Diff for /imach/src/imach.c between versions 1.32 and 1.153

version 1.32, 2002/03/11 14:17:15 version 1.153, 2014/06/20 16:45:46
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.153  2014/06/20 16:45:46  brouard
      Summary: If 3 live state, convergence to period prevalence on same graph
   This program computes Healthy Life Expectancies from    Author: Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.152  2014/06/18 17:54:09  brouard
   interviewed on their health status or degree of disability (in the    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.151  2014/06/18 16:43:30  brouard
   (if any) in individual health status.  Health expectancies are    *** empty log message ***
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.150  2014/06/18 16:42:35  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   simplest model is the multinomial logistic model where pij is the    Author: brouard
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.149  2014/06/18 15:51:14  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: Some fixes in parameter files errors
   'age' is age and 'sex' is a covariate. If you want to have a more    Author: Nicolas Brouard
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.148  2014/06/17 17:38:48  brouard
   you to do it.  More covariates you add, slower the    Summary: Nothing new
   convergence.    Author: Brouard
   
   The advantage of this computer programme, compared to a simple    Just a new packaging for OS/X version 0.98nS
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.147  2014/06/16 10:33:11  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.146  2014/06/16 10:20:28  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: Merge
   conditional to the observed state i at age x. The delay 'h' can be    Author: Brouard
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Merge, before building revised version.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.145  2014/06/10 21:23:15  brouard
   and the contribution of each individual to the likelihood is simply    Summary: Debugging with valgrind
   hPijx.    Author: Nicolas Brouard
   
   Also this programme outputs the covariance matrix of the parameters but also    Lot of changes in order to output the results with some covariates
   of the life expectancies. It also computes the prevalence limits.    After the Edimburgh REVES conference 2014, it seems mandatory to
      improve the code.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    No more memory valgrind error but a lot has to be done in order to
            Institut national d'études démographiques, Paris.    continue the work of splitting the code into subroutines.
   This software have been partly granted by Euro-REVES, a concerted action    Also, decodemodel has been improved. Tricode is still not
   from the European Union.    optimal. nbcode should be improved. Documentation has been added in
   It is copyrighted identically to a GNU software product, ie programme and    the source code.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.143  2014/01/26 09:45:38  brouard
   **********************************************************************/    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
    
 #include <math.h>    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #include <stdio.h>    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.141  2014/01/26 02:42:01  brouard
 #define windows    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define NINTERVMAX 8    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.138  2010/04/30 18:19:40  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    *** empty log message ***
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.137  2010/04/29 18:11:38  brouard
 #define AGESUP 130    (Module): Checking covariates for more complex models
 #define AGEBASE 40    than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
 int erreur; /* Error number */    (Module): merging some libgsl code. Fixing computation
 int nvar;    of likelione (using inter/intrapolation if mle = 0) in order to
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    get same likelihood as if mle=1.
 int npar=NPARMAX;    Some cleaning of code and comments added.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.135  2009/10/29 15:33:14  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int popbased=0;  
     Revision 1.134  2009/10/29 13:18:53  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.133  2009/07/06 10:21:25  brouard
 int mle, weightopt;    just nforces
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.132  2009/07/06 08:22:05  brouard
 double jmean; /* Mean space between 2 waves */    Many tings
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.131  2009/06/20 16:22:47  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Some dimensions resccaled
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.130  2009/05/26 06:44:34  brouard
   char filerese[FILENAMELENGTH];    (Module): Max Covariate is now set to 20 instead of 8. A
  FILE  *ficresvij;    lot of cleaning with variables initialized to 0. Trying to make
   char fileresv[FILENAMELENGTH];    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.128  2006/06/30 13:02:05  brouard
 #define FTOL 1.0e-10    (Module): Clarifications on computing e.j
   
 #define NRANSI    Revision 1.127  2006/04/28 18:11:50  brouard
 #define ITMAX 200    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define TOL 2.0e-4    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 #define CGOLD 0.3819660    compute health expectancies (without variances) in a first step
 #define ZEPS 1.0e-10    and then all the health expectancies with variances or standard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    deviation (needs data from the Hessian matrices) which slows the
     computation.
 #define GOLD 1.618034    In the future we should be able to stop the program is only health
 #define GLIMIT 100.0    expectancies and graph are needed without standard deviations.
 #define TINY 1.0e-20  
     Revision 1.126  2006/04/28 17:23:28  brouard
 static double maxarg1,maxarg2;    (Module): Yes the sum of survivors was wrong since
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    imach-114 because nhstepm was no more computed in the age
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    loop. Now we define nhstepma in the age loop.
      Version 0.98h
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
 static double sqrarg;    Forecasting file added.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 int imx;    The log-likelihood is printed in the log file
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 int m,nb;    name. <head> headers where missing.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Module): Weights can have a decimal point as for
 double **pmmij, ***probs, ***mobaverage;    English (a comma might work with a correct LC_NUMERIC environment,
 double dateintmean=0;    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 double *weight;    1.
 int **s; /* Status */    Version 0.98g
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    English (a comma might work with a correct LC_NUMERIC environment,
 double ftolhess; /* Tolerance for computing hessian */    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 /**************** split *************************/    1.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Version 0.98g
 {  
    char *s;                             /* pointer */    Revision 1.121  2006/03/16 17:45:01  lievre
    int  l1, l2;                         /* length counters */    * imach.c (Module): Comments concerning covariates added
   
    l1 = strlen( path );                 /* length of path */    * imach.c (Module): refinements in the computation of lli if
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    status=-2 in order to have more reliable computation if stepm is
 #ifdef windows    not 1 month. Version 0.98f
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.120  2006/03/16 15:10:38  lievre
    s = strrchr( path, '/' );            /* find last / */    (Module): refinements in the computation of lli if
 #endif    status=-2 in order to have more reliable computation if stepm is
    if ( s == NULL ) {                   /* no directory, so use current */    not 1 month. Version 0.98f
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
       if ( getwd( dirc ) == NULL ) {    computed as likelihood omitting the logarithm. Version O.98e
 #else  
       extern char       *getcwd( );    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    table of variances if popbased=1 .
 #endif    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
          return( GLOCK_ERROR_GETCWD );    (Module): Function pstamp added
       }    (Module): Version 0.98d
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.117  2006/03/14 17:16:22  brouard
       s++;                              /* after this, the filename */    (Module): varevsij Comments added explaining the second
       l2 = strlen( s );                 /* length of filename */    table of variances if popbased=1 .
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       strcpy( name, s );                /* save file name */    (Module): Function pstamp added
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Version 0.98d
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.116  2006/03/06 10:29:27  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): Variance-covariance wrong links and
 #ifdef windows    varian-covariance of ej. is needed (Saito).
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.115  2006/02/27 12:17:45  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): One freematrix added in mlikeli! 0.98c
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.114  2006/02/26 12:57:58  brouard
    s++;    (Module): Some improvements in processing parameter
    strcpy(ext,s);                       /* save extension */    filename with strsep.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.113  2006/02/24 14:20:24  brouard
    strncpy( finame, name, l1-l2);    (Module): Memory leaks checks with valgrind and:
    finame[l1-l2]= 0;    datafile was not closed, some imatrix were not freed and on matrix
    return( 0 );                         /* we're done */    allocation too.
 }  
     Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 /******************************************/  
     Revision 1.111  2006/01/25 20:38:18  brouard
 void replace(char *s, char*t)    (Module): Lots of cleaning and bugs added (Gompertz)
 {    (Module): Comments can be added in data file. Missing date values
   int i;    can be a simple dot '.'.
   int lg=20;  
   i=0;    Revision 1.110  2006/01/25 00:51:50  brouard
   lg=strlen(t);    (Module): Lots of cleaning and bugs added (Gompertz)
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.109  2006/01/24 19:37:15  brouard
     if (t[i]== '\\') s[i]='/';    (Module): Comments (lines starting with a #) are allowed in data.
   }  
 }    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 int nbocc(char *s, char occ)    To be fixed
 {  
   int i,j=0;    Revision 1.107  2006/01/19 16:20:37  brouard
   int lg=20;    Test existence of gnuplot in imach path
   i=0;  
   lg=strlen(s);    Revision 1.106  2006/01/19 13:24:36  brouard
   for(i=0; i<= lg; i++) {    Some cleaning and links added in html output
   if  (s[i] == occ ) j++;  
   }    Revision 1.105  2006/01/05 20:23:19  lievre
   return j;    *** empty log message ***
 }  
     Revision 1.104  2005/09/30 16:11:43  lievre
 void cutv(char *u,char *v, char*t, char occ)    (Module): sump fixed, loop imx fixed, and simplifications.
 {    (Module): If the status is missing at the last wave but we know
   int i,lg,j,p=0;    that the person is alive, then we can code his/her status as -2
   i=0;    (instead of missing=-1 in earlier versions) and his/her
   for(j=0; j<=strlen(t)-1; j++) {    contributions to the likelihood is 1 - Prob of dying from last
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   }    the healthy state at last known wave). Version is 0.98
   
   lg=strlen(t);    Revision 1.103  2005/09/30 15:54:49  lievre
   for(j=0; j<p; j++) {    (Module): sump fixed, loop imx fixed, and simplifications.
     (u[j] = t[j]);  
   }    Revision 1.102  2004/09/15 17:31:30  brouard
      u[p]='\0';    Add the possibility to read data file including tab characters.
   
    for(j=0; j<= lg; j++) {    Revision 1.101  2004/09/15 10:38:38  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    Fix on curr_time
   }  
 }    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 /********************** nrerror ********************/  
     Revision 1.99  2004/06/05 08:57:40  brouard
 void nrerror(char error_text[])    *** empty log message ***
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.98  2004/05/16 15:05:56  brouard
   fprintf(stderr,"%s\n",error_text);    New version 0.97 . First attempt to estimate force of mortality
   exit(1);    directly from the data i.e. without the need of knowing the health
 }    state at each age, but using a Gompertz model: log u =a + b*age .
 /*********************** vector *******************/    This is the basic analysis of mortality and should be done before any
 double *vector(int nl, int nh)    other analysis, in order to test if the mortality estimated from the
 {    cross-longitudinal survey is different from the mortality estimated
   double *v;    from other sources like vital statistic data.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    The same imach parameter file can be used but the option for mle should be -3.
   return v-nl+NR_END;  
 }    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    The output is very simple: only an estimate of the intercept and of
 {    the slope with 95% confident intervals.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Current limitations:
     A) Even if you enter covariates, i.e. with the
 /************************ivector *******************************/    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int *ivector(long nl,long nh)    B) There is no computation of Life Expectancy nor Life Table.
 {  
   int *v;    Revision 1.97  2004/02/20 13:25:42  lievre
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Version 0.96d. Population forecasting command line is (temporarily)
   if (!v) nrerror("allocation failure in ivector");    suppressed.
   return v-nl+NR_END;  
 }    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /******************free ivector **************************/    rewritten within the same printf. Workaround: many printfs.
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
   free((FREE_ARG)(v+nl-NR_END));    * imach.c (Repository):
 }    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.94  2003/06/27 13:00:02  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Just cleaning
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.93  2003/06/25 16:33:55  brouard
   int **m;    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
   /* allocate pointers to rows */    (Module): Version 0.96b
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.92  2003/06/25 16:30:45  brouard
   m += NR_END;    (Module): On windows (cygwin) function asctime_r doesn't
   m -= nrl;    exist so I changed back to asctime which exists.
    
      Revision 1.91  2003/06/25 15:30:29  brouard
   /* allocate rows and set pointers to them */    * imach.c (Repository): Duplicated warning errors corrected.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Repository): Elapsed time after each iteration is now output. It
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    helps to forecast when convergence will be reached. Elapsed time
   m[nrl] += NR_END;    is stamped in powell.  We created a new html file for the graphs
   m[nrl] -= ncl;    concerning matrix of covariance. It has extension -cov.htm.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
   /* return pointer to array of pointers to rows */    mle=-1 a template is output in file "or"mypar.txt with the design
   return m;    of the covariance matrix to be input.
 }  
     Revision 1.89  2003/06/24 12:30:52  brouard
 /****************** free_imatrix *************************/    (Module): Some bugs corrected for windows. Also, when
 void free_imatrix(m,nrl,nrh,ncl,nch)    mle=-1 a template is output in file "or"mypar.txt with the design
       int **m;    of the covariance matrix to be input.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.87  2003/06/18 12:26:01  brouard
 }    Version 0.96
   
 /******************* matrix *******************************/    Revision 1.86  2003/06/17 20:04:08  brouard
 double **matrix(long nrl, long nrh, long ncl, long nch)    (Module): Change position of html and gnuplot routines and added
 {    routine fileappend.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    current date of interview. It may happen when the death was just
   if (!m) nrerror("allocation failure 1 in matrix()");    prior to the death. In this case, dh was negative and likelihood
   m += NR_END;    was wrong (infinity). We still send an "Error" but patch by
   m -= nrl;    assuming that the date of death was just one stepm after the
     interview.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Repository): Because some people have very long ID (first column)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    we changed int to long in num[] and we added a new lvector for
   m[nrl] += NR_END;    memory allocation. But we also truncated to 8 characters (left
   m[nrl] -= ncl;    truncation)
     (Repository): No more line truncation errors.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /*************************free matrix ************************/    many times. Probs is memory consuming and must be used with
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.83  2003/06/10 13:39:11  lievre
 }    *** empty log message ***
   
 /******************* ma3x *******************************/    Revision 1.82  2003/06/05 15:57:20  brouard
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Add log in  imach.c and  fullversion number is now printed.
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  */
   double ***m;  /*
      Interpolated Markov Chain
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Short summary of the programme:
   m += NR_END;    
   m -= nrl;    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    first survey ("cross") where individuals from different ages are
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    interviewed on their health status or degree of disability (in the
   m[nrl] += NR_END;    case of a health survey which is our main interest) -2- at least a
   m[nrl] -= ncl;    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Maximum Likelihood of the parameters involved in the model.  The
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    simplest model is the multinomial logistic model where pij is the
   m[nrl][ncl] += NR_END;    probability to be observed in state j at the second wave
   m[nrl][ncl] -= nll;    conditional to be observed in state i at the first wave. Therefore
   for (j=ncl+1; j<=nch; j++)    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     m[nrl][j]=m[nrl][j-1]+nlay;    'age' is age and 'sex' is a covariate. If you want to have a more
      complex model than "constant and age", you should modify the program
   for (i=nrl+1; i<=nrh; i++) {    where the markup *Covariates have to be included here again* invites
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    you to do it.  More covariates you add, slower the
     for (j=ncl+1; j<=nch; j++)    convergence.
       m[i][j]=m[i][j-1]+nlay;  
   }    The advantage of this computer programme, compared to a simple
   return m;    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /*************************free ma3x ************************/    account using an interpolation or extrapolation.  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    hPijx is the probability to be observed in state i at age x+h
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    conditional to the observed state i at age x. The delay 'h' can be
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    split into an exact number (nh*stepm) of unobserved intermediate
   free((FREE_ARG)(m+nrl-NR_END));    states. This elementary transition (by month, quarter,
 }    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 /***************** f1dim *************************/    and the contribution of each individual to the likelihood is simply
 extern int ncom;    hPijx.
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the period (stable) prevalence. 
 double f1dim(double x)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   int j;             Institut national d'études démographiques, Paris.
   double f;    This software have been partly granted by Euro-REVES, a concerted action
   double *xt;    from the European Union.
      It is copyrighted identically to a GNU software product, ie programme and
   xt=vector(1,ncom);    software can be distributed freely for non commercial use. Latest version
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    can be accessed at http://euroreves.ined.fr/imach .
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   return f;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /*****************brent *************************/  /*
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    main
 {    read parameterfile
   int iter;    read datafile
   double a,b,d,etemp;    concatwav
   double fu,fv,fw,fx;    freqsummary
   double ftemp;    if (mle >= 1)
   double p,q,r,tol1,tol2,u,v,w,x,xm;      mlikeli
   double e=0.0;    print results files
      if mle==1 
   a=(ax < cx ? ax : cx);       computes hessian
   b=(ax > cx ? ax : cx);    read end of parameter file: agemin, agemax, bage, fage, estepm
   x=w=v=bx;        begin-prev-date,...
   fw=fv=fx=(*f)(x);    open gnuplot file
   for (iter=1;iter<=ITMAX;iter++) {    open html file
     xm=0.5*(a+b);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     printf(".");fflush(stdout);      freexexit2 possible for memory heap.
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    h Pij x                         | pij_nom  ficrestpij
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 #endif         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       *xmin=x;  
       return fx;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
     }         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     ftemp=fu;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     if (fabs(e) > tol1) {     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       r=(x-w)*(fx-fv);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    forecasting if prevfcast==1 prevforecast call prevalence()
       q=2.0*(q-r);    health expectancies
       if (q > 0.0) p = -p;    Variance-covariance of DFLE
       q=fabs(q);    prevalence()
       etemp=e;     movingaverage()
       e=d;    varevsij() 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if popbased==1 varevsij(,popbased)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    total life expectancies
       else {    Variance of period (stable) prevalence
         d=p/q;   end
         u=x+d;  */
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  
       }  
     } else {   
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <math.h>
     }  #include <stdio.h>
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #include <stdlib.h>
     fu=(*f)(u);  #include <string.h>
     if (fu <= fx) {  #include <unistd.h>
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  #include <limits.h>
         SHFT(fv,fw,fx,fu)  #include <sys/types.h>
         } else {  #include <sys/stat.h>
           if (u < x) a=u; else b=u;  #include <errno.h>
           if (fu <= fw || w == x) {  extern int errno;
             v=w;  
             w=u;  #ifdef LINUX
             fv=fw;  #include <time.h>
             fw=fu;  #include "timeval.h"
           } else if (fu <= fv || v == x || v == w) {  #else
             v=u;  #include <sys/time.h>
             fv=fu;  #endif
           }  
         }  #ifdef GSL
   }  #include <gsl/gsl_errno.h>
   nrerror("Too many iterations in brent");  #include <gsl/gsl_multimin.h>
   *xmin=x;  #endif
   return fx;  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /****************** mnbrak ***********************/  
   #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double ulim,u,r,q, dum;  #define FILENAMELENGTH 132
   double fu;  
    #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   *fa=(*func)(*ax);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     SHFT(dum,*ax,*bx,dum)  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       SHFT(dum,*fb,*fa,dum)  
       }  #define NINTERVMAX 8
   *cx=(*bx)+GOLD*(*bx-*ax);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   *fc=(*func)(*cx);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   while (*fb > *fc) {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     r=(*bx-*ax)*(*fb-*fc);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
     q=(*bx-*cx)*(*fb-*fa);  #define MAXN 20000
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define YEARM 12. /**< Number of months per year */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define AGESUP 130
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define AGEBASE 40
     if ((*bx-u)*(u-*cx) > 0.0) {  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
       fu=(*func)(u);  #ifdef UNIX
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define DIRSEPARATOR '/'
       fu=(*func)(u);  #define CHARSEPARATOR "/"
       if (fu < *fc) {  #define ODIRSEPARATOR '\\'
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #else
           SHFT(*fb,*fc,fu,(*func)(u))  #define DIRSEPARATOR '\\'
           }  #define CHARSEPARATOR "\\"
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define ODIRSEPARATOR '/'
       u=ulim;  #endif
       fu=(*func)(u);  
     } else {  /* $Id$ */
       u=(*cx)+GOLD*(*cx-*bx);  /* $State$ */
       fu=(*func)(u);  
     }  char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     SHFT(*ax,*bx,*cx,u)  char fullversion[]="$Revision$ $Date$"; 
       SHFT(*fa,*fb,*fc,fu)  char strstart[80];
       }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 }  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar=0, nforce=0; /* Number of variables, number of forces */
 /*************** linmin ************************/  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 int ncom;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 double *pcom,*xicom;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 double (*nrfunc)(double []);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
    int cptcovprodnoage=0; /**< Number of covariate products without age */   
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 {  int cptcov=0; /* Working variable */
   double brent(double ax, double bx, double cx,  int npar=NPARMAX;
                double (*f)(double), double tol, double *xmin);  int nlstate=2; /* Number of live states */
   double f1dim(double x);  int ndeath=1; /* Number of dead states */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
               double *fc, double (*func)(double));  int popbased=0;
   int j;  
   double xx,xmin,bx,ax;  int *wav; /* Number of waves for this individuual 0 is possible */
   double fx,fb,fa;  int maxwav=0; /* Maxim number of waves */
    int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   ncom=n;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   pcom=vector(1,n);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   xicom=vector(1,n);                     to the likelihood and the sum of weights (done by funcone)*/
   nrfunc=func;  int mle=1, weightopt=0;
   for (j=1;j<=n;j++) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     pcom[j]=p[j];  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     xicom[j]=xi[j];  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   ax=0.0;  double jmean=1; /* Mean space between 2 waves */
   xx=1.0;  double **matprod2(); /* test */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #ifdef DEBUG  /*FILE *fic ; */ /* Used in readdata only */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #endif  FILE *ficlog, *ficrespow;
   for (j=1;j<=n;j++) {  int globpr=0; /* Global variable for printing or not */
     xi[j] *= xmin;  double fretone; /* Only one call to likelihood */
     p[j] += xi[j];  long ipmx=0; /* Number of contributions */
   }  double sw; /* Sum of weights */
   free_vector(xicom,1,n);  char filerespow[FILENAMELENGTH];
   free_vector(pcom,1,n);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /*************** powell ************************/  FILE *ficresprobmorprev;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  FILE *fichtm, *fichtmcov; /* Html File */
             double (*func)(double []))  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   void linmin(double p[], double xi[], int n, double *fret,  FILE *ficresstdeij;
               double (*func)(double []));  char fileresstde[FILENAMELENGTH];
   int i,ibig,j;  FILE *ficrescveij;
   double del,t,*pt,*ptt,*xit;  char filerescve[FILENAMELENGTH];
   double fp,fptt;  FILE  *ficresvij;
   double *xits;  char fileresv[FILENAMELENGTH];
   pt=vector(1,n);  FILE  *ficresvpl;
   ptt=vector(1,n);  char fileresvpl[FILENAMELENGTH];
   xit=vector(1,n);  char title[MAXLINE];
   xits=vector(1,n);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   *fret=(*func)(p);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   for (j=1;j<=n;j++) pt[j]=p[j];  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   for (*iter=1;;++(*iter)) {  char command[FILENAMELENGTH];
     fp=(*fret);  int  outcmd=0;
     ibig=0;  
     del=0.0;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  char filelog[FILENAMELENGTH]; /* Log file */
       printf(" %d %.12f",i, p[i]);  char filerest[FILENAMELENGTH];
     printf("\n");  char fileregp[FILENAMELENGTH];
     for (i=1;i<=n;i++) {  char popfile[FILENAMELENGTH];
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 #endif  struct timezone tzp;
       printf("%d",i);fflush(stdout);  extern int gettimeofday();
       linmin(p,xit,n,fret,func);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       if (fabs(fptt-(*fret)) > del) {  long time_value;
         del=fabs(fptt-(*fret));  extern long time();
         ibig=i;  char strcurr[80], strfor[80];
       }  
 #ifdef DEBUG  char *endptr;
       printf("%d %.12e",i,(*fret));  long lval;
       for (j=1;j<=n;j++) {  double dval;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  #define NR_END 1
       }  #define FREE_ARG char*
       for(j=1;j<=n;j++)  #define FTOL 1.0e-10
         printf(" p=%.12e",p[j]);  
       printf("\n");  #define NRANSI 
 #endif  #define ITMAX 200 
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define TOL 2.0e-4 
 #ifdef DEBUG  
       int k[2],l;  #define CGOLD 0.3819660 
       k[0]=1;  #define ZEPS 1.0e-10 
       k[1]=-1;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  #define GOLD 1.618034 
         printf(" %.12e",p[j]);  #define GLIMIT 100.0 
       printf("\n");  #define TINY 1.0e-20 
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  static double maxarg1,maxarg2;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         }    
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       }  #define rint(a) floor(a+0.5)
 #endif  
   static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       free_vector(xit,1,n);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       free_vector(xits,1,n);  int agegomp= AGEGOMP;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  int imx; 
       return;  int stepm=1;
     }  /* Stepm, step in month: minimum step interpolation*/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  int estepm;
       ptt[j]=2.0*p[j]-pt[j];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  int m,nb;
     }  long *num;
     fptt=(*func)(ptt);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     if (fptt < fp) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double **pmmij, ***probs;
       if (t < 0.0) {  double *ageexmed,*agecens;
         linmin(p,xit,n,fret,func);  double dateintmean=0;
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  double *weight;
           xi[j][n]=xit[j];  int **s; /* Status */
         }  double *agedc;
 #ifdef DEBUG  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);                    * covar=matrix(0,NCOVMAX,1,n); 
         for(j=1;j<=n;j++)                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
           printf(" %.12e",xit[j]);  double  idx; 
         printf("\n");  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 #endif  int *Ndum; /** Freq of modality (tricode */
       }  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     }  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  double *lsurv, *lpop, *tpop;
 }  
   double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 /**** Prevalence limit ****************/  double ftolhess; /**< Tolerance for computing hessian */
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  {
      matrix by transitions matrix until convergence is reached */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   int i, ii,j,k;    */ 
   double min, max, maxmin, maxmax,sumnew=0.;    char  *ss;                            /* pointer */
   double **matprod2();    int   l1, l2;                         /* length counters */
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;    l1 = strlen(path );                   /* length of path */
   double agefin, delaymax=50 ; /* Max number of years to converge */    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for (ii=1;ii<=nlstate+ndeath;ii++)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     for (j=1;j<=nlstate+ndeath;j++){      strcpy( name, path );               /* we got the fullname name because no directory */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
    cov[1]=1.;      /*    extern  char* getcwd ( char *buf , int len);*/
        if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        return( GLOCK_ERROR_GETCWD );
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      }
     newm=savm;      /* got dirc from getcwd*/
     /* Covariates have to be included here again */      printf(" DIRC = %s \n",dirc);
      cov[2]=agefin;    } else {                              /* strip direcotry from path */
        ss++;                               /* after this, the filename */
       for (k=1; k<=cptcovn;k++) {      l2 = strlen( ss );                  /* length of filename */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/      strcpy( name, ss );         /* save file name */
       }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       for (k=1; k<=cptcovage;k++)      dirc[l1-l2] = 0;                    /* add zero */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      printf(" DIRC2 = %s \n",dirc);
       for (k=1; k<=cptcovprod;k++)    }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    if( dirc[l1-1] != DIRSEPARATOR ){
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      printf(" DIRC3 = %s \n",dirc);
     }
     savm=oldm;    ss = strrchr( name, '.' );            /* find last / */
     oldm=newm;    if (ss >0){
     maxmax=0.;      ss++;
     for(j=1;j<=nlstate;j++){      strcpy(ext,ss);                     /* save extension */
       min=1.;      l1= strlen( name);
       max=0.;      l2= strlen(ss)+1;
       for(i=1; i<=nlstate; i++) {      strncpy( finame, name, l1-l2);
         sumnew=0;      finame[l1-l2]= 0;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);    return( 0 );                          /* we're done */
         min=FMIN(min,prlim[i][j]);  }
       }  
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /******************************************/
     }  
     if(maxmax < ftolpl){  void replace_back_to_slash(char *s, char*t)
       return prlim;  {
     }    int i;
   }    int lg=0;
 }    i=0;
     lg=strlen(t);
 /*************** transition probabilities ***************/    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      if (t[i]== '\\') s[i]='/';
 {    }
   double s1, s2;  }
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  char *trimbb(char *out, char *in)
   { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     for(i=1; i<= nlstate; i++){    char *s;
     for(j=1; j<i;j++){    s=out;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    while (*in != '\0'){
         /*s2 += param[i][j][nc]*cov[nc];*/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        in++;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      }
       }      *out++ = *in++;
       ps[i][j]=s2;    }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    *out='\0';
     }    return s;
     for(j=i+1; j<=nlstate+ndeath;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char *cutl(char *blocc, char *alocc, char *in, char occ)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  {
       }    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       ps[i][j]=s2;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     }       gives blocc="abcdef2ghi" and alocc="j".
   }       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     /*ps[3][2]=1;*/    */
     char *s, *t, *bl;
   for(i=1; i<= nlstate; i++){    t=in;s=in;
      s1=0;    while ((*in != occ) && (*in != '\0')){
     for(j=1; j<i; j++)      *alocc++ = *in++;
       s1+=exp(ps[i][j]);    }
     for(j=i+1; j<=nlstate+ndeath; j++)    if( *in == occ){
       s1+=exp(ps[i][j]);      *(alocc)='\0';
     ps[i][i]=1./(s1+1.);      s=++in;
     for(j=1; j<i; j++)    }
       ps[i][j]= exp(ps[i][j])*ps[i][i];   
     for(j=i+1; j<=nlstate+ndeath; j++)    if (s == t) {/* occ not found */
       ps[i][j]= exp(ps[i][j])*ps[i][i];      *(alocc-(in-s))='\0';
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      in=s;
   } /* end i */    }
     while ( *in != '\0'){
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      *blocc++ = *in++;
     for(jj=1; jj<= nlstate+ndeath; jj++){    }
       ps[ii][jj]=0;  
       ps[ii][ii]=1;    *blocc='\0';
     }    return t;
   }  }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     for(jj=1; jj<= nlstate+ndeath; jj++){       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
      printf("%lf ",ps[ii][jj]);       gives blocc="abcdef2ghi" and alocc="j".
    }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     printf("\n ");    */
     }    char *s, *t;
     printf("\n ");printf("%lf ",cov[2]);*/    t=in;s=in;
 /*    while (*in != '\0'){
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      while( *in == occ){
   goto end;*/        *blocc++ = *in++;
     return ps;        s=in;
 }      }
       *blocc++ = *in++;
 /**************** Product of 2 matrices ******************/    }
     if (s == t) /* occ not found */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      *(blocc-(in-s))='\0';
 {    else
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      *(blocc-(in-s)-1)='\0';
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    in=s;
   /* in, b, out are matrice of pointers which should have been initialized    while ( *in != '\0'){
      before: only the contents of out is modified. The function returns      *alocc++ = *in++;
      a pointer to pointers identical to out */    }
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)    *alocc='\0';
     for(k=ncolol; k<=ncoloh; k++)    return s;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   int nbocc(char *s, char occ)
   return out;  {
 }    int i,j=0;
     int lg=20;
     i=0;
 /************* Higher Matrix Product ***************/    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    if  (s[i] == occ ) j++;
 {    }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    return j;
      duration (i.e. until  }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /* void cutv(char *u,char *v, char*t, char occ) */
      (typically every 2 years instead of every month which is too big).  /* { */
      Model is determined by parameters x and covariates have to be  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
      included manually here.  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*      gives u="abcdef2ghi" and v="j" *\/ */
      */  /*   int i,lg,j,p=0; */
   /*   i=0; */
   int i, j, d, h, k;  /*   lg=strlen(t); */
   double **out, cov[NCOVMAX];  /*   for(j=0; j<=lg-1; j++) { */
   double **newm;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  /*   for(j=0; j<p; j++) { */
     for (j=1;j<=nlstate+ndeath;j++){  /*     (u[j] = t[j]); */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*   } */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /*      u[p]='\0'; */
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*    for(j=0; j<= lg; j++) { */
   for(h=1; h <=nhstepm; h++){  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     for(d=1; d <=hstepm; d++){  /*   } */
       newm=savm;  /* } */
       /* Covariates have to be included here again */  
       cov[1]=1.;  /********************** nrerror ********************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void nrerror(char error_text[])
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    fprintf(stderr,"ERREUR ...\n");
       for (k=1; k<=cptcovprod;k++)    fprintf(stderr,"%s\n",error_text);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    exit(EXIT_FAILURE);
   }
   /*********************** vector *******************/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  double *vector(int nl, int nh)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double *v;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       savm=oldm;    if (!v) nrerror("allocation failure in vector");
       oldm=newm;    return v-nl+NR_END;
     }  }
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  /************************ free vector ******************/
         po[i][j][h]=newm[i][j];  void free_vector(double*v, int nl, int nh)
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  {
          */    free((FREE_ARG)(v+nl-NR_END));
       }  }
   } /* end h */  
   return po;  /************************ivector *******************************/
 }  int *ivector(long nl,long nh)
   {
     int *v;
 /*************** log-likelihood *************/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 double func( double *x)    if (!v) nrerror("allocation failure in ivector");
 {    return v-nl+NR_END;
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /******************free ivector **************************/
   double sw; /* Sum of weights */  void free_ivector(int *v, long nl, long nh)
   double lli; /* Individual log likelihood */  {
   long ipmx;    free((FREE_ARG)(v+nl-NR_END));
   /*extern weight */  }
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /************************lvector *******************************/
   /*for(i=1;i<imx;i++)  long *lvector(long nl,long nh)
     printf(" %d\n",s[4][i]);  {
   */    long *v;
   cov[1]=1.;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
   for(k=1; k<=nlstate; k++) ll[k]=0.;    return v-nl+NR_END;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /******************free lvector **************************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  void free_lvector(long *v, long nl, long nh)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
       for(d=0; d<dh[mi][i]; d++){    free((FREE_ARG)(v+nl-NR_END));
         newm=savm;  }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  /******************* imatrix *******************************/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
          { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    int **m; 
         savm=oldm;    
         oldm=newm;    /* allocate pointers to rows */ 
            m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
            if (!m) nrerror("allocation failure 1 in matrix()"); 
       } /* end mult */    m += NR_END; 
          m -= nrl; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    
       ipmx +=1;    /* allocate rows and set pointers to them */ 
       sw += weight[i];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     } /* end of wave */    m[nrl] += NR_END; 
   } /* end of individual */    m[nrl] -= ncl; 
     
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    /* return pointer to array of pointers to rows */ 
   return -l;    return m; 
 }  } 
   
   /****************** free_imatrix *************************/
 /*********** Maximum Likelihood Estimation ***************/  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        long nch,ncl,nrh,nrl; 
 {       /* free an int matrix allocated by imatrix() */ 
   int i,j, iter;  { 
   double **xi,*delti;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double fret;    free((FREE_ARG) (m+nrl-NR_END)); 
   xi=matrix(1,npar,1,npar);  } 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /******************* matrix *******************************/
       xi[i][j]=(i==j ? 1.0 : 0.0);  double **matrix(long nrl, long nrh, long ncl, long nch)
   printf("Powell\n");  {
   powell(p,xi,npar,ftol,&iter,&fret,func);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double  **a,**y,*x,pd;    m[nrl] += NR_END;
   double **hess;    m[nrl] -= ncl;
   int i, j,jk;  
   int *indx;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
   double hessii(double p[], double delta, int theta, double delti[]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   double hessij(double p[], double delti[], int i, int j);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   void lubksb(double **a, int npar, int *indx, double b[]) ;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   void ludcmp(double **a, int npar, int *indx, double *d) ;     */
   }
   hess=matrix(1,npar,1,npar);  
   /*************************free matrix ************************/
   printf("\nCalculation of the hessian matrix. Wait...\n");  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (i=1;i<=npar;i++){  {
     printf("%d",i);fflush(stdout);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     hess[i][i]=hessii(p,ftolhess,i,delti);    free((FREE_ARG)(m+nrl-NR_END));
     /*printf(" %f ",p[i]);*/  }
     /*printf(" %lf ",hess[i][i]);*/  
   }  /******************* ma3x *******************************/
    double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++)  {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       if (j>i) {    double ***m;
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         hess[j][i]=hess[i][j];        if (!m) nrerror("allocation failure 1 in matrix()");
         /*printf(" %lf ",hess[i][j]);*/    m += NR_END;
       }    m -= nrl;
     }  
   }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   printf("\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    m[nrl] -= ncl;
    
   a=matrix(1,npar,1,npar);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   indx=ivector(1,npar);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   for (i=1;i<=npar;i++)    m[nrl][ncl] += NR_END;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    m[nrl][ncl] -= nll;
   ludcmp(a,npar,indx,&pd);    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
   for (j=1;j<=npar;j++) {    
     for (i=1;i<=npar;i++) x[i]=0;    for (i=nrl+1; i<=nrh; i++) {
     x[j]=1;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     lubksb(a,npar,indx,x);      for (j=ncl+1; j<=nch; j++) 
     for (i=1;i<=npar;i++){        m[i][j]=m[i][j-1]+nlay;
       matcov[i][j]=x[i];    }
     }    return m; 
   }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   printf("\n#Hessian matrix#\n");    */
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  /*************************free ma3x ************************/
     }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     printf("\n");  {
   }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* Recompute Inverse */    free((FREE_ARG)(m+nrl-NR_END));
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
   /*  printf("\n#Hessian matrix recomputed#\n");  {
     /* Caution optionfilefiname is hidden */
   for (j=1;j<=npar;j++) {    strcpy(tmpout,optionfilefiname);
     for (i=1;i<=npar;i++) x[i]=0;    strcat(tmpout,"/"); /* Add to the right */
     x[j]=1;    strcat(tmpout,fileres);
     lubksb(a,npar,indx,x);    return tmpout;
     for (i=1;i<=npar;i++){  }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
     printf("\n");  {
   }    
   */    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   free_matrix(a,1,npar,1,npar);    strcat(tmpout,"/");
   free_matrix(y,1,npar,1,npar);    strcat(tmpout,preop);
   free_vector(x,1,npar);    strcat(tmpout,fileres);
   free_ivector(indx,1,npar);    return tmpout;
   free_matrix(hess,1,npar,1,npar);  }
   
   /*************** function subdirf3 ***********/
 }  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
 /*************** hessian matrix ****************/    
 double hessii( double x[], double delta, int theta, double delti[])    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   int i;    strcat(tmpout,"/");
   int l=1, lmax=20;    strcat(tmpout,preop);
   double k1,k2;    strcat(tmpout,preop2);
   double p2[NPARMAX+1];    strcat(tmpout,fileres);
   double res;    return tmpout;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  }
   double fx;  
   int k=0,kmax=10;  /***************** f1dim *************************/
   double l1;  extern int ncom; 
   extern double *pcom,*xicom;
   fx=func(x);  extern double (*nrfunc)(double []); 
   for (i=1;i<=npar;i++) p2[i]=x[i];   
   for(l=0 ; l <=lmax; l++){  double f1dim(double x) 
     l1=pow(10,l);  { 
     delts=delt;    int j; 
     for(k=1 ; k <kmax; k=k+1){    double f;
       delt = delta*(l1*k);    double *xt; 
       p2[theta]=x[theta] +delt;   
       k1=func(p2)-fx;    xt=vector(1,ncom); 
       p2[theta]=x[theta]-delt;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       k2=func(p2)-fx;    f=(*nrfunc)(xt); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    free_vector(xt,1,ncom); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    return f; 
        } 
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*****************brent *************************/
 #endif  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  { 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    int iter; 
         k=kmax;    double a,b,d,etemp;
       }    double fu,fv,fw,fx;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    double ftemp;
         k=kmax; l=lmax*10.;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       }    double e=0.0; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){   
         delts=delt;    a=(ax < cx ? ax : cx); 
       }    b=(ax > cx ? ax : cx); 
     }    x=w=v=bx; 
   }    fw=fv=fx=(*f)(x); 
   delti[theta]=delts;    for (iter=1;iter<=ITMAX;iter++) { 
   return res;      xm=0.5*(a+b); 
        tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 double hessij( double x[], double delti[], int thetai,int thetaj)      fprintf(ficlog,".");fflush(ficlog);
 {  #ifdef DEBUG
   int i;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int l=1, l1, lmax=20;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double k1,k2,k3,k4,res,fx;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double p2[NPARMAX+1];  #endif
   int k;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
   fx=func(x);        return fx; 
   for (k=1; k<=2; k++) {      } 
     for (i=1;i<=npar;i++) p2[i]=x[i];      ftemp=fu;
     p2[thetai]=x[thetai]+delti[thetai]/k;      if (fabs(e) > tol1) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        r=(x-w)*(fx-fv); 
     k1=func(p2)-fx;        q=(x-v)*(fx-fw); 
          p=(x-v)*q-(x-w)*r; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        q=2.0*(q-r); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        if (q > 0.0) p = -p; 
     k2=func(p2)-fx;        q=fabs(q); 
          etemp=e; 
     p2[thetai]=x[thetai]-delti[thetai]/k;        e=d; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     k3=func(p2)-fx;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          else { 
     p2[thetai]=x[thetai]-delti[thetai]/k;          d=p/q; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          u=x+d; 
     k4=func(p2)-fx;          if (u-a < tol2 || b-u < tol2) 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            d=SIGN(tol1,xm-x); 
 #ifdef DEBUG        } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      } else { 
 #endif        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }      } 
   return res;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 }      fu=(*f)(u); 
       if (fu <= fx) { 
 /************** Inverse of matrix **************/        if (u >= x) a=x; else b=x; 
 void ludcmp(double **a, int n, int *indx, double *d)        SHFT(v,w,x,u) 
 {          SHFT(fv,fw,fx,fu) 
   int i,imax,j,k;          } else { 
   double big,dum,sum,temp;            if (u < x) a=u; else b=u; 
   double *vv;            if (fu <= fw || w == x) { 
                v=w; 
   vv=vector(1,n);              w=u; 
   *d=1.0;              fv=fw; 
   for (i=1;i<=n;i++) {              fw=fu; 
     big=0.0;            } else if (fu <= fv || v == x || v == w) { 
     for (j=1;j<=n;j++)              v=u; 
       if ((temp=fabs(a[i][j])) > big) big=temp;              fv=fu; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            } 
     vv[i]=1.0/big;          } 
   }    } 
   for (j=1;j<=n;j++) {    nrerror("Too many iterations in brent"); 
     for (i=1;i<j;i++) {    *xmin=x; 
       sum=a[i][j];    return fx; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  } 
       a[i][j]=sum;  
     }  /****************** mnbrak ***********************/
     big=0.0;  
     for (i=j;i<=n;i++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       sum=a[i][j];              double (*func)(double)) 
       for (k=1;k<j;k++)  { 
         sum -= a[i][k]*a[k][j];    double ulim,u,r,q, dum;
       a[i][j]=sum;    double fu; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {   
         big=dum;    *fa=(*func)(*ax); 
         imax=i;    *fb=(*func)(*bx); 
       }    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
     if (j != imax) {        SHFT(dum,*fb,*fa,dum) 
       for (k=1;k<=n;k++) {        } 
         dum=a[imax][k];    *cx=(*bx)+GOLD*(*bx-*ax); 
         a[imax][k]=a[j][k];    *fc=(*func)(*cx); 
         a[j][k]=dum;    while (*fb > *fc) { 
       }      r=(*bx-*ax)*(*fb-*fc); 
       *d = -(*d);      q=(*bx-*cx)*(*fb-*fa); 
       vv[imax]=vv[j];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     indx[j]=imax;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     if (a[j][j] == 0.0) a[j][j]=TINY;      if ((*bx-u)*(u-*cx) > 0.0) { 
     if (j != n) {        fu=(*func)(u); 
       dum=1.0/(a[j][j]);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        fu=(*func)(u); 
     }        if (fu < *fc) { 
   }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   free_vector(vv,1,n);  /* Doesn't work */            SHFT(*fb,*fc,fu,(*func)(u)) 
 ;            } 
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
 void lubksb(double **a, int n, int *indx, double b[])        fu=(*func)(u); 
 {      } else { 
   int i,ii=0,ip,j;        u=(*cx)+GOLD*(*cx-*bx); 
   double sum;        fu=(*func)(u); 
        } 
   for (i=1;i<=n;i++) {      SHFT(*ax,*bx,*cx,u) 
     ip=indx[i];        SHFT(*fa,*fb,*fc,fu) 
     sum=b[ip];        } 
     b[ip]=b[i];  } 
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*************** linmin ************************/
     else if (sum) ii=i;  
     b[i]=sum;  int ncom; 
   }  double *pcom,*xicom;
   for (i=n;i>=1;i--) {  double (*nrfunc)(double []); 
     sum=b[i];   
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     b[i]=sum/a[i][i];  { 
   }    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
 /************ Frequencies ********************/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)                double *fc, double (*func)(double)); 
 {  /* Some frequencies */    int j; 
      double xx,xmin,bx,ax; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double fx,fb,fa;
   double ***freq; /* Frequencies */   
   double *pp;    ncom=n; 
   double pos, k2, dateintsum=0,k2cpt=0;    pcom=vector(1,n); 
   FILE *ficresp;    xicom=vector(1,n); 
   char fileresp[FILENAMELENGTH];    nrfunc=func; 
      for (j=1;j<=n;j++) { 
   pp=vector(1,nlstate);      pcom[j]=p[j]; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      xicom[j]=xi[j]; 
   strcpy(fileresp,"p");    } 
   strcat(fileresp,fileres);    ax=0.0; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    xx=1.0; 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     exit(0);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   }  #ifdef DEBUG
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   j1=0;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
   j=cptcoveff;    for (j=1;j<=n;j++) { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      xi[j] *= xmin; 
       p[j] += xi[j]; 
   for(k1=1; k1<=j;k1++){    } 
    for(i1=1; i1<=ncodemax[k1];i1++){    free_vector(xicom,1,n); 
        j1++;    free_vector(pcom,1,n); 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  } 
          scanf("%d", i);*/  
         for (i=-1; i<=nlstate+ndeath; i++)    char *asc_diff_time(long time_sec, char ascdiff[])
          for (jk=-1; jk<=nlstate+ndeath; jk++)    {
            for(m=agemin; m <= agemax+3; m++)    long sec_left, days, hours, minutes;
              freq[i][jk][m]=0;    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
         dateintsum=0;    hours = (sec_left) / (60*60) ;
         k2cpt=0;    sec_left = (sec_left) %(60*60);
        for (i=1; i<=imx; i++) {    minutes = (sec_left) /60;
          bool=1;    sec_left = (sec_left) % (60);
          if  (cptcovn>0) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
            for (z1=1; z1<=cptcoveff; z1++)    return ascdiff;
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  }
                bool=0;  
          }  /*************** powell ************************/
          if (bool==1) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
            for(m=firstpass; m<=lastpass; m++){              double (*func)(double [])) 
              k2=anint[m][i]+(mint[m][i]/12.);  { 
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    void linmin(double p[], double xi[], int n, double *fret, 
                if(agev[m][i]==0) agev[m][i]=agemax+1;                double (*func)(double [])); 
                if(agev[m][i]==1) agev[m][i]=agemax+2;    int i,ibig,j; 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double del,t,*pt,*ptt,*xit;
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double fp,fptt;
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    double *xits;
                  dateintsum=dateintsum+k2;    int niterf, itmp;
                  k2cpt++;  
                }    pt=vector(1,n); 
     ptt=vector(1,n); 
              }    xit=vector(1,n); 
            }    xits=vector(1,n); 
          }    *fret=(*func)(p); 
        }    for (j=1;j<=n;j++) pt[j]=p[j]; 
            for (*iter=1;;++(*iter)) { 
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      fp=(*fret); 
       ibig=0; 
         if  (cptcovn>0) {      del=0.0; 
          fprintf(ficresp, "\n#********** Variable ");      last_time=curr_time;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      (void) gettimeofday(&curr_time,&tzp);
        fprintf(ficresp, "**********\n#");      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
        for(i=1; i<=nlstate;i++)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);     for (i=1;i<=n;i++) {
        fprintf(ficresp, "\n");        printf(" %d %.12f",i, p[i]);
                fprintf(ficlog," %d %.12lf",i, p[i]);
   for(i=(int)agemin; i <= (int)agemax+3; i++){        fprintf(ficrespow," %.12lf", p[i]);
     if(i==(int)agemax+3)      }
       printf("Total");      printf("\n");
     else      fprintf(ficlog,"\n");
       printf("Age %d", i);      fprintf(ficrespow,"\n");fflush(ficrespow);
     for(jk=1; jk <=nlstate ; jk++){      if(*iter <=3){
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        tm = *localtime(&curr_time.tv_sec);
         pp[jk] += freq[jk][m][i];        strcpy(strcurr,asctime(&tm));
     }  /*       asctime_r(&tm,strcurr); */
     for(jk=1; jk <=nlstate ; jk++){        forecast_time=curr_time; 
       for(m=-1, pos=0; m <=0 ; m++)        itmp = strlen(strcurr);
         pos += freq[jk][m][i];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       if(pp[jk]>=1.e-10)          strcurr[itmp-1]='\0';
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       else        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(niterf=10;niterf<=30;niterf+=10){
     }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
      for(jk=1; jk <=nlstate ; jk++){  /*      asctime_r(&tmf,strfor); */
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          strcpy(strfor,asctime(&tmf));
         pp[jk] += freq[jk][m][i];          itmp = strlen(strfor);
      }          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
     for(jk=1,pos=0; jk <=nlstate ; jk++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       pos += pp[jk];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for(jk=1; jk <=nlstate ; jk++){        }
       if(pos>=1.e-5)      }
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for (i=1;i<=n;i++) { 
       else        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        fptt=(*fret); 
       if( i <= (int) agemax){  #ifdef DEBUG
         if(pos>=1.e-5){        printf("fret=%lf \n",*fret);
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        fprintf(ficlog,"fret=%lf \n",*fret);
           probs[i][jk][j1]= pp[jk]/pos;  #endif
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        printf("%d",i);fflush(stdout);
         }        fprintf(ficlog,"%d",i);fflush(ficlog);
       else        linmin(p,xit,n,fret,func); 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        if (fabs(fptt-(*fret)) > del) { 
       }          del=fabs(fptt-(*fret)); 
     }          ibig=i; 
     for(jk=-1; jk <=nlstate+ndeath; jk++)        } 
       for(m=-1; m <=nlstate+ndeath; m++)  #ifdef DEBUG
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        printf("%d %.12e",i,(*fret));
     if(i <= (int) agemax)        fprintf(ficlog,"%d %.12e",i,(*fret));
       fprintf(ficresp,"\n");        for (j=1;j<=n;j++) {
     printf("\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     }          printf(" x(%d)=%.12e",j,xit[j]);
     }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
  }        }
   dateintmean=dateintsum/k2cpt;        for(j=1;j<=n;j++) {
            printf(" p=%.12e",p[j]);
   fclose(ficresp);          fprintf(ficlog," p=%.12e",p[j]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        }
   free_vector(pp,1,nlstate);        printf("\n");
         fprintf(ficlog,"\n");
   /* End of Freq */  #endif
 }      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 /************ Prevalence ********************/  #ifdef DEBUG
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        int k[2],l;
 {  /* Some frequencies */        k[0]=1;
          k[1]=-1;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        printf("Max: %.12e",(*func)(p));
   double ***freq; /* Frequencies */        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double *pp;        for (j=1;j<=n;j++) {
   double pos, k2;          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   pp=vector(1,nlstate);        }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        printf("\n");
          fprintf(ficlog,"\n");
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(l=0;l<=1;l++) {
   j1=0;          for (j=1;j<=n;j++) {
              ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   j=cptcoveff;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
  for(k1=1; k1<=j;k1++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       j1++;        }
    #endif
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)        free_vector(xit,1,n); 
             freq[i][jk][m]=0;        free_vector(xits,1,n); 
              free_vector(ptt,1,n); 
       for (i=1; i<=imx; i++) {        free_vector(pt,1,n); 
         bool=1;        return; 
         if  (cptcovn>0) {      } 
           for (z1=1; z1<=cptcoveff; z1++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for (j=1;j<=n;j++) { 
               bool=0;        ptt[j]=2.0*p[j]-pt[j]; 
         }        xit[j]=p[j]-pt[j]; 
         if (bool==1) {        pt[j]=p[j]; 
           for(m=firstpass; m<=lastpass; m++){      } 
             k2=anint[m][i]+(mint[m][i]/12.);      fptt=(*func)(ptt); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      if (fptt < fp) { 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        if (t < 0.0) { 
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          linmin(p,xit,n,fret,func); 
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */          for (j=1;j<=n;j++) { 
             }            xi[j][ibig]=xi[j][n]; 
           }            xi[j][n]=xit[j]; 
         }          }
       }  #ifdef DEBUG
         for(i=(int)agemin; i <= (int)agemax+3; i++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for(j=1;j<=n;j++){
               pp[jk] += freq[jk][m][i];            printf(" %.12e",xit[j]);
           }            fprintf(ficlog," %.12e",xit[j]);
           for(jk=1; jk <=nlstate ; jk++){          }
             for(m=-1, pos=0; m <=0 ; m++)          printf("\n");
             pos += freq[jk][m][i];          fprintf(ficlog,"\n");
         }  #endif
                }
          for(jk=1; jk <=nlstate ; jk++){      } 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    } 
              pp[jk] += freq[jk][m][i];  } 
          }  
            /**** Prevalence limit (stable or period prevalence)  ****************/
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
          for(jk=1; jk <=nlstate ; jk++){            {
            if( i <= (int) agemax){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
              if(pos>=1.e-5){       matrix by transitions matrix until convergence is reached */
                probs[i][jk][j1]= pp[jk]/pos;  
              }    int i, ii,j,k;
            }    double min, max, maxmin, maxmax,sumnew=0.;
          }    /* double **matprod2(); */ /* test */
              double **out, cov[NCOVMAX+1], **pmij();
         }    double **newm;
     }    double agefin, delaymax=50 ; /* Max number of years to converge */
   }  
      for (ii=1;ii<=nlstate+ndeath;ii++)
        for (j=1;j<=nlstate+ndeath;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);      }
    
 }  /* End of Freq */     cov[1]=1.;
    
 /************* Waves Concatenation ***************/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      newm=savm;
 {      /* Covariates have to be included here again */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      cov[2]=agefin;
      Death is a valid wave (if date is known).      
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (k=1; k<=cptcovn;k++) {
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      and mw[mi+1][i]. dh depends on stepm.        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
      */      }
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   int i, mi, m;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
      double sum=0., jmean=0.;*/      
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int j, k=0,jk, ju, jl;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double sum=0.;      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   jmin=1e+5;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   jmax=-1;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   jmean=0.;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   for(i=1; i<=imx; i++){      
     mi=0;      savm=oldm;
     m=firstpass;      oldm=newm;
     while(s[m][i] <= nlstate){      maxmax=0.;
       if(s[m][i]>=1)      for(j=1;j<=nlstate;j++){
         mw[++mi][i]=m;        min=1.;
       if(m >=lastpass)        max=0.;
         break;        for(i=1; i<=nlstate; i++) {
       else          sumnew=0;
         m++;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     }/* end while */          prlim[i][j]= newm[i][j]/(1-sumnew);
     if (s[m][i] > nlstate){          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
       mi++;     /* Death is another wave */          max=FMAX(max,prlim[i][j]);
       /* if(mi==0)  never been interviewed correctly before death */          min=FMIN(min,prlim[i][j]);
          /* Only death is a correct wave */        }
       mw[mi][i]=m;        maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
       }
     wav[i]=mi;      if(maxmax < ftolpl){
     if(mi==0)        return prlim;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      }
   }    }
   }
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  /*************** transition probabilities ***************/ 
       if (stepm <=0)  
         dh[mi][i]=1;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       else{  {
         if (s[mw[mi+1][i]][i] > nlstate) {    /* According to parameters values stored in x and the covariate's values stored in cov,
           if (agedc[i] < 2*AGESUP) {       computes the probability to be observed in state j being in state i by appying the
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       model to the ncovmodel covariates (including constant and age).
           if(j==0) j=1;  /* Survives at least one month after exam */       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           k=k+1;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
           if (j >= jmax) jmax=j;       ncth covariate in the global vector x is given by the formula:
           if (j <= jmin) jmin=j;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
           sum=sum+j;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           /*if (j<0) printf("j=%d num=%d \n",j,i); */       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         }       Outputs ps[i][j] the probability to be observed in j being in j according to
         else{       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    */
           k=k+1;    double s1, lnpijopii;
           if (j >= jmax) jmax=j;    /*double t34;*/
           else if (j <= jmin)jmin=j;    int i,j,j1, nc, ii, jj;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;      for(i=1; i<= nlstate; i++){
         }        for(j=1; j<i;j++){
         jk= j/stepm;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         jl= j -jk*stepm;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
         ju= j -(jk+1)*stepm;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         if(jl <= -ju)  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           dh[mi][i]=jk;          }
         else          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           dh[mi][i]=jk+1;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         if(dh[mi][i]==0)        }
           dh[mi][i]=1; /* At least one step */        for(j=i+1; j<=nlstate+ndeath;j++){
       }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     }            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   }            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   jmean=sum/k;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          }
  }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 /*********** Tricode ****************************/        }
 void tricode(int *Tvar, int **nbcode, int imx)      }
 {      
   int Ndum[20],ij=1, k, j, i;      for(i=1; i<= nlstate; i++){
   int cptcode=0;        s1=0;
   cptcoveff=0;        for(j=1; j<i; j++){
            s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   for (k=0; k<19; k++) Ndum[k]=0;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   for (k=1; k<=7; k++) ncodemax[k]=0;        }
         for(j=i+1; j<=nlstate+ndeath; j++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     for (i=1; i<=imx; i++) {          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       ij=(int)(covar[Tvar[j]][i]);        }
       Ndum[ij]++;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        ps[i][i]=1./(s1+1.);
       if (ij > cptcode) cptcode=ij;        /* Computing other pijs */
     }        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (i=0; i<=cptcode; i++) {        for(j=i+1; j<=nlstate+ndeath; j++)
       if(Ndum[i]!=0) ncodemax[j]++;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     ij=1;      } /* end i */
       
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (i=1; i<=ncodemax[j]; i++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
       for (k=0; k<=19; k++) {          ps[ii][jj]=0;
         if (Ndum[k] != 0) {          ps[ii][ii]=1;
           nbcode[Tvar[j]][ij]=k;        }
           ij++;      }
         }      
         if (ij > ncodemax[j]) break;      
       }        /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   }        /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       /*   } */
  for (k=0; k<19; k++) Ndum[k]=0;      /*   printf("\n "); */
       /* } */
  for (i=1; i<=ncovmodel-2; i++) {      /* printf("\n ");printf("%lf ",cov[2]);*/
       ij=Tvar[i];      /*
       Ndum[ij]++;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }        goto end;*/
       return ps;
  ij=1;  }
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncov)){  /**************** Product of 2 matrices ******************/
      Tvaraff[ij]=i;  
      ij++;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
    }  {
  }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     cptcoveff=ij-1;    /* in, b, out are matrice of pointers which should have been initialized 
 }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
 /*********** Health Expectancies ****************/    int i, j, k;
     for(i=nrl; i<= nrh; i++)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)      for(k=ncolol; k<=ncoloh; k++){
 {        out[i][k]=0.;
   /* Health expectancies */        for(j=ncl; j<=nch; j++)
   int i, j, nhstepm, hstepm, h, nstepm, k;          out[i][k] +=in[i][j]*b[j][k];
   double age, agelim,hf;      }
   double ***p3mat;    return out;
    }
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  /************* Higher Matrix Product ***************/
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d",i,j);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   fprintf(ficreseij,"\n");  {
     /* Computes the transition matrix starting at age 'age' over 
   k=1;             /* For example stepm=6 months */       'nhstepm*hstepm*stepm' months (i.e. until
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */       nhstepm*hstepm matrices. 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
      nhstepm is the number of hstepm from age to agelim       (typically every 2 years instead of every month which is too big 
      nstepm is the number of stepm from age to agelin.       for the memory).
      Look at hpijx to understand the reason of that which relies in memory size       Model is determined by parameters x and covariates have to be 
      and note for a fixed period like k years */       included manually here. 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it       */
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    int i, j, d, h, k;
      results. So we changed our mind and took the option of the best precision.    double **out, cov[NCOVMAX+1];
   */    double **newm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */  
     /* Hstepm could be zero and should return the unit matrix */
   agelim=AGESUP;    for (i=1;i<=nlstate+ndeath;i++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (j=1;j<=nlstate+ndeath;j++){
     /* nhstepm age range expressed in number of stepm */        oldm[i][j]=(i==j ? 1.0 : 0.0);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        po[i][j][0]=(i==j ? 1.0 : 0.0);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      }
     if (stepm >= YEARM) hstepm=1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for(h=1; h <=nhstepm; h++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(d=1; d <=hstepm; d++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        newm=savm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        /* Covariates have to be included here again */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          cov[1]=1.;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) 
       for(j=1; j<=nlstate;j++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        for (k=1; k<=cptcovage;k++)
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     fprintf(ficreseij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     fprintf(ficreseij,"\n");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        savm=oldm;
   }        oldm=newm;
 }      }
       for(i=1; i<=nlstate+ndeath; i++)
 /************ Variance ******************/        for(j=1;j<=nlstate+ndeath;j++) {
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          po[i][j][h]=newm[i][j];
 {          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   /* Variance of health expectancies */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      /*printf("h=%d ",h);*/
   double **newm;    } /* end h */
   double **dnewm,**doldm;  /*     printf("\n H=%d \n",h); */
   int i, j, nhstepm, hstepm, h;    return po;
   int k, cptcode;  }
   double *xp;  
   double **gp, **gm;  
   double ***gradg, ***trgradg;  /*************** log-likelihood *************/
   double ***p3mat;  double func( double *x)
   double age,agelim;  {
   int theta;    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
    fprintf(ficresvij,"# Covariances of life expectancies\n");    double **out;
   fprintf(ficresvij,"# Age");    double sw; /* Sum of weights */
   for(i=1; i<=nlstate;i++)    double lli; /* Individual log likelihood */
     for(j=1; j<=nlstate;j++)    int s1, s2;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double bbh, survp;
   fprintf(ficresvij,"\n");    long ipmx;
     /*extern weight */
   xp=vector(1,npar);    /* We are differentiating ll according to initial status */
   dnewm=matrix(1,nlstate,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   doldm=matrix(1,nlstate,1,nlstate);    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   hstepm=1*YEARM; /* Every year of age */    */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    cov[1]=1.;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;    if(mle==1){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* Computes the values of the ncovmodel covariates of the model
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     gp=matrix(0,nhstepm,1,nlstate);           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     gm=matrix(0,nhstepm,1,nlstate);           to be observed in j being in i according to the model.
          */
     for(theta=1; theta <=npar; theta++){        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
       for(i=1; i<=npar; i++){ /* Computes gradient */          cov[2+k]=covar[Tvar[k]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
       }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);             is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);           has been calculated etc */
         for(mi=1; mi<= wav[i]-1; mi++){
       if (popbased==1) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
           prlim[i][i]=probs[(int)age][i][ij];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
       for(j=1; j<= nlstate; j++){          for(d=0; d<dh[mi][i]; d++){
         for(h=0; h<=nhstepm; h++){            newm=savm;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       }            }
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++) /* Computes gradient */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            savm=oldm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              oldm=newm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          } /* end mult */
          
       if (popbased==1) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for(i=1; i<=nlstate;i++)          /* But now since version 0.9 we anticipate for bias at large stepm.
           prlim[i][i]=probs[(int)age][i][ij];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       }           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
       for(j=1; j<= nlstate; j++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for(h=0; h<=nhstepm; h++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)           * probability in order to take into account the bias as a fraction of the way
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
       for(j=1; j<= nlstate; j++)           */
         for(h=0; h<=nhstepm; h++){          s1=s[mw[mi][i]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
     } /* End theta */          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for(h=0; h<=nhstepm; h++)          if( s2 > nlstate){ 
       for(j=1; j<=nlstate;j++)            /* i.e. if s2 is a death state and if the date of death is known 
         for(theta=1; theta <=npar; theta++)               then the contribution to the likelihood is the probability to 
           trgradg[h][j][theta]=gradg[h][theta][j];               die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
     for(i=1;i<=nlstate;i++)               minus probability to die before dh-stepm . 
       for(j=1;j<=nlstate;j++)               In version up to 0.92 likelihood was computed
         vareij[i][j][(int)age] =0.;          as if date of death was unknown. Death was treated as any other
     for(h=0;h<=nhstepm;h++){          health state: the date of the interview describes the actual state
       for(k=0;k<=nhstepm;k++){          and not the date of a change in health state. The former idea was
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          to consider that at each interview the state was recorded
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          (healthy, disable or death) and IMaCh was corrected; but when we
         for(i=1;i<=nlstate;i++)          introduced the exact date of death then we should have modified
           for(j=1;j<=nlstate;j++)          the contribution of an exact death to the likelihood. This new
             vareij[i][j][(int)age] += doldm[i][j];          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
     h=1;          interview up to one month before death multiplied by the
     if (stepm >= YEARM) h=stepm/YEARM;          probability to die within a month. Thanks to Chris
     fprintf(ficresvij,"%.0f ",age );          Jackson for correcting this bug.  Former versions increased
     for(i=1; i<=nlstate;i++)          mortality artificially. The bad side is that we add another loop
       for(j=1; j<=nlstate;j++){          which slows down the processing. The difference can be up to 10%
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          lower mortality.
       }            */
     fprintf(ficresvij,"\n");            lli=log(out[s1][s2] - savm[s1][s2]);
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          } else if  (s2==-2) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            for (j=1,survp=0. ; j<=nlstate; j++) 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   } /* End age */            /*survp += out[s1][j]; */
              lli= log(survp);
   free_vector(xp,1,npar);          }
   free_matrix(doldm,1,nlstate,1,npar);          
   free_matrix(dnewm,1,nlstate,1,nlstate);          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
 }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
 /************ Variance of prevlim ******************/          } 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {          else if  (s2==-5) { 
   /* Variance of prevalence limit */            for (j=1,survp=0. ; j<=2; j++)  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double **newm;            lli= log(survp); 
   double **dnewm,**doldm;          } 
   int i, j, nhstepm, hstepm;          
   int k, cptcode;          else{
   double *xp;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double *gp, *gm;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double **gradg, **trgradg;          } 
   double age,agelim;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int theta;          /*if(lli ==000.0)*/
              /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          ipmx +=1;
   fprintf(ficresvpl,"# Age");          sw += weight[i];
   for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresvpl," %1d-%1d",i,i);        } /* end of wave */
   fprintf(ficresvpl,"\n");      } /* end of individual */
     }  else if(mle==2){
   xp=vector(1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   dnewm=matrix(1,nlstate,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   doldm=matrix(1,nlstate,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=1*YEARM; /* Every year of age */            for (j=1;j<=nlstate+ndeath;j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim = AGESUP;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(d=0; d<=dh[mi][i]; d++){
     if (stepm >= YEARM) hstepm=1;            newm=savm;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gradg=matrix(1,npar,1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
     gp=vector(1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     gm=vector(1,nlstate);            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(theta=1; theta <=npar; theta++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=npar; i++){ /* Computes gradient */            savm=oldm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            oldm=newm;
       }          } /* end mult */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
       for(i=1;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
         gp[i] = prlim[i][i];          s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1; i<=npar; i++) /* Computes gradient */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ipmx +=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          sw += weight[i];
       for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gm[i] = prlim[i][i];        } /* end of wave */
       } /* end of individual */
       for(i=1;i<=nlstate;i++)    }  else if(mle==3){  /* exponential inter-extrapolation */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     } /* End theta */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     trgradg =matrix(1,nlstate,1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     for(j=1; j<=nlstate;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(theta=1; theta <=npar; theta++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         trgradg[j][theta]=gradg[theta][j];            }
           for(d=0; d<dh[mi][i]; d++){
     for(i=1;i<=nlstate;i++)            newm=savm;
       varpl[i][(int)age] =0.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            for (kk=1; kk<=cptcovage;kk++) {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1;i<=nlstate;i++)            }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficresvpl,"%.0f ",age );            savm=oldm;
     for(i=1; i<=nlstate;i++)            oldm=newm;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          } /* end mult */
     fprintf(ficresvpl,"\n");        
     free_vector(gp,1,nlstate);          s1=s[mw[mi][i]][i];
     free_vector(gm,1,nlstate);          s2=s[mw[mi+1][i]][i];
     free_matrix(gradg,1,npar,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
     free_matrix(trgradg,1,nlstate,1,npar);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   } /* End age */          ipmx +=1;
           sw += weight[i];
   free_vector(xp,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_matrix(doldm,1,nlstate,1,npar);        } /* end of wave */
   free_matrix(dnewm,1,nlstate,1,nlstate);      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Variance of one-step probabilities  ******************/        for(mi=1; mi<= wav[i]-1; mi++){
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   int i, j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k=0, cptcode;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **dnewm,**doldm;            }
   double *xp;          for(d=0; d<dh[mi][i]; d++){
   double *gp, *gm;            newm=savm;
   double **gradg, **trgradg;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double age,agelim, cov[NCOVMAX];            for (kk=1; kk<=cptcovage;kk++) {
   int theta;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   char fileresprob[FILENAMELENGTH];            }
           
   strcpy(fileresprob,"prob");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcat(fileresprob,fileres);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            savm=oldm;
     printf("Problem with resultfile: %s\n", fileresprob);            oldm=newm;
   }          } /* end mult */
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        
            s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   xp=vector(1,npar);          if( s2 > nlstate){ 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   cov[1]=1;          }
   for (age=bage; age<=fage; age ++){          ipmx +=1;
     cov[2]=age;          sw += weight[i];
     gradg=matrix(1,npar,1,9);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     trgradg=matrix(1,9,1,npar);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        } /* end of wave */
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      } /* end of individual */
        }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     for(theta=1; theta <=npar; theta++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=npar; i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(mi=1; mi<= wav[i]-1; mi++){
                for (ii=1;ii<=nlstate+ndeath;ii++)
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       k=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<= (nlstate+ndeath); i++){            }
         for(j=1; j<=(nlstate+ndeath);j++){          for(d=0; d<dh[mi][i]; d++){
            k=k+1;            newm=savm;
           gp[k]=pmmij[i][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
       for(i=1; i<=npar; i++)          
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            oldm=newm;
       k=0;          } /* end mult */
       for(i=1; i<=(nlstate+ndeath); i++){        
         for(j=1; j<=(nlstate+ndeath);j++){          s1=s[mw[mi][i]][i];
           k=k+1;          s2=s[mw[mi+1][i]][i];
           gm[k]=pmmij[i][j];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          ipmx +=1;
       }          sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          } /* end of wave */
     }      } /* end of individual */
     } /* End of if */
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(theta=1; theta <=npar; theta++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       trgradg[j][theta]=gradg[theta][j];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      return -l;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  }
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
   /*************** log-likelihood *************/
      pmij(pmmij,cov,ncovmodel,x,nlstate);  double funcone( double *x)
   {
      k=0;    /* Same as likeli but slower because of a lot of printf and if */
      for(i=1; i<=(nlstate+ndeath); i++){    int i, ii, j, k, mi, d, kk;
        for(j=1; j<=(nlstate+ndeath);j++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
          k=k+1;    double **out;
          gm[k]=pmmij[i][j];    double lli; /* Individual log likelihood */
         }    double llt;
      }    int s1, s2;
          double bbh, survp;
      /*printf("\n%d ",(int)age);    /*extern weight */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    /* We are differentiating ll according to initial status */
            /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      printf(" %d\n",s[4][i]);
      }*/    */
     cov[1]=1.;
   fprintf(ficresprob,"\n%d ",(int)age);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          for (j=1;j<=nlstate+ndeath;j++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
 }        for(d=0; d<dh[mi][i]; d++){
  free_vector(xp,1,npar);          newm=savm;
 fclose(ficresprob);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
 }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
 /******************* Printing html file ***********/          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[],char rfileres[] ){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int jj1, k1, i1, cpt;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   FILE *fichtm;          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   /*char optionfilehtm[FILENAMELENGTH];*/          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           savm=oldm;
   strcpy(optionfilehtm,optionfile);          oldm=newm;
   strcat(optionfilehtm,".htm");        } /* end mult */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        
     printf("Problem with %s \n",optionfilehtm), exit(0);        s1=s[mw[mi][i]][i];
   }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.71c </font> <hr size=\"2\" color=\"#EC5E5E\">        /* bias is positive if real duration
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>         * is higher than the multiple of stepm and negative otherwise.
          */
 Total number of observations=%d <br>        if( s2 > nlstate && (mle <5) ){  /* Jackson */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>          lli=log(out[s1][s2] - savm[s1][s2]);
 <hr  size=\"2\" color=\"#EC5E5E\">        } else if  (s2==-2) {
 <li>Outputs files<br><br>\n          for (j=1,survp=0. ; j<=nlstate; j++) 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          lli= log(survp);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        }else if (mle==1){
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        } else if(mle==2){
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        } else if(mle==3){  /* exponential inter-extrapolation */
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>          lli=log(out[s1][s2]); /* Original formula */
         - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>        } else{  /* mle=0 back to 1 */
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
            /*lli=log(out[s1][s2]); */ /* Original formula */
 fprintf(fichtm," <li>Graphs</li><p>");        } /* End of if */
         ipmx +=1;
  m=cptcoveff;        sw += weight[i];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  jj1=0;        if(globpr){
  for(k1=1; k1<=m;k1++){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    for(i1=1; i1<=ncodemax[k1];i1++){   %11.6f %11.6f %11.6f ", \
        jj1++;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
        if (cptcovn > 0) {                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
          for (cpt=1; cpt<=cptcoveff;cpt++)            llt +=ll[k]*gipmx/gsw;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          }
        }          fprintf(ficresilk," %10.6f\n", -llt);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          } /* end of wave */
        for(cpt=1; cpt<nlstate;cpt++){    } /* end of individual */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
        }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(cpt=1; cpt<=nlstate;cpt++) {    if(globpr==0){ /* First time we count the contributions and weights */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      gipmx=ipmx;
 interval) in state (%d): v%s%d%d.gif <br>      gsw=sw;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
      }    return -l;
      for(cpt=1; cpt<=nlstate;cpt++) {  }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }  /*************** function likelione ***********/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 health expectancies in states (1) and (2): e%s%d.gif<br>  {
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /* This routine should help understanding what is done with 
 fprintf(fichtm,"\n</body>");       the selection of individuals/waves and
    }       to check the exact contribution to the likelihood.
    }       Plotting could be done.
 fclose(fichtm);     */
 }    int k;
   
 /******************* Gnuplot file **************/    if(*globpri !=0){ /* Just counts and sums, no printings */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemaxpar, double fage , char pathc[], double p[]){      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   strcpy(optionfilegnuplot,optionfilefiname);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   strcat(optionfilegnuplot,".plt");      }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     printf("Problem with file %s",optionfilegnuplot);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
 #ifdef windows        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     fprintf(ficgp,"cd \"%s\" \n",pathc);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 #endif    }
 m=pow(2,cptcoveff);  
      *fretone=(*funcone)(p);
  /* 1eme*/    if(*globpri !=0){
   for (cpt=1; cpt<= nlstate ; cpt ++) {      fclose(ficresilk);
    for (k1=1; k1<= m ; k1 ++) {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
 #ifdef windows    } 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    return;
 #endif  }
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);  
 #endif  /*********** Maximum Likelihood Estimation ***************/
   
 for (i=1; i<= nlstate ; i ++) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int i,j, iter;
 }    double **xi;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    double fret;
     for (i=1; i<= nlstate ; i ++) {    double fretone; /* Only one call to likelihood */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*  char filerespow[FILENAMELENGTH];*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    xi=matrix(1,npar,1,npar);
 }    for (i=1;i<=npar;i++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      for (j=1;j<=npar;j++)
      for (i=1; i<= nlstate ; i ++) {        xi[i][j]=(i==j ? 1.0 : 0.0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(filerespow,"pow"); 
 }      strcat(filerespow,fileres);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 #ifdef unix      printf("Problem with resultfile: %s\n", filerespow);
 fprintf(ficgp,"\nset ter gif small size 400,300");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 #endif    }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
    }    for (i=1;i<=nlstate;i++)
   }      for(j=1;j<=nlstate+ndeath;j++)
   /*2 eme*/        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    powell(p,xi,npar,ftol,&iter,&fret,func);
      
     for (i=1; i<= nlstate+1 ; i ++) {    free_matrix(xi,1,npar,1,npar);
       k=2*i;    fclose(ficrespow);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  /**** Computes Hessian and covariance matrix ***/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for (j=1; j<= nlstate+1 ; j ++) {  {
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double  **a,**y,*x,pd;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double **hess;
 }      int i, j,jk;
       fprintf(ficgp,"\" t\"\" w l 0,");    int *indx;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    void lubksb(double **a, int npar, int *indx, double b[]) ;
 }      void ludcmp(double **a, int npar, int *indx, double *d) ;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    double gompertz(double p[]);
       else fprintf(ficgp,"\" t\"\" w l 0,");    hess=matrix(1,npar,1,npar);
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    printf("\nCalculation of the hessian matrix. Wait...\n");
   }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      for (i=1;i<=npar;i++){
   /*3eme*/      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
   for (k1=1; k1<= m ; k1 ++) {     
     for (cpt=1; cpt<= nlstate ; cpt ++) {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       k=2+nlstate*(cpt-1);      
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);      /*  printf(" %f ",p[i]);
       for (i=1; i< nlstate ; i ++) {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    }
       }    
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for (i=1;i<=npar;i++) {
     }      for (j=1;j<=npar;j++)  {
     }        if (j>i) { 
            printf(".%d%d",i,j);fflush(stdout);
   /* CV preval stat */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     for (k1=1; k1<= m ; k1 ++) {          hess[i][j]=hessij(p,delti,i,j,func,npar);
     for (cpt=1; cpt<nlstate ; cpt ++) {          
       k=3;          hess[j][i]=hess[i][j];    
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemaxpar,fileres,k1,k+cpt+1,k+1);          /*printf(" %lf ",hess[i][j]);*/
         }
       for (i=1; i< nlstate ; i ++)      }
         fprintf(ficgp,"+$%d",k+i+1);    }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    printf("\n");
          fprintf(ficlog,"\n");
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for (i=1; i< nlstate ; i ++) {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         l=3+(nlstate+ndeath)*cpt;    
         fprintf(ficgp,"+$%d",l+i+1);    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      x=vector(1,npar);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    indx=ivector(1,npar);
     }    for (i=1;i<=npar;i++)
   }        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      ludcmp(a,npar,indx,&pd);
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){    for (j=1;j<=npar;j++) {
     for(k=1; k <=(nlstate+ndeath); k++){      for (i=1;i<=npar;i++) x[i]=0;
       if (k != i) {      x[j]=1;
         for(j=1; j <=ncovmodel; j++){      lubksb(a,npar,indx,x);
              for (i=1;i<=npar;i++){ 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        matcov[i][j]=x[i];
           jk++;      }
           fprintf(ficgp,"\n");    }
         }  
       }    printf("\n#Hessian matrix#\n");
     }    fprintf(ficlog,"\n#Hessian matrix#\n");
     }    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     for(jk=1; jk <=m; jk++) {        printf("%.3e ",hess[i][j]);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemaxpar);        fprintf(ficlog,"%.3e ",hess[i][j]);
    i=1;      }
    for(k2=1; k2<=nlstate; k2++) {      printf("\n");
      k3=i;      fprintf(ficlog,"\n");
      for(k=1; k<=(nlstate+ndeath); k++) {    }
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* Recompute Inverse */
 ij=1;    for (i=1;i<=npar;i++)
         for(j=3; j <=ncovmodel; j++) {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    ludcmp(a,npar,indx,&pd);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;    /*  printf("\n#Hessian matrix recomputed#\n");
           }  
           else    for (j=1;j<=npar;j++) {
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
           fprintf(ficgp,")/(1");      lubksb(a,npar,indx,x);
              for (i=1;i<=npar;i++){ 
         for(k1=1; k1 <=nlstate; k1++){          y[i][j]=x[i];
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        printf("%.3e ",y[i][j]);
 ij=1;        fprintf(ficlog,"%.3e ",y[i][j]);
           for(j=3; j <=ncovmodel; j++){      }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      printf("\n");
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      fprintf(ficlog,"\n");
             ij++;    }
           }    */
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_matrix(a,1,npar,1,npar);
           }    free_matrix(y,1,npar,1,npar);
           fprintf(ficgp,")");    free_vector(x,1,npar);
         }    free_ivector(indx,1,npar);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    free_matrix(hess,1,npar,1,npar);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;  
        }  }
      }  
    }  /*************** hessian matrix ****************/
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    }  {
        int i;
   fclose(ficgp);    int l=1, lmax=20;
 }  /* end gnuplot */    double k1,k2;
     double p2[MAXPARM+1]; /* identical to x */
     double res;
 /*************** Moving average **************/    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){    double fx;
     int k=0,kmax=10;
   int i, cpt, cptcod;    double l1;
     for (agedeb=agemin; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)    fx=func(x);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    for (i=1;i<=npar;i++) p2[i]=x[i];
           mobaverage[(int)agedeb][i][cptcod]=0.;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
          l1=pow(10,l);
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){      delts=delt;
       for (i=1; i<=nlstate;i++){      for(k=1 ; k <kmax; k=k+1){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        delt = delta*(l1*k);
           for (cpt=0;cpt<=4;cpt++){        p2[theta]=x[theta] +delt;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
           }        p2[theta]=x[theta]-delt;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        k2=func(p2)-fx;
         }        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     }        
      #ifdef DEBUGHESS
 }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
 /************** Forecasting ******************/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            k=kmax;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          k=kmax; l=lmax*10.;
   double *popeffectif,*popcount;        }
   double ***p3mat;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   char fileresf[FILENAMELENGTH];          delts=delt;
         }
  agelim=AGESUP;      }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    }
     delti[theta]=delts;
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    return res; 
      
    }
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   if((ficresf=fopen(fileresf,"w"))==NULL) {  {
     printf("Problem with forecast resultfile: %s\n", fileresf);    int i;
   }    int l=1, l1, lmax=20;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    int k;
   
   if (mobilav==1) {    fx=func(x);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k=1; k<=2; k++) {
     movingaverage(agedeb, fage, agemin, mobaverage);      for (i=1;i<=npar;i++) p2[i]=x[i];
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   stepsize=(int) (stepm+YEARM-1)/YEARM;      k1=func(p2)-fx;
   if (stepm<=12) stepsize=1;    
        p2[thetai]=x[thetai]+delti[thetai]/k;
   agelim=AGESUP;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
   hstepm=1;    
   hstepm=hstepm/stepm;      p2[thetai]=x[thetai]-delti[thetai]/k;
   yp1=modf(dateintmean,&yp);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   anprojmean=yp;      k3=func(p2)-fx;
   yp2=modf((yp1*12),&yp);    
   mprojmean=yp;      p2[thetai]=x[thetai]-delti[thetai]/k;
   yp1=modf((yp2*30.5),&yp);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   jprojmean=yp;      k4=func(p2)-fx;
   if(jprojmean==0) jprojmean=1;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if(mprojmean==0) jprojmean=1;  #ifdef DEBUG
        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    #endif
   for(cptcov=1;cptcov<=i2;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    return res;
       k=k+1;  }
       fprintf(ficresf,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {  /************** Inverse of matrix **************/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void ludcmp(double **a, int n, int *indx, double *d) 
       }  { 
       fprintf(ficresf,"******\n");    int i,imax,j,k; 
       fprintf(ficresf,"# StartingAge FinalAge");    double big,dum,sum,temp; 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double *vv; 
         
          vv=vector(1,n); 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    *d=1.0; 
         fprintf(ficresf,"\n");    for (i=1;i<=n;i++) { 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        big=0.0; 
       for (j=1;j<=n;j++) 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){        if ((temp=fabs(a[i][j])) > big) big=temp; 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           nhstepm = nhstepm/hstepm;      vv[i]=1.0/big; 
              } 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j=1;j<=n;j++) { 
           oldm=oldms;savm=savms;      for (i=1;i<j;i++) { 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          sum=a[i][j]; 
                for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           for (h=0; h<=nhstepm; h++){        a[i][j]=sum; 
             if (h==(int) (calagedate+YEARM*cpt)) {      } 
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);      big=0.0; 
             }      for (i=j;i<=n;i++) { 
             for(j=1; j<=nlstate+ndeath;j++) {        sum=a[i][j]; 
               kk1=0.;kk2=0;        for (k=1;k<j;k++) 
               for(i=1; i<=nlstate;i++) {                        sum -= a[i][k]*a[k][j]; 
                 if (mobilav==1)        a[i][j]=sum; 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        if ( (dum=vv[i]*fabs(sum)) >= big) { 
                 else {          big=dum; 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          imax=i; 
                 }        } 
                      } 
               }      if (j != imax) { 
               if (h==(int)(calagedate+12*cpt)){        for (k=1;k<=n;k++) { 
                 fprintf(ficresf," %.3f", kk1);          dum=a[imax][k]; 
                                  a[imax][k]=a[j][k]; 
               }          a[j][k]=dum; 
             }        } 
           }        *d = -(*d); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        vv[imax]=vv[j]; 
         }      } 
       }      indx[j]=imax; 
     }      if (a[j][j] == 0.0) a[j][j]=TINY; 
   }      if (j != n) { 
                dum=1.0/(a[j][j]); 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   fclose(ficresf);    } 
 }    free_vector(vv,1,n);  /* Doesn't work */
 /************** Forecasting ******************/  ;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  } 
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  void lubksb(double **a, int n, int *indx, double b[]) 
   int *popage;  { 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    int i,ii=0,ip,j; 
   double *popeffectif,*popcount;    double sum; 
   double ***p3mat,***tabpop,***tabpopprev;   
   char filerespop[FILENAMELENGTH];    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      sum=b[ip]; 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      b[ip]=b[i]; 
   agelim=AGESUP;      if (ii) 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        else if (sum) ii=i; 
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      b[i]=sum; 
      } 
      for (i=n;i>=1;i--) { 
   strcpy(filerespop,"pop");      sum=b[i]; 
   strcat(filerespop,fileres);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      b[i]=sum/a[i][i]; 
     printf("Problem with forecast resultfile: %s\n", filerespop);    } 
   }  } 
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   void pstamp(FILE *fichier)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   if (mobilav==1) {  }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, agemin, mobaverage);  /************ Frequencies ********************/
   }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    
   if (stepm<=12) stepsize=1;    int i, m, jk, k1,i1, j1, bool, z1,j;
      int first;
   agelim=AGESUP;    double ***freq; /* Frequencies */
      double *pp, **prop;
   hstepm=1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   hstepm=hstepm/stepm;    char fileresp[FILENAMELENGTH];
      
   if (popforecast==1) {    pp=vector(1,nlstate);
     if((ficpop=fopen(popfile,"r"))==NULL) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
       printf("Problem with population file : %s\n",popfile);exit(0);    strcpy(fileresp,"p");
     }    strcat(fileresp,fileres);
     popage=ivector(0,AGESUP);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     popeffectif=vector(0,AGESUP);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     popcount=vector(0,AGESUP);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
          exit(0);
     i=1;      }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
        j1=0;
     imx=i;    
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    j=cptcoveff;
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   for(cptcov=1;cptcov<=i2;cptcov++){    first=1;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
       fprintf(ficrespop,"\n#******");    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
       for(j=1;j<=cptcoveff;j++) {    /*    j1++;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  */
       }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
       fprintf(ficrespop,"******\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       fprintf(ficrespop,"# Age");          scanf("%d", i);*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        for (i=-5; i<=nlstate+ndeath; i++)  
       if (popforecast==1)  fprintf(ficrespop," [Population]");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                  for(m=iagemin; m <= iagemax+3; m++)
       for (cpt=0; cpt<=0;cpt++) {              freq[i][jk][m]=0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          
                for (i=1; i<=nlstate; i++)  
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){          for(m=iagemin; m <= iagemax+3; m++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            prop[i][m]=0;
           nhstepm = nhstepm/hstepm;        
                  dateintsum=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        k2cpt=0;
           oldm=oldms;savm=savms;        for (i=1; i<=imx; i++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            bool=1;
                  if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
           for (h=0; h<=nhstepm; h++){            for (z1=1; z1<=cptcoveff; z1++)       
             if (h==(int) (calagedate+YEARM*cpt)) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
             }                bool=0;
             for(j=1; j<=nlstate+ndeath;j++) {                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
               kk1=0.;kk2=0;                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
               for(i=1; i<=nlstate;i++) {                                j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                 if (mobilav==1)                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              } 
                 else {          }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   
                 }          if (bool==1){
               }            for(m=firstpass; m<=lastpass; m++){
               if (h==(int)(calagedate+12*cpt)){              k2=anint[m][i]+(mint[m][i]/12.);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   /*fprintf(ficrespop," %.3f", kk1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
             }                if (m<lastpass) {
             for(i=1; i<=nlstate;i++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
               kk1=0.;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 for(j=1; j<=nlstate;j++){                }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                
                 }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                  dateintsum=dateintsum+k2;
             }                  k2cpt++;
                 }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)                /*}*/
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            }
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end i */
         }         
       }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
          pstamp(ficresp);
   /******/        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficresp, "**********\n#");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){          fprintf(ficlog, "\n#********** Variable "); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           nhstepm = nhstepm/hstepm;          fprintf(ficlog, "**********\n#");
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=nlstate;i++) 
           oldm=oldms;savm=savms;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficresp, "\n");
           for (h=0; h<=nhstepm; h++){        
             if (h==(int) (calagedate+YEARM*cpt)) {        for(i=iagemin; i <= iagemax+3; i++){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          if(i==iagemax+3){
             }            fprintf(ficlog,"Total");
             for(j=1; j<=nlstate+ndeath;j++) {          }else{
               kk1=0.;kk2=0;            if(first==1){
               for(i=1; i<=nlstate;i++) {                            first=0;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  printf("See log file for details...\n");
               }            }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            fprintf(ficlog,"Age %d", i);
             }          }
           }          for(jk=1; jk <=nlstate ; jk++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         }              pp[jk] += freq[jk][m][i]; 
       }          }
    }          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pos=0; m <=0 ; m++)
                pos += freq[jk][m][i];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(pp[jk]>=1.e-10){
               if(first==1){
   if (popforecast==1) {                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     free_ivector(popage,0,AGESUP);              }
     free_vector(popeffectif,0,AGESUP);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     free_vector(popcount,0,AGESUP);            }else{
   }              if(first==1)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fclose(ficrespop);            }
 }          }
   
 /***********************************************/          for(jk=1; jk <=nlstate ; jk++){
 /**************** Main Program *****************/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 /***********************************************/              pp[jk] += freq[jk][m][i];
           }       
 int main(int argc, char *argv[])          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 {            pos += pp[jk];
             posprop += prop[jk][i];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          }
   double agedeb, agefin,hf;          for(jk=1; jk <=nlstate ; jk++){
   double agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            if(pos>=1.e-5){
               if(first==1)
   double fret;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double **xi,tmp,delta;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
   double dum; /* Dummy variable */              if(first==1)
   double ***p3mat;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int *indx;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   char line[MAXLINE], linepar[MAXLINE];            }
   char title[MAXLINE];            if( i <= iagemax){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];              if(pos>=1.e-5){
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                  /*probs[i][jk][j1]= pp[jk]/pos;*/
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
   char filerest[FILENAMELENGTH];              else
   char fileregp[FILENAMELENGTH];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   char popfile[FILENAMELENGTH];            }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          }
   int firstobs=1, lastobs=10;          
   int sdeb, sfin; /* Status at beginning and end */          for(jk=-1; jk <=nlstate+ndeath; jk++)
   int c,  h , cpt,l;            for(m=-1; m <=nlstate+ndeath; m++)
   int ju,jl, mi;              if(freq[jk][m][i] !=0 ) {
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              if(first==1)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int mobilav=0,popforecast=0;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int hstepm, nhstepm;              }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;          if(i <= iagemax)
             fprintf(ficresp,"\n");
   double bage, fage, age, agelim, agebase;          if(first==1)
   double ftolpl=FTOL;            printf("Others in log...\n");
   double **prlim;          fprintf(ficlog,"\n");
   double *severity;        }
   double ***param; /* Matrix of parameters */        /*}*/
   double  *p;    }
   double **matcov; /* Matrix of covariance */    dateintmean=dateintsum/k2cpt; 
   double ***delti3; /* Scale */   
   double *delti; /* Scale */    fclose(ficresp);
   double ***eij, ***vareij;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   double **varpl; /* Variances of prevalence limits by age */    free_vector(pp,1,nlstate);
   double *epj, vepp;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   double kk1, kk2;    /* End of Freq */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  }
    
   /************ Prevalence ********************/
   char version[80]="Imach version 0.71c, March 2002, INED-EUROREVES ";  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   char *alph[]={"a","a","b","c","d","e"}, str[4];  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   char z[1]="c", occ;       We still use firstpass and lastpass as another selection.
 #include <sys/time.h>    */
 #include <time.h>   
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int i, m, jk, k1, i1, j1, bool, z1,j;
      double ***freq; /* Frequencies */
   /* long total_usecs;    double *pp, **prop;
   struct timeval start_time, end_time;    double pos,posprop; 
      double  y2; /* in fractional years */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int iagemin, iagemax;
     int first; /** to stop verbosity which is redirected to log file */
   
   printf("\n%s",version);    iagemin= (int) agemin;
   if(argc <=1){    iagemax= (int) agemax;
     printf("\nEnter the parameter file name: ");    /*pp=vector(1,nlstate);*/
     scanf("%s",pathtot);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   else{    j1=0;
     strcpy(pathtot,argv[1]);    
   }    /*j=cptcoveff;*/
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /*cygwin_split_path(pathtot,path,optionfile);    
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    first=1;
   /* cutv(path,optionfile,pathtot,'\\');*/    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
       /*for(i1=1; i1<=ncodemax[k1];i1++){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        j1++;*/
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        
   chdir(path);        for (i=1; i<=nlstate; i++)  
   replace(pathc,path);          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
 /*-------- arguments in the command line --------*/       
         for (i=1; i<=imx; i++) { /* Each individual */
   strcpy(fileres,"r");          bool=1;
   strcat(fileres, optionfilefiname);          if  (cptcovn>0) {
   strcat(fileres,".txt");    /* Other files have txt extension */            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   /*---------arguments file --------*/                bool=0;
           } 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          if (bool==1) { 
     printf("Problem with optionfile %s\n",optionfile);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     goto end;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   strcpy(filereso,"o");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   strcat(filereso,fileres);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   if((ficparo=fopen(filereso,"w"))==NULL) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
   /* Reads comments: lines beginning with '#' */                } 
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);            } /* end selection of waves */
     fgets(line, MAXLINE, ficpar);          }
     puts(line);        }
     fputs(line,ficparo);        for(i=iagemin; i <= iagemax+3; i++){  
   }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   ungetc(c,ficpar);            posprop += prop[jk][i]; 
           } 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          for(jk=1; jk <=nlstate ; jk++){     
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);            if( i <=  iagemax){ 
 while((c=getc(ficpar))=='#' && c!= EOF){              if(posprop>=1.e-5){ 
     ungetc(c,ficpar);                probs[i][jk][j1]= prop[jk][i]/posprop;
     fgets(line, MAXLINE, ficpar);              } else{
     puts(line);                if(first==1){
     fputs(line,ficparo);                  first=0;
   }                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   ungetc(c,ficpar);                }
                }
                } 
   covar=matrix(0,NCOVMAX,1,n);          }/* end jk */ 
   cptcovn=0;        }/* end i */ 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      /*} *//* end i1 */
     } /* end j1 */
   ncovmodel=2+cptcovn;    
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      /*free_vector(pp,1,nlstate);*/
   /* Read guess parameters */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   /* Reads comments: lines beginning with '#' */  }  /* End of prevalence */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************* Waves Concatenation ***************/
     fgets(line, MAXLINE, ficpar);  
     puts(line);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     fputs(line,ficparo);  {
   }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   ungetc(c,ficpar);       Death is a valid wave (if date is known).
         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     for(i=1; i <=nlstate; i++)       and mw[mi+1][i]. dh depends on stepm.
     for(j=1; j <=nlstate+ndeath-1; j++){       */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);    int i, mi, m;
       printf("%1d%1d",i,j);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for(k=1; k<=ncovmodel;k++){       double sum=0., jmean=0.;*/
         fscanf(ficpar," %lf",&param[i][j][k]);    int first;
         printf(" %lf",param[i][j][k]);    int j, k=0,jk, ju, jl;
         fprintf(ficparo," %lf",param[i][j][k]);    double sum=0.;
       }    first=0;
       fscanf(ficpar,"\n");    jmin=1e+5;
       printf("\n");    jmax=-1;
       fprintf(ficparo,"\n");    jmean=0.;
     }    for(i=1; i<=imx; i++){
        mi=0;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      m=firstpass;
       while(s[m][i] <= nlstate){
   p=param[1][1];        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
            mw[++mi][i]=m;
   /* Reads comments: lines beginning with '#' */        if(m >=lastpass)
   while((c=getc(ficpar))=='#' && c!= EOF){          break;
     ungetc(c,ficpar);        else
     fgets(line, MAXLINE, ficpar);          m++;
     puts(line);      }/* end while */
     fputs(line,ficparo);      if (s[m][i] > nlstate){
   }        mi++;     /* Death is another wave */
   ungetc(c,ficpar);        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        mw[mi][i]=m;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      }
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){      wav[i]=mi;
       fscanf(ficpar,"%1d%1d",&i1,&j1);      if(mi==0){
       printf("%1d%1d",i,j);        nbwarn++;
       fprintf(ficparo,"%1d%1d",i1,j1);        if(first==0){
       for(k=1; k<=ncovmodel;k++){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         fscanf(ficpar,"%le",&delti3[i][j][k]);          first=1;
         printf(" %le",delti3[i][j][k]);        }
         fprintf(ficparo," %le",delti3[i][j][k]);        if(first==1){
       }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       fscanf(ficpar,"\n");        }
       printf("\n");      } /* end mi==0 */
       fprintf(ficparo,"\n");    } /* End individuals */
     }  
   }    for(i=1; i<=imx; i++){
   delti=delti3[1][1];      for(mi=1; mi<wav[i];mi++){
          if (stepm <=0)
   /* Reads comments: lines beginning with '#' */          dh[mi][i]=1;
   while((c=getc(ficpar))=='#' && c!= EOF){        else{
     ungetc(c,ficpar);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     fgets(line, MAXLINE, ficpar);            if (agedc[i] < 2*AGESUP) {
     puts(line);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     fputs(line,ficparo);              if(j==0) j=1;  /* Survives at least one month after exam */
   }              else if(j<0){
   ungetc(c,ficpar);                nberr++;
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   matcov=matrix(1,npar,1,npar);                j=1; /* Temporary Dangerous patch */
   for(i=1; i <=npar; i++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fscanf(ficpar,"%s",&str);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     printf("%s",str);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fprintf(ficparo,"%s",str);              }
     for(j=1; j <=i; j++){              k=k+1;
       fscanf(ficpar," %le",&matcov[i][j]);              if (j >= jmax){
       printf(" %.5le",matcov[i][j]);                jmax=j;
       fprintf(ficparo," %.5le",matcov[i][j]);                ijmax=i;
     }              }
     fscanf(ficpar,"\n");              if (j <= jmin){
     printf("\n");                jmin=j;
     fprintf(ficparo,"\n");                ijmin=i;
   }              }
   for(i=1; i <=npar; i++)              sum=sum+j;
     for(j=i+1;j<=npar;j++)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       matcov[i][j]=matcov[j][i];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                }
   printf("\n");          }
           else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     /*-------- Rewriting paramater file ----------*/  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            k=k+1;
      strcat(rfileres,".");    /* */            if (j >= jmax) {
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              jmax=j;
     if((ficres =fopen(rfileres,"w"))==NULL) {              ijmax=i;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            }
     }            else if (j <= jmin){
     fprintf(ficres,"#%s\n",version);              jmin=j;
                  ijmin=i;
     /*-------- data file ----------*/            }
     if((fic=fopen(datafile,"r"))==NULL)    {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       printf("Problem with datafile: %s\n", datafile);goto end;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     }            if(j<0){
               nberr++;
     n= lastobs;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     severity = vector(1,maxwav);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     outcome=imatrix(1,maxwav+1,1,n);            }
     num=ivector(1,n);            sum=sum+j;
     moisnais=vector(1,n);          }
     annais=vector(1,n);          jk= j/stepm;
     moisdc=vector(1,n);          jl= j -jk*stepm;
     andc=vector(1,n);          ju= j -(jk+1)*stepm;
     agedc=vector(1,n);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     cod=ivector(1,n);            if(jl==0){
     weight=vector(1,n);              dh[mi][i]=jk;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              bh[mi][i]=0;
     mint=matrix(1,maxwav,1,n);            }else{ /* We want a negative bias in order to only have interpolation ie
     anint=matrix(1,maxwav,1,n);                    * to avoid the price of an extra matrix product in likelihood */
     s=imatrix(1,maxwav+1,1,n);              dh[mi][i]=jk+1;
     adl=imatrix(1,maxwav+1,1,n);                  bh[mi][i]=ju;
     tab=ivector(1,NCOVMAX);            }
     ncodemax=ivector(1,8);          }else{
             if(jl <= -ju){
     i=1;              dh[mi][i]=jk;
     while (fgets(line, MAXLINE, fic) != NULL)    {              bh[mi][i]=jl;       /* bias is positive if real duration
       if ((i >= firstobs) && (i <=lastobs)) {                                   * is higher than the multiple of stepm and negative otherwise.
                                           */
         for (j=maxwav;j>=1;j--){            }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            else{
           strcpy(line,stra);              dh[mi][i]=jk+1;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              bh[mi][i]=ju;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
         }            if(dh[mi][i]==0){
                      dh[mi][i]=1; /* At least one step */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              bh[mi][i]=ju; /* At least one step */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          } /* end if mle */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        }
       } /* end wave */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    }
         for (j=ncov;j>=1;j--){    jmean=sum/k;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         num[i]=atol(stra);   }
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  /*********** Tricode ****************************/
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
         i=i+1;    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       }    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     }    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
     /* printf("ii=%d", ij);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
        scanf("%d",i);*/    /* nbcode[Tvar[j]][1]= 
   imx=i-1; /* Number of individuals */    */
   
   /* for (i=1; i<=imx; i++){    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    int modmaxcovj=0; /* Modality max of covariates j */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int cptcode=0; /* Modality max of covariates j */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    int modmincovj=0; /* Modality min of covariates j */
     }  
   
     for (i=1; i<=imx; i++)    cptcoveff=0; 
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/   
     for (k=-1; k < maxncov; k++) Ndum[k]=0;
   /* Calculation of the number of parameter from char model*/    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);    /* Loop on covariates without age and products */
   Tvaraff=ivector(1,15);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
   Tvard=imatrix(1,15,1,2);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
   Tage=ivector(1,15);                                       modality of this covariate Vj*/ 
            ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   if (strlen(model) >1){                                      * If product of Vn*Vm, still boolean *:
     j=0, j1=0, k1=1, k2=1;                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
     j=nbocc(model,'+');                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     j1=nbocc(model,'*');        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     cptcovn=j+1;                                        modality of the nth covariate of individual i. */
     cptcovprod=j1;        if (ij > modmaxcovj)
              modmaxcovj=ij; 
            else if (ij < modmincovj) 
     strcpy(modelsav,model);          modmincovj=ij; 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        if ((ij < -1) && (ij > NCOVMAX)){
       printf("Error. Non available option model=%s ",model);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
       goto end;          exit(1);
     }        }else
            Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     for(i=(j+1); i>=1;i--){        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
       cutv(stra,strb,modelsav,'+');        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        /* getting the maximum value of the modality of the covariate
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
       /*scanf("%d",i);*/           female is 1, then modmaxcovj=1.*/
       if (strchr(strb,'*')) {      }
         cutv(strd,strc,strb,'*');      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
         if (strcmp(strc,"age")==0) {      cptcode=modmaxcovj;
           cptcovprod--;      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
           cutv(strb,stre,strd,'V');     /*for (i=0; i<=cptcode; i++) {*/
           Tvar[i]=atoi(stre);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
           cptcovage++;        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
             Tage[cptcovage]=i;        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
             /*printf("stre=%s ", stre);*/          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         }        }
         else if (strcmp(strd,"age")==0) {        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
           cptcovprod--;           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           cutv(strb,stre,strc,'V');      } /* Ndum[-1] number of undefined modalities */
           Tvar[i]=atoi(stre);  
           cptcovage++;      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
           Tage[cptcovage]=i;      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
         }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
         else {         modmincovj=3; modmaxcovj = 7;
           cutv(strb,stre,strc,'V');         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
           Tvar[i]=ncov+k1;         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
           cutv(strb,strc,strd,'V');         variables V1_1 and V1_2.
           Tprod[k1]=i;         nbcode[Tvar[j]][ij]=k;
           Tvard[k1][1]=atoi(strc);         nbcode[Tvar[j]][1]=0;
           Tvard[k1][2]=atoi(stre);         nbcode[Tvar[j]][2]=1;
           Tvar[cptcovn+k2]=Tvard[k1][1];         nbcode[Tvar[j]][3]=2;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      */
           for (k=1; k<=lastobs;k++)      ij=1; /* ij is similar to i but can jumps over null modalities */
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
           k1++;        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           k2=k2+2;          /*recode from 0 */
         }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
       }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
       else {                                       k is a modality. If we have model=V1+V1*sex 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
        /*  scanf("%d",i);*/            ij++;
       cutv(strd,strc,strb,'V');          }
       Tvar[i]=atoi(strc);          if (ij > ncodemax[j]) break; 
       }        }  /* end of loop on */
       strcpy(modelsav,stra);        } /* end of loop on modality */ 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
         scanf("%d",i);*/    
     }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 }    
      for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   printf("cptcovprod=%d ", cptcovprod);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   scanf("%d ",i);*/     Ndum[ij]++; 
     fclose(fic);   } 
   
     /*  if(mle==1){*/   ij=1;
     if (weightopt != 1) { /* Maximisation without weights*/   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       for(i=1;i<=n;i++) weight[i]=1.0;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
     }     if((Ndum[i]!=0) && (i<=ncovcol)){
     /*-calculation of age at interview from date of interview and age at death -*/       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     agev=matrix(1,maxwav,1,imx);       Tvaraff[ij]=i; /*For printing (unclear) */
        ij++;
    for (i=1; i<=imx; i++)     }else
      for(m=2; (m<= maxwav); m++)         Tvaraff[ij]=0;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){   }
          anint[m][i]=9999;   ij--;
          s[m][i]=-1;   cptcoveff=ij; /*Number of total covariates*/
        }  
      }
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){  /*********** Health Expectancies ****************/
         if(s[m][i] >0){  
           if (s[m][i] == nlstate+1) {  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)  {
               agev[m][i]=agedc[i];    /* Health expectancies, no variances */
             else {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
               if (andc[i]!=9999){    int nhstepma, nstepma; /* Decreasing with age */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double age, agelim, hf;
               agev[m][i]=-1;    double ***p3mat;
               }    double eip;
             }  
           }    pstamp(ficreseij);
           else if(s[m][i] !=9){ /* Should no more exist */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficreseij,"# Age");
             if(mint[m][i]==99 || anint[m][i]==9999)    for(i=1; i<=nlstate;i++){
               agev[m][i]=1;      for(j=1; j<=nlstate;j++){
             else if(agev[m][i] <agemin){        fprintf(ficreseij," e%1d%1d ",i,j);
               agemin=agev[m][i];      }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      fprintf(ficreseij," e%1d. ",i);
             }    }
             else if(agev[m][i] >agemax){    fprintf(ficreseij,"\n");
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    
             }    if(estepm < stepm){
             /*agev[m][i]=anint[m][i]-annais[i];*/      printf ("Problem %d lower than %d\n",estepm, stepm);
             /*   agev[m][i] = age[i]+2*m;*/    }
           }    else  hstepm=estepm;   
           else { /* =9 */    /* We compute the life expectancy from trapezoids spaced every estepm months
             agev[m][i]=1;     * This is mainly to measure the difference between two models: for example
             s[m][i]=-1;     * if stepm=24 months pijx are given only every 2 years and by summing them
           }     * we are calculating an estimate of the Life Expectancy assuming a linear 
         }     * progression in between and thus overestimating or underestimating according
         else /*= 0 Unknown */     * to the curvature of the survival function. If, for the same date, we 
           agev[m][i]=1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear 
         * hypothesis. A more precise result, taking into account a more precise
     }     * curvature will be obtained if estepm is as small as stepm. */
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){    /* For example we decided to compute the life expectancy with the smallest unit */
         if (s[m][i] > (nlstate+ndeath)) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           printf("Error: Wrong value in nlstate or ndeath\n");         nhstepm is the number of hstepm from age to agelim 
           goto end;       nstepm is the number of stepm from age to agelin. 
         }       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     free_vector(severity,1,maxwav);       results. So we changed our mind and took the option of the best precision.
     free_imatrix(outcome,1,maxwav+1,1,n);    */
     free_vector(moisnais,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);    agelim=AGESUP;
        free_matrix(anint,1,maxwav,1,n);*/    /* If stepm=6 months */
     free_vector(moisdc,1,n);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     free_vector(andc,1,n);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
      /* nhstepm age range expressed in number of stepm */
     wav=ivector(1,imx);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     /* Concatenates waves */    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       Tcode=ivector(1,100);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      /* if (stepm >= YEARM) hstepm=1;*/
       ncodemax[1]=1;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
            /* If stepm=6 months */
    codtab=imatrix(1,100,1,10);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
    h=0;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
    m=pow(2,cptcoveff);      
        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
    for(k=1;k<=cptcoveff; k++){      
      for(i=1; i <=(m/pow(2,k));i++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(j=1; j <= ncodemax[k]; j++){      
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      printf("%d|",(int)age);fflush(stdout);
            h++;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
            if (h>m) h=1;codtab[h][k]=j;      
          }      /* Computing expectancies */
        }      for(i=1; i<=nlstate;i++)
      }        for(j=1; j<=nlstate;j++)
    }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
    /*for(i=1; i <=m ;i++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      for(k=1; k <=cptcovn; k++){  
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);          }
      }  
      printf("\n");      fprintf(ficreseij,"%3.0f",age );
    }      for(i=1; i<=nlstate;i++){
    scanf("%d",i);*/        eip=0;
            for(j=1; j<=nlstate;j++){
    /* Calculates basic frequencies. Computes observed prevalence at single age          eip +=eij[i][j][(int)age];
        and prints on file fileres'p'. */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
            fprintf(ficreseij,"%9.4f", eip );
          }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficreseij,"\n");
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    printf("\n");
          fprintf(ficlog,"\n");
     /* For Powell, parameters are in a vector p[] starting at p[1]    
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  {
     }    /* Covariances of health expectancies eij and of total life expectancies according
         to initial status i, ei. .
     /*--------- results files --------------*/    */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, weightopt,model);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
    jk=1;    double ***p3matp, ***p3matm, ***varhe;
    fprintf(ficres,"# Parameters\n");    double **dnewm,**doldm;
    printf("# Parameters\n");    double *xp, *xm;
    for(i=1,jk=1; i <=nlstate; i++){    double **gp, **gm;
      for(k=1; k <=(nlstate+ndeath); k++){    double ***gradg, ***trgradg;
        if (k != i)    int theta;
          {  
            printf("%d%d ",i,k);    double eip, vip;
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
              printf("%f ",p[jk]);    xp=vector(1,npar);
              fprintf(ficres,"%f ",p[jk]);    xm=vector(1,npar);
              jk++;    dnewm=matrix(1,nlstate*nlstate,1,npar);
            }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
            printf("\n");    
            fprintf(ficres,"\n");    pstamp(ficresstdeij);
          }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
      }    fprintf(ficresstdeij,"# Age");
    }    for(i=1; i<=nlstate;i++){
  if(mle==1){      for(j=1; j<=nlstate;j++)
     /* Computing hessian and covariance matrix */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     ftolhess=ftol; /* Usually correct */      fprintf(ficresstdeij," e%1d. ",i);
     hesscov(matcov, p, npar, delti, ftolhess, func);    }
  }    fprintf(ficresstdeij,"\n");
     fprintf(ficres,"# Scales\n");  
     printf("# Scales\n");    pstamp(ficrescveij);
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficrescveij,"# Age");
         if (j!=i) {    for(i=1; i<=nlstate;i++)
           fprintf(ficres,"%1d%1d",i,j);      for(j=1; j<=nlstate;j++){
           printf("%1d%1d",i,j);        cptj= (j-1)*nlstate+i;
           for(k=1; k<=ncovmodel;k++){        for(i2=1; i2<=nlstate;i2++)
             printf(" %.5e",delti[jk]);          for(j2=1; j2<=nlstate;j2++){
             fprintf(ficres," %.5e",delti[jk]);            cptj2= (j2-1)*nlstate+i2;
             jk++;            if(cptj2 <= cptj)
           }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           printf("\n");          }
           fprintf(ficres,"\n");      }
         }    fprintf(ficrescveij,"\n");
       }    
      }    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     k=1;    }
     fprintf(ficres,"# Covariance\n");    else  hstepm=estepm;   
     printf("# Covariance\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
     for(i=1;i<=npar;i++){     * This is mainly to measure the difference between two models: for example
       /*  if (k>nlstate) k=1;     * if stepm=24 months pijx are given only every 2 years and by summing them
       i1=(i-1)/(ncovmodel*nlstate)+1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);     * progression in between and thus overestimating or underestimating according
       printf("%s%d%d",alph[k],i1,tab[i]);*/     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficres,"%3d",i);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       printf("%3d",i);     * to compare the new estimate of Life expectancy with the same linear 
       for(j=1; j<=i;j++){     * hypothesis. A more precise result, taking into account a more precise
         fprintf(ficres," %.5e",matcov[i][j]);     * curvature will be obtained if estepm is as small as stepm. */
         printf(" %.5e",matcov[i][j]);  
       }    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficres,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       printf("\n");       nhstepm is the number of hstepm from age to agelim 
       k++;       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
           and note for a fixed period like estepm months */
     while((c=getc(ficpar))=='#' && c!= EOF){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       ungetc(c,ficpar);       survival function given by stepm (the optimization length). Unfortunately it
       fgets(line, MAXLINE, ficpar);       means that if the survival funtion is printed only each two years of age and if
       puts(line);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fputs(line,ficparo);       results. So we changed our mind and took the option of the best precision.
     }    */
     ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemaxpar, &bage, &fage);    /* If stepm=6 months */
        /* nhstepm age range expressed in number of stepm */
     if (fage <= 2) {    agelim=AGESUP;
       bage = agemin;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       fage = agemaxpar;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }    /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     while((c=getc(ficpar))=='#' && c!= EOF){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     ungetc(c,ficpar);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     puts(line);  
     fputs(line,ficparo);    for (age=bage; age<=fage; age ++){ 
   }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   ungetc(c,ficpar);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /* If stepm=6 months */
            /* Computed by stepm unit matrices, product of hstepma matrices, stored
   while((c=getc(ficpar))=='#' && c!= EOF){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     puts(line);  
     fputs(line,ficparo);      /* Computing  Variances of health expectancies */
   }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   ungetc(c,ficpar);         decrease memory allocation */
        for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
   fscanf(ficpar,"pop_based=%d\n",&popbased);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   fprintf(ficparo,"pop_based=%d\n",popbased);          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   fprintf(ficres,"pop_based=%d\n",popbased);      
          for(j=1; j<= nlstate; j++){
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1; i<=nlstate; i++){
     ungetc(c,ficpar);            for(h=0; h<=nhstepm-1; h++){
     fgets(line, MAXLINE, ficpar);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     puts(line);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     fputs(line,ficparo);            }
   }          }
   ungetc(c,ficpar);        }
        
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        for(ij=1; ij<= nlstate*nlstate; ij++)
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          for(h=0; h<=nhstepm-1; h++){
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
 while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      for(h=0; h<=nhstepm-1; h++)
     puts(line);        for(j=1; j<=nlstate*nlstate;j++)
     fputs(line,ficparo);          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   ungetc(c,ficpar);      
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);       for(ij=1;ij<=nlstate*nlstate;ij++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for(ji=1;ji<=nlstate*nlstate;ji++)
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          varhe[ij][ji][(int)age] =0.;
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /*------------ gnuplot -------------*/       for(h=0;h<=nhstepm-1;h++){
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemaxpar,fage, pathc,p);        for(k=0;k<=nhstepm-1;k++){
            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 /*------------ free_vector  -------------*/          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
  chdir(path);          for(ij=1;ij<=nlstate*nlstate;ij++)
              for(ji=1;ji<=nlstate*nlstate;ji++)
  free_ivector(wav,1,imx);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        }
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);      /* Computing expectancies */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
  fclose(ficparo);      for(i=1; i<=nlstate;i++)
  fclose(ficres);        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 /*--------- index.htm --------*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
            }
   /*--------------- Prevalence limit --------------*/  
        fprintf(ficresstdeij,"%3.0f",age );
   strcpy(filerespl,"pl");      for(i=1; i<=nlstate;i++){
   strcat(filerespl,fileres);        eip=0.;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        vip=0.;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for(j=1; j<=nlstate;j++){
   }          eip += eij[i][j][(int)age];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   fprintf(ficrespl,"#Prevalence limit\n");            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   fprintf(ficrespl,"#Age ");          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }
   fprintf(ficrespl,"\n");        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        }
   prlim=matrix(1,nlstate,1,nlstate);      fprintf(ficresstdeij,"\n");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficrescveij,"%3.0f",age );
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1; i<=nlstate;i++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate;j++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          cptj= (j-1)*nlstate+i;
   k=0;          for(i2=1; i2<=nlstate;i2++)
   agebase=agemin;            for(j2=1; j2<=nlstate;j2++){
   agelim=agemaxpar;              cptj2= (j2-1)*nlstate+i2;
   ftolpl=1.e-10;              if(cptj2 <= cptj)
   i1=cptcoveff;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   if (cptcovn < 1){i1=1;}            }
         }
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficrescveij,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
         k=k+1;    }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficrespl,"\n#******");    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         for(j=1;j<=cptcoveff;j++)    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(ficrespl,"******\n");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (age=agebase; age<=agelim; age++){    printf("\n");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficlog,"\n");
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)    free_vector(xm,1,npar);
           fprintf(ficrespl," %.5f", prlim[i][i]);    free_vector(xp,1,npar);
           fprintf(ficrespl,"\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     }  }
   fclose(ficrespl);  
   /************ Variance ******************/
   /*------------- h Pij x at various ages ------------*/  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    /* Variance of health expectancies */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /* double **newm;*/
   }    double **dnewm,**doldm;
   printf("Computing pij: result on file '%s' \n", filerespij);    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int k, cptcode;
   /*if (stepm<=24) stepsize=2;*/    double *xp;
     double **gp, **gm;  /* for var eij */
   agelim=AGESUP;    double ***gradg, ***trgradg; /*for var eij */
   hstepm=stepsize*YEARM; /* Every year of age */    double **gradgp, **trgradgp; /* for var p point j */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   k=0;    double ***p3mat;
   for(cptcov=1;cptcov<=i1;cptcov++){    double age,agelim, hf;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***mobaverage;
       k=k+1;    int theta;
         fprintf(ficrespij,"\n#****** ");    char digit[4];
         for(j=1;j<=cptcoveff;j++)    char digitp[25];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    char fileresprobmorprev[FILENAMELENGTH];
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    if(popbased==1){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if(mobilav!=0)
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        strcpy(digitp,"-populbased-mobilav-");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      else strcpy(digitp,"-populbased-nomobil-");
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      else 
           fprintf(ficrespij,"# Age");      strcpy(digitp,"-stablbased-");
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)    if (mobilav!=0) {
               fprintf(ficrespij," %1d-%1d",i,j);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespij,"\n");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           for (h=0; h<=nhstepm; h++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             for(i=1; i<=nlstate;i++)      }
               for(j=1; j<=nlstate+ndeath;j++)    }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");    strcpy(fileresprobmorprev,"prmorprev"); 
           }    sprintf(digit,"%-d",ij);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           fprintf(ficrespij,"\n");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
         }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     }    strcat(fileresprobmorprev,fileres);
   }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   fclose(ficrespij);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /*---------- Forecasting ------------------*/    pstamp(ficresprobmorprev);
   if((stepm == 1) && (strcmp(model,".")==0)){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     free_matrix(mint,1,maxwav,1,n);      fprintf(ficresprobmorprev," p.%-d SE",j);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      for(i=1; i<=nlstate;i++)
     free_vector(weight,1,n);}        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   else{    }  
     erreur=108;    fprintf(ficresprobmorprev,"\n");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    fprintf(ficgp,"\n# Routine varevsij");
   }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*---------- Health expectancies and variances ------------*/  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(filerest,"t");    pstamp(ficresvij);
   strcat(filerest,fileres);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   if((ficrest=fopen(filerest,"w"))==NULL) {    if(popbased==1)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   }    else
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   strcpy(filerese,"e");      for(j=1; j<=nlstate;j++)
   strcat(filerese,fileres);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fprintf(ficresvij,"\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    xp=vector(1,npar);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
  strcpy(fileresv,"v");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   strcat(fileresv,fileres);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   }    gpp=vector(nlstate+1,nlstate+ndeath);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   k=0;    
   for(cptcov=1;cptcov<=i1;cptcov++){    if(estepm < stepm){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       k=k+1;    }
       fprintf(ficrest,"\n#****** ");    else  hstepm=estepm;   
       for(j=1;j<=cptcoveff;j++)    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficrest,"******\n");       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
       fprintf(ficreseij,"\n#****** ");       Look at function hpijx to understand why (it is linked to memory size questions) */
       for(j=1;j<=cptcoveff;j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficreseij,"******\n");       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficresvij,"\n#****** ");       results. So we changed our mind and took the option of the best precision.
       for(j=1;j<=cptcoveff;j++)    */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficresvij,"******\n");    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       oldm=oldms;savm=savms;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       oldm=oldms;savm=savms;      gp=matrix(0,nhstepm,1,nlstate);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      gm=matrix(0,nhstepm,1,nlstate);
      
   
        for(theta=1; theta <=npar; theta++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficrest,"\n");        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       hf=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       if (stepm >= YEARM) hf=stepm/YEARM;  
       epj=vector(1,nlstate+1);        if (popbased==1) {
       for(age=bage; age <=fage ;age++){          if(mobilav ==0){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for(i=1; i<=nlstate;i++)
         if (popbased==1) {              prlim[i][i]=probs[(int)age][i][ij];
           for(i=1; i<=nlstate;i++)          }else{ /* mobilav */ 
             prlim[i][i]=probs[(int)age][i][k];            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=mobaverage[(int)age][i][ij];
                  }
         fprintf(ficrest," %.0f",age);        }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        for(j=1; j<= nlstate; j++){
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];          for(h=0; h<=nhstepm; h++){
           }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           epj[nlstate+1] +=epj[j];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
         for(i=1, vepp=0.;i <=nlstate;i++)        }
           for(j=1;j <=nlstate;j++)        /* This for computing probability of death (h=1 means
             vepp += vareij[i][j][(int)age];           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));           as a weighted average of prlim.
         for(j=1;j <=nlstate;j++){        */
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         fprintf(ficrest,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
     }        /* end probability of death */
   }  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   fclose(ficreseij);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fclose(ficresvij);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fclose(ficrest);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fclose(ficpar);   
   free_vector(epj,1,nlstate+1);        if (popbased==1) {
            if(mobilav ==0){
   /*------- Variance limit prevalence------*/              for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   strcpy(fileresvpl,"vpl");          }else{ /* mobilav */ 
   strcat(fileresvpl,fileres);            for(i=1; i<=nlstate;i++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              prlim[i][i]=mobaverage[(int)age][i][ij];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          }
     exit(0);        }
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
   k=0;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
       k=k+1;        }
       fprintf(ficresvpl,"\n#****** ");        /* This for computing probability of death (h=1 means
       for(j=1;j<=cptcoveff;j++)           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           as a weighted average of prlim.
       fprintf(ficresvpl,"******\n");        */
              for(j=nlstate+1;j<=nlstate+ndeath;j++){
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       oldm=oldms;savm=savms;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        }    
     }        /* end probability of death */
  }  
         for(j=1; j<= nlstate; j++) /* vareij */
   fclose(ficresvpl);          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /*---------- End : free ----------------*/          }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
    
        } /* End theta */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
   free_matrix(matcov,1,npar,1,npar);          for(theta=1; theta <=npar; theta++)
   free_vector(delti,1,npar);            trgradg[h][j][theta]=gradg[h][theta][j];
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   if(erreur >0)          trgradgp[j][theta]=gradgp[theta][j];
     printf("End of Imach with error %d\n",erreur);    
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for(j=1;j<=nlstate;j++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/          vareij[i][j][(int)age] =0.;
   /*------ End -----------*/  
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
  end:          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 #ifdef windows          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   /* chdir(pathcd);*/          for(i=1;i<=nlstate;i++)
 #endif            for(j=1;j<=nlstate;j++)
  /*system("wgnuplot graph.plt");*/              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
  /*system("../gp37mgw/wgnuplot graph.plt");*/        }
  /*system("cd ../gp37mgw");*/      }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    
  strcpy(plotcmd,GNUPLOTPROGRAM);      /* pptj */
  strcat(plotcmd," ");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
  strcat(plotcmd,optionfilegnuplot);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
  system(plotcmd);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
 #ifdef windows          varppt[j][i]=doldmp[j][i];
   while (z[0] != 'q') {      /* end ppptj */
     chdir(path);      /*  x centered again */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     scanf("%s",z);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     if (z[0] == 'c') system("./imach");   
     else if (z[0] == 'e') {      if (popbased==1) {
       chdir(path);        if(mobilav ==0){
       system(optionfilehtm);          for(i=1; i<=nlstate;i++)
     }            prlim[i][i]=probs[(int)age][i][ij];
     else if (z[0] == 'q') exit(0);        }else{ /* mobilav */ 
   }          for(i=1; i<=nlstate;i++)
 #endif            prlim[i][i]=mobaverage[(int)age][i][ij];
 }        }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         l=(nlstate+ndeath)*(cpt-1)+1;
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l,k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
       printf("\n Trying on same directory\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef OSX
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.32  
changed lines
  Added in v.1.153


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>