Diff for /imach/src/imach.c between versions 1.32 and 1.85

version 1.32, 2002/03/11 14:17:15 version 1.85, 2003/06/17 13:12:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.85  2003/06/17 13:12:43  brouard
      * imach.c (Repository): Check when date of death was earlier that
   This program computes Healthy Life Expectancies from    current date of interview. It may happen when the death was just
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    prior to the death. In this case, dh was negative and likelihood
   first survey ("cross") where individuals from different ages are    was wrong (infinity). We still send an "Error" but patch by
   interviewed on their health status or degree of disability (in the    assuming that the date of death was just one stepm after the
   case of a health survey which is our main interest) -2- at least a    interview.
   second wave of interviews ("longitudinal") which measure each change    (Repository): Because some people have very long ID (first column)
   (if any) in individual health status.  Health expectancies are    we changed int to long in num[] and we added a new lvector for
   computed from the time spent in each health state according to a    memory allocation. But we also truncated to 8 characters (left
   model. More health states you consider, more time is necessary to reach the    truncation)
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): No more line truncation errors.
   simplest model is the multinomial logistic model where pij is the  
   probabibility to be observed in state j at the second wave    Revision 1.84  2003/06/13 21:44:43  brouard
   conditional to be observed in state i at the first wave. Therefore    * imach.c (Repository): Replace "freqsummary" at a correct
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    place. It differs from routine "prevalence" which may be called
   'age' is age and 'sex' is a covariate. If you want to have a more    many times. Probs is memory consuming and must be used with
   complex model than "constant and age", you should modify the program    parcimony.
   where the markup *Covariates have to be included here again* invites    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.82  2003/06/05 15:57:20  brouard
   identical for each individual. Also, if a individual missed an    Add log in  imach.c and  fullversion number is now printed.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.    */
   /*
   hPijx is the probability to be observed in state i at age x+h     Interpolated Markov Chain
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Short summary of the programme:
   states. This elementary transition (by month or quarter trimester,    
   semester or year) is model as a multinomial logistic.  The hPx    This program computes Healthy Life Expectancies from
   matrix is simply the matrix product of nh*stepm elementary matrices    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   and the contribution of each individual to the likelihood is simply    first survey ("cross") where individuals from different ages are
   hPijx.    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
   Also this programme outputs the covariance matrix of the parameters but also    second wave of interviews ("longitudinal") which measure each change
   of the life expectancies. It also computes the prevalence limits.    (if any) in individual health status.  Health expectancies are
      computed from the time spent in each health state according to a
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    model. More health states you consider, more time is necessary to reach the
            Institut national d'études démographiques, Paris.    Maximum Likelihood of the parameters involved in the model.  The
   This software have been partly granted by Euro-REVES, a concerted action    simplest model is the multinomial logistic model where pij is the
   from the European Union.    probability to be observed in state j at the second wave
   It is copyrighted identically to a GNU software product, ie programme and    conditional to be observed in state i at the first wave. Therefore
   software can be distributed freely for non commercial use. Latest version    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   can be accessed at http://euroreves.ined.fr/imach .    'age' is age and 'sex' is a covariate. If you want to have a more
   **********************************************************************/    complex model than "constant and age", you should modify the program
      where the markup *Covariates have to be included here again* invites
 #include <math.h>    you to do it.  More covariates you add, slower the
 #include <stdio.h>    convergence.
 #include <stdlib.h>  
 #include <unistd.h>    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define MAXLINE 256    identical for each individual. Also, if a individual missed an
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    intermediate interview, the information is lost, but taken into
 #define FILENAMELENGTH 80    account using an interpolation or extrapolation.  
 /*#define DEBUG*/  
 #define windows    hPijx is the probability to be observed in state i at age x+h
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    conditional to the observed state i at age x. The delay 'h' can be
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    semester or year) is modelled as a multinomial logistic.  The hPx
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 #define NINTERVMAX 8    hPijx.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Also this programme outputs the covariance matrix of the parameters but also
 #define NCOVMAX 8 /* Maximum number of covariates */    of the life expectancies. It also computes the stable prevalence. 
 #define MAXN 20000    
 #define YEARM 12. /* Number of months per year */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define AGESUP 130             Institut national d'études démographiques, Paris.
 #define AGEBASE 40    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 int erreur; /* Error number */    software can be distributed freely for non commercial use. Latest version
 int nvar;    can be accessed at http://euroreves.ined.fr/imach .
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int nlstate=2; /* Number of live states */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int ndeath=1; /* Number of dead states */    
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    **********************************************************************/
 int popbased=0;  /*
     main
 int *wav; /* Number of waves for this individuual 0 is possible */    read parameterfile
 int maxwav; /* Maxim number of waves */    read datafile
 int jmin, jmax; /* min, max spacing between 2 waves */    concatwav
 int mle, weightopt;    freqsummary
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    if (mle >= 1)
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */      mlikeli
 double jmean; /* Mean space between 2 waves */    print results files
 double **oldm, **newm, **savm; /* Working pointers to matrices */    if mle==1 
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */       computes hessian
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    read end of parameter file: agemin, agemax, bage, fage, estepm
 FILE *ficgp,*ficresprob,*ficpop;        begin-prev-date,...
 FILE *ficreseij;    open gnuplot file
   char filerese[FILENAMELENGTH];    open html file
  FILE  *ficresvij;    stable prevalence
   char fileresv[FILENAMELENGTH];     for age prevalim()
  FILE  *ficresvpl;    h Pij x
   char fileresvpl[FILENAMELENGTH];    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 #define NR_END 1    health expectancies
 #define FREE_ARG char*    Variance-covariance of DFLE
 #define FTOL 1.0e-10    prevalence()
      movingaverage()
 #define NRANSI    varevsij() 
 #define ITMAX 200    if popbased==1 varevsij(,popbased)
     total life expectancies
 #define TOL 2.0e-4    Variance of stable prevalence
    end
 #define CGOLD 0.3819660  */
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
   
 #define GOLD 1.618034   
 #define GLIMIT 100.0  #include <math.h>
 #define TINY 1.0e-20  #include <stdio.h>
   #include <stdlib.h>
 static double maxarg1,maxarg2;  #include <unistd.h>
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define MAXLINE 256
    #define GNUPLOTPROGRAM "gnuplot"
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define rint(a) floor(a+0.5)  #define FILENAMELENGTH 132
   /*#define DEBUG*/
 static double sqrarg;  /*#define windows*/
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 int imx;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int stepm;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /* Stepm, step in month: minimum step interpolation*/  
   #define NINTERVMAX 8
 int m,nb;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define NCOVMAX 8 /* Maximum number of covariates */
 double **pmmij, ***probs, ***mobaverage;  #define MAXN 20000
 double dateintmean=0;  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 double *weight;  #define AGEBASE 40
 int **s; /* Status */  #ifdef unix
 double *agedc, **covar, idx;  #define DIRSEPARATOR '/'
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define ODIRSEPARATOR '\\'
   #else
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define DIRSEPARATOR '\\'
 double ftolhess; /* Tolerance for computing hessian */  #define ODIRSEPARATOR '/'
   #endif
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  /* $Id$ */
 {  /* $State$ */
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
    l1 = strlen( path );                 /* length of path */  int erreur; /* Error number */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int nvar;
 #ifdef windows  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    s = strrchr( path, '\\' );           /* find last / */  int npar=NPARMAX;
 #else  int nlstate=2; /* Number of live states */
    s = strrchr( path, '/' );            /* find last / */  int ndeath=1; /* Number of dead states */
 #endif  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    if ( s == NULL ) {                   /* no directory, so use current */  int popbased=0;
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
       if ( getwd( dirc ) == NULL ) {  int jmin, jmax; /* min, max spacing between 2 waves */
 #else  int mle, weightopt;
       extern char       *getcwd( );  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #endif             * wave mi and wave mi+1 is not an exact multiple of stepm. */
          return( GLOCK_ERROR_GETCWD );  double jmean; /* Mean space between 2 waves */
       }  double **oldm, **newm, **savm; /* Working pointers to matrices */
       strcpy( name, path );             /* we've got it */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    } else {                             /* strip direcotry from path */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       s++;                              /* after this, the filename */  FILE *ficlog, *ficrespow;
       l2 = strlen( s );                 /* length of filename */  int globpr; /* Global variable for printing or not */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  double fretone; /* Only one call to likelihood */
       strcpy( name, s );                /* save file name */  long ipmx; /* Number of contributions */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  double sw; /* Sum of weights */
       dirc[l1-l2] = 0;                  /* add zero */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    }  FILE *ficresilk;
    l1 = strlen( dirc );                 /* length of directory */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #ifdef windows  FILE *ficresprobmorprev;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  FILE *fichtm; /* Html File */
 #else  FILE *ficreseij;
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  char filerese[FILENAMELENGTH];
 #endif  FILE  *ficresvij;
    s = strrchr( name, '.' );            /* find last / */  char fileresv[FILENAMELENGTH];
    s++;  FILE  *ficresvpl;
    strcpy(ext,s);                       /* save extension */  char fileresvpl[FILENAMELENGTH];
    l1= strlen( name);  char title[MAXLINE];
    l2= strlen( s)+1;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    strncpy( finame, name, l1-l2);  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /******************************************/  char popfile[FILENAMELENGTH];
   
 void replace(char *s, char*t)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 {  
   int i;  #define NR_END 1
   int lg=20;  #define FREE_ARG char*
   i=0;  #define FTOL 1.0e-10
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  #define NRANSI 
     (s[i] = t[i]);  #define ITMAX 200 
     if (t[i]== '\\') s[i]='/';  
   }  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 int nbocc(char *s, char occ)  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   int i,j=0;  
   int lg=20;  #define GOLD 1.618034 
   i=0;  #define GLIMIT 100.0 
   lg=strlen(s);  #define TINY 1.0e-20 
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  static double maxarg1,maxarg2;
   }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   return j;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void cutv(char *u,char *v, char*t, char occ)  #define rint(a) floor(a+0.5)
 {  
   int i,lg,j,p=0;  static double sqrarg;
   i=0;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   for(j=0; j<=strlen(t)-1; j++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  int imx; 
   int stepm;
   lg=strlen(t);  /* Stepm, step in month: minimum step interpolation*/
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  int estepm;
   }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
      u[p]='\0';  
   int m,nb;
    for(j=0; j<= lg; j++) {  long *num;
     if (j>=(p+1))(v[j-p-1] = t[j]);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double dateintmean=0;
 /********************** nrerror ********************/  
   double *weight;
 void nrerror(char error_text[])  int **s; /* Status */
 {  double *agedc, **covar, idx;
   fprintf(stderr,"ERREUR ...\n");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double *v;  {
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    char  *ss;                            /* pointer */
   if (!v) nrerror("allocation failure in vector");    int   l1, l2;                         /* length counters */
   return v-nl+NR_END;  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /************************ free vector ******************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 void free_vector(double*v, int nl, int nh)    if ( ss == NULL ) {                   /* no directory, so use current */
 {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   free((FREE_ARG)(v+nl-NR_END));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /************************ivector *******************************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 int *ivector(long nl,long nh)        return( GLOCK_ERROR_GETCWD );
 {      }
   int *v;      strcpy( name, path );               /* we've got it */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    } else {                              /* strip direcotry from path */
   if (!v) nrerror("allocation failure in ivector");      ss++;                               /* after this, the filename */
   return v-nl+NR_END;      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /******************free ivector **************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 void free_ivector(int *v, long nl, long nh)      dirc[l1-l2] = 0;                    /* add zero */
 {    }
   free((FREE_ARG)(v+nl-NR_END));    l1 = strlen( dirc );                  /* length of directory */
 }    /*#ifdef windows
     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 /******************* imatrix *******************************/  #else
 int **imatrix(long nrl, long nrh, long ncl, long nch)    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #endif
 {    */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    ss = strrchr( name, '.' );            /* find last / */
   int **m;    ss++;
      strcpy(ext,ss);                       /* save extension */
   /* allocate pointers to rows */    l1= strlen( name);
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    l2= strlen(ss)+1;
   if (!m) nrerror("allocation failure 1 in matrix()");    strncpy( finame, name, l1-l2);
   m += NR_END;    finame[l1-l2]= 0;
   m -= nrl;    return( 0 );                          /* we're done */
    }
    
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /******************************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  void replace(char *s, char*t)
   m[nrl] -= ncl;  {
      int i;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    int lg=20;
      i=0;
   /* return pointer to array of pointers to rows */    lg=strlen(t);
   return m;    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /****************** free_imatrix *************************/    }
 void free_imatrix(m,nrl,nrh,ncl,nch)  }
       int **m;  
       long nch,ncl,nrh,nrl;  int nbocc(char *s, char occ)
      /* free an int matrix allocated by imatrix() */  {
 {    int i,j=0;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    int lg=20;
   free((FREE_ARG) (m+nrl-NR_END));    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /******************* matrix *******************************/    if  (s[i] == occ ) j++;
 double **matrix(long nrl, long nrh, long ncl, long nch)    }
 {    return j;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  }
   double **m;  
   void cutv(char *u,char *v, char*t, char occ)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    /* cuts string t into u and v where u is ended by char occ excluding it
   m += NR_END;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m -= nrl;       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    i=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    for(j=0; j<=strlen(t)-1; j++) {
   m[nrl] += NR_END;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m[nrl] -= ncl;    }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    lg=strlen(t);
   return m;    for(j=0; j<p; j++) {
 }      (u[j] = t[j]);
     }
 /*************************free matrix ************************/       u[p]='\0';
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {     for(j=0; j<= lg; j++) {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      if (j>=(p+1))(v[j-p-1] = t[j]);
   free((FREE_ARG)(m+nrl-NR_END));    }
 }  }
   
 /******************* ma3x *******************************/  /********************** nrerror ********************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  void nrerror(char error_text[])
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  {
   double ***m;    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    exit(EXIT_FAILURE);
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  /*********************** vector *******************/
   m -= nrl;  double *vector(int nl, int nh)
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    double *v;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m[nrl] += NR_END;    if (!v) nrerror("allocation failure in vector");
   m[nrl] -= ncl;    return v-nl+NR_END;
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   /************************ free vector ******************/
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  void free_vector(double*v, int nl, int nh)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  {
   m[nrl][ncl] += NR_END;    free((FREE_ARG)(v+nl-NR_END));
   m[nrl][ncl] -= nll;  }
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  /************************ivector *******************************/
    int *ivector(long nl,long nh)
   for (i=nrl+1; i<=nrh; i++) {  {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    int *v;
     for (j=ncl+1; j<=nch; j++)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       m[i][j]=m[i][j-1]+nlay;    if (!v) nrerror("allocation failure in ivector");
   }    return v-nl+NR_END;
   return m;  }
 }  
   /******************free ivector **************************/
 /*************************free ma3x ************************/  void free_ivector(int *v, long nl, long nh)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /************************lvector *******************************/
 }  long *lvector(long nl,long nh)
   {
 /***************** f1dim *************************/    long *v;
 extern int ncom;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 extern double *pcom,*xicom;    if (!v) nrerror("allocation failure in ivector");
 extern double (*nrfunc)(double []);    return v-nl+NR_END;
    }
 double f1dim(double x)  
 {  /******************free lvector **************************/
   int j;  void free_lvector(long *v, long nl, long nh)
   double f;  {
   double *xt;    free((FREE_ARG)(v+nl-NR_END));
    }
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /******************* imatrix *******************************/
   f=(*nrfunc)(xt);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   free_vector(xt,1,ncom);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   return f;  { 
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 /*****************brent *************************/    
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    /* allocate pointers to rows */ 
 {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   int iter;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double a,b,d,etemp;    m += NR_END; 
   double fu,fv,fw,fx;    m -= nrl; 
   double ftemp;    
   double p,q,r,tol1,tol2,u,v,w,x,xm;    
   double e=0.0;    /* allocate rows and set pointers to them */ 
      m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   a=(ax < cx ? ax : cx);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   b=(ax > cx ? ax : cx);    m[nrl] += NR_END; 
   x=w=v=bx;    m[nrl] -= ncl; 
   fw=fv=fx=(*f)(x);    
   for (iter=1;iter<=ITMAX;iter++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     xm=0.5*(a+b);    
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    /* return pointer to array of pointers to rows */ 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    return m; 
     printf(".");fflush(stdout);  } 
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /****************** free_imatrix *************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  void free_imatrix(m,nrl,nrh,ncl,nch)
 #endif        int **m;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){        long nch,ncl,nrh,nrl; 
       *xmin=x;       /* free an int matrix allocated by imatrix() */ 
       return fx;  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     ftemp=fu;    free((FREE_ARG) (m+nrl-NR_END)); 
     if (fabs(e) > tol1) {  } 
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  /******************* matrix *******************************/
       p=(x-v)*q-(x-w)*r;  double **matrix(long nrl, long nrh, long ncl, long nch)
       q=2.0*(q-r);  {
       if (q > 0.0) p = -p;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       q=fabs(q);    double **m;
       etemp=e;  
       e=d;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if (!m) nrerror("allocation failure 1 in matrix()");
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    m += NR_END;
       else {    m -= nrl;
         d=p/q;  
         u=x+d;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         if (u-a < tol2 || b-u < tol2)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           d=SIGN(tol1,xm-x);    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     fu=(*f)(u);     */
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /*************************free matrix ************************/
         SHFT(fv,fw,fx,fu)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         } else {  {
           if (u < x) a=u; else b=u;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           if (fu <= fw || w == x) {    free((FREE_ARG)(m+nrl-NR_END));
             v=w;  }
             w=u;  
             fv=fw;  /******************* ma3x *******************************/
             fw=fu;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
             fv=fu;    double ***m;
           }  
         }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
   nrerror("Too many iterations in brent");    m += NR_END;
   *xmin=x;    m -= nrl;
   return fx;  
 }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /****************** mnbrak ***********************/    m[nrl] += NR_END;
     m[nrl] -= ncl;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {  
   double ulim,u,r,q, dum;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double fu;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
      m[nrl][ncl] += NR_END;
   *fa=(*func)(*ax);    m[nrl][ncl] -= nll;
   *fb=(*func)(*bx);    for (j=ncl+1; j<=nch; j++) 
   if (*fb > *fa) {      m[nrl][j]=m[nrl][j-1]+nlay;
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)    for (i=nrl+1; i<=nrh; i++) {
       }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   *cx=(*bx)+GOLD*(*bx-*ax);      for (j=ncl+1; j<=nch; j++) 
   *fc=(*func)(*cx);        m[i][j]=m[i][j-1]+nlay;
   while (*fb > *fc) {    }
     r=(*bx-*ax)*(*fb-*fc);    return m; 
     q=(*bx-*cx)*(*fb-*fa);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /*************************free ma3x ************************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       fu=(*func)(u);  {
       if (fu < *fc) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           SHFT(*fb,*fc,fu,(*func)(u))    free((FREE_ARG)(m+nrl-NR_END));
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  /***************** f1dim *************************/
       fu=(*func)(u);  extern int ncom; 
     } else {  extern double *pcom,*xicom;
       u=(*cx)+GOLD*(*cx-*bx);  extern double (*nrfunc)(double []); 
       fu=(*func)(u);   
     }  double f1dim(double x) 
     SHFT(*ax,*bx,*cx,u)  { 
       SHFT(*fa,*fb,*fc,fu)    int j; 
       }    double f;
 }    double *xt; 
    
 /*************** linmin ************************/    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 int ncom;    f=(*nrfunc)(xt); 
 double *pcom,*xicom;    free_vector(xt,1,ncom); 
 double (*nrfunc)(double []);    return f; 
    } 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /*****************brent *************************/
   double brent(double ax, double bx, double cx,  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
                double (*f)(double), double tol, double *xmin);  { 
   double f1dim(double x);    int iter; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    double a,b,d,etemp;
               double *fc, double (*func)(double));    double fu,fv,fw,fx;
   int j;    double ftemp;
   double xx,xmin,bx,ax;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double fx,fb,fa;    double e=0.0; 
     
   ncom=n;    a=(ax < cx ? ax : cx); 
   pcom=vector(1,n);    b=(ax > cx ? ax : cx); 
   xicom=vector(1,n);    x=w=v=bx; 
   nrfunc=func;    fw=fv=fx=(*f)(x); 
   for (j=1;j<=n;j++) {    for (iter=1;iter<=ITMAX;iter++) { 
     pcom[j]=p[j];      xm=0.5*(a+b); 
     xicom[j]=xi[j];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   ax=0.0;      printf(".");fflush(stdout);
   xx=1.0;      fprintf(ficlog,".");fflush(ficlog);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #ifdef DEBUG
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #ifdef DEBUG      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 #endif  #endif
   for (j=1;j<=n;j++) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     xi[j] *= xmin;        *xmin=x; 
     p[j] += xi[j];        return fx; 
   }      } 
   free_vector(xicom,1,n);      ftemp=fu;
   free_vector(pcom,1,n);      if (fabs(e) > tol1) { 
 }        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
 /*************** powell ************************/        p=(x-v)*q-(x-w)*r; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        q=2.0*(q-r); 
             double (*func)(double []))        if (q > 0.0) p = -p; 
 {        q=fabs(q); 
   void linmin(double p[], double xi[], int n, double *fret,        etemp=e; 
               double (*func)(double []));        e=d; 
   int i,ibig,j;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double del,t,*pt,*ptt,*xit;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double fp,fptt;        else { 
   double *xits;          d=p/q; 
   pt=vector(1,n);          u=x+d; 
   ptt=vector(1,n);          if (u-a < tol2 || b-u < tol2) 
   xit=vector(1,n);            d=SIGN(tol1,xm-x); 
   xits=vector(1,n);        } 
   *fret=(*func)(p);      } else { 
   for (j=1;j<=n;j++) pt[j]=p[j];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (*iter=1;;++(*iter)) {      } 
     fp=(*fret);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     ibig=0;      fu=(*f)(u); 
     del=0.0;      if (fu <= fx) { 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        if (u >= x) a=x; else b=x; 
     for (i=1;i<=n;i++)        SHFT(v,w,x,u) 
       printf(" %d %.12f",i, p[i]);          SHFT(fv,fw,fx,fu) 
     printf("\n");          } else { 
     for (i=1;i<=n;i++) {            if (u < x) a=u; else b=u; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];            if (fu <= fw || w == x) { 
       fptt=(*fret);              v=w; 
 #ifdef DEBUG              w=u; 
       printf("fret=%lf \n",*fret);              fv=fw; 
 #endif              fw=fu; 
       printf("%d",i);fflush(stdout);            } else if (fu <= fv || v == x || v == w) { 
       linmin(p,xit,n,fret,func);              v=u; 
       if (fabs(fptt-(*fret)) > del) {              fv=fu; 
         del=fabs(fptt-(*fret));            } 
         ibig=i;          } 
       }    } 
 #ifdef DEBUG    nrerror("Too many iterations in brent"); 
       printf("%d %.12e",i,(*fret));    *xmin=x; 
       for (j=1;j<=n;j++) {    return fx; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  } 
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /****************** mnbrak ***********************/
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       printf("\n");              double (*func)(double)) 
 #endif  { 
     }    double ulim,u,r,q, dum;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    double fu; 
 #ifdef DEBUG   
       int k[2],l;    *fa=(*func)(*ax); 
       k[0]=1;    *fb=(*func)(*bx); 
       k[1]=-1;    if (*fb > *fa) { 
       printf("Max: %.12e",(*func)(p));      SHFT(dum,*ax,*bx,dum) 
       for (j=1;j<=n;j++)        SHFT(dum,*fb,*fa,dum) 
         printf(" %.12e",p[j]);        } 
       printf("\n");    *cx=(*bx)+GOLD*(*bx-*ax); 
       for(l=0;l<=1;l++) {    *fc=(*func)(*cx); 
         for (j=1;j<=n;j++) {    while (*fb > *fc) { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      r=(*bx-*ax)*(*fb-*fc); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      q=(*bx-*cx)*(*fb-*fa); 
         }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 #endif      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
       free_vector(xit,1,n);        fu=(*func)(u); 
       free_vector(xits,1,n);        if (fu < *fc) { 
       free_vector(ptt,1,n);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       free_vector(pt,1,n);            SHFT(*fb,*fc,fu,(*func)(u)) 
       return;            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        u=ulim; 
     for (j=1;j<=n;j++) {        fu=(*func)(u); 
       ptt[j]=2.0*p[j]-pt[j];      } else { 
       xit[j]=p[j]-pt[j];        u=(*cx)+GOLD*(*cx-*bx); 
       pt[j]=p[j];        fu=(*func)(u); 
     }      } 
     fptt=(*func)(ptt);      SHFT(*ax,*bx,*cx,u) 
     if (fptt < fp) {        SHFT(*fa,*fb,*fc,fu) 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        } 
       if (t < 0.0) {  } 
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /*************** linmin ************************/
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  int ncom; 
         }  double *pcom,*xicom;
 #ifdef DEBUG  double (*nrfunc)(double []); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);   
         for(j=1;j<=n;j++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           printf(" %.12e",xit[j]);  { 
         printf("\n");    double brent(double ax, double bx, double cx, 
 #endif                 double (*f)(double), double tol, double *xmin); 
       }    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   }                double *fc, double (*func)(double)); 
 }    int j; 
     double xx,xmin,bx,ax; 
 /**** Prevalence limit ****************/    double fx,fb,fa;
    
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    ncom=n; 
 {    pcom=vector(1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    xicom=vector(1,n); 
      matrix by transitions matrix until convergence is reached */    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   int i, ii,j,k;      pcom[j]=p[j]; 
   double min, max, maxmin, maxmax,sumnew=0.;      xicom[j]=xi[j]; 
   double **matprod2();    } 
   double **out, cov[NCOVMAX], **pmij();    ax=0.0; 
   double **newm;    xx=1.0; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
     for (j=1;j<=nlstate+ndeath;j++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }  #endif
     for (j=1;j<=n;j++) { 
    cov[1]=1.;      xi[j] *= xmin; 
        p[j] += xi[j]; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    free_vector(xicom,1,n); 
     newm=savm;    free_vector(pcom,1,n); 
     /* Covariates have to be included here again */  } 
      cov[2]=agefin;  
    /*************** powell ************************/
       for (k=1; k<=cptcovn;k++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];              double (*func)(double [])) 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  { 
       }    void linmin(double p[], double xi[], int n, double *fret, 
       for (k=1; k<=cptcovage;k++)                double (*func)(double [])); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int i,ibig,j; 
       for (k=1; k<=cptcovprod;k++)    double del,t,*pt,*ptt,*xit;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double fp,fptt;
     double *xits;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    pt=vector(1,n); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    ptt=vector(1,n); 
     xit=vector(1,n); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    xits=vector(1,n); 
     *fret=(*func)(p); 
     savm=oldm;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     oldm=newm;    for (*iter=1;;++(*iter)) { 
     maxmax=0.;      fp=(*fret); 
     for(j=1;j<=nlstate;j++){      ibig=0; 
       min=1.;      del=0.0; 
       max=0.;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       for(i=1; i<=nlstate; i++) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         sumnew=0;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      for (i=1;i<=n;i++) {
         prlim[i][j]= newm[i][j]/(1-sumnew);        printf(" %d %.12f",i, p[i]);
         max=FMAX(max,prlim[i][j]);        fprintf(ficlog," %d %.12lf",i, p[i]);
         min=FMIN(min,prlim[i][j]);        fprintf(ficrespow," %.12lf", p[i]);
       }      }
       maxmin=max-min;      printf("\n");
       maxmax=FMAX(maxmax,maxmin);      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");
     if(maxmax < ftolpl){      for (i=1;i<=n;i++) { 
       return prlim;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
   }  #ifdef DEBUG
 }        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 /*************** transition probabilities ***************/  #endif
         printf("%d",i);fflush(stdout);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        fprintf(ficlog,"%d",i);fflush(ficlog);
 {        linmin(p,xit,n,fret,func); 
   double s1, s2;        if (fabs(fptt-(*fret)) > del) { 
   /*double t34;*/          del=fabs(fptt-(*fret)); 
   int i,j,j1, nc, ii, jj;          ibig=i; 
         } 
     for(i=1; i<= nlstate; i++){  #ifdef DEBUG
     for(j=1; j<i;j++){        printf("%d %.12e",i,(*fret));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficlog,"%d %.12e",i,(*fret));
         /*s2 += param[i][j][nc]*cov[nc];*/        for (j=1;j<=n;j++) {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          printf(" x(%d)=%.12e",j,xit[j]);
       }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       ps[i][j]=s2;        }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
     for(j=i+1; j<=nlstate+ndeath;j++){          fprintf(ficlog," p=%.12e",p[j]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        printf("\n");
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        fprintf(ficlog,"\n");
       }  #endif
       ps[i][j]=s2;      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   }  #ifdef DEBUG
     /*ps[3][2]=1;*/        int k[2],l;
         k[0]=1;
   for(i=1; i<= nlstate; i++){        k[1]=-1;
      s1=0;        printf("Max: %.12e",(*func)(p));
     for(j=1; j<i; j++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
       s1+=exp(ps[i][j]);        for (j=1;j<=n;j++) {
     for(j=i+1; j<=nlstate+ndeath; j++)          printf(" %.12e",p[j]);
       s1+=exp(ps[i][j]);          fprintf(ficlog," %.12e",p[j]);
     ps[i][i]=1./(s1+1.);        }
     for(j=1; j<i; j++)        printf("\n");
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficlog,"\n");
     for(j=i+1; j<=nlstate+ndeath; j++)        for(l=0;l<=1;l++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];          for (j=1;j<=n;j++) {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   } /* end i */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          }
     for(jj=1; jj<= nlstate+ndeath; jj++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       ps[ii][jj]=0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       ps[ii][ii]=1;        }
     }  #endif
   }  
   
         free_vector(xit,1,n); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        free_vector(xits,1,n); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        free_vector(ptt,1,n); 
      printf("%lf ",ps[ii][jj]);        free_vector(pt,1,n); 
    }        return; 
     printf("\n ");      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     printf("\n ");printf("%lf ",cov[2]);*/      for (j=1;j<=n;j++) { 
 /*        ptt[j]=2.0*p[j]-pt[j]; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        xit[j]=p[j]-pt[j]; 
   goto end;*/        pt[j]=p[j]; 
     return ps;      } 
 }      fptt=(*func)(ptt); 
       if (fptt < fp) { 
 /**************** Product of 2 matrices ******************/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          linmin(p,xit,n,fret,func); 
 {          for (j=1;j<=n;j++) { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times            xi[j][ibig]=xi[j][n]; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */            xi[j][n]=xit[j]; 
   /* in, b, out are matrice of pointers which should have been initialized          }
      before: only the contents of out is modified. The function returns  #ifdef DEBUG
      a pointer to pointers identical to out */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   long i, j, k;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(i=nrl; i<= nrh; i++)          for(j=1;j<=n;j++){
     for(k=ncolol; k<=ncoloh; k++)            printf(" %.12e",xit[j]);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            fprintf(ficlog," %.12e",xit[j]);
         out[i][k] +=in[i][j]*b[j][k];          }
           printf("\n");
   return out;          fprintf(ficlog,"\n");
 }  #endif
         }
       } 
 /************* Higher Matrix Product ***************/    } 
   } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /**** Prevalence limit (stable prevalence)  ****************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      (typically every 2 years instead of every month which is too big).       matrix by transitions matrix until convergence is reached */
      Model is determined by parameters x and covariates have to be  
      included manually here.    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
      */    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
   int i, j, d, h, k;    double **newm;
   double **out, cov[NCOVMAX];    double agefin, delaymax=50 ; /* Max number of years to converge */
   double **newm;  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Hstepm could be zero and should return the unit matrix */      for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=nlstate+ndeath;i++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=nlstate+ndeath;j++){      }
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);     cov[1]=1.;
     }   
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(h=1; h <=nhstepm; h++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for(d=1; d <=hstepm; d++){      newm=savm;
       newm=savm;      /* Covariates have to be included here again */
       /* Covariates have to be included here again */       cov[2]=agefin;
       cov[1]=1.;    
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        for (k=1; k<=cptcovn;k++) {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=1; k<=cptcovage;k++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }
       for (k=1; k<=cptcovprod;k++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       savm=oldm;  
       oldm=newm;      savm=oldm;
     }      oldm=newm;
     for(i=1; i<=nlstate+ndeath; i++)      maxmax=0.;
       for(j=1;j<=nlstate+ndeath;j++) {      for(j=1;j<=nlstate;j++){
         po[i][j][h]=newm[i][j];        min=1.;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        max=0.;
          */        for(i=1; i<=nlstate; i++) {
       }          sumnew=0;
   } /* end h */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   return po;          prlim[i][j]= newm[i][j]/(1-sumnew);
 }          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
         }
 /*************** log-likelihood *************/        maxmin=max-min;
 double func( double *x)        maxmax=FMAX(maxmax,maxmin);
 {      }
   int i, ii, j, k, mi, d, kk;      if(maxmax < ftolpl){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        return prlim;
   double **out;      }
   double sw; /* Sum of weights */    }
   double lli; /* Individual log likelihood */  }
   long ipmx;  
   /*extern weight */  /*************** transition probabilities ***************/ 
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   /*for(i=1;i<imx;i++)  {
     printf(" %d\n",s[4][i]);    double s1, s2;
   */    /*double t34;*/
   cov[1]=1.;    int i,j,j1, nc, ii, jj;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;      for(i=1; i<= nlstate; i++){
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for(j=1; j<i;j++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for(mi=1; mi<= wav[i]-1; mi++){          /*s2 += param[i][j][nc]*cov[nc];*/
       for (ii=1;ii<=nlstate+ndeath;ii++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       for(d=0; d<dh[mi][i]; d++){        }
         newm=savm;        ps[i][j]=s2;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
         for (kk=1; kk<=cptcovage;kk++) {      }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for(j=i+1; j<=nlstate+ndeath;j++){
         }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                  s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
         savm=oldm;        ps[i][j]=s2;
         oldm=newm;      }
            }
              /*ps[3][2]=1;*/
       } /* end mult */  
          for(i=1; i<= nlstate; i++){
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);       s1=0;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      for(j=1; j<i; j++)
       ipmx +=1;        s1+=exp(ps[i][j]);
       sw += weight[i];      for(j=i+1; j<=nlstate+ndeath; j++)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        s1+=exp(ps[i][j]);
     } /* end of wave */      ps[i][i]=1./(s1+1.);
   } /* end of individual */      for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      for(j=i+1; j<=nlstate+ndeath; j++)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   return -l;    } /* end i */
 }  
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
 /*********** Maximum Likelihood Estimation ***************/        ps[ii][jj]=0;
         ps[ii][ii]=1;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      }
 {    }
   int i,j, iter;  
   double **xi,*delti;  
   double fret;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   xi=matrix(1,npar,1,npar);      for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=npar;i++)       printf("%lf ",ps[ii][jj]);
     for (j=1;j<=npar;j++)     }
       xi[i][j]=(i==j ? 1.0 : 0.0);      printf("\n ");
   printf("Powell\n");      }
   powell(p,xi,npar,ftol,&iter,&fret,func);      printf("\n ");printf("%lf ",cov[2]);*/
   /*
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    goto end;*/
       return ps;
 }  }
   
 /**** Computes Hessian and covariance matrix ***/  /**************** Product of 2 matrices ******************/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double  **a,**y,*x,pd;  {
   double **hess;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   int i, j,jk;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int *indx;    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
   double hessii(double p[], double delta, int theta, double delti[]);       a pointer to pointers identical to out */
   double hessij(double p[], double delti[], int i, int j);    long i, j, k;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for(i=nrl; i<= nrh; i++)
   void ludcmp(double **a, int npar, int *indx, double *d) ;      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   hess=matrix(1,npar,1,npar);          out[i][k] +=in[i][j]*b[j][k];
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    return out;
   for (i=1;i<=npar;i++){  }
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/  /************* Higher Matrix Product ***************/
     /*printf(" %lf ",hess[i][i]);*/  
   }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
    {
   for (i=1;i<=npar;i++) {    /* Computes the transition matrix starting at age 'age' over 
     for (j=1;j<=npar;j++)  {       'nhstepm*hstepm*stepm' months (i.e. until
       if (j>i) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         printf(".%d%d",i,j);fflush(stdout);       nhstepm*hstepm matrices. 
         hess[i][j]=hessij(p,delti,i,j);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         hess[j][i]=hess[i][j];           (typically every 2 years instead of every month which is too big 
         /*printf(" %lf ",hess[i][j]);*/       for the memory).
       }       Model is determined by parameters x and covariates have to be 
     }       included manually here. 
   }  
   printf("\n");       */
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    int i, j, d, h, k;
      double **out, cov[NCOVMAX];
   a=matrix(1,npar,1,npar);    double **newm;
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);    /* Hstepm could be zero and should return the unit matrix */
   indx=ivector(1,npar);    for (i=1;i<=nlstate+ndeath;i++)
   for (i=1;i<=npar;i++)      for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
   ludcmp(a,npar,indx,&pd);        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   for (j=1;j<=npar;j++) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (i=1;i<=npar;i++) x[i]=0;    for(h=1; h <=nhstepm; h++){
     x[j]=1;      for(d=1; d <=hstepm; d++){
     lubksb(a,npar,indx,x);        newm=savm;
     for (i=1;i<=npar;i++){        /* Covariates have to be included here again */
       matcov[i][j]=x[i];        cov[1]=1.;
     }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
   printf("\n#Hessian matrix#\n");          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (i=1;i<=npar;i++) {        for (k=1; k<=cptcovprod;k++)
     for (j=1;j<=npar;j++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       printf("%.3e ",hess[i][j]);  
     }  
     printf("\n");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   /* Recompute Inverse */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=npar;i++)        savm=oldm;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        oldm=newm;
   ludcmp(a,npar,indx,&pd);      }
       for(i=1; i<=nlstate+ndeath; i++)
   /*  printf("\n#Hessian matrix recomputed#\n");        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
   for (j=1;j<=npar;j++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (i=1;i<=npar;i++) x[i]=0;           */
     x[j]=1;        }
     lubksb(a,npar,indx,x);    } /* end h */
     for (i=1;i<=npar;i++){    return po;
       y[i][j]=x[i];  }
       printf("%.3e ",y[i][j]);  
     }  
     printf("\n");  /*************** log-likelihood *************/
   }  double func( double *x)
   */  {
     int i, ii, j, k, mi, d, kk;
   free_matrix(a,1,npar,1,npar);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   free_matrix(y,1,npar,1,npar);    double **out;
   free_vector(x,1,npar);    double sw; /* Sum of weights */
   free_ivector(indx,1,npar);    double lli; /* Individual log likelihood */
   free_matrix(hess,1,npar,1,npar);    int s1, s2;
     double bbh, survp;
     long ipmx;
 }    /*extern weight */
     /* We are differentiating ll according to initial status */
 /*************** hessian matrix ****************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 double hessii( double x[], double delta, int theta, double delti[])    /*for(i=1;i<imx;i++) 
 {      printf(" %d\n",s[4][i]);
   int i;    */
   int l=1, lmax=20;    cov[1]=1.;
   double k1,k2;  
   double p2[NPARMAX+1];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    if(mle==1){
   double fx;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int k=0,kmax=10;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double l1;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   fx=func(x);            for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++) p2[i]=x[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(l=0 ; l <=lmax; l++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     l1=pow(10,l);            }
     delts=delt;          for(d=0; d<dh[mi][i]; d++){
     for(k=1 ; k <kmax; k=k+1){            newm=savm;
       delt = delta*(l1*k);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       p2[theta]=x[theta] +delt;            for (kk=1; kk<=cptcovage;kk++) {
       k1=func(p2)-fx;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       p2[theta]=x[theta]-delt;            }
       k2=func(p2)-fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /*res= (k1-2.0*fx+k2)/delt/delt; */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            savm=oldm;
                  oldm=newm;
 #ifdef DEBUG          } /* end mult */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        
 #endif          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          /* But now since version 0.9 we anticipate for bias and large stepm.
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         k=kmax;           * (in months) between two waves is not a multiple of stepm, we rounded to 
       }           * the nearest (and in case of equal distance, to the lowest) interval but now
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         k=kmax; l=lmax*10.;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         delts=delt;           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
   }           */
   delti[theta]=delts;          s1=s[mw[mi][i]][i];
   return res;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
 }          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 double hessij( double x[], double delti[], int thetai,int thetaj)           */
 {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   int i;          if( s2 > nlstate){ 
   int l=1, l1, lmax=20;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   double k1,k2,k3,k4,res,fx;               to the likelihood is the probability to die between last step unit time and current 
   double p2[NPARMAX+1];               step unit time, which is also the differences between probability to die before dh 
   int k;               and probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
   fx=func(x);          as if date of death was unknown. Death was treated as any other
   for (k=1; k<=2; k++) {          health state: the date of the interview describes the actual state
     for (i=1;i<=npar;i++) p2[i]=x[i];          and not the date of a change in health state. The former idea was
     p2[thetai]=x[thetai]+delti[thetai]/k;          to consider that at each interview the state was recorded
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          (healthy, disable or death) and IMaCh was corrected; but when we
     k1=func(p2)-fx;          introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
     p2[thetai]=x[thetai]+delti[thetai]/k;          contribution is smaller and very dependent of the step unit
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          stepm. It is no more the probability to die between last interview
     k2=func(p2)-fx;          and month of death but the probability to survive from last
            interview up to one month before death multiplied by the
     p2[thetai]=x[thetai]-delti[thetai]/k;          probability to die within a month. Thanks to Chris
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          Jackson for correcting this bug.  Former versions increased
     k3=func(p2)-fx;          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
     p2[thetai]=x[thetai]-delti[thetai]/k;          lower mortality.
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            */
     k4=func(p2)-fx;            lli=log(out[s1][s2] - savm[s1][s2]);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          }else{
 #ifdef DEBUG            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 #endif          } 
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   return res;          /*if(lli ==000.0)*/
 }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
 /************** Inverse of matrix **************/          sw += weight[i];
 void ludcmp(double **a, int n, int *indx, double *d)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {        } /* end of wave */
   int i,imax,j,k;      } /* end of individual */
   double big,dum,sum,temp;    }  else if(mle==2){
   double *vv;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   vv=vector(1,n);        for(mi=1; mi<= wav[i]-1; mi++){
   *d=1.0;          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=n;i++) {            for (j=1;j<=nlstate+ndeath;j++){
     big=0.0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=1;j<=n;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if ((temp=fabs(a[i][j])) > big) big=temp;            }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          for(d=0; d<=dh[mi][i]; d++){
     vv[i]=1.0/big;            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (j=1;j<=n;j++) {            for (kk=1; kk<=cptcovage;kk++) {
     for (i=1;i<j;i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       sum=a[i][j];            }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       a[i][j]=sum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     big=0.0;            oldm=newm;
     for (i=j;i<=n;i++) {          } /* end mult */
       sum=a[i][j];        
       for (k=1;k<j;k++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         sum -= a[i][k]*a[k][j];          /* But now since version 0.9 we anticipate for bias and large stepm.
       a[i][j]=sum;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
         big=dum;           * the nearest (and in case of equal distance, to the lowest) interval but now
         imax=i;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
     if (j != imax) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       for (k=1;k<=n;k++) {           * -stepm/2 to stepm/2 .
         dum=a[imax][k];           * For stepm=1 the results are the same as for previous versions of Imach.
         a[imax][k]=a[j][k];           * For stepm > 1 the results are less biased than in previous versions. 
         a[j][k]=dum;           */
       }          s1=s[mw[mi][i]][i];
       *d = -(*d);          s2=s[mw[mi+1][i]][i];
       vv[imax]=vv[j];          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias is positive if real duration
     indx[j]=imax;           * is higher than the multiple of stepm and negative otherwise.
     if (a[j][j] == 0.0) a[j][j]=TINY;           */
     if (j != n) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       dum=1.0/(a[j][j]);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
   free_vector(vv,1,n);  /* Doesn't work */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 ;          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void lubksb(double **a, int n, int *indx, double b[])        } /* end of wave */
 {      } /* end of individual */
   int i,ii=0,ip,j;    }  else if(mle==3){  /* exponential inter-extrapolation */
   double sum;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=n;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
     ip=indx[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     sum=b[ip];            for (j=1;j<=nlstate+ndeath;j++){
     b[ip]=b[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (ii)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            }
     else if (sum) ii=i;          for(d=0; d<dh[mi][i]; d++){
     b[i]=sum;            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=n;i>=1;i--) {            for (kk=1; kk<=cptcovage;kk++) {
     sum=b[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            }
     b[i]=sum/a[i][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /************ Frequencies ********************/          } /* end mult */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        
 {  /* Some frequencies */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias and large stepm.
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double ***freq; /* Frequencies */           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double *pp;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double pos, k2, dateintsum=0,k2cpt=0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   FILE *ficresp;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   char fileresp[FILENAMELENGTH];           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   pp=vector(1,nlstate);           * -stepm/2 to stepm/2 .
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * For stepm=1 the results are the same as for previous versions of Imach.
   strcpy(fileresp,"p");           * For stepm > 1 the results are less biased than in previous versions. 
   strcat(fileresp,fileres);           */
   if((ficresp=fopen(fileresp,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);          s2=s[mw[mi+1][i]][i];
     exit(0);          bbh=(double)bh[mi][i]/(double)stepm; 
   }          /* bias is positive if real duration
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * is higher than the multiple of stepm and negative otherwise.
   j1=0;           */
           /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   j=cptcoveff;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   for(k1=1; k1<=j;k1++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
    for(i1=1; i1<=ncodemax[k1];i1++){          ipmx +=1;
        j1++;          sw += weight[i];
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          scanf("%d", i);*/        } /* end of wave */
         for (i=-1; i<=nlstate+ndeath; i++)        } /* end of individual */
          for (jk=-1; jk<=nlstate+ndeath; jk++)      }else if (mle==4){  /* ml=4 no inter-extrapolation */
            for(m=agemin; m <= agemax+3; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              freq[i][jk][m]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
         dateintsum=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
         k2cpt=0;            for (j=1;j<=nlstate+ndeath;j++){
        for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          bool=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          if  (cptcovn>0) {            }
            for (z1=1; z1<=cptcoveff; z1++)          for(d=0; d<dh[mi][i]; d++){
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            newm=savm;
                bool=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          }            for (kk=1; kk<=cptcovage;kk++) {
          if (bool==1) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            for(m=firstpass; m<=lastpass; m++){            }
              k2=anint[m][i]+(mint[m][i]/12.);          
              if ((k2>=dateprev1) && (k2<=dateprev2)) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                if(agev[m][i]==0) agev[m][i]=agemax+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                if(agev[m][i]==1) agev[m][i]=agemax+2;            savm=oldm;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            oldm=newm;
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          } /* end mult */
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        
                  dateintsum=dateintsum+k2;          s1=s[mw[mi][i]][i];
                  k2cpt++;          s2=s[mw[mi+1][i]][i];
                }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
              }          }else{
            }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
          }          }
        }          ipmx +=1;
                  sw += weight[i];
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if  (cptcovn>0) {        } /* end of wave */
          fprintf(ficresp, "\n#********** Variable ");      } /* end of individual */
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        fprintf(ficresp, "**********\n#");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          for (ii=1;ii<=nlstate+ndeath;ii++)
        fprintf(ficresp, "\n");            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=(int)agemin; i <= (int)agemax+3; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(i==(int)agemax+3)            }
       printf("Total");          for(d=0; d<dh[mi][i]; d++){
     else            newm=savm;
       printf("Age %d", i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         pp[jk] += freq[jk][m][i];            }
     }          
     for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(m=-1, pos=0; m <=0 ; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         pos += freq[jk][m][i];            savm=oldm;
       if(pp[jk]>=1.e-10)            oldm=newm;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          } /* end mult */
       else        
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          sw += weight[i];
         pp[jk] += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
     for(jk=1,pos=0; jk <=nlstate ; jk++)      } /* end of individual */
       pos += pp[jk];    } /* End of if */
     for(jk=1; jk <=nlstate ; jk++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if(pos>=1.e-5)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       else    return -l;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  }
       if( i <= (int) agemax){  
         if(pos>=1.e-5){  /*************** log-likelihood *************/
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  double funcone( double *x)
           probs[i][jk][j1]= pp[jk]/pos;  {
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       else    double **out;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    double lli; /* Individual log likelihood */
       }    int s1, s2;
     }    double bbh, survp;
     for(jk=-1; jk <=nlstate+ndeath; jk++)    /*extern weight */
       for(m=-1; m <=nlstate+ndeath; m++)    /* We are differentiating ll according to initial status */
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     if(i <= (int) agemax)    /*for(i=1;i<imx;i++) 
       fprintf(ficresp,"\n");      printf(" %d\n",s[4][i]);
     printf("\n");    */
     }    cov[1]=1.;
     }  
  }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   dateintmean=dateintsum/k2cpt;  
      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fclose(ficresp);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for(mi=1; mi<= wav[i]-1; mi++){
   free_vector(pp,1,nlstate);        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
   /* End of Freq */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 /************ Prevalence ********************/        for(d=0; d<dh[mi][i]; d++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          newm=savm;
 {  /* Some frequencies */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***freq; /* Frequencies */          }
   double *pp;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double pos, k2;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
   pp=vector(1,nlstate);          oldm=newm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        } /* end mult */
          
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        s1=s[mw[mi][i]][i];
   j1=0;        s2=s[mw[mi+1][i]][i];
          bbh=(double)bh[mi][i]/(double)stepm; 
   j=cptcoveff;        /* bias is positive if real duration
   if (cptcovn<1) {j=1;ncodemax[1]=1;}         * is higher than the multiple of stepm and negative otherwise.
           */
  for(k1=1; k1<=j;k1++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     for(i1=1; i1<=ncodemax[k1];i1++){          lli=log(out[s1][s2] - savm[s1][s2]);
       j1++;        } else if (mle==1){
            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for (i=-1; i<=nlstate+ndeath; i++)          } else if(mle==2){
         for (jk=-1; jk<=nlstate+ndeath; jk++)            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           for(m=agemin; m <= agemax+3; m++)        } else if(mle==3){  /* exponential inter-extrapolation */
             freq[i][jk][m]=0;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
              } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for (i=1; i<=imx; i++) {          lli=log(out[s1][s2]); /* Original formula */
         bool=1;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         if  (cptcovn>0) {          lli=log(out[s1][s2]); /* Original formula */
           for (z1=1; z1<=cptcoveff; z1++)        } /* End of if */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        ipmx +=1;
               bool=0;        sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (bool==1) {  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(m=firstpass; m<=lastpass; m++){        if(globpr){
             k2=anint[m][i]+(mint[m][i]/12.);          fprintf(ficresilk,"%6d %1d %1d %1d %1d %3d %10.6f %6.4f %10.6f %10.6f %10.6f ", \
             if ((k2>=dateprev1) && (k2<=dateprev2)) {                  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for(k=1,l=0.; k<=nlstate; k++) 
               if(agev[m][i]==1) agev[m][i]=agemax+2;            fprintf(ficresilk," %10.6f",ll[k]);
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          fprintf(ficresilk,"\n");
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */        }
             }      } /* end of wave */
           }    } /* end of individual */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(i=(int)agemin; i <= (int)agemax+3; i++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           for(jk=1; jk <=nlstate ; jk++){    return -l;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  }
               pp[jk] += freq[jk][m][i];  
           }  
           for(jk=1; jk <=nlstate ; jk++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
             for(m=-1, pos=0; m <=0 ; m++)  {
             pos += freq[jk][m][i];    /* This routine should help understanding what is done with the selection of individuals/waves and
         }       to check the exact contribution to the likelihood.
               Plotting could be done.
          for(jk=1; jk <=nlstate ; jk++){     */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    int k;
              pp[jk] += freq[jk][m][i];    if(globpr !=0){ /* Just counts and sums no printings */
          }      strcpy(fileresilk,"ilk"); 
                strcat(fileresilk,fileres);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
          for(jk=1; jk <=nlstate ; jk++){                  fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
            if( i <= (int) agemax){      }
              if(pos>=1.e-5){      fprintf(ficresilk, "# individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state");
                probs[i][jk][j1]= pp[jk]/pos;      fprintf(ficresilk, "# i s1 s2 mi mw dh likeli weight out sav ");
              }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
            }      for(k=1; k<=nlstate; k++) 
          }        fprintf(ficresilk," ll[%d]",k);
                fprintf(ficresilk,"\n");
         }    }
     }  
   }    *fretone=(*funcone)(p);
      if(globpr !=0)
        fclose(ficresilk);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    return;
   free_vector(pp,1,nlstate);  }
    
 }  /* End of Freq */  /*********** Maximum Likelihood Estimation ***************/
   
 /************* Waves Concatenation ***************/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    int i,j, iter;
 {    double **xi;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double fret;
      Death is a valid wave (if date is known).    double fretone; /* Only one call to likelihood */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    char filerespow[FILENAMELENGTH];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    xi=matrix(1,npar,1,npar);
      and mw[mi+1][i]. dh depends on stepm.    for (i=1;i<=npar;i++)
      */      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   int i, mi, m;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    strcpy(filerespow,"pow"); 
      double sum=0., jmean=0.;*/    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int j, k=0,jk, ju, jl;      printf("Problem with resultfile: %s\n", filerespow);
   double sum=0.;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   jmin=1e+5;    }
   jmax=-1;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   jmean=0.;    for (i=1;i<=nlstate;i++)
   for(i=1; i<=imx; i++){      for(j=1;j<=nlstate+ndeath;j++)
     mi=0;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     m=firstpass;    fprintf(ficrespow,"\n");
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    powell(p,xi,npar,ftol,&iter,&fret,func);
         mw[++mi][i]=m;  
       if(m >=lastpass)    fclose(ficrespow);
         break;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       else    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         m++;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     }/* end while */  
     if (s[m][i] > nlstate){  }
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */  /**** Computes Hessian and covariance matrix ***/
          /* Only death is a correct wave */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       mw[mi][i]=m;  {
     }    double  **a,**y,*x,pd;
     double **hess;
     wav[i]=mi;    int i, j,jk;
     if(mi==0)    int *indx;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }    double hessii(double p[], double delta, int theta, double delti[]);
     double hessij(double p[], double delti[], int i, int j);
   for(i=1; i<=imx; i++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
     for(mi=1; mi<wav[i];mi++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
       if (stepm <=0)  
         dh[mi][i]=1;    hess=matrix(1,npar,1,npar);
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {    printf("\nCalculation of the hessian matrix. Wait...\n");
           if (agedc[i] < 2*AGESUP) {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    for (i=1;i<=npar;i++){
           if(j==0) j=1;  /* Survives at least one month after exam */      printf("%d",i);fflush(stdout);
           k=k+1;      fprintf(ficlog,"%d",i);fflush(ficlog);
           if (j >= jmax) jmax=j;      hess[i][i]=hessii(p,ftolhess,i,delti);
           if (j <= jmin) jmin=j;      /*printf(" %f ",p[i]);*/
           sum=sum+j;      /*printf(" %lf ",hess[i][i]);*/
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    }
           }    
         }    for (i=1;i<=npar;i++) {
         else{      for (j=1;j<=npar;j++)  {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        if (j>i) { 
           k=k+1;          printf(".%d%d",i,j);fflush(stdout);
           if (j >= jmax) jmax=j;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           else if (j <= jmin)jmin=j;          hess[i][j]=hessij(p,delti,i,j);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          hess[j][i]=hess[i][j];    
           sum=sum+j;          /*printf(" %lf ",hess[i][j]);*/
         }        }
         jk= j/stepm;      }
         jl= j -jk*stepm;    }
         ju= j -(jk+1)*stepm;    printf("\n");
         if(jl <= -ju)    fprintf(ficlog,"\n");
           dh[mi][i]=jk;  
         else    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           dh[mi][i]=jk+1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         if(dh[mi][i]==0)    
           dh[mi][i]=1; /* At least one step */    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
     }    x=vector(1,npar);
   }    indx=ivector(1,npar);
   jmean=sum/k;    for (i=1;i<=npar;i++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
  }    ludcmp(a,npar,indx,&pd);
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)    for (j=1;j<=npar;j++) {
 {      for (i=1;i<=npar;i++) x[i]=0;
   int Ndum[20],ij=1, k, j, i;      x[j]=1;
   int cptcode=0;      lubksb(a,npar,indx,x);
   cptcoveff=0;      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
   for (k=0; k<19; k++) Ndum[k]=0;      }
   for (k=1; k<=7; k++) ncodemax[k]=0;    }
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    printf("\n#Hessian matrix#\n");
     for (i=1; i<=imx; i++) {    fprintf(ficlog,"\n#Hessian matrix#\n");
       ij=(int)(covar[Tvar[j]][i]);    for (i=1;i<=npar;i++) { 
       Ndum[ij]++;      for (j=1;j<=npar;j++) { 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        printf("%.3e ",hess[i][j]);
       if (ij > cptcode) cptcode=ij;        fprintf(ficlog,"%.3e ",hess[i][j]);
     }      }
       printf("\n");
     for (i=0; i<=cptcode; i++) {      fprintf(ficlog,"\n");
       if(Ndum[i]!=0) ncodemax[j]++;    }
     }  
     ij=1;    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     for (i=1; i<=ncodemax[j]; i++) {    ludcmp(a,npar,indx,&pd);
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {    /*  printf("\n#Hessian matrix recomputed#\n");
           nbcode[Tvar[j]][ij]=k;  
           ij++;    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
         if (ij > ncodemax[j]) break;      x[j]=1;
       }        lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
   }          y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
  for (k=0; k<19; k++) Ndum[k]=0;        fprintf(ficlog,"%.3e ",y[i][j]);
       }
  for (i=1; i<=ncovmodel-2; i++) {      printf("\n");
       ij=Tvar[i];      fprintf(ficlog,"\n");
       Ndum[ij]++;    }
     }    */
   
  ij=1;    free_matrix(a,1,npar,1,npar);
  for (i=1; i<=10; i++) {    free_matrix(y,1,npar,1,npar);
    if((Ndum[i]!=0) && (i<=ncov)){    free_vector(x,1,npar);
      Tvaraff[ij]=i;    free_ivector(indx,1,npar);
      ij++;    free_matrix(hess,1,npar,1,npar);
    }  
  }  
    }
     cptcoveff=ij-1;  
 }  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
 /*********** Health Expectancies ****************/  {
     int i;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    int l=1, lmax=20;
 {    double k1,k2;
   /* Health expectancies */    double p2[NPARMAX+1];
   int i, j, nhstepm, hstepm, h, nstepm, k;    double res;
   double age, agelim,hf;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double ***p3mat;    double fx;
      int k=0,kmax=10;
   fprintf(ficreseij,"# Health expectancies\n");    double l1;
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)    fx=func(x);
     for(j=1; j<=nlstate;j++)    for (i=1;i<=npar;i++) p2[i]=x[i];
       fprintf(ficreseij," %1d-%1d",i,j);    for(l=0 ; l <=lmax; l++){
   fprintf(ficreseij,"\n");      l1=pow(10,l);
       delts=delt;
   k=1;             /* For example stepm=6 months */      for(k=1 ; k <kmax; k=k+1){
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */        delt = delta*(l1*k);
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */        p2[theta]=x[theta] +delt;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        k1=func(p2)-fx;
      nhstepm is the number of hstepm from age to agelim        p2[theta]=x[theta]-delt;
      nstepm is the number of stepm from age to agelin.        k2=func(p2)-fx;
      Look at hpijx to understand the reason of that which relies in memory size        /*res= (k1-2.0*fx+k2)/delt/delt; */
      and note for a fixed period like k years */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        
      survival function given by stepm (the optimization length). Unfortunately it  #ifdef DEBUG
      means that if the survival funtion is printed only each two years of age and if        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      results. So we changed our mind and took the option of the best precision.  #endif
   */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   agelim=AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     /* nhstepm age range expressed in number of stepm */          k=kmax; l=lmax*10.;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     if (stepm >= YEARM) hstepm=1;          delts=delt;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    delti[theta]=delts;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      return res; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    
     for(i=1; i<=nlstate;i++)  }
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  double hessij( double x[], double delti[], int thetai,int thetaj)
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  {
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    int i;
         }    int l=1, l1, lmax=20;
     fprintf(ficreseij,"%3.0f",age );    double k1,k2,k3,k4,res,fx;
     for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
       for(j=1; j<=nlstate;j++){    int k;
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);  
       }    fx=func(x);
     fprintf(ficreseij,"\n");    for (k=1; k<=2; k++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<=npar;i++) p2[i]=x[i];
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
 }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
 /************ Variance ******************/    
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      p2[thetai]=x[thetai]+delti[thetai]/k;
 {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* Variance of health expectancies */      k2=func(p2)-fx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    
   double **newm;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double **dnewm,**doldm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int i, j, nhstepm, hstepm, h;      k3=func(p2)-fx;
   int k, cptcode;    
   double *xp;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double **gp, **gm;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double ***gradg, ***trgradg;      k4=func(p2)-fx;
   double ***p3mat;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double age,agelim;  #ifdef DEBUG
   int theta;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    fprintf(ficresvij,"# Covariances of life expectancies\n");  #endif
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)    return res;
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   xp=vector(1,npar);  { 
   dnewm=matrix(1,nlstate,1,npar);    int i,imax,j,k; 
   doldm=matrix(1,nlstate,1,nlstate);    double big,dum,sum,temp; 
      double *vv; 
   hstepm=1*YEARM; /* Every year of age */   
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    vv=vector(1,n); 
   agelim = AGESUP;    *d=1.0; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1;i<=n;i++) { 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      big=0.0; 
     if (stepm >= YEARM) hstepm=1;      for (j=1;j<=n;j++) 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        if ((temp=fabs(a[i][j])) > big) big=temp; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      vv[i]=1.0/big; 
     gp=matrix(0,nhstepm,1,nlstate);    } 
     gm=matrix(0,nhstepm,1,nlstate);    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
     for(theta=1; theta <=npar; theta++){        sum=a[i][j]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        a[i][j]=sum; 
       }      } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        big=0.0; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
       if (popbased==1) {        for (k=1;k<j;k++) 
         for(i=1; i<=nlstate;i++)          sum -= a[i][k]*a[k][j]; 
           prlim[i][i]=probs[(int)age][i][ij];        a[i][j]=sum; 
       }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
       for(j=1; j<= nlstate; j++){          imax=i; 
         for(h=0; h<=nhstepm; h++){        } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      } 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      if (j != imax) { 
         }        for (k=1;k<=n;k++) { 
       }          dum=a[imax][k]; 
              a[imax][k]=a[j][k]; 
       for(i=1; i<=npar; i++) /* Computes gradient */          a[j][k]=dum; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          *d = -(*d); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        vv[imax]=vv[j]; 
        } 
       if (popbased==1) {      indx[j]=imax; 
         for(i=1; i<=nlstate;i++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
           prlim[i][i]=probs[(int)age][i][ij];      if (j != n) { 
       }        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(j=1; j<= nlstate; j++){      } 
         for(h=0; h<=nhstepm; h++){    } 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    free_vector(vv,1,n);  /* Doesn't work */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  ;
         }  } 
       }  
   void lubksb(double **a, int n, int *indx, double b[]) 
       for(j=1; j<= nlstate; j++)  { 
         for(h=0; h<=nhstepm; h++){    int i,ii=0,ip,j; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double sum; 
         }   
     } /* End theta */    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      sum=b[ip]; 
       b[ip]=b[i]; 
     for(h=0; h<=nhstepm; h++)      if (ii) 
       for(j=1; j<=nlstate;j++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for(theta=1; theta <=npar; theta++)      else if (sum) ii=i; 
           trgradg[h][j][theta]=gradg[h][theta][j];      b[i]=sum; 
     } 
     for(i=1;i<=nlstate;i++)    for (i=n;i>=1;i--) { 
       for(j=1;j<=nlstate;j++)      sum=b[i]; 
         vareij[i][j][(int)age] =0.;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     for(h=0;h<=nhstepm;h++){      b[i]=sum/a[i][i]; 
       for(k=0;k<=nhstepm;k++){    } 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  } 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)  /************ Frequencies ********************/
           for(j=1;j<=nlstate;j++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
             vareij[i][j][(int)age] += doldm[i][j];  {  /* Some frequencies */
       }    
     }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     h=1;    int first;
     if (stepm >= YEARM) h=stepm/YEARM;    double ***freq; /* Frequencies */
     fprintf(ficresvij,"%.0f ",age );    double *pp, **prop;
     for(i=1; i<=nlstate;i++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(j=1; j<=nlstate;j++){    FILE *ficresp;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    char fileresp[FILENAMELENGTH];
       }    
     fprintf(ficresvij,"\n");    pp=vector(1,nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     free_matrix(gm,0,nhstepm,1,nlstate);    strcpy(fileresp,"p");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    strcat(fileresp,fileres);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   } /* End age */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        exit(0);
   free_vector(xp,1,npar);    }
   free_matrix(doldm,1,nlstate,1,npar);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   free_matrix(dnewm,1,nlstate,1,nlstate);    j1=0;
     
 }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    first=1;
 {  
   /* Variance of prevalence limit */    for(k1=1; k1<=j;k1++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(i1=1; i1<=ncodemax[k1];i1++){
   double **newm;        j1++;
   double **dnewm,**doldm;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   int i, j, nhstepm, hstepm;          scanf("%d", i);*/
   int k, cptcode;        for (i=-1; i<=nlstate+ndeath; i++)  
   double *xp;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   double *gp, *gm;            for(m=iagemin; m <= iagemax+3; m++)
   double **gradg, **trgradg;              freq[i][jk][m]=0;
   double age,agelim;  
   int theta;      for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          prop[i][m]=0;
   fprintf(ficresvpl,"# Age");        
   for(i=1; i<=nlstate;i++)        dateintsum=0;
       fprintf(ficresvpl," %1d-%1d",i,i);        k2cpt=0;
   fprintf(ficresvpl,"\n");        for (i=1; i<=imx; i++) {
           bool=1;
   xp=vector(1,npar);          if  (cptcovn>0) {
   dnewm=matrix(1,nlstate,1,npar);            for (z1=1; z1<=cptcoveff; z1++) 
   doldm=matrix(1,nlstate,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   hstepm=1*YEARM; /* Every year of age */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          if (bool==1){
   agelim = AGESUP;            for(m=firstpass; m<=lastpass; m++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              k2=anint[m][i]+(mint[m][i]/12.);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     if (stepm >= YEARM) hstepm=1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     gradg=matrix(1,npar,1,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     gp=vector(1,nlstate);                if (m<lastpass) {
     gm=vector(1,nlstate);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for(theta=1; theta <=npar; theta++){                }
       for(i=1; i<=npar; i++){ /* Computes gradient */                
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       }                  dateintsum=dateintsum+k2;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  k2cpt++;
       for(i=1;i<=nlstate;i++)                }
         gp[i] = prlim[i][i];                /*}*/
                }
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);         
       for(i=1;i<=nlstate;i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         gm[i] = prlim[i][i];  
         if  (cptcovn>0) {
       for(i=1;i<=nlstate;i++)          fprintf(ficresp, "\n#********** Variable "); 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     } /* End theta */          fprintf(ficresp, "**********\n#");
         }
     trgradg =matrix(1,nlstate,1,npar);        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for(j=1; j<=nlstate;j++)        fprintf(ficresp, "\n");
       for(theta=1; theta <=npar; theta++)        
         trgradg[j][theta]=gradg[theta][j];        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
     for(i=1;i<=nlstate;i++)            fprintf(ficlog,"Total");
       varpl[i][(int)age] =0.;          }else{
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            if(first==1){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              first=0;
     for(i=1;i<=nlstate;i++)              printf("See log file for details...\n");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            }
             fprintf(ficlog,"Age %d", i);
     fprintf(ficresvpl,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fprintf(ficresvpl,"\n");              pp[jk] += freq[jk][m][i]; 
     free_vector(gp,1,nlstate);          }
     free_vector(gm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     free_matrix(gradg,1,npar,1,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
     free_matrix(trgradg,1,nlstate,1,npar);              pos += freq[jk][m][i];
   } /* End age */            if(pp[jk]>=1.e-10){
               if(first==1){
   free_vector(xp,1,npar);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_matrix(doldm,1,nlstate,1,npar);              }
   free_matrix(dnewm,1,nlstate,1,nlstate);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
 }              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 /************ Variance of one-step probabilities  ******************/              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)            }
 {          }
   int i, j;  
   int k=0, cptcode;          for(jk=1; jk <=nlstate ; jk++){
   double **dnewm,**doldm;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double *xp;              pp[jk] += freq[jk][m][i];
   double *gp, *gm;          }       
   double **gradg, **trgradg;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double age,agelim, cov[NCOVMAX];            pos += pp[jk];
   int theta;            posprop += prop[jk][i];
   char fileresprob[FILENAMELENGTH];          }
           for(jk=1; jk <=nlstate ; jk++){
   strcpy(fileresprob,"prob");            if(pos>=1.e-5){
   strcat(fileresprob,fileres);              if(first==1)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     printf("Problem with resultfile: %s\n", fileresprob);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }            }else{
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   xp=vector(1,npar);            }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            if( i <= iagemax){
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));              if(pos>=1.e-5){
                  fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   cov[1]=1;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   for (age=bage; age<=fage; age ++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     cov[2]=age;              }
     gradg=matrix(1,npar,1,9);              else
     trgradg=matrix(1,9,1,npar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            }
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          }
              
     for(theta=1; theta <=npar; theta++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
       for(i=1; i<=npar; i++)            for(m=-1; m <=nlstate+ndeath; m++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              if(freq[jk][m][i] !=0 ) {
                    if(first==1)
       pmij(pmmij,cov,ncovmodel,xp,nlstate);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                    fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       k=0;              }
       for(i=1; i<= (nlstate+ndeath); i++){          if(i <= iagemax)
         for(j=1; j<=(nlstate+ndeath);j++){            fprintf(ficresp,"\n");
            k=k+1;          if(first==1)
           gp[k]=pmmij[i][j];            printf("Others in log...\n");
         }          fprintf(ficlog,"\n");
       }        }
       }
       for(i=1; i<=npar; i++)    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    dateintmean=dateintsum/k2cpt; 
       
     fclose(ficresp);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       k=0;    free_vector(pp,1,nlstate);
       for(i=1; i<=(nlstate+ndeath); i++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         for(j=1; j<=(nlstate+ndeath);j++){    /* End of Freq */
           k=k+1;  }
           gm[k]=pmmij[i][j];  
         }  /************ Prevalence ********************/
       }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
        {  
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         in each health status at the date of interview (if between dateprev1 and dateprev2).
     }       We still use firstpass and lastpass as another selection.
     */
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)   
       for(theta=1; theta <=npar; theta++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       trgradg[j][theta]=gradg[theta][j];    double ***freq; /* Frequencies */
      double *pp, **prop;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    double pos,posprop; 
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    double  y2; /* in fractional years */
     int iagemin, iagemax;
      pmij(pmmij,cov,ncovmodel,x,nlstate);  
     iagemin= (int) agemin;
      k=0;    iagemax= (int) agemax;
      for(i=1; i<=(nlstate+ndeath); i++){    /*pp=vector(1,nlstate);*/
        for(j=1; j<=(nlstate+ndeath);j++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
          k=k+1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
          gm[k]=pmmij[i][j];    j1=0;
         }    
      }    j=cptcoveff;
          if (cptcovn<1) {j=1;ncodemax[1]=1;}
      /*printf("\n%d ",(int)age);    
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    for(k1=1; k1<=j;k1++){
              for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        
      }*/        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresprob,"\n%d ",(int)age);            prop[i][m]=0.0;
        
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        for (i=1; i<=imx; i++) { /* Each individual */
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          bool=1;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                bool=0;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          } 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          if (bool==1) { 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  free_vector(xp,1,npar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 fclose(ficresprob);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
 /******************* Printing html file ***********/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[],char rfileres[] ){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int jj1, k1, i1, cpt;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   FILE *fichtm;                } 
   /*char optionfilehtm[FILENAMELENGTH];*/              }
             } /* end selection of waves */
   strcpy(optionfilehtm,optionfile);          }
   strcat(optionfilehtm,".htm");        }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        for(i=iagemin; i <= iagemax+3; i++){  
     printf("Problem with %s \n",optionfilehtm), exit(0);          
   }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.71c </font> <hr size=\"2\" color=\"#EC5E5E\">          } 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>  
           for(jk=1; jk <=nlstate ; jk++){     
 Total number of observations=%d <br>            if( i <=  iagemax){ 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>              if(posprop>=1.e-5){ 
 <hr  size=\"2\" color=\"#EC5E5E\">                probs[i][jk][j1]= prop[jk][i]/posprop;
 <li>Outputs files<br><br>\n              } 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            } 
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          }/* end jk */ 
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        }/* end i */ 
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      } /* end i1 */
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    } /* end k1 */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    /*free_vector(pp,1,nlstate);*/
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>  }  /* End of prevalence */
         - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>  
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  /************* Waves Concatenation ***************/
    
 fprintf(fichtm," <li>Graphs</li><p>");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
  m=cptcoveff;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  jj1=0;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  for(k1=1; k1<=m;k1++){       and mw[mi+1][i]. dh depends on stepm.
    for(i1=1; i1<=ncodemax[k1];i1++){       */
        jj1++;  
        if (cptcovn > 0) {    int i, mi, m;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
          for (cpt=1; cpt<=cptcoveff;cpt++)       double sum=0., jmean=0.;*/
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    int first;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    int j, k=0,jk, ju, jl;
        }    double sum=0.;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    first=0;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        jmin=1e+5;
        for(cpt=1; cpt<nlstate;cpt++){    jmax=-1;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    jmean=0.;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    for(i=1; i<=imx; i++){
        }      mi=0;
     for(cpt=1; cpt<=nlstate;cpt++) {      m=firstpass;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      while(s[m][i] <= nlstate){
 interval) in state (%d): v%s%d%d.gif <br>        if(s[m][i]>=1)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            mw[++mi][i]=m;
      }        if(m >=lastpass)
      for(cpt=1; cpt<=nlstate;cpt++) {          break;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        else
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          m++;
      }      }/* end while */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      if (s[m][i] > nlstate){
 health expectancies in states (1) and (2): e%s%d.gif<br>        mi++;     /* Death is another wave */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /* if(mi==0)  never been interviewed correctly before death */
 fprintf(fichtm,"\n</body>");           /* Only death is a correct wave */
    }        mw[mi][i]=m;
    }      }
 fclose(fichtm);  
 }      wav[i]=mi;
       if(mi==0){
 /******************* Gnuplot file **************/        if(first==0){
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemaxpar, double fage , char pathc[], double p[]){          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        }
         if(first==1){
   strcpy(optionfilegnuplot,optionfilefiname);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   strcat(optionfilegnuplot,".plt");        }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      } /* end mi==0 */
     printf("Problem with file %s",optionfilegnuplot);    } /* End individuals */
   }  
     for(i=1; i<=imx; i++){
 #ifdef windows      for(mi=1; mi<wav[i];mi++){
     fprintf(ficgp,"cd \"%s\" \n",pathc);        if (stepm <=0)
 #endif          dh[mi][i]=1;
 m=pow(2,cptcoveff);        else{
            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  /* 1eme*/            if (agedc[i] < 2*AGESUP) {
   for (cpt=1; cpt<= nlstate ; cpt ++) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    for (k1=1; k1<= m ; k1 ++) {              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
 #ifdef windows                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);                j=1; /* Careful Patch */
 #endif                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fixe the contradiction between dates.\n",stepm);
 #ifdef unix                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 #endif              }
               k=k+1;
 for (i=1; i<= nlstate ; i ++) {              if (j >= jmax) jmax=j;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if (j <= jmin) jmin=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              sum=sum+j;
 }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          else{
 }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      for (i=1; i<= nlstate ; i ++) {            k=k+1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if (j >= jmax) jmax=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            else if (j <= jmin)jmin=j;
 }              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 #ifdef unix            if(j<0){
 fprintf(ficgp,"\nset ter gif small size 400,300");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #endif              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            }
    }            sum=sum+j;
   }          }
   /*2 eme*/          jk= j/stepm;
           jl= j -jk*stepm;
   for (k1=1; k1<= m ; k1 ++) {          ju= j -(jk+1)*stepm;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                if(jl==0){
     for (i=1; i<= nlstate+1 ; i ++) {              dh[mi][i]=jk;
       k=2*i;              bh[mi][i]=0;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            }else{ /* We want a negative bias in order to only have interpolation ie
       for (j=1; j<= nlstate+1 ; j ++) {                    * at the price of an extra matrix product in likelihood */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              dh[mi][i]=jk+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              bh[mi][i]=ju;
 }              }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          }else{
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            if(jl <= -ju){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              dh[mi][i]=jk;
       for (j=1; j<= nlstate+1 ; j ++) {              bh[mi][i]=jl;       /* bias is positive if real duration
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                                   * is higher than the multiple of stepm and negative otherwise.
         else fprintf(ficgp," \%%*lf (\%%*lf)");                                   */
 }              }
       fprintf(ficgp,"\" t\"\" w l 0,");            else{
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              dh[mi][i]=jk+1;
       for (j=1; j<= nlstate+1 ; j ++) {              bh[mi][i]=ju;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(dh[mi][i]==0){
 }                dh[mi][i]=1; /* At least one step */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              bh[mi][i]=ju; /* At least one step */
       else fprintf(ficgp,"\" t\"\" w l 0,");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     }            }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          } /* end if mle */
   }        }
        } /* end wave */
   /*3eme*/    }
     jmean=sum/k;
   for (k1=1; k1<= m ; k1 ++) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       k=2+nlstate*(cpt-1);   }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);  
       for (i=1; i< nlstate ; i ++) {  /*********** Tricode ****************************/
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  void tricode(int *Tvar, int **nbcode, int imx)
       }  {
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
     }    int Ndum[20],ij=1, k, j, i, maxncov=19;
     }    int cptcode=0;
      cptcoveff=0; 
   /* CV preval stat */   
     for (k1=1; k1<= m ; k1 ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (cpt=1; cpt<nlstate ; cpt ++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
       k=3;  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemaxpar,fileres,k1,k+cpt+1,k+1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       for (i=1; i< nlstate ; i ++)                                 modality*/ 
         fprintf(ficgp,"+$%d",k+i+1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        Ndum[ij]++; /*store the modality */
              /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       l=3+(nlstate+ndeath)*cpt;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                                         Tvar[j]. If V=sex and male is 0 and 
       for (i=1; i< nlstate ; i ++) {                                         female is 1, then  cptcode=1.*/
         l=3+(nlstate+ndeath)*cpt;      }
         fprintf(ficgp,"+$%d",l+i+1);  
       }      for (i=0; i<=cptcode; i++) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      }
     }  
   }        ij=1; 
        for (i=1; i<=ncodemax[j]; i++) {
   /* proba elementaires */        for (k=0; k<= maxncov; k++) {
    for(i=1,jk=1; i <=nlstate; i++){          if (Ndum[k] != 0) {
     for(k=1; k <=(nlstate+ndeath); k++){            nbcode[Tvar[j]][ij]=k; 
       if (k != i) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         for(j=1; j <=ncovmodel; j++){            
                    ij++;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          }
           jk++;          if (ij > ncodemax[j]) break; 
           fprintf(ficgp,"\n");        }  
         }      } 
       }    }  
     }  
     }   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
     for(jk=1; jk <=m; jk++) {   for (i=1; i<=ncovmodel-2; i++) { 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemaxpar);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
    i=1;     ij=Tvar[i];
    for(k2=1; k2<=nlstate; k2++) {     Ndum[ij]++;
      k3=i;   }
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){   ij=1;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   for (i=1; i<= maxncov; i++) {
 ij=1;     if((Ndum[i]!=0) && (i<=ncovcol)){
         for(j=3; j <=ncovmodel; j++) {       Tvaraff[ij]=i; /*For printing */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       ij++;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     }
             ij++;   }
           }   
           else   cptcoveff=ij-1; /*Number of simple covariates*/
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  }
         }  
           fprintf(ficgp,")/(1");  /*********** Health Expectancies ****************/
          
         for(k1=1; k1 <=nlstate; k1++){    void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;  {
           for(j=3; j <=ncovmodel; j++){    /* Health expectancies */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double age, agelim, hf;
             ij++;    double ***p3mat,***varhe;
           }    double **dnewm,**doldm;
           else    double *xp;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **gp, **gm;
           }    double ***gradg, ***trgradg;
           fprintf(ficgp,")");    int theta;
         }  
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    xp=vector(1,npar);
         i=i+ncovmodel;    dnewm=matrix(1,nlstate*nlstate,1,npar);
        }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      }    
    }    fprintf(ficreseij,"# Health expectancies\n");
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    fprintf(ficreseij,"# Age");
    }    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   fclose(ficgp);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
 }  /* end gnuplot */    fprintf(ficreseij,"\n");
   
     if(estepm < stepm){
 /*************** Moving average **************/      printf ("Problem %d lower than %d\n",estepm, stepm);
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){    }
     else  hstepm=estepm;   
   int i, cpt, cptcod;    /* We compute the life expectancy from trapezoids spaced every estepm months
     for (agedeb=agemin; agedeb<=fage; agedeb++)     * This is mainly to measure the difference between two models: for example
       for (i=1; i<=nlstate;i++)     * if stepm=24 months pijx are given only every 2 years and by summing them
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)     * we are calculating an estimate of the Life Expectancy assuming a linear 
           mobaverage[(int)agedeb][i][cptcod]=0.;     * progression in between and thus overestimating or underestimating according
         * to the curvature of the survival function. If, for the same date, we 
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for (i=1; i<=nlstate;i++){     * to compare the new estimate of Life expectancy with the same linear 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * hypothesis. A more precise result, taking into account a more precise
           for (cpt=0;cpt<=4;cpt++){     * curvature will be obtained if estepm is as small as stepm. */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }    /* For example we decided to compute the life expectancy with the smallest unit */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         }       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
           and note for a fixed period like estepm months */
 }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
 /************** Forecasting ******************/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       results. So we changed our mind and took the option of the best precision.
      */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    agelim=AGESUP;
   double *popeffectif,*popcount;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double ***p3mat;      /* nhstepm age range expressed in number of stepm */
   char fileresf[FILENAMELENGTH];      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  agelim=AGESUP;      /* if (stepm >= YEARM) hstepm=1;*/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        gp=matrix(0,nhstepm,1,nlstate*nlstate);
        gm=matrix(0,nhstepm,1,nlstate*nlstate);
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   if((ficresf=fopen(fileresf,"w"))==NULL) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     printf("Problem with forecast resultfile: %s\n", fileresf);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   }   
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
       /* Computing Variances of health expectancies */
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for(theta=1; theta <=npar; theta++){
     movingaverage(agedeb, fage, agemin, mobaverage);        for(i=1; i<=npar; i++){ 
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (stepm<=12) stepsize=1;    
          cptj=0;
   agelim=AGESUP;        for(j=1; j<= nlstate; j++){
            for(i=1; i<=nlstate; i++){
   hstepm=1;            cptj=cptj+1;
   hstepm=hstepm/stepm;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   yp1=modf(dateintmean,&yp);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   anprojmean=yp;            }
   yp2=modf((yp1*12),&yp);          }
   mprojmean=yp;        }
   yp1=modf((yp2*30.5),&yp);       
   jprojmean=yp;       
   if(jprojmean==0) jprojmean=1;        for(i=1; i<=npar; i++) 
   if(mprojmean==0) jprojmean=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        
          cptj=0;
   for(cptcov=1;cptcov<=i2;cptcov++){        for(j=1; j<= nlstate; j++){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for(i=1;i<=nlstate;i++){
       k=k+1;            cptj=cptj+1;
       fprintf(ficresf,"\n#******");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       }            }
       fprintf(ficresf,"******\n");          }
       fprintf(ficresf,"# StartingAge FinalAge");        }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        for(j=1; j<= nlstate*nlstate; j++)
                for(h=0; h<=nhstepm-1; h++){
                  gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          }
         fprintf(ficresf,"\n");       } 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);       
   /* End theta */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
           nhstepm = nhstepm/hstepm;  
                 for(h=0; h<=nhstepm-1; h++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<=nlstate*nlstate;j++)
           oldm=oldms;savm=savms;          for(theta=1; theta <=npar; theta++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              trgradg[h][j][theta]=gradg[h][theta][j];
               
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {       for(i=1;i<=nlstate*nlstate;i++)
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);        for(j=1;j<=nlstate*nlstate;j++)
             }          varhe[i][j][(int)age] =0.;
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;       printf("%d|",(int)age);fflush(stdout);
               for(i=1; i<=nlstate;i++) {                     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                 if (mobilav==1)       for(h=0;h<=nhstepm-1;h++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(k=0;k<=nhstepm-1;k++){
                 else {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                 }          for(i=1;i<=nlstate*nlstate;i++)
                            for(j=1;j<=nlstate*nlstate;j++)
               }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
               if (h==(int)(calagedate+12*cpt)){        }
                 fprintf(ficresf," %.3f", kk1);      }
                              /* Computing expectancies */
               }      for(i=1; i<=nlstate;i++)
             }        for(j=1; j<=nlstate;j++)
           }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         }            
       }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
   }          }
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficreseij,"%3.0f",age );
       cptj=0;
   fclose(ficresf);      for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=nlstate;j++){
 /************** Forecasting ******************/          cptj++;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
          }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      fprintf(ficreseij,"\n");
   int *popage;     
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   double *popeffectif,*popcount;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   double ***p3mat,***tabpop,***tabpopprev;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   char filerespop[FILENAMELENGTH];      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("\n");
   agelim=AGESUP;    fprintf(ficlog,"\n");
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
      free_vector(xp,1,npar);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   strcpy(filerespop,"pop");  }
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  /************ Variance ******************/
     printf("Problem with forecast resultfile: %s\n", filerespop);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   }  {
   printf("Computing forecasting: result on file '%s' \n", filerespop);    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /* double **newm;*/
     double **dnewm,**doldm;
   if (mobilav==1) {    double **dnewmp,**doldmp;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, j, nhstepm, hstepm, h, nstepm ;
     movingaverage(agedeb, fage, agemin, mobaverage);    int k, cptcode;
   }    double *xp;
     double **gp, **gm;  /* for var eij */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***gradg, ***trgradg; /*for var eij */
   if (stepm<=12) stepsize=1;    double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
   agelim=AGESUP;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
   hstepm=1;    double age,agelim, hf;
   hstepm=hstepm/stepm;    double ***mobaverage;
      int theta;
   if (popforecast==1) {    char digit[4];
     if((ficpop=fopen(popfile,"r"))==NULL) {    char digitp[25];
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }    char fileresprobmorprev[FILENAMELENGTH];
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    if(popbased==1){
     popcount=vector(0,AGESUP);      if(mobilav!=0)
            strcpy(digitp,"-populbased-mobilav-");
     i=1;        else strcpy(digitp,"-populbased-nomobil-");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    }
        else 
     imx=i;      strcpy(digitp,"-stablbased-");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(cptcov=1;cptcov<=i2;cptcov++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       k=k+1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficrespop,"\n#******");      }
       for(j=1;j<=cptcoveff;j++) {    }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    strcpy(fileresprobmorprev,"prmorprev"); 
       fprintf(ficrespop,"******\n");    sprintf(digit,"%-d",ij);
       fprintf(ficrespop,"# Age");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
          strcat(fileresprobmorprev,fileres);
       for (cpt=0; cpt<=0;cpt++) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        printf("Problem with resultfile: %s\n", fileresprobmorprev);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           nhstepm = nhstepm/hstepm;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
              fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           oldm=oldms;savm=savms;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficresprobmorprev," p.%-d SE",j);
              for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             if (h==(int) (calagedate+YEARM*cpt)) {    }  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprobmorprev,"\n");
             }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
             for(j=1; j<=nlstate+ndeath;j++) {      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
               kk1=0.;kk2=0;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
               for(i=1; i<=nlstate;i++) {                    exit(0);
                 if (mobilav==1)    }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    else{
                 else {      fprintf(ficgp,"\n# Routine varevsij");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }
                 }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
               }      printf("Problem with html file: %s\n", optionfilehtm);
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      exit(0);
                   /*fprintf(ficrespop," %.3f", kk1);    }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    else{
               }      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             }      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             for(i=1; i<=nlstate;i++){    }
               kk1=0.;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                 }    fprintf(ficresvij,"# Age");
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficresvij,"\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    xp=vector(1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    dnewm=matrix(1,nlstate,1,npar);
         }    doldm=matrix(1,nlstate,1,nlstate);
       }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /******/  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    gpp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      gmp=vector(nlstate+1,nlstate+ndeath);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;    if(estepm < stepm){
                printf ("Problem %d lower than %d\n",estepm, stepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    else  hstepm=estepm;   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* For example we decided to compute the life expectancy with the smallest unit */
           for (h=0; h<=nhstepm; h++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             if (h==(int) (calagedate+YEARM*cpt)) {       nhstepm is the number of hstepm from age to agelim 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       nstepm is the number of stepm from age to agelin. 
             }       Look at hpijx to understand the reason of that which relies in memory size
             for(j=1; j<=nlstate+ndeath;j++) {       and note for a fixed period like k years */
               kk1=0.;kk2=0;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               for(i=1; i<=nlstate;i++) {                     survival function given by stepm (the optimization length). Unfortunately it
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           means that if the survival funtion is printed every two years of age and if
               }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);       results. So we changed our mind and took the option of the best precision.
             }    */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);      for(theta=1; theta <=npar; theta++){
     free_vector(popcount,0,AGESUP);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fclose(ficrespop);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }  
         if (popbased==1) {
 /***********************************************/          if(mobilav ==0){
 /**************** Main Program *****************/            for(i=1; i<=nlstate;i++)
 /***********************************************/              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
 int main(int argc, char *argv[])            for(i=1; i<=nlstate;i++)
 {              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        }
   double agedeb, agefin,hf;    
   double agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   double fret;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   double **xi,tmp,delta;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   double dum; /* Dummy variable */        }
   double ***p3mat;        /* This for computing probability of death (h=1 means
   int *indx;           computed over hstepm matrices product = hstepm*stepm months) 
   char line[MAXLINE], linepar[MAXLINE];           as a weighted average of prlim.
   char title[MAXLINE];        */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        }    
         /* end probability of death */
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   char popfile[FILENAMELENGTH];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   int firstobs=1, lastobs=10;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int sdeb, sfin; /* Status at beginning and end */   
   int c,  h , cpt,l;        if (popbased==1) {
   int ju,jl, mi;          if(mobilav ==0){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            for(i=1; i<=nlstate;i++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;              prlim[i][i]=probs[(int)age][i][ij];
   int mobilav=0,popforecast=0;          }else{ /* mobilav */ 
   int hstepm, nhstepm;            for(i=1; i<=nlstate;i++)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;  
   double **prlim;        for(j=1; j<= nlstate; j++){
   double *severity;          for(h=0; h<=nhstepm; h++){
   double ***param; /* Matrix of parameters */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   double  *p;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   double **matcov; /* Matrix of covariance */          }
   double ***delti3; /* Scale */        }
   double *delti; /* Scale */        /* This for computing probability of death (h=1 means
   double ***eij, ***vareij;           computed over hstepm matrices product = hstepm*stepm months) 
   double **varpl; /* Variances of prevalence limits by age */           as a weighted average of prlim.
   double *epj, vepp;        */
   double kk1, kk2;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   char version[80]="Imach version 0.71c, March 2002, INED-EUROREVES ";        /* end probability of death */
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
   char z[1]="c", occ;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
 #include <sys/time.h>          }
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   /* long total_usecs;        }
   struct timeval start_time, end_time;  
        } /* End theta */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   printf("\n%s",version);      for(h=0; h<=nhstepm; h++) /* veij */
   if(argc <=1){        for(j=1; j<=nlstate;j++)
     printf("\nEnter the parameter file name: ");          for(theta=1; theta <=npar; theta++)
     scanf("%s",pathtot);            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
   else{      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     strcpy(pathtot,argv[1]);        for(theta=1; theta <=npar; theta++)
   }          trgradgp[j][theta]=gradgp[theta][j];
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /* cutv(path,optionfile,pathtot,'\\');*/      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          vareij[i][j][(int)age] =0.;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);      for(h=0;h<=nhstepm;h++){
   replace(pathc,path);        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 /*-------- arguments in the command line --------*/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
   strcpy(fileres,"r");            for(j=1;j<=nlstate;j++)
   strcat(fileres, optionfilefiname);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcat(fileres,".txt");    /* Other files have txt extension */        }
       }
   /*---------arguments file --------*/    
       /* pptj */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     printf("Problem with optionfile %s\n",optionfile);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     goto end;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   strcpy(filereso,"o");      /* end ppptj */
   strcat(filereso,fileres);      /*  x centered again */
   if((ficparo=fopen(filereso,"w"))==NULL) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   }   
       if (popbased==1) {
   /* Reads comments: lines beginning with '#' */        if(mobilav ==0){
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);            prlim[i][i]=probs[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);        }else{ /* mobilav */ 
     puts(line);          for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);            prlim[i][i]=mobaverage[(int)age][i][ij];
   }        }
   ungetc(c,ficpar);      }
                
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      /* This for computing probability of death (h=1 means
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);         as a weighted average of prlim.
 while((c=getc(ficpar))=='#' && c!= EOF){      */
     ungetc(c,ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fgets(line, MAXLINE, ficpar);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     puts(line);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     fputs(line,ficparo);      }    
   }      /* end probability of death */
   ungetc(c,ficpar);  
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
          for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   covar=matrix(0,NCOVMAX,1,n);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   cptcovn=0;        for(i=1; i<=nlstate;i++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
   ncovmodel=2+cptcovn;      } 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fprintf(ficresprobmorprev,"\n");
    
   /* Read guess parameters */      fprintf(ficresvij,"%.0f ",age );
   /* Reads comments: lines beginning with '#' */      for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate;j++){
     ungetc(c,ficpar);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      fprintf(ficresvij,"\n");
     fputs(line,ficparo);      free_matrix(gp,0,nhstepm,1,nlstate);
   }      free_matrix(gm,0,nhstepm,1,nlstate);
   ungetc(c,ficpar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(i=1; i <=nlstate; i++)    } /* End age */
     for(j=1; j <=nlstate+ndeath-1; j++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_vector(gmp,nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"%1d%1d",i1,j1);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       printf("%1d%1d",i,j);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         fscanf(ficpar," %lf",&param[i][j][k]);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         printf(" %lf",param[i][j][k]);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         fprintf(ficparo," %lf",param[i][j][k]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fscanf(ficpar,"\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       printf("\n");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
       fprintf(ficparo,"\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
     }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   p=param[1][1];  */
      fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(xp,1,npar);
     ungetc(c,ficpar);    free_matrix(doldm,1,nlstate,1,nlstate);
     fgets(line, MAXLINE, ficpar);    free_matrix(dnewm,1,nlstate,1,npar);
     puts(line);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fclose(ficgp);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fclose(fichtm);
   for(i=1; i <=nlstate; i++){  }  /* end varevsij */
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /************ Variance of prevlim ******************/
       printf("%1d%1d",i,j);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
       fprintf(ficparo,"%1d%1d",i1,j1);  {
       for(k=1; k<=ncovmodel;k++){    /* Variance of prevalence limit */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         printf(" %le",delti3[i][j][k]);    double **newm;
         fprintf(ficparo," %le",delti3[i][j][k]);    double **dnewm,**doldm;
       }    int i, j, nhstepm, hstepm;
       fscanf(ficpar,"\n");    int k, cptcode;
       printf("\n");    double *xp;
       fprintf(ficparo,"\n");    double *gp, *gm;
     }    double **gradg, **trgradg;
   }    double age,agelim;
   delti=delti3[1][1];    int theta;
       
   /* Reads comments: lines beginning with '#' */    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvpl,"# Age");
     ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
     puts(line);    fprintf(ficresvpl,"\n");
     fputs(line,ficparo);  
   }    xp=vector(1,npar);
   ungetc(c,ficpar);    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   matcov=matrix(1,npar,1,npar);    
   for(i=1; i <=npar; i++){    hstepm=1*YEARM; /* Every year of age */
     fscanf(ficpar,"%s",&str);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     printf("%s",str);    agelim = AGESUP;
     fprintf(ficparo,"%s",str);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(j=1; j <=i; j++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fscanf(ficpar," %le",&matcov[i][j]);      if (stepm >= YEARM) hstepm=1;
       printf(" %.5le",matcov[i][j]);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fprintf(ficparo," %.5le",matcov[i][j]);      gradg=matrix(1,npar,1,nlstate);
     }      gp=vector(1,nlstate);
     fscanf(ficpar,"\n");      gm=vector(1,nlstate);
     printf("\n");  
     fprintf(ficparo,"\n");      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient */
   for(i=1; i <=npar; i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for(j=i+1;j<=npar;j++)        }
       matcov[i][j]=matcov[j][i];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            for(i=1;i<=nlstate;i++)
   printf("\n");          gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
     /*-------- Rewriting paramater file ----------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      strcpy(rfileres,"r");    /* "Rparameterfile */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        for(i=1;i<=nlstate;i++)
      strcat(rfileres,".");    /* */          gm[i] = prlim[i][i];
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {        for(i=1;i<=nlstate;i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     }      } /* End theta */
     fprintf(ficres,"#%s\n",version);  
          trgradg =matrix(1,nlstate,1,npar);
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {      for(j=1; j<=nlstate;j++)
       printf("Problem with datafile: %s\n", datafile);goto end;        for(theta=1; theta <=npar; theta++)
     }          trgradg[j][theta]=gradg[theta][j];
   
     n= lastobs;      for(i=1;i<=nlstate;i++)
     severity = vector(1,maxwav);        varpl[i][(int)age] =0.;
     outcome=imatrix(1,maxwav+1,1,n);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     num=ivector(1,n);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     moisnais=vector(1,n);      for(i=1;i<=nlstate;i++)
     annais=vector(1,n);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     moisdc=vector(1,n);  
     andc=vector(1,n);      fprintf(ficresvpl,"%.0f ",age );
     agedc=vector(1,n);      for(i=1; i<=nlstate;i++)
     cod=ivector(1,n);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     weight=vector(1,n);      fprintf(ficresvpl,"\n");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      free_vector(gp,1,nlstate);
     mint=matrix(1,maxwav,1,n);      free_vector(gm,1,nlstate);
     anint=matrix(1,maxwav,1,n);      free_matrix(gradg,1,npar,1,nlstate);
     s=imatrix(1,maxwav+1,1,n);      free_matrix(trgradg,1,nlstate,1,npar);
     adl=imatrix(1,maxwav+1,1,n);        } /* End age */
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     i=1;    free_matrix(dnewm,1,nlstate,1,nlstate);
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {  }
          
         for (j=maxwav;j>=1;j--){  /************ Variance of one-step probabilities  ******************/
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
           strcpy(line,stra);  {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int i, j=0,  i1, k1, l1, t, tj;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int k2, l2, j1,  z1;
         }    int k=0,l, cptcode;
            int first=1, first1;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    double **dnewm,**doldm;
     double *xp;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double *gp, *gm;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double **gradg, **trgradg;
     double **mu;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    double age,agelim, cov[NCOVMAX];
         for (j=ncov;j>=1;j--){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int theta;
         }    char fileresprob[FILENAMELENGTH];
         num[i]=atol(stra);    char fileresprobcov[FILENAMELENGTH];
            char fileresprobcor[FILENAMELENGTH];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    double ***varpij;
   
         i=i+1;    strcpy(fileresprob,"prob"); 
       }    strcat(fileresprob,fileres);
     }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     /* printf("ii=%d", ij);      printf("Problem with resultfile: %s\n", fileresprob);
        scanf("%d",i);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   imx=i-1; /* Number of individuals */    }
     strcpy(fileresprobcov,"probcov"); 
   /* for (i=1; i<=imx; i++){    strcat(fileresprobcov,fileres);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      printf("Problem with resultfile: %s\n", fileresprobcov);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }    }
     strcpy(fileresprobcor,"probcor"); 
     for (i=1; i<=imx; i++)    strcat(fileresprobcor,fileres);
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
   /* Calculation of the number of parameter from char model*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   Tvar=ivector(1,15);    }
   Tprod=ivector(1,15);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   Tvaraff=ivector(1,15);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   Tvard=imatrix(1,15,1,2);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   Tage=ivector(1,15);          fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   if (strlen(model) >1){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     j=0, j1=0, k1=1, k2=1;    
     j=nbocc(model,'+');    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     j1=nbocc(model,'*');    fprintf(ficresprob,"# Age");
     cptcovn=j+1;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     cptcovprod=j1;    fprintf(ficresprobcov,"# Age");
        fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
        fprintf(ficresprobcov,"# Age");
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);    for(i=1; i<=nlstate;i++)
       goto end;      for(j=1; j<=(nlstate+ndeath);j++){
     }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
            fprintf(ficresprobcov," p%1d-%1d ",i,j);
     for(i=(j+1); i>=1;i--){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       cutv(stra,strb,modelsav,'+');      }  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   /* fprintf(ficresprob,"\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fprintf(ficresprobcov,"\n");
       /*scanf("%d",i);*/    fprintf(ficresprobcor,"\n");
       if (strchr(strb,'*')) {   */
         cutv(strd,strc,strb,'*');   xp=vector(1,npar);
         if (strcmp(strc,"age")==0) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           cptcovprod--;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           cutv(strb,stre,strd,'V');    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           Tvar[i]=atoi(stre);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           cptcovage++;    first=1;
             Tage[cptcovage]=i;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
             /*printf("stre=%s ", stre);*/      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
         }      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         else if (strcmp(strd,"age")==0) {      exit(0);
           cptcovprod--;    }
           cutv(strb,stre,strc,'V');    else{
           Tvar[i]=atoi(stre);      fprintf(ficgp,"\n# Routine varprob");
           cptcovage++;    }
           Tage[cptcovage]=i;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
         }      printf("Problem with html file: %s\n", optionfilehtm);
         else {      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
           cutv(strb,stre,strc,'V');      exit(0);
           Tvar[i]=ncov+k1;    }
           cutv(strb,strc,strd,'V');    else{
           Tprod[k1]=i;      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           Tvard[k1][1]=atoi(strc);      fprintf(fichtm,"\n");
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           for (k=1; k<=lastobs;k++)      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;    }
           k2=k2+2;  
         }    cov[1]=1;
       }    tj=cptcoveff;
       else {    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    j1=0;
        /*  scanf("%d",i);*/    for(t=1; t<=tj;t++){
       cutv(strd,strc,strb,'V');      for(i1=1; i1<=ncodemax[t];i1++){ 
       Tvar[i]=atoi(strc);        j1++;
       }        if  (cptcovn>0) {
       strcpy(modelsav,stra);            fprintf(ficresprob, "\n#********** Variable "); 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         scanf("%d",i);*/          fprintf(ficresprob, "**********\n#\n");
     }          fprintf(ficresprobcov, "\n#********** Variable "); 
 }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcov, "**********\n#\n");
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          
   printf("cptcovprod=%d ", cptcovprod);          fprintf(ficgp, "\n#********** Variable "); 
   scanf("%d ",i);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fclose(fic);          fprintf(ficgp, "**********\n#\n");
           
     /*  if(mle==1){*/          
     if (weightopt != 1) { /* Maximisation without weights*/          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       for(i=1;i<=n;i++) weight[i]=1.0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     /*-calculation of age at interview from date of interview and age at death -*/          
     agev=matrix(1,maxwav,1,imx);          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    for (i=1; i<=imx; i++)          fprintf(ficresprobcor, "**********\n#");    
      for(m=2; (m<= maxwav); m++)        }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        
          anint[m][i]=9999;        for (age=bage; age<=fage; age ++){ 
          s[m][i]=-1;          cov[2]=age;
        }          for (k=1; k<=cptcovn;k++) {
                cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     for (i=1; i<=imx; i++)  {          }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(m=1; (m<= maxwav); m++){          for (k=1; k<=cptcovprod;k++)
         if(s[m][i] >0){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           if (s[m][i] == nlstate+1) {          
             if(agedc[i]>0)          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
               if(moisdc[i]!=99 && andc[i]!=9999)          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               agev[m][i]=agedc[i];          gp=vector(1,(nlstate)*(nlstate+ndeath));
             else {          gm=vector(1,(nlstate)*(nlstate+ndeath));
               if (andc[i]!=9999){      
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          for(theta=1; theta <=npar; theta++){
               agev[m][i]=-1;            for(i=1; i<=npar; i++)
               }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             }            
           }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           else if(s[m][i] !=9){ /* Should no more exist */            
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            k=0;
             if(mint[m][i]==99 || anint[m][i]==9999)            for(i=1; i<= (nlstate); i++){
               agev[m][i]=1;              for(j=1; j<=(nlstate+ndeath);j++){
             else if(agev[m][i] <agemin){                k=k+1;
               agemin=agev[m][i];                gp[k]=pmmij[i][j];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              }
             }            }
             else if(agev[m][i] >agemax){            
               agemax=agev[m][i];            for(i=1; i<=npar; i++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
             }      
             /*agev[m][i]=anint[m][i]-annais[i];*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             /*   agev[m][i] = age[i]+2*m;*/            k=0;
           }            for(i=1; i<=(nlstate); i++){
           else { /* =9 */              for(j=1; j<=(nlstate+ndeath);j++){
             agev[m][i]=1;                k=k+1;
             s[m][i]=-1;                gm[k]=pmmij[i][j];
           }              }
         }            }
         else /*= 0 Unknown */       
           agev[m][i]=1;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
              }
     }  
     for (i=1; i<=imx; i++)  {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       for(m=1; (m<= maxwav); m++){            for(theta=1; theta <=npar; theta++)
         if (s[m][i] > (nlstate+ndeath)) {              trgradg[j][theta]=gradg[theta][j];
           printf("Error: Wrong value in nlstate or ndeath\n");            
           goto end;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
         }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
     free_vector(severity,1,maxwav);          pmij(pmmij,cov,ncovmodel,x,nlstate);
     free_imatrix(outcome,1,maxwav+1,1,n);          
     free_vector(moisnais,1,n);          k=0;
     free_vector(annais,1,n);          for(i=1; i<=(nlstate); i++){
     /* free_matrix(mint,1,maxwav,1,n);            for(j=1; j<=(nlstate+ndeath);j++){
        free_matrix(anint,1,maxwav,1,n);*/              k=k+1;
     free_vector(moisdc,1,n);              mu[k][(int) age]=pmmij[i][j];
     free_vector(andc,1,n);            }
           }
              for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     wav=ivector(1,imx);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              varpij[i][j][(int)age] = doldm[i][j];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
              /*printf("\n%d ",(int)age);
     /* Concatenates waves */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          fprintf(ficresprob,"\n%d ",(int)age);
       ncodemax[1]=1;          fprintf(ficresprobcov,"\n%d ",(int)age);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          fprintf(ficresprobcor,"\n%d ",(int)age);
        
    codtab=imatrix(1,100,1,10);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
    h=0;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
    m=pow(2,cptcoveff);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
    for(k=1;k<=cptcoveff; k++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
      for(i=1; i <=(m/pow(2,k));i++){          }
        for(j=1; j <= ncodemax[k]; j++){          i=0;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          for (k=1; k<=(nlstate);k++){
            h++;            for (l=1; l<=(nlstate+ndeath);l++){ 
            if (h>m) h=1;codtab[h][k]=j;              i=i++;
          }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
        }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
      }              for (j=1; j<=i;j++){
    }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
    /*for(i=1; i <=m ;i++){            }
      for(k=1; k <=cptcovn; k++){          }/* end of loop for state */
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);        } /* end of loop for age */
      }  
      printf("\n");        /* Confidence intervalle of pij  */
    }        /*
    scanf("%d",i);*/          fprintf(ficgp,"\nset noparametric;unset label");
              fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
    /* Calculates basic frequencies. Computes observed prevalence at single age          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
        and prints on file fileres'p'. */          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
              fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        first1=1;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for (k2=1; k2<=(nlstate);k2++){
                for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     /* For Powell, parameters are in a vector p[] starting at p[1]            if(l2==k2) continue;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            j=(k2-1)*(nlstate+ndeath)+l2;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     if(mle==1){                if(l1==k1) continue;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                i=(k1-1)*(nlstate+ndeath)+l1;
     }                if(i<=j) continue;
                    for (age=bage; age<=fage; age ++){ 
     /*--------- results files --------------*/                  if ((int)age %5==0){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, weightopt,model);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
    jk=1;                    mu1=mu[i][(int) age]/stepm*YEARM ;
    fprintf(ficres,"# Parameters\n");                    mu2=mu[j][(int) age]/stepm*YEARM;
    printf("# Parameters\n");                    c12=cv12/sqrt(v1*v2);
    for(i=1,jk=1; i <=nlstate; i++){                    /* Computing eigen value of matrix of covariance */
      for(k=1; k <=(nlstate+ndeath); k++){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
        if (k != i)                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
          {                    /* Eigen vectors */
            printf("%d%d ",i,k);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
            fprintf(ficres,"%1d%1d ",i,k);                    /*v21=sqrt(1.-v11*v11); *//* error */
            for(j=1; j <=ncovmodel; j++){                    v21=(lc1-v1)/cv12*v11;
              printf("%f ",p[jk]);                    v12=-v21;
              fprintf(ficres,"%f ",p[jk]);                    v22=v11;
              jk++;                    tnalp=v21/v11;
            }                    if(first1==1){
            printf("\n");                      first1=0;
            fprintf(ficres,"\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
          }                    }
      }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
    }                    /*printf(fignu*/
  if(mle==1){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     /* Computing hessian and covariance matrix */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     ftolhess=ftol; /* Usually correct */                    if(first==1){
     hesscov(matcov, p, npar, delti, ftolhess, func);                      first=0;
  }                      fprintf(ficgp,"\nset parametric;unset label");
     fprintf(ficres,"# Scales\n");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     printf("# Scales\n");                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      for(i=1,jk=1; i <=nlstate; i++){                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
       for(j=1; j <=nlstate+ndeath; j++){                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
         if (j!=i) {                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           fprintf(ficres,"%1d%1d",i,j);                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
           printf("%1d%1d",i,j);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           for(k=1; k<=ncovmodel;k++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
             printf(" %.5e",delti[jk]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             fprintf(ficres," %.5e",delti[jk]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             jk++;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           }                    }else{
           printf("\n");                      first=0;
           fprintf(ficres,"\n");                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
         }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                  mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     k=1;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     fprintf(ficres,"# Covariance\n");                    }/* if first */
     printf("# Covariance\n");                  } /* age mod 5 */
     for(i=1;i<=npar;i++){                } /* end loop age */
       /*  if (k>nlstate) k=1;                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
       i1=(i-1)/(ncovmodel*nlstate)+1;                first=1;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              } /*l12 */
       printf("%s%d%d",alph[k],i1,tab[i]);*/            } /* k12 */
       fprintf(ficres,"%3d",i);          } /*l1 */
       printf("%3d",i);        }/* k1 */
       for(j=1; j<=i;j++){      } /* loop covariates */
         fprintf(ficres," %.5e",matcov[i][j]);    }
         printf(" %.5e",matcov[i][j]);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       fprintf(ficres,"\n");    free_vector(xp,1,npar);
       printf("\n");    fclose(ficresprob);
       k++;    fclose(ficresprobcov);
     }    fclose(ficresprobcor);
        fclose(ficgp);
     while((c=getc(ficpar))=='#' && c!= EOF){    fclose(fichtm);
       ungetc(c,ficpar);  }
       fgets(line, MAXLINE, ficpar);  
       puts(line);  
       fputs(line,ficparo);  /******************* Printing html file ***********/
     }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     ungetc(c,ficpar);                    int lastpass, int stepm, int weightopt, char model[],\
                      int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemaxpar, &bage, &fage);                    int popforecast, int estepm ,\
                        double jprev1, double mprev1,double anprev1, \
     if (fage <= 2) {                    double jprev2, double mprev2,double anprev2){
       bage = agemin;    int jj1, k1, i1, cpt;
       fage = agemaxpar;    /*char optionfilehtm[FILENAMELENGTH];*/
     }    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
          printf("Problem with %s \n",optionfilehtm), exit(0);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);    }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);  
       fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     while((c=getc(ficpar))=='#' && c!= EOF){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
     ungetc(c,ficpar);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
     fgets(line, MAXLINE, ficpar);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
     puts(line);   - Life expectancies by age and initial health status (estepm=%2d months): \
     fputs(line,ficparo);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
   }    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   ungetc(c,ficpar);  
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   m=cptcoveff;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        
   while((c=getc(ficpar))=='#' && c!= EOF){   jj1=0;
     ungetc(c,ficpar);   for(k1=1; k1<=m;k1++){
     fgets(line, MAXLINE, ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     puts(line);       jj1++;
     fputs(line,ficparo);       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   ungetc(c,ficpar);         for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   fscanf(ficpar,"pop_based=%d\n",&popbased);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
   fprintf(ficparo,"pop_based=%d\n",popbased);         /* Quasi-incidences */
   fprintf(ficres,"pop_based=%d\n",popbased);         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
     ungetc(c,ficpar);         /* Stable prevalence in each health state */
     fgets(line, MAXLINE, ficpar);         for(cpt=1; cpt<nlstate;cpt++){
     puts(line);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     fputs(line,ficparo);  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   }         }
   ungetc(c,ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): e%s%d.png<br>\
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
 while((c=getc(ficpar))=='#' && c!= EOF){     } /* end i1 */
     ungetc(c,ficpar);   }/* End k1 */
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"</ul>");
     puts(line);  
     fputs(line,ficparo);  
   }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   ungetc(c,ficpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
 /*------------ gnuplot -------------*/  /*  if(popforecast==1) fprintf(fichtm,"\n */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemaxpar,fage, pathc,p);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
    /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 /*------------ free_vector  -------------*/  /*      <br>",fileres,fileres,fileres,fileres); */
  chdir(path);  /*  else  */
    /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
  free_ivector(wav,1,imx);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     m=cptcoveff;
  free_ivector(num,1,n);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/   jj1=0;
  fclose(ficparo);   for(k1=1; k1<=m;k1++){
  fclose(ficres);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
 /*--------- index.htm --------*/       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*--------------- Prevalence limit --------------*/       }
         for(cpt=1; cpt<=nlstate;cpt++) {
   strcpy(filerespl,"pl");         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   strcat(filerespl,fileres);  interval) in state (%d): v%s%d%d.png <br>\
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       }
   }     } /* end i1 */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   }/* End k1 */
   fprintf(ficrespl,"#Prevalence limit\n");   fprintf(fichtm,"</ul>");
   fprintf(ficrespl,"#Age ");  fclose(fichtm);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  }
   fprintf(ficrespl,"\n");  
    /******************* Gnuplot file **************/
   prlim=matrix(1,nlstate,1,nlstate);  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int ng;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      printf("Problem with file %s",optionfilegnuplot);
   k=0;      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
   agebase=agemin;    }
   agelim=agemaxpar;  
   ftolpl=1.e-10;    /*#ifdef windows */
   i1=cptcoveff;      fprintf(ficgp,"cd \"%s\" \n",pathc);
   if (cptcovn < 1){i1=1;}      /*#endif */
   m=pow(2,cptcoveff);
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   /* 1eme*/
         k=k+1;    for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficrespl,"\n#******");       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         for(j=1;j<=cptcoveff;j++)       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");       for (i=1; i<= nlstate ; i ++) {
                 if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         for (age=agebase; age<=agelim; age++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       }
           fprintf(ficrespl,"%.0f",age );       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
           for(i=1; i<=nlstate;i++)       for (i=1; i<= nlstate ; i ++) {
           fprintf(ficrespl," %.5f", prlim[i][i]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespl,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }       } 
       }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     }       for (i=1; i<= nlstate ; i ++) {
   fclose(ficrespl);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   /*------------- h Pij x at various ages ------------*/       }  
         fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);     }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /*2 eme*/
   }    
   printf("Computing pij: result on file '%s' \n", filerespij);    for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   /*if (stepm<=24) stepsize=2;*/      
       for (i=1; i<= nlstate+1 ; i ++) {
   agelim=AGESUP;        k=2*i;
   hstepm=stepsize*YEARM; /* Every year of age */        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   k=0;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){        }   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       k=k+1;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficrespij,"\n#****** ");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for(j=1;j<=cptcoveff;j++)        for (j=1; j<= nlstate+1 ; j ++) {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrespij,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
                }   
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficgp,"\" t\"\" w l 0,");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (j=1; j<= nlstate+1 ; j ++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           oldm=oldms;savm=savms;          else fprintf(ficgp," \%%*lf (\%%*lf)");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }   
           fprintf(ficrespij,"# Age");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           for(i=1; i<=nlstate;i++)        else fprintf(ficgp,"\" t\"\" w l 0,");
             for(j=1; j<=nlstate+ndeath;j++)      }
               fprintf(ficrespij," %1d-%1d",i,j);    }
           fprintf(ficrespij,"\n");    
           for (h=0; h<=nhstepm; h++){    /*3eme*/
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    
             for(i=1; i<=nlstate;i++)    for (k1=1; k1<= m ; k1 ++) { 
               for(j=1; j<=nlstate+ndeath;j++)      for (cpt=1; cpt<= nlstate ; cpt ++) {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        k=2+nlstate*(2*cpt-2);
             fprintf(ficrespij,"\n");        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           }        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           fprintf(ficrespij,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/          
         */
   fclose(ficrespij);        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
   /*---------- Forecasting ------------------*/        } 
   if((stepm == 1) && (strcmp(model,".")==0)){      }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    
     free_matrix(mint,1,maxwav,1,n);    /* CV preval stable (period) */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    for (k1=1; k1<= m ; k1 ++) { 
     free_vector(weight,1,n);}      for (cpt=1; cpt<=nlstate ; cpt ++) {
   else{        k=3;
     erreur=108;        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
   }        
          for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
   /*---------- Health expectancies and variances ------------*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
   strcpy(filerest,"t");        l=3+(nlstate+ndeath)*cpt;
   strcat(filerest,fileres);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
   if((ficrest=fopen(filerest,"w"))==NULL) {        for (i=1; i< nlstate ; i ++) {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          l=3+(nlstate+ndeath)*cpt;
   }          fprintf(ficgp,"+$%d",l+i+1);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
   strcpy(filerese,"e");    }  
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {    /* proba elementaires */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    for(i=1,jk=1; i <=nlstate; i++){
   }      for(k=1; k <=(nlstate+ndeath); k++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
  strcpy(fileresv,"v");            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   strcat(fileresv,fileres);            jk++; 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            fprintf(ficgp,"\n");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          }
   }        }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      }
      }
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       for(jk=1; jk <=m; jk++) {
       k=k+1;         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
       fprintf(ficrest,"\n#****** ");         if (ng==2)
       for(j=1;j<=cptcoveff;j++)           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         else
       fprintf(ficrest,"******\n");           fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       fprintf(ficreseij,"\n#****** ");         i=1;
       for(j=1;j<=cptcoveff;j++)         for(k2=1; k2<=nlstate; k2++) {
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);           k3=i;
       fprintf(ficreseij,"******\n");           for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
       fprintf(ficresvij,"\n#****** ");               if(ng==2)
       for(j=1;j<=cptcoveff;j++)                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);               else
       fprintf(ficresvij,"******\n");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);               for(j=3; j <=ncovmodel; j++) {
       oldm=oldms;savm=savms;                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                   ij++;
       oldm=oldms;savm=savms;                 }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                 else
                       fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                 fprintf(ficgp,")/(1");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");               
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);               for(k1=1; k1 <=nlstate; k1++){   
       fprintf(ficrest,"\n");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
       hf=1;                 for(j=3; j <=ncovmodel; j++){
       if (stepm >= YEARM) hf=stepm/YEARM;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       epj=vector(1,nlstate+1);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       for(age=bage; age <=fage ;age++){                     ij++;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                   }
         if (popbased==1) {                   else
           for(i=1; i<=nlstate;i++)                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
             prlim[i][i]=probs[(int)age][i][k];                 }
         }                 fprintf(ficgp,")");
                       }
         fprintf(ficrest," %.0f",age);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {               i=i+ncovmodel;
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];             }
           }           } /* end k */
           epj[nlstate+1] +=epj[j];         } /* end k2 */
         }       } /* end jk */
         for(i=1, vepp=0.;i <=nlstate;i++)     } /* end ng */
           for(j=1;j <=nlstate;j++)     fclose(ficgp); 
             vepp += vareij[i][j][(int)age];  }  /* end gnuplot */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  /*************** Moving average **************/
         }  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         fprintf(ficrest,"\n");  
       }    int i, cpt, cptcod;
     }    int modcovmax =1;
   }    int mobilavrange, mob;
     double age;
   fclose(ficreseij);  
   fclose(ficresvij);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   fclose(ficrest);                             a covariate has 2 modalities */
   fclose(ficpar);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   free_vector(epj,1,nlstate+1);  
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   /*------- Variance limit prevalence------*/        if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
   strcpy(fileresvpl,"vpl");      for (age=bage; age<=fage; age++)
   strcat(fileresvpl,fileres);        for (i=1; i<=nlstate;i++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     exit(0);      /* We keep the original values on the extreme ages bage, fage and for 
   }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);         we use a 5 terms etc. until the borders are no more concerned. 
       */ 
   k=0;      for (mob=3;mob <=mobilavrange;mob=mob+2){
   for(cptcov=1;cptcov<=i1;cptcov++){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (i=1; i<=nlstate;i++){
       k=k+1;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       fprintf(ficresvpl,"\n#****** ");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       for(j=1;j<=cptcoveff;j++)                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       fprintf(ficresvpl,"******\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                      }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       oldm=oldms;savm=savms;            }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          }
     }        }/* end age */
  }      }/* end mob */
     }else return -1;
   fclose(ficresvpl);    return 0;
   }/* End movingaverage */
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
    /************** Forecasting ******************/
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /* proj1, year, month, day of starting projection 
         agemin, agemax range of age
         dateprev1 dateprev2 range of dates during which prevalence is computed
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       anproj2 year of en of projection (same day and month as proj1).
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    int *popage;
      double agec; /* generic age */
   free_matrix(matcov,1,npar,1,npar);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   free_vector(delti,1,npar);    double *popeffectif,*popcount;
   free_matrix(agev,1,maxwav,1,imx);    double ***p3mat;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   if(erreur >0)  
     printf("End of Imach with error %d\n",erreur);    agelim=AGESUP;
   else   printf("End of Imach\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   
      strcpy(fileresf,"f"); 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    strcat(fileresf,fileres);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    if((ficresf=fopen(fileresf,"w"))==NULL) {
   /*------ End -----------*/      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
  end:    printf("Computing forecasting: result on file '%s' \n", fileresf);
 #ifdef windows    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   /* chdir(pathcd);*/  
 #endif    if (cptcoveff==0) ncodemax[cptcoveff]=1;
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/    if (mobilav!=0) {
  /*system("cd ../gp37mgw");*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  strcpy(plotcmd,GNUPLOTPROGRAM);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  strcat(plotcmd," ");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  strcat(plotcmd,optionfilegnuplot);      }
  system(plotcmd);    }
   
 #ifdef windows    stepsize=(int) (stepm+YEARM-1)/YEARM;
   while (z[0] != 'q') {    if (stepm<=12) stepsize=1;
     chdir(path);    if(estepm < stepm){
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      printf ("Problem %d lower than %d\n",estepm, stepm);
     scanf("%s",z);    }
     if (z[0] == 'c') system("./imach");    else  hstepm=estepm;   
     else if (z[0] == 'e') {  
       chdir(path);    hstepm=hstepm/stepm; 
       system(optionfilehtm);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     }                                 fractional in yp1 */
     else if (z[0] == 'q') exit(0);    anprojmean=yp;
   }    yp2=modf((yp1*12),&yp);
 #endif    mprojmean=yp;
 }    yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("Localtime (at start)=%s",strt); 
     fprintf(ficlog,"Localtime (at start)=%s",strt); 
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get ipmx number of contributions and sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",\
             version,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.32  
changed lines
  Added in v.1.85


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>