i] <agemin){      k3=func(p2)-fx;
               agemin=agev[m][i];    
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      p2[thetai]=x[thetai]-delti[thetai]/k;
             }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             else if(agev[m][i] >agemax){      k4=func(p2)-fx;
               agemax=agev[m][i];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  #ifdef DEBUG
             }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             /*agev[m][i]=anint[m][i]-annais[i];*/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             /*   agev[m][i] = age[i]+2*m;*/  #endif
           }    }
           else { /* =9 */    return res;
             agev[m][i]=1;  }
             s[m][i]=-1;  
           }  /************** Inverse of matrix **************/
         }  void ludcmp(double **a, int n, int *indx, double *d) 
         else /*= 0 Unknown */  { 
           agev[m][i]=1;    int i,imax,j,k; 
       }    double big,dum,sum,temp; 
        double *vv; 
     }   
     for (i=1; i<=imx; i++)  {    vv=vector(1,n); 
       for(m=1; (m<= maxwav); m++){    *d=1.0; 
         if (s[m][i] > (nlstate+ndeath)) {    for (i=1;i<=n;i++) { 
           printf("Error: Wrong value in nlstate or ndeath\n");        big=0.0; 
           goto end;      for (j=1;j<=n;j++) 
         }        if ((temp=fabs(a[i][j])) > big) big=temp; 
       }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     }      vv[i]=1.0/big; 
     } 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
     free_vector(severity,1,maxwav);        sum=a[i][j]; 
     free_imatrix(outcome,1,maxwav+1,1,n);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_vector(moisnais,1,n);        a[i][j]=sum; 
     free_vector(annais,1,n);      } 
     free_matrix(mint,1,maxwav,1,n);      big=0.0; 
     free_matrix(anint,1,maxwav,1,n);      for (i=j;i<=n;i++) { 
     free_vector(moisdc,1,n);        sum=a[i][j]; 
     free_vector(andc,1,n);        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
            a[i][j]=sum; 
     wav=ivector(1,imx);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          big=dum; 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          imax=i; 
            } 
     /* Concatenates waves */      } 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      if (j != imax) { 
         for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
 Tcode=ivector(1,100);          a[imax][k]=a[j][k]; 
    nbcode=imatrix(1,nvar,1,8);            a[j][k]=dum; 
    ncodemax[1]=1;        } 
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);        *d = -(*d); 
          vv[imax]=vv[j]; 
    codtab=imatrix(1,100,1,10);      } 
    h=0;      indx[j]=imax; 
    m=pow(2,cptcovn);      if (a[j][j] == 0.0) a[j][j]=TINY; 
        if (j != n) { 
    for(k=1;k<=cptcovn; k++){        dum=1.0/(a[j][j]); 
      for(i=1; i <=(m/pow(2,k));i++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
        for(j=1; j <= ncodemax[k]; j++){      } 
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    } 
            h++;    free_vector(vv,1,n);  /* Doesn't work */
            if (h>m) h=1;codtab[h][k]=j;  ;
          }  } 
        }  
      }  void lubksb(double **a, int n, int *indx, double b[]) 
    }  { 
     int i,ii=0,ip,j; 
    /*for(i=1; i <=m ;i++){    double sum; 
      for(k=1; k <=cptcovn; k++){   
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    for (i=1;i<=n;i++) { 
      }      ip=indx[i]; 
      printf("\n");      sum=b[ip]; 
    }      b[ip]=b[i]; 
   scanf("%d",i);*/      if (ii) 
            for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
    /* Calculates basic frequencies. Computes observed prevalence at single age      else if (sum) ii=i; 
        and prints on file fileres'p'. */      b[i]=sum; 
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    } 
     for (i=n;i>=1;i--) { 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      sum=b[i]; 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      b[i]=sum/a[i][i]; 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  } 
      
     /* For Powell, parameters are in a vector p[] starting at p[1]  void pstamp(FILE *fichier)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     /*scanf("%d",i);*/  }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
   /************ Frequencies ********************/
      void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     /*--------- results files --------------*/  {  /* Some frequencies */
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    
        int i, m, jk, k1,i1, j1, bool, z1,z2,j;
    jk=1;    int first;
    fprintf(ficres,"# Parameters\n");    double ***freq; /* Frequencies */
    printf("# Parameters\n");    double *pp, **prop;
    for(i=1,jk=1; i <=nlstate; i++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      for(k=1; k <=(nlstate+ndeath); k++){    char fileresp[FILENAMELENGTH];
        if (k != i)    
          {    pp=vector(1,nlstate);
            printf("%d%d ",i,k);    prop=matrix(1,nlstate,iagemin,iagemax+3);
            fprintf(ficres,"%1d%1d ",i,k);    strcpy(fileresp,"p");
            for(j=1; j <=ncovmodel; j++){    strcat(fileresp,fileres);
              printf("%f ",p[jk]);    if((ficresp=fopen(fileresp,"w"))==NULL) {
              fprintf(ficres,"%f ",p[jk]);      printf("Problem with prevalence resultfile: %s\n", fileresp);
              jk++;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
            }      exit(0);
            printf("\n");    }
            fprintf(ficres,"\n");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
          }    j1=0;
      }    
    }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */    first=1;
     hesscov(matcov, p, npar, delti, ftolhess, func);  
     fprintf(ficres,"# Scales\n");    for(k1=1; k1<=j;k1++){
     printf("# Scales\n");      for(i1=1; i1<=ncodemax[k1];i1++){
      for(i=1,jk=1; i <=nlstate; i++){        j1++;
       for(j=1; j <=nlstate+ndeath; j++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         if (j!=i) {          scanf("%d", i);*/
           fprintf(ficres,"%1d%1d",i,j);        for (i=-5; i<=nlstate+ndeath; i++)  
           printf("%1d%1d",i,j);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           for(k=1; k<=ncovmodel;k++){            for(m=iagemin; m <= iagemax+3; m++)
             printf(" %.5e",delti[jk]);              freq[i][jk][m]=0;
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;      for (i=1; i<=nlstate; i++)  
           }        for(m=iagemin; m <= iagemax+3; m++)
           printf("\n");          prop[i][m]=0;
           fprintf(ficres,"\n");        
         }        dateintsum=0;
       }        k2cpt=0;
       }        for (i=1; i<=imx; i++) {
              bool=1;
     k=1;          if  (cptcovn>0) {
     fprintf(ficres,"# Covariance\n");            for (z1=1; z1<=cptcoveff; z1++) 
     printf("# Covariance\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for(i=1;i<=npar;i++){                bool=0;
       /*  if (k>nlstate) k=1;          }
       i1=(i-1)/(ncovmodel*nlstate)+1;          if (bool==1){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            for(m=firstpass; m<=lastpass; m++){
       printf("%s%d%d",alph[k],i1,tab[i]);*/              k2=anint[m][i]+(mint[m][i]/12.);
       fprintf(ficres,"%3d",i);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       printf("%3d",i);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(j=1; j<=i;j++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficres," %.5e",matcov[i][j]);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         printf(" %.5e",matcov[i][j]);                if (m<lastpass) {
       }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficres,"\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       printf("\n");                }
       k++;                
     }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                      dateintsum=dateintsum+k2;
     while((c=getc(ficpar))=='#' && c!= EOF){                  k2cpt++;
       ungetc(c,ficpar);                }
       fgets(line, MAXLINE, ficpar);                /*}*/
       puts(line);            }
       fputs(line,ficparo);          }
     }        }
     ungetc(c,ficpar);         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        pstamp(ficresp);
            if  (cptcovn>0) {
     if (fage <= 2) {          fprintf(ficresp, "\n#********** Variable "); 
       bage = agemin;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fage = agemax;          fprintf(ficresp, "**********\n#");
     }        }
         for(i=1; i<=nlstate;i++) 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        fprintf(ficresp, "\n");
 /*------------ gnuplot -------------*/        
 chdir(pathcd);        for(i=iagemin; i <= iagemax+3; i++){
   if((ficgp=fopen("graph.plt","w"))==NULL) {          if(i==iagemax+3){
     printf("Problem with file graph.gp");goto end;            fprintf(ficlog,"Total");
   }          }else{
 #ifdef windows            if(first==1){
   fprintf(ficgp,"cd \"%s\" \n",pathc);              first=0;
 #endif              printf("See log file for details...\n");
 m=pow(2,cptcovn);            }
              fprintf(ficlog,"Age %d", i);
  /* 1eme*/          }
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for(jk=1; jk <=nlstate ; jk++){
    for (k1=1; k1<= m ; k1 ++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
 #ifdef windows          }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
 #endif            for(m=-1, pos=0; m <=0 ; m++)
 #ifdef unix              pos += freq[jk][m][i];
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            if(pp[jk]>=1.e-10){
 #endif              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }else{
 }              if(first==1)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<= nlstate ; i ++) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
      for (i=1; i<= nlstate ; i ++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              pp[jk] += freq[jk][m][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }       
 }            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            pos += pp[jk];
 #ifdef unix            posprop += prop[jk][i];
 fprintf(ficgp,"\nset ter gif small size 400,300");          }
 #endif          for(jk=1; jk <=nlstate ; jk++){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            if(pos>=1.e-5){
    }              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   /*2 eme*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
   for (k1=1; k1<= m ; k1 ++) {              if(first==1)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for (i=1; i<= nlstate+1 ; i ++) {            }
       k=2*i;            if( i <= iagemax){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              if(pos>=1.e-5){
       for (j=1; j<= nlstate+1 ; j ++) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                /*probs[i][jk][j1]= pp[jk]/pos;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 }                }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              else
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=-1; jk <=nlstate+ndeath; jk++)
 }              for(m=-1; m <=nlstate+ndeath; m++)
       fprintf(ficgp,"\" t\"\" w l 0,");              if(freq[jk][m][i] !=0 ) {
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              if(first==1)
       for (j=1; j<= nlstate+1 ; j ++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }            if(i <= iagemax)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            fprintf(ficresp,"\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");          if(first==1)
     }            printf("Others in log...\n");
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          fprintf(ficlog,"\n");
   }        }
        }
   /*3eme*/    }
     dateintmean=dateintsum/k2cpt; 
   for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fclose(ficresp);
       k=2+nlstate*(cpt-1);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    free_vector(pp,1,nlstate);
       for (i=1; i< nlstate ; i ++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    /* End of Freq */
       }  }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
   /* CV preval stat */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   for (k1=1; k1<= m ; k1 ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for (cpt=1; cpt<nlstate ; cpt ++) {       We still use firstpass and lastpass as another selection.
       k=3;    */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);   
       for (i=1; i< nlstate ; i ++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         fprintf(ficgp,"+$%d",k+i+1);    double ***freq; /* Frequencies */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double *pp, **prop;
          double pos,posprop; 
       l=3+(nlstate+ndeath)*cpt;    double  y2; /* in fractional years */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    int iagemin, iagemax;
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;    iagemin= (int) agemin;
         fprintf(ficgp,"+$%d",l+i+1);    iagemax= (int) agemax;
       }    /*pp=vector(1,nlstate);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      prop=matrix(1,nlstate,iagemin,iagemax+3); 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     }    j1=0;
   }    
     j=cptcoveff;
   /* proba elementaires */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for(i=1,jk=1; i <=nlstate; i++){    
     for(k=1; k <=(nlstate+ndeath); k++){    for(k1=1; k1<=j;k1++){
       if (k != i) {      for(i1=1; i1<=ncodemax[k1];i1++){
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/        j1++;
         for(j=1; j <=ncovmodel; j++){        
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);        for (i=1; i<=nlstate; i++)  
           jk++;          for(m=iagemin; m <= iagemax+3; m++)
           fprintf(ficgp,"\n");            prop[i][m]=0.0;
         }       
       }        for (i=1; i<=imx; i++) { /* Each individual */
     }          bool=1;
   }          if  (cptcovn>0) {
   for(jk=1; jk <=m; jk++) {            for (z1=1; z1<=cptcoveff; z1++) 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   for(i=1; i <=nlstate; i++) {                bool=0;
     for(k=1; k <=(nlstate+ndeath); k++){          } 
       if (k != i) {          if (bool==1) { 
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         for(j=3; j <=ncovmodel; j++)              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         fprintf(ficgp,")/(1");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         for(k1=1; k1 <=(nlstate+ndeath); k1++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           if (k1 != i) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             for(j=3; j <=ncovmodel; j++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             fprintf(ficgp,")");                  prop[s[m][i]][iagemax+3] += weight[i]; 
           }                } 
         fprintf(ficgp,") t \"p%d%d\" ", i,k);              }
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            } /* end selection of waves */
       }          }
     }        }
   }        for(i=iagemin; i <= iagemax+3; i++){  
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            
   }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   fclose(ficgp);            posprop += prop[jk][i]; 
              } 
 chdir(path);  
     free_matrix(agev,1,maxwav,1,imx);          for(jk=1; jk <=nlstate ; jk++){     
     free_ivector(wav,1,imx);            if( i <=  iagemax){ 
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              if(posprop>=1.e-5){ 
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                probs[i][jk][j1]= prop[jk][i]/posprop;
                  } 
     free_imatrix(s,1,maxwav+1,1,n);            } 
              }/* end jk */ 
            }/* end i */ 
     free_ivector(num,1,n);      } /* end i1 */
     free_vector(agedc,1,n);    } /* end k1 */
     free_vector(weight,1,n);    
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     fclose(ficparo);    /*free_vector(pp,1,nlstate);*/
     fclose(ficres);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    }  }  /* End of prevalence */
      
    /*________fin mle=1_________*/  /************* Waves Concatenation ***************/
      
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
     /* No more information from the sample is required now */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   /* Reads comments: lines beginning with '#' */       Death is a valid wave (if date is known).
   while((c=getc(ficpar))=='#' && c!= EOF){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     ungetc(c,ficpar);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fgets(line, MAXLINE, ficpar);       and mw[mi+1][i]. dh depends on stepm.
     puts(line);       */
     fputs(line,ficparo);  
   }    int i, mi, m;
   ungetc(c,ficpar);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    int first;
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    int j, k=0,jk, ju, jl;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    double sum=0.;
 /*--------- index.htm --------*/    first=0;
     jmin=1e+5;
   if((fichtm=fopen("index.htm","w"))==NULL)    {    jmax=-1;
     printf("Problem with index.htm \n");goto end;    jmean=0.;
   }    for(i=1; i<=imx; i++){
       mi=0;
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n      m=firstpass;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      while(s[m][i] <= nlstate){
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          mw[++mi][i]=m;
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        if(m >=lastpass)
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          break;
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        else
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>          m++;
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      }/* end while */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
  fprintf(fichtm," <li>Graphs</li>\n<p>");        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
  m=cptcovn;        mw[mi][i]=m;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      }
   
  j1=0;      wav[i]=mi;
  for(k1=1; k1<=m;k1++){      if(mi==0){
    for(i1=1; i1<=ncodemax[k1];i1++){        nbwarn++;
        j1++;        if(first==0){
        if (cptcovn > 0) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
          fprintf(fichtm,"<hr>************ Results for covariates");          first=1;
          for (cpt=1; cpt<=cptcovn;cpt++)        }
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);        if(first==1){
          fprintf(fichtm," ************\n<hr>");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
        }        }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      } /* end mi==0 */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        } /* End individuals */
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    for(i=1; i<=imx; i++){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      for(mi=1; mi<wav[i];mi++){
        }        if (stepm <=0)
     for(cpt=1; cpt<=nlstate;cpt++) {          dh[mi][i]=1;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        else{
 interval) in state (%d): v%s%d%d.gif <br>          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              if (agedc[i] < 2*AGESUP) {
      }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
      for(cpt=1; cpt<=nlstate;cpt++) {              if(j==0) j=1;  /* Survives at least one month after exam */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              else if(j<0){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                nberr++;
      }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                j=1; /* Temporary Dangerous patch */
 health expectancies in states (1) and (2): e%s%d.gif<br>                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(fichtm,"\n</body>");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    }              }
  }              k=k+1;
 fclose(fichtm);              if (j >= jmax){
                 jmax=j;
   /*--------------- Prevalence limit --------------*/                ijmax=i;
                }
   strcpy(filerespl,"pl");              if (j <= jmin){
   strcat(filerespl,fileres);                jmin=j;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                ijmin=i;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;              }
   }              sum=sum+j;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   fprintf(ficrespl,"#Prevalence limit\n");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fprintf(ficrespl,"#Age ");            }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          }
   fprintf(ficrespl,"\n");          else{
              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   prlim=matrix(1,nlstate,1,nlstate);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            k=k+1;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if (j >= jmax) {
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              jmax=j;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              ijmax=i;
   k=0;            }
   agebase=agemin;            else if (j <= jmin){
   agelim=agemax;              jmin=j;
   ftolpl=1.e-10;              ijmin=i;
   i1=cptcovn;            }
   if (cptcovn < 1){i1=1;}            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   for(cptcov=1;cptcov<=i1;cptcov++){            if(j<0){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              nberr++;
         k=k+1;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficrespl,"\n#****** ");            }
         for(j=1;j<=cptcovn;j++)            sum=sum+j;
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          }
         fprintf(ficrespl,"******\n");          jk= j/stepm;
                  jl= j -jk*stepm;
         for (age=agebase; age<=agelim; age++){          ju= j -(jk+1)*stepm;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           fprintf(ficrespl,"%.0f",age );            if(jl==0){
           for(i=1; i<=nlstate;i++)              dh[mi][i]=jk;
           fprintf(ficrespl," %.5f", prlim[i][i]);              bh[mi][i]=0;
           fprintf(ficrespl,"\n");            }else{ /* We want a negative bias in order to only have interpolation ie
         }                    * at the price of an extra matrix product in likelihood */
       }              dh[mi][i]=jk+1;
     }              bh[mi][i]=ju;
   fclose(ficrespl);            }
   /*------------- h Pij x at various ages ------------*/          }else{
              if(jl <= -ju){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);              dh[mi][i]=jk;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {              bh[mi][i]=jl;       /* bias is positive if real duration
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
   printf("Computing pij: result on file '%s' \n", filerespij);            }
              else{
   stepsize=(int) (stepm+YEARM-1)/YEARM;              dh[mi][i]=jk+1;
   if (stepm<=24) stepsize=2;              bh[mi][i]=ju;
             }
   agelim=AGESUP;            if(dh[mi][i]==0){
   hstepm=stepsize*YEARM; /* Every year of age */              dh[mi][i]=1; /* At least one step */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              bh[mi][i]=ju; /* At least one step */
                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   k=0;            }
   for(cptcov=1;cptcov<=i1;cptcov++){          } /* end if mle */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;      } /* end wave */
         fprintf(ficrespij,"\n#****** ");    }
         for(j=1;j<=cptcovn;j++)    jmean=sum/k;
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         fprintf(ficrespij,"******\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
           }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*********** Tricode ****************************/
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void tricode(int *Tvar, int **nbcode, int imx)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int Ndum[20],ij=1, k, j, i, maxncov=19;
           fprintf(ficrespij,"# Age");    int cptcode=0;
           for(i=1; i<=nlstate;i++)    cptcoveff=0; 
             for(j=1; j<=nlstate+ndeath;j++)   
               fprintf(ficrespij," %1d-%1d",i,j);    for (k=0; k<maxncov; k++) Ndum[k]=0;
           fprintf(ficrespij,"\n");    for (k=1; k<=7; k++) ncodemax[k]=0;
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             for(i=1; i<=nlstate;i++)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
               for(j=1; j<=nlstate+ndeath;j++)                                 modality*/ 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             fprintf(ficrespij,"\n");        Ndum[ij]++; /*store the modality */
           }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           fprintf(ficrespij,"\n");                                         Tvar[j]. If V=sex and male is 0 and 
         }                                         female is 1, then  cptcode=1.*/
     }      }
   }  
       for (i=0; i<=cptcode; i++) {
   fclose(ficrespij);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
   /*---------- Health expectancies and variances ------------*/  
       ij=1; 
   strcpy(filerest,"t");      for (i=1; i<=ncodemax[j]; i++) {
   strcat(filerest,fileres);        for (k=0; k<= maxncov; k++) {
   if((ficrest=fopen(filerest,"w"))==NULL) {          if (Ndum[k] != 0) {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            nbcode[Tvar[j]][ij]=k; 
   }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            
             ij++;
           }
   strcpy(filerese,"e");          if (ij > ncodemax[j]) break; 
   strcat(filerese,fileres);        }  
   if((ficreseij=fopen(filerese,"w"))==NULL) {      } 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }  
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
  strcpy(fileresv,"v");   for (i=1; i<=ncovmodel-2; i++) { 
   strcat(fileresv,fileres);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {     ij=Tvar[i];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     Ndum[ij]++;
   }   }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
    ij=1;
   k=0;   for (i=1; i<= maxncov; i++) {
   for(cptcov=1;cptcov<=i1;cptcov++){     if((Ndum[i]!=0) && (i<=ncovcol)){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       Tvaraff[ij]=i; /*For printing */
       k=k+1;       ij++;
       fprintf(ficrest,"\n#****** ");     }
       for(j=1;j<=cptcovn;j++)   }
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);   
       fprintf(ficrest,"******\n");   cptcoveff=ij-1; /*Number of simple covariates*/
   }
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcovn;j++)  /*********** Health Expectancies ****************/
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
       fprintf(ficresvij,"\n#****** ");  {
       for(j=1;j<=cptcovn;j++)    /* Health expectancies, no variances */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       fprintf(ficresvij,"******\n");    double age, agelim, hf;
     double ***p3mat;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double eip;
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      pstamp(ficreseij);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       oldm=oldms;savm=savms;    fprintf(ficreseij,"# Age");
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    for(i=1; i<=nlstate;i++){
            for(j=1; j<=nlstate;j++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        fprintf(ficreseij," e%1d%1d ",i,j);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      }
       fprintf(ficrest,"\n");      fprintf(ficreseij," e%1d. ",i);
            }
       hf=1;    fprintf(ficreseij,"\n");
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);    
       for(age=bage; age <=fage ;age++){    if(estepm < stepm){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrest," %.0f",age);    }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    else  hstepm=estepm;   
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];     * This is mainly to measure the difference between two models: for example
           }     * if stepm=24 months pijx are given only every 2 years and by summing them
           epj[nlstate+1] +=epj[j];     * we are calculating an estimate of the Life Expectancy assuming a linear 
         }     * progression in between and thus overestimating or underestimating according
         for(i=1, vepp=0.;i <=nlstate;i++)     * to the curvature of the survival function. If, for the same date, we 
           for(j=1;j <=nlstate;j++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             vepp += vareij[i][j][(int)age];     * to compare the new estimate of Life expectancy with the same linear 
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));     * hypothesis. A more precise result, taking into account a more precise
         for(j=1;j <=nlstate;j++){     * curvature will be obtained if estepm is as small as stepm. */
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  
         }    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficrest,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
               and note for a fixed period like estepm months */
  fclose(ficreseij);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  fclose(ficresvij);       survival function given by stepm (the optimization length). Unfortunately it
   fclose(ficrest);       means that if the survival funtion is printed only each two years of age and if
   fclose(ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   free_vector(epj,1,nlstate+1);       results. So we changed our mind and took the option of the best precision.
   /*  scanf("%d ",i); */    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*------- Variance limit prevalence------*/    
     agelim=AGESUP;
 strcpy(fileresvpl,"vpl");    /* nhstepm age range expressed in number of stepm */
   strcat(fileresvpl,fileres);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    /* if (stepm >= YEARM) hstepm=1;*/
     exit(0);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  k=0;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
  for(cptcov=1;cptcov<=i1;cptcov++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
      k=k+1;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      fprintf(ficresvpl,"\n#****** ");   
      for(j=1;j<=cptcovn;j++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
      fprintf(ficresvpl,"******\n");      /* Computing  Variances of health expectancies */
            /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
      varpl=matrix(1,nlstate,(int) bage, (int) fage);         decrease memory allocation */
      oldm=oldms;savm=savms;       printf("%d|",(int)age);fflush(stdout);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
    }      /* Computing expectancies */
  }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   fclose(ficresvpl);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   /*---------- End : free ----------------*/            
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
        fprintf(ficreseij,"%3.0f",age );
        for(i=1; i<=nlstate;i++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        eip=0;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(j=1; j<=nlstate;j++){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          eip +=eij[i][j][(int)age];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
          }
   free_matrix(matcov,1,npar,1,npar);        fprintf(ficreseij,"%9.4f", eip );
   free_vector(delti,1,npar);      }
        fprintf(ficreseij,"\n");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     }
   printf("End of Imach\n");    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    printf("\n");
      fprintf(ficlog,"\n");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/  }
   /*------ End -----------*/  
   void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
  end:  
 #ifdef windows  {
  chdir(pathcd);    /* Covariances of health expectancies eij and of total life expectancies according
 #endif     to initial status i, ei. .
  system("wgnuplot ../gp37mgw/graph.plt");    */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 #ifdef windows    double age, agelim, hf;
   while (z[0] != 'q') {    double ***p3matp, ***p3matm, ***varhe;
     chdir(pathcd);    double **dnewm,**doldm;
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    double *xp, *xm;
     scanf("%s",z);    double **gp, **gm;
     if (z[0] == 'c') system("./imach");    double ***gradg, ***trgradg;
     else if (z[0] == 'e') {    int theta;
       chdir(path);  
       system("index.htm");    double eip, vip;
     }  
     else if (z[0] == 'q') exit(0);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
 #endif    xm=vector(1,npar);
 }    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
   
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.2  
changed lines
  Added in v.1.118


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>