Diff for /imach/src/imach.c between versions 1.273 and 1.338

version 1.273, 2017/06/27 11:06:02 version 1.338, 2022/09/04 17:40:33
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.338  2022/09/04 17:40:33  brouard
     Summary: 0.99r36
   
     * imach.c (Module): Now the easy runs i.e. without result or
     model=1+age only did not work. The defautl combination should be 1
     and not 0 because everything hasn't been tranformed yet.
   
     Revision 1.337  2022/09/02 14:26:02  brouard
     Summary: version 0.99r35
   
     * src/imach.c: Version 0.99r35 because it outputs same results with
     1+age+V1+V1*age for females and 1+age for females only
     (education=1 noweight)
   
     Revision 1.336  2022/08/31 09:52:36  brouard
     *** empty log message ***
   
     Revision 1.335  2022/08/31 08:23:16  brouard
     Summary: improvements...
   
     Revision 1.334  2022/08/25 09:08:41  brouard
     Summary: In progress for quantitative
   
     Revision 1.333  2022/08/21 09:10:30  brouard
     * src/imach.c (Module): Version 0.99r33 A lot of changes in
     reassigning covariates: my first idea was that people will always
     use the first covariate V1 into the model but in fact they are
     producing data with many covariates and can use an equation model
     with some of the covariate; it means that in a model V2+V3 instead
     of codtabm(k,Tvaraff[j]) which calculates for combination k, for
     three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact
     the equation model is restricted to two variables only (V2, V3)
     and the combination for V2 should be codtabm(k,1) instead of
     (codtabm(k,2), and the code should be
     codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been
     made. All of these should be simplified once a day like we did in
     hpxij() for example by using precov[nres] which is computed in
     decoderesult for each nres of each resultline. Loop should be done
     on the equation model globally by distinguishing only product with
     age (which are changing with age) and no more on type of
     covariates, single dummies, single covariates.
   
     Revision 1.332  2022/08/21 09:06:25  brouard
     Summary: Version 0.99r33
   
     * src/imach.c (Module): Version 0.99r33 A lot of changes in
     reassigning covariates: my first idea was that people will always
     use the first covariate V1 into the model but in fact they are
     producing data with many covariates and can use an equation model
     with some of the covariate; it means that in a model V2+V3 instead
     of codtabm(k,Tvaraff[j]) which calculates for combination k, for
     three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact
     the equation model is restricted to two variables only (V2, V3)
     and the combination for V2 should be codtabm(k,1) instead of
     (codtabm(k,2), and the code should be
     codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been
     made. All of these should be simplified once a day like we did in
     hpxij() for example by using precov[nres] which is computed in
     decoderesult for each nres of each resultline. Loop should be done
     on the equation model globally by distinguishing only product with
     age (which are changing with age) and no more on type of
     covariates, single dummies, single covariates.
   
     Revision 1.331  2022/08/07 05:40:09  brouard
     *** empty log message ***
   
     Revision 1.330  2022/08/06 07:18:25  brouard
     Summary: last 0.99r31
   
     *  imach.c (Module): Version of imach using partly decoderesult to rebuild xpxij function
   
     Revision 1.329  2022/08/03 17:29:54  brouard
     *  imach.c (Module): Many errors in graphs fixed with Vn*age covariates.
   
     Revision 1.328  2022/07/27 17:40:48  brouard
     Summary: valgrind bug fixed by initializing to zero DummyV as well as Tage
   
     Revision 1.327  2022/07/27 14:47:35  brouard
     Summary: Still a problem for one-step probabilities in case of quantitative variables
   
     Revision 1.326  2022/07/26 17:33:55  brouard
     Summary: some test with nres=1
   
     Revision 1.325  2022/07/25 14:27:23  brouard
     Summary: r30
   
     * imach.c (Module): Error cptcovn instead of nsd in bmij (was
     coredumped, revealed by Feiuno, thank you.
   
     Revision 1.324  2022/07/23 17:44:26  brouard
     *** empty log message ***
   
     Revision 1.323  2022/07/22 12:30:08  brouard
     *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
   
     Revision 1.322  2022/07/22 12:27:48  brouard
     *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
   
     Revision 1.321  2022/07/22 12:04:24  brouard
     Summary: r28
   
     *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
   
     Revision 1.320  2022/06/02 05:10:11  brouard
     *** empty log message ***
   
     Revision 1.319  2022/06/02 04:45:11  brouard
     * imach.c (Module): Adding the Wald tests from the log to the main
     htm for better display of the maximum likelihood estimators.
   
     Revision 1.318  2022/05/24 08:10:59  brouard
     * imach.c (Module): Some attempts to find a bug of wrong estimates
     of confidencce intervals with product in the equation modelC
   
     Revision 1.317  2022/05/15 15:06:23  brouard
     * imach.c (Module):  Some minor improvements
   
     Revision 1.316  2022/05/11 15:11:31  brouard
     Summary: r27
   
     Revision 1.315  2022/05/11 15:06:32  brouard
     *** empty log message ***
   
     Revision 1.314  2022/04/13 17:43:09  brouard
     * imach.c (Module): Adding link to text data files
   
     Revision 1.313  2022/04/11 15:57:42  brouard
     * imach.c (Module): Error in rewriting the 'r' file with yearsfproj or yearsbproj fixed
   
     Revision 1.312  2022/04/05 21:24:39  brouard
     *** empty log message ***
   
     Revision 1.311  2022/04/05 21:03:51  brouard
     Summary: Fixed quantitative covariates
   
             Fixed covariates (dummy or quantitative)
           with missing values have never been allowed but are ERRORS and
           program quits. Standard deviations of fixed covariates were
           wrongly computed. Mean and standard deviations of time varying
           covariates are still not computed.
   
     Revision 1.310  2022/03/17 08:45:53  brouard
     Summary: 99r25
   
     Improving detection of errors: result lines should be compatible with
     the model.
   
     Revision 1.309  2021/05/20 12:39:14  brouard
     Summary: Version 0.99r24
   
     Revision 1.308  2021/03/31 13:11:57  brouard
     Summary: Version 0.99r23
   
   
     * imach.c (Module): Still bugs in the result loop. Thank to Holly Benett
   
     Revision 1.307  2021/03/08 18:11:32  brouard
     Summary: 0.99r22 fixed bug on result:
   
     Revision 1.306  2021/02/20 15:44:02  brouard
     Summary: Version 0.99r21
   
     * imach.c (Module): Fix bug on quitting after result lines!
     (Module): Version 0.99r21
   
     Revision 1.305  2021/02/20 15:28:30  brouard
     * imach.c (Module): Fix bug on quitting after result lines!
   
     Revision 1.304  2021/02/12 11:34:20  brouard
     * imach.c (Module): The use of a Windows BOM (huge) file is now an error
   
     Revision 1.303  2021/02/11 19:50:15  brouard
     *  (Module): imach.c Someone entered 'results:' instead of 'result:'. Now it is an error which is printed.
   
     Revision 1.302  2020/02/22 21:00:05  brouard
     *  (Module): imach.c Update mle=-3 (for computing Life expectancy
     and life table from the data without any state)
   
     Revision 1.301  2019/06/04 13:51:20  brouard
     Summary: Error in 'r'parameter file backcast yearsbproj instead of yearsfproj
   
     Revision 1.300  2019/05/22 19:09:45  brouard
     Summary: version 0.99r19 of May 2019
   
     Revision 1.299  2019/05/22 18:37:08  brouard
     Summary: Cleaned 0.99r19
   
     Revision 1.298  2019/05/22 18:19:56  brouard
     *** empty log message ***
   
     Revision 1.297  2019/05/22 17:56:10  brouard
     Summary: Fix bug by moving date2dmy and nhstepm which gaefin=-1
   
     Revision 1.296  2019/05/20 13:03:18  brouard
     Summary: Projection syntax simplified
   
   
     We can now start projections, forward or backward, from the mean date
     of inteviews up to or down to a number of years of projection:
     prevforecast=1 yearsfproj=15.3 mobil_average=0
     or
     prevforecast=1 starting-proj-date=1/1/2007 final-proj-date=12/31/2017 mobil_average=0
     or
     prevbackcast=1 yearsbproj=12.3 mobil_average=1
     or
     prevbackcast=1 starting-back-date=1/10/1999 final-back-date=1/1/1985 mobil_average=1
   
     Revision 1.295  2019/05/18 09:52:50  brouard
     Summary: doxygen tex bug
   
     Revision 1.294  2019/05/16 14:54:33  brouard
     Summary: There was some wrong lines added
   
     Revision 1.293  2019/05/09 15:17:34  brouard
     *** empty log message ***
   
     Revision 1.292  2019/05/09 14:17:20  brouard
     Summary: Some updates
   
     Revision 1.291  2019/05/09 13:44:18  brouard
     Summary: Before ncovmax
   
     Revision 1.290  2019/05/09 13:39:37  brouard
     Summary: 0.99r18 unlimited number of individuals
   
     The number n which was limited to 20,000 cases is now unlimited, from firstobs to lastobs. If the number is too for the virtual memory, probably an error will occur.
   
     Revision 1.289  2018/12/13 09:16:26  brouard
     Summary: Bug for young ages (<-30) will be in r17
   
     Revision 1.288  2018/05/02 20:58:27  brouard
     Summary: Some bugs fixed
   
     Revision 1.287  2018/05/01 17:57:25  brouard
     Summary: Bug fixed by providing frequencies only for non missing covariates
   
     Revision 1.286  2018/04/27 14:27:04  brouard
     Summary: some minor bugs
   
     Revision 1.285  2018/04/21 21:02:16  brouard
     Summary: Some bugs fixed, valgrind tested
   
     Revision 1.284  2018/04/20 05:22:13  brouard
     Summary: Computing mean and stdeviation of fixed quantitative variables
   
     Revision 1.283  2018/04/19 14:49:16  brouard
     Summary: Some minor bugs fixed
   
     Revision 1.282  2018/02/27 22:50:02  brouard
     *** empty log message ***
   
     Revision 1.281  2018/02/27 19:25:23  brouard
     Summary: Adding second argument for quitting
   
     Revision 1.280  2018/02/21 07:58:13  brouard
     Summary: 0.99r15
   
     New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c
   
     Revision 1.279  2017/07/20 13:35:01  brouard
     Summary: temporary working
   
     Revision 1.278  2017/07/19 14:09:02  brouard
     Summary: Bug for mobil_average=0 and prevforecast fixed(?)
   
     Revision 1.277  2017/07/17 08:53:49  brouard
     Summary: BOM files can be read now
   
     Revision 1.276  2017/06/30 15:48:31  brouard
     Summary: Graphs improvements
   
     Revision 1.275  2017/06/30 13:39:33  brouard
     Summary: Saito's color
   
     Revision 1.274  2017/06/29 09:47:08  brouard
     Summary: Version 0.99r14
   
   Revision 1.273  2017/06/27 11:06:02  brouard    Revision 1.273  2017/06/27 11:06:02  brouard
   Summary: More documentation on projections    Summary: More documentation on projections
   
Line 684 Line 961
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
Line 863  Important routines Line 1140  Important routines
 - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)  - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
   and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.    and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
 - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables  - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
   o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if    o There are 2**cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
     race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.      race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
   
   
       
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
Line 933  Important routines Line 1210  Important routines
 #define POWELLNOF3INFF1TEST /* Skip test */  #define POWELLNOF3INFF1TEST /* Skip test */
 /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
   /* #define FLATSUP  *//* Suppresses directions where likelihood is flat */
   
 #include <math.h>  #include <math.h>
 #include <stdio.h>  #include <stdio.h>
Line 988  typedef struct { Line 1266  typedef struct {
   
 #define GNUPLOTPROGRAM "gnuplot"  #define GNUPLOTPROGRAM "gnuplot"
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FILENAMELENGTH 132  #define FILENAMELENGTH 256
   
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
Line 999  typedef struct { Line 1277  typedef struct {
 #define NINTERVMAX 8  #define NINTERVMAX 8
 #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */  #define NCOVMAX 30  /**< Maximum number of covariates used in the model, including generated covariates V1*V2 or V1*age */
 #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
 /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/  /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
 #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1   #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
 #define MAXN 20000  /*#define MAXN 20000 */ /* Should by replaced by nobs, real number of observations and unlimited */
 #define YEARM 12. /**< Number of months per year */  #define YEARM 12. /**< Number of months per year */
 /* #define AGESUP 130 */  /* #define AGESUP 130 */
 #define AGESUP 150  /* #define AGESUP 150 */
   #define AGESUP 200
 #define AGEINF 0  #define AGEINF 0
 #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */  #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
 #define AGEBASE 40  #define AGEBASE 40
Line 1026  typedef struct { Line 1305  typedef struct {
 /* $State$ */  /* $State$ */
 #include "version.h"  #include "version.h"
 char version[]=__IMACH_VERSION__;  char version[]=__IMACH_VERSION__;
 char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018";  char copyright[]="September 2022,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2022";
 char fullversion[]="$Revision$ $Date$";   char fullversion[]="$Revision$ $Date$"; 
 char strstart[80];  char strstart[80];
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
 /* Number of covariates model=V2+V1+ V3*age+V2*V4 */  /* Number of covariates model (1)=V2+V1+ V3*age+V2*V4 */
 int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */  /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
 int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */  int cptcovn=0; /**< cptcovn decodemodel: number of covariates k of the models excluding age*products =6 and age*age but including products */
 int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */  int cptcovt=0; /**< cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
 int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */  int cptcovs=0; /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
   int cptcovsnq=0; /**< cptcovsnq number of SIMPLE covariates in the model but non quantitative V2+V1 =2 */
 int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 int cptcovprodnoage=0; /**< Number of covariate products without age */     int cptcovprodnoage=0; /**< Number of covariate products without age */   
 int cptcoveff=0; /* Total number of covariates to vary for printing results */  int cptcoveff=0; /* Total number of single dummy covariates (fixed or time varying) to vary for printing results (2**cptcoveff combinations of dummies)(computed in tricode as cptcov) */
 int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */  int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
 int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */  int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
 int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */  int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */
Line 1050  int nqfveff=0; /**< nqfveff Number of Qu Line 1330  int nqfveff=0; /**< nqfveff Number of Qu
 int ntveff=0; /**< ntveff number of effective time varying variables */  int ntveff=0; /**< ntveff number of effective time varying variables */
 int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */  int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
 int cptcov=0; /* Working variable */  int cptcov=0; /* Working variable */
   int firstobs=1, lastobs=10; /* nobs = lastobs-firstobs+1 declared globally ;*/
   int nobs=10;  /* Number of observations in the data lastobs-firstobs */
 int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */  int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
 int npar=NPARMAX;  int npar=NPARMAX; /* Number of parameters (nlstate+ndeath-1)*nlstate*ncovmodel; */
 int nlstate=2; /* Number of live states */  int nlstate=2; /* Number of live states */
 int ndeath=1; /* Number of dead states */  int ndeath=1; /* Number of dead states */
 int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
Line 1188  int *ncodemaxwundef;  /* ncodemax[j]= Nu Line 1470  int *ncodemaxwundef;  /* ncodemax[j]= Nu
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double **pmmij, ***probs; /* Global pointer */  double **pmmij, ***probs; /* Global pointer */
 double ***mobaverage, ***mobaverages; /* New global variable */  double ***mobaverage, ***mobaverages; /* New global variable */
   double **precov; /* New global variable to store for each resultline, values of model covariates given by the resultlines (in order to speed up)  */
 double *ageexmed,*agecens;  double *ageexmed,*agecens;
 double dateintmean=0;  double dateintmean=0;
     double anprojd, mprojd, jprojd; /* For eventual projections */
     double anprojf, mprojf, jprojf;
   
     double anbackd, mbackd, jbackd; /* For eventual backprojections */
     double anbackf, mbackf, jbackf;
     double jintmean,mintmean,aintmean;  
 double *weight;  double *weight;
 int **s; /* Status */  int **s; /* Status */
 double *agedc;  double *agedc;
Line 1202  double ***cotvar; /* Time varying covari Line 1490  double ***cotvar; /* Time varying covari
 double ***cotqvar; /* Time varying quantitative covariate itqv */  double ***cotqvar; /* Time varying quantitative covariate itqv */
 double  idx;   double  idx; 
 int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 /*           V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */  /* Some documentation */
 /*k          1  2   3   4     5    6    7     8    9 */        /*   Design original data
 /*Tvar[k]=   5  4   3   6     5    2    7     1    1 */         *  V1   V2   V3   V4  V5  V6  V7  V8  Weight ddb ddth d1st s1 V9 V10 V11 V12 s2 V9 V10 V11 V12 
 /* Tndvar[k]    1   2   3               4          5 */         *  <          ncovcol=6   >   nqv=2 (V7 V8)                   dv dv  dv  qtv    dv dv  dvv qtv
 /*TDvar         4   3   6               7          1 */ /* For outputs only; combination of dummies fixed or varying */         *                                                             ntv=3     nqtv=1
 /* Tns[k]    1  2   2              4               5 */ /* Number of single cova */         *  cptcovn number of covariates (not including constant and age or age*age) = number of plus sign + 1 = 10+1=11
 /* TvarsD[k]    1   2                              3 */ /* Number of single dummy cova */         * For time varying covariate, quanti or dummies
 /* TvarsDind    2   3                              9 */ /* position K of single dummy cova */         *       cotqvar[wav][iv(1 to nqtv)][i]= [1][12][i]=(V12) quanti
 /* TvarsQ[k] 1                     2                 */ /* Number of single quantitative cova */         *       cotvar[wav][ntv+iv][i]= [3+(1 to nqtv)][i]=(V12) quanti
 /* TvarsQind 1                     6                 */ /* position K of single quantitative cova */         *       cotvar[wav][iv(1 to ntv)][i]= [1][1][i]=(V9) dummies at wav 1
 /* Tprod[i]=k           4               7            */         *       cotvar[wav][iv(1 to ntv)][i]= [1][2][i]=(V10) dummies at wav 1
 /* Tage[i]=k                  5               8      */         *       covar[Vk,i], value of the Vkth fixed covariate dummy or quanti for individual i:
 /* */         *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 + V9 + V9*age + V10
          *   k=  1    2      3       4     5       6      7        8   9     10       11 
          */
   /* According to the model, more columns can be added to covar by the product of covariates */
   /* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1
     # States 1=Coresidence, 2 Living alone, 3 Institution
     # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi
   */
   /*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   /*    k        1  2   3   4     5    6    7     8    9 */
   /*Typevar[k]=  0  0   0   2     1    0    2     1    0 *//*0 for simple covariate (dummy, quantitative,*/
                                                            /* fixed or varying), 1 for age product, 2 for*/
                                                            /* product */
   /*Dummy[k]=    1  0   0   1     3    1    1     2    0 *//*Dummy[k] 0=dummy (0 1), 1 quantitative */
                                                            /*(single or product without age), 2 dummy*/
                                                            /* with age product, 3 quant with age product*/
   /*Tvar[k]=     5  4   3   6     5    2    7     1    1 */
   /*    nsd         1   2                              3 */ /* Counting single dummies covar fixed or tv */
   /*TnsdVar[Tvar]   1   2                              3 */ 
   /*Tvaraff[nsd]     4   3                              1 */ /* ID of single dummy cova fixed or timevary*/
   /*TvarsD[nsd]     4   3                              1 */ /* ID of single dummy cova fixed or timevary*/
   /*TvarsDind[nsd]  2   3                              9 */ /* position K of single dummy cova */
   /*    nsq      1                     2                 */ /* Counting single quantit tv */
   /* TvarsQ[k]   5                     2                 */ /* Number of single quantitative cova */
   /* TvarsQind   1                     6                 */ /* position K of single quantitative cova */
   /* Tprod[i]=k             1               2            */ /* Position in model of the ith prod without age */
   /* cptcovage                    1               2      */ /* Counting cov*age in the model equation */
   /* Tage[cptcovage]=k            5               8      */ /* Position in the model of ith cov*age */
   /* Tvard[1][1]@4={4,3,1,2}    V4*V3 V1*V2              */ /* Position in model of the ith prod without age */
   /* Tvardk[4][1]=4;Tvardk[4][2]=3;Tvardk[7][1]=1;Tvardk[7][2]=2 */ /* Variables of a prod at position in the model equation*/
   /* TvarF TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  ID of fixed covariates or product V2, V1*V2, V1 */
   /* TvarFind;  TvarFind[1]=6,  TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod)  */
 /* Type                    */  /* Type                    */
 /* V         1  2  3  4  5 */  /* V         1  2  3  4  5 */
 /*           F  F  V  V  V */  /*           F  F  V  V  V */
 /*           D  Q  D  D  Q */  /*           D  Q  D  D  Q */
 /*                         */  /*                         */
 int *TvarsD;  int *TvarsD;
   int *TnsdVar;
 int *TvarsDind;  int *TvarsDind;
 int *TvarsQ;  int *TvarsQ;
 int *TvarsQind;  int *TvarsQind;
   
 #define MAXRESULTLINES 10  #define MAXRESULTLINESPONE 10+1
 int nresult=0;  int nresult=0;
 int parameterline=0; /* # of the parameter (type) line */  int parameterline=0; /* # of the parameter (type) line */
 int TKresult[MAXRESULTLINES];  int TKresult[MAXRESULTLINESPONE]; /* TKresult[nres]=k for each resultline nres give the corresponding combination of dummies */
 int Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */  int resultmodel[MAXRESULTLINESPONE][NCOVMAX];/* resultmodel[k1]=k3: k1th position in the model corresponds to the k3 position in the resultline */
 int Tinvresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */  int modelresult[MAXRESULTLINESPONE][NCOVMAX];/* modelresult[k3]=k1: k1th position in the model corresponds to the k3 position in the resultline */
 int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */  int Tresult[MAXRESULTLINESPONE][NCOVMAX];/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */
 double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */  int Tinvresult[MAXRESULTLINESPONE][NCOVMAX];/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line  */
 double Tqinvresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */  double TinvDoQresult[MAXRESULTLINESPONE][NCOVMAX];/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */
 int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */  int Tvresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */
   double Tqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */
   double Tqinvresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , value (output) */
   int Tvqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */
   
   /* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1
     # States 1=Coresidence, 2 Living alone, 3 Institution
     # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi
   */
 /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */  /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
 int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */  int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */  int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
Line 1267  int *TmodelInvQind; /** Tmodelqind[1]=1 Line 1595  int *TmodelInvQind; /** Tmodelqind[1]=1
 int *Ndum; /** Freq of modality (tricode */  int *Ndum; /** Freq of modality (tricode */
 /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
 int **Tvard;  int **Tvard;
   int **Tvardk;
 int *Tprod;/**< Gives the k position of the k1 product */  int *Tprod;/**< Gives the k position of the k1 product */
 /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */  /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */
 int *Tposprod; /**< Gives the k1 product from the k position */  int *Tposprod; /**< Gives the k1 product from the k position */
Line 1437  char *cutl(char *blocc, char *alocc, cha Line 1766  char *cutl(char *blocc, char *alocc, cha
 {  {
   /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ'     /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
      gives blocc="abcdef" and alocc="ghi2j".       gives alocc="abcdef" and blocc="ghi2j".
      If occ is not found blocc is null and alocc is equal to in. Returns blocc       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   */    */
   char *s, *t;    char *s, *t;
Line 1719  char *subdirf(char fileres[]) Line 2048  char *subdirf(char fileres[])
 /*************** function subdirf2 ***********/  /*************** function subdirf2 ***********/
 char *subdirf2(char fileres[], char *preop)  char *subdirf2(char fileres[], char *preop)
 {  {
       /* Example subdirf2(optionfilefiname,"FB_") with optionfilefiname="texte", result="texte/FB_texte"
    Errors in subdirf, 2, 3 while printing tmpout is
    rewritten within the same printf. Workaround: many printfs */
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/");    strcat(tmpout,"/");
Line 2090  void linmin(double p[], double xi[], int Line 2421  void linmin(double p[], double xi[], int
 #endif  #endif
 #ifdef LINMINORIGINAL  #ifdef LINMINORIGINAL
 #else  #else
         if(fb == fx){ /* Flat function in the direction */    if(fb == fx){ /* Flat function in the direction */
                 xmin=xx;      xmin=xx;
     *flat=1;      *flat=1;
         }else{    }else{
     *flat=0;      *flat=0;
 #endif  #endif
                 /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */                  /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
Line 2151  void linmin(double p[], double xi[], int Line 2482  void linmin(double p[], double xi[], int
   
 /*************** powell ************************/  /*************** powell ************************/
 /*  /*
 Minimization of a function func of n variables. Input consists of an initial starting point  Minimization of a function func of n variables. Input consists in an initial starting point
 p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-  p[1..n] ; an initial matrix xi[1..n][1..n]  whose columns contain the initial set of di-
 rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value  rections (usually the n unit vectors); and ftol, the fractional tolerance in the function value
 such that failure to decrease by more than this amount on one iteration signals doneness. On  such that failure to decrease by more than this amount in one iteration signals doneness. On
 output, p is set to the best point found, xi is the then-current direction set, fret is the returned  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 function value at p , and iter is the number of iterations taken. The routine linmin is used.  function value at p , and iter is the number of iterations taken. The routine linmin is used.
  */   */
Line 2179  void powell(double p[], double **xi, int Line 2510  void powell(double p[], double **xi, int
   double fp,fptt;    double fp,fptt;
   double *xits;    double *xits;
   int niterf, itmp;    int niterf, itmp;
 #ifdef LINMINORIGINAL  
 #else  
   
   flatdir=ivector(1,n);   
   for (j=1;j<=n;j++) flatdir[j]=0;   
 #endif  
   
   pt=vector(1,n);     pt=vector(1,n); 
   ptt=vector(1,n);     ptt=vector(1,n); 
Line 2192  void powell(double p[], double **xi, int Line 2517  void powell(double p[], double **xi, int
   xits=vector(1,n);     xits=vector(1,n); 
   *fret=(*func)(p);     *fret=(*func)(p); 
   for (j=1;j<=n;j++) pt[j]=p[j];     for (j=1;j<=n;j++) pt[j]=p[j]; 
   rcurr_time = time(NULL);      rcurr_time = time(NULL);
     fp=(*fret); /* Initialisation */
   for (*iter=1;;++(*iter)) {     for (*iter=1;;++(*iter)) { 
     fp=(*fret); /* From former iteration or initial value */  
     ibig=0;       ibig=0; 
     del=0.0;       del=0.0; 
     rlast_time=rcurr_time;      rlast_time=rcurr_time;
     /* (void) gettimeofday(&curr_time,&tzp); */      /* (void) gettimeofday(&curr_time,&tzp); */
     rcurr_time = time(NULL);        rcurr_time = time(NULL);  
     curr_time = *localtime(&rcurr_time);      curr_time = *localtime(&rcurr_time);
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);      /* printf("\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); */
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);      /* fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); */
       printf("\nPowell iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       fp=(*fret); /* From former iteration or initial value */
     for (i=1;i<=n;i++) {      for (i=1;i<=n;i++) {
       fprintf(ficrespow," %.12lf", p[i]);        fprintf(ficrespow," %.12lf", p[i]);
     }      }
Line 2308  void powell(double p[], double **xi, int Line 2636  void powell(double p[], double **xi, int
     /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */       /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
     /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
     /* New value of last point Pn is not computed, P(n-1) */      /* New value of last point Pn is not computed, P(n-1) */
       for(j=1;j<=n;j++) {      for(j=1;j<=n;j++) {
                                 if(flatdir[j] >0){        if(flatdir[j] >0){
                                         printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);          printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                                         fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);          fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                                 }        }
                                 /* printf("\n"); */        /* printf("\n"); */
                                 /* fprintf(ficlog,"\n"); */        /* fprintf(ficlog,"\n"); */
                         }      }
     /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */      /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */
     if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */      if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */
       /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
Line 2353  void powell(double p[], double **xi, int Line 2681  void powell(double p[], double **xi, int
       }        }
 #endif  #endif
   
 #ifdef LINMINORIGINAL  
 #else  
       free_ivector(flatdir,1,n);   
 #endif  
       free_vector(xit,1,n);         free_vector(xit,1,n); 
       free_vector(xits,1,n);         free_vector(xits,1,n); 
       free_vector(ptt,1,n);         free_vector(ptt,1,n); 
Line 2470  void powell(double p[], double **xi, int Line 2794  void powell(double p[], double **xi, int
           }            }
           printf("\n");            printf("\n");
           fprintf(ficlog,"\n");            fprintf(ficlog,"\n");
   #ifdef FLATSUP
             free_vector(xit,1,n); 
             free_vector(xits,1,n); 
             free_vector(ptt,1,n); 
             free_vector(pt,1,n); 
             return;
   #endif
         }          }
 #endif  #endif
         printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
Line 2501  void powell(double p[], double **xi, int Line 2832  void powell(double p[], double **xi, int
       
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
   {    {
     /* Computes the prevalence limit in each live state at age x and for covariate combination ij       /**< Computes the prevalence limit in each live state at age x and for covariate combination ij . Nicely done
        (and selected quantitative values in nres)       *   (and selected quantitative values in nres)
        by left multiplying the unit       *  by left multiplying the unit
        matrix by transitions matrix until convergence is reached with precision ftolpl */       *  matrix by transitions matrix until convergence is reached with precision ftolpl 
   /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */       * Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I
   /* Wx is row vector: population in state 1, population in state 2, population dead */       * Wx is row vector: population in state 1, population in state 2, population dead
   /* or prevalence in state 1, prevalence in state 2, 0 */       * or prevalence in state 1, prevalence in state 2, 0
   /* newm is the matrix after multiplications, its rows are identical at a factor */       * newm is the matrix after multiplications, its rows are identical at a factor.
   /* Initial matrix pimij */       * Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl.
        * Output is prlim.
        * Initial matrix pimij 
        */
   /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
   /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
   /*  0,                   0                  , 1} */    /*  0,                   0                  , 1} */
Line 2523  void powell(double p[], double **xi, int Line 2857  void powell(double p[], double **xi, int
   /*  0.51326036147820708, 0.48673963852179264} */    /*  0.51326036147820708, 0.48673963852179264} */
   /* If we start from prlim again, prlim tends to a constant matrix */    /* If we start from prlim again, prlim tends to a constant matrix */
           
   int i, ii,j,k;      int i, ii,j,k, k1;
   double *min, *max, *meandiff, maxmax,sumnew=0.;    double *min, *max, *meandiff, maxmax,sumnew=0.;
   /* double **matprod2(); */ /* test */    /* double **matprod2(); */ /* test */
   double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */    double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
   double **newm;    double **newm;
   double agefin, delaymax=200. ; /* 100 Max number of years to converge */    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
   int ncvloop=0;    int ncvloop=0;
     int first=0;
       
   min=vector(1,nlstate);    min=vector(1,nlstate);
   max=vector(1,nlstate);    max=vector(1,nlstate);
Line 2550  void powell(double p[], double **xi, int Line 2885  void powell(double p[], double **xi, int
     newm=savm;      newm=savm;
     /* Covariates have to be included here again */      /* Covariates have to be included here again */
     cov[2]=agefin;      cov[2]=agefin;
     if(nagesqr==1)       if(nagesqr==1){
       cov[3]= agefin*agefin;;        cov[3]= agefin*agefin;
     for (k=1; k<=nsd;k++) { /* For single dummy covariates only */       }
                         /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */       /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
       cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];       /* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */
       /* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */       for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
     }         if(Typevar[k1]==1){ /* A product with age */
     for (k=1; k<=nsq;k++) { /* For single varying covariates only */           cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
                         /* Here comes the value of quantitative after renumbering k with single quantitative covariates */         }else{
       cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];            cov[2+nagesqr+k1]=precov[nres][k1];
       /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */         }
     }       }/* End of loop on model equation */
     for (k=1; k<=cptcovage;k++){  /* For product with age */       
       if(Dummy[Tvar[Tage[k]]]){  /* Start of old code (replaced by a loop on position in the model equation */
         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];      /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only of the model *\/ */
       } else{      /*                  /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */
         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k];       /*   /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; *\/ */
       }      /*   cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])]; */
       /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */      /*   /\* model = 1 +age + V1*V3 + age*V1 + V2 + V1 + age*V2 + V3 + V3*age + V1*V2  */
     }      /*    * k                  1        2      3    4      5      6     7        8 */
     for (k=1; k<=cptcovprod;k++){ /* For product without age */      /*    *cov[]   1    2      3        4      5    6      7      8     9       10 */
       /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */      /*    *TypeVar[k]          2        1      0    0      1      0     1        2 */
       if(Dummy[Tvard[k][1]==0]){      /*    *Dummy[k]            0        2      0    0      2      0     2        0 */
         if(Dummy[Tvard[k][2]==0]){      /*    *Tvar[k]             4        1      2    1      2      3     3        5 */
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];      /*    *nsd=3                              (1)  (2)           (3) */
         }else{      /*    *TvarsD[nsd]                      [1]=2    1             3 */
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];      /*    *TnsdVar                          [2]=2 [1]=1         [3]=3 */
         }      /*    *TvarsDind[nsd](=k)               [1]=3 [2]=4         [3]=6 */
       }else{      /*    *Tage[]                  [1]=1                  [2]=2      [3]=3 */
         if(Dummy[Tvard[k][2]==0]){      /*    *Tvard[]       [1][1]=1                                           [2][1]=1 */
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];      /*    *                   [1][2]=3                                           [2][2]=2 */
         }else{      /*    *Tprod[](=k)     [1]=1                                              [2]=8 */
           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]];      /*    *TvarsDp(=Tvar)   [1]=1            [2]=2             [3]=3          [4]=5 */
         }      /*    *TvarD (=k)       [1]=1            [2]=3 [3]=4       [3]=6          [4]=6 */
       }      /*    *TvarsDpType */
     }      /*    *si model= 1 + age + V3 + V2*age + V2 + V3*age */
       /*    * nsd=1              (1)           (2) */
       /*    *TvarsD[nsd]          3             2 */
       /*    *TnsdVar           (3)=1          (2)=2 */
       /*    *TvarsDind[nsd](=k)  [1]=1        [2]=3 */
       /*    *Tage[]                  [1]=2           [2]= 3    */
       /*    *\/ */
       /*   /\* cov[++k1]=nbcode[TvarsD[k]][codtabm(ij,k)]; *\/ */
       /*   /\* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
       /* } */
       /* for (k=1; k<=nsq;k++) { /\* For single quantitative varying covariates only of the model *\/ */
       /*                  /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
       /*   /\* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline                                 *\/ */
       /*   /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */
       /*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][resultmodel[nres][k1]] */
       /*   /\* cov[++k1]=Tqresult[nres][k];  *\/ */
       /*   /\* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
       /* } */
       /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
       /*   if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */
       /*  cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
       /*  /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
       /*   } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */
       /*  cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */
       /*  /\* cov[++k1]=Tqresult[nres][k];  *\/ */
       /*   } */
       /*   /\* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
       /* } */
       /* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */
       /*   /\* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */
       /*   if(Dummy[Tvard[k][1]]==0){ */
       /*  if(Dummy[Tvard[k][2]]==0){ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
       /*    /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
       /*  }else{ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
       /*    /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */
       /*  } */
       /*   }else{ */
       /*  if(Dummy[Tvard[k][2]]==0){ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
       /*    /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */
       /*  }else{ */
       /*    cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
       /*    /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\/ */
       /*  } */
       /*   } */
       /* } /\* End product without age *\/ */
   /* ENd of old code */
     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
                 /* age and covariate values of ij are in 'cov' */      /* age and covariate values of ij are in 'cov' */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
           
     savm=oldm;      savm=oldm;
Line 2626  void powell(double p[], double **xi, int Line 3009  void powell(double p[], double **xi, int
       free_vector(meandiff,1,nlstate);        free_vector(meandiff,1,nlstate);
       return prlim;        return prlim;
     }      }
   } /* age loop */    } /* agefin loop */
     /* After some age loop it doesn't converge */      /* After some age loop it doesn't converge */
   printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\    if(!first){
 Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);      first=1;
       printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
       fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
     }else if (first >=1 && first <10){
       fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
       first++;
     }else if (first ==10){
       fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
       printf("Warning: the stable prevalence dit not converge. This warning came too often, IMaCh will stop notifying, even in its log file. Look at the graphs to appreciate the non convergence.\n");
       fprintf(ficlog,"Warning: the stable prevalence no convergence; too many cases, giving up noticing, even in log file\n");
       first++;
     }
   
   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
   free_vector(min,1,nlstate);    free_vector(min,1,nlstate);
   free_vector(max,1,nlstate);    free_vector(max,1,nlstate);
Line 2665  Earliest age to start was %d-%d=%d, ncvl Line 3060  Earliest age to start was %d-%d=%d, ncvl
   /*  0.51326036147820708, 0.48673963852179264} */    /*  0.51326036147820708, 0.48673963852179264} */
   /* If we start from prlim again, prlim tends to a constant matrix */    /* If we start from prlim again, prlim tends to a constant matrix */
   
   int i, ii,j,k;    int i, ii,j,k, k1;
   int first=0;    int first=0;
   double *min, *max, *meandiff, maxmax,sumnew=0.;    double *min, *max, *meandiff, maxmax,sumnew=0.;
   /* double **matprod2(); */ /* test */    /* double **matprod2(); */ /* test */
Line 2695  Earliest age to start was %d-%d=%d, ncvl Line 3090  Earliest age to start was %d-%d=%d, ncvl
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
   /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */    /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
   for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */    /* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
     for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */
     ncvloop++;      ncvloop++;
     newm=savm; /* oldm should be kept from previous iteration or unity at start */      newm=savm; /* oldm should be kept from previous iteration or unity at start */
                 /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */                  /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
     /* Covariates have to be included here again */      /* Covariates have to be included here again */
     cov[2]=agefin;      cov[2]=agefin;
     if(nagesqr==1)      if(nagesqr==1){
       cov[3]= agefin*agefin;;        cov[3]= agefin*agefin;;
     for (k=1; k<=nsd;k++) { /* For single dummy covariates only */      }
                         /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */      for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
       cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];        if(Typevar[k1]==1){ /* A product with age */
       /* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */          cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
     }  
     /* for (k=1; k<=cptcovn;k++) { */  
     /*   /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */  
     /*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */  
     /*   /\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\/ */  
     /* } */  
     for (k=1; k<=nsq;k++) { /* For single varying covariates only */  
                         /* Here comes the value of quantitative after renumbering k with single quantitative covariates */  
       cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];   
       /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */  
     }  
     /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; */  
     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */  
     /*   /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\/ */  
     /*   cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */  
     for (k=1; k<=cptcovage;k++){  /* For product with age */  
       if(Dummy[Tvar[Tage[k]]]){  
         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];  
       } else{  
         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k];   
       }  
       /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */  
     }  
     for (k=1; k<=cptcovprod;k++){ /* For product without age */  
       /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */  
       if(Dummy[Tvard[k][1]==0]){  
         if(Dummy[Tvard[k][2]==0]){  
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];  
         }else{  
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];  
         }  
       }else{        }else{
         if(Dummy[Tvard[k][2]==0]){          cov[2+nagesqr+k1]=precov[nres][k1];
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];  
         }else{  
           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]];  
         }  
       }        }
     }      }/* End of loop on model equation */
   
   /* Old code */ 
   
       /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */
       /*                  /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */
       /*   cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; */
       /*   /\* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
       /* } */
       /* /\* for (k=1; k<=cptcovn;k++) { *\/ */
       /* /\*   /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */
       /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */
       /* /\*   /\\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\\/ *\/ */
       /* /\* } *\/ */
       /* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */
       /*                  /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
       /*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];  */
       /*   /\* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
       /* } */
       /* /\* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; *\/ */
       /* /\* for (k=1; k<=cptcovprod;k++) /\\* Useless *\\/ *\/ */
       /* /\*   /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\\/ *\/ */
       /* /\*   cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
       /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
       /*   /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age *\\/ ERROR ???*\/ */
       /*   if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */
       /*  cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
       /*   } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */
       /*  cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */
       /*   } */
       /*   /\* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
       /* } */
       /* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */
       /*   /\* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */
       /*   if(Dummy[Tvard[k][1]]==0){ */
       /*  if(Dummy[Tvard[k][2]]==0){ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
       /*  }else{ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
       /*  } */
       /*   }else{ */
       /*  if(Dummy[Tvard[k][2]]==0){ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
       /*  }else{ */
       /*    cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
       /*  } */
       /*   } */
       /* } */
           
     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
Line 2796  Earliest age to start was %d-%d=%d, ncvl Line 3204  Earliest age to start was %d-%d=%d, ncvl
                                   
     maxmax=0.;      maxmax=0.;
     for(i=1; i<=nlstate; i++){      for(i=1; i<=nlstate; i++){
       meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */        meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column, could be nan! */
       maxmax=FMAX(maxmax,meandiff[i]);        maxmax=FMAX(maxmax,meandiff[i]);
       /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */        /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
     } /* i loop */      } /* i loop */
Line 2809  Earliest age to start was %d-%d=%d, ncvl Line 3217  Earliest age to start was %d-%d=%d, ncvl
       free_vector(meandiff,1,nlstate);        free_vector(meandiff,1,nlstate);
       return bprlim;        return bprlim;
     }      }
   } /* age loop */    } /* agefin loop */
     /* After some age loop it doesn't converge */      /* After some age loop it doesn't converge */
   if(first){    if(!first){
     first=1;      first=1;
     printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\      printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\
 Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);  Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
Line 2856  double **pmij(double **ps, double *cov, Line 3264  double **pmij(double **ps, double *cov,
         /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       }        }
       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */        /* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */
     }      }
     for(j=i+1; j<=nlstate+ndeath;j++){      for(j=i+1; j<=nlstate+ndeath;j++){
       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
Line 2865  double **pmij(double **ps, double *cov, Line 3273  double **pmij(double **ps, double *cov,
         /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
       }        }
       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         /* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */
     }      }
   }    }
       
Line 2872  double **pmij(double **ps, double *cov, Line 3281  double **pmij(double **ps, double *cov,
     s1=0;      s1=0;
     for(j=1; j<i; j++){      for(j=1; j<i; j++){
       s1+=exp(ps[i][j]); /* In fact sums pij/pii */        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */        /* printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     }      }
     for(j=i+1; j<=nlstate+ndeath; j++){      for(j=i+1; j<=nlstate+ndeath; j++){
       s1+=exp(ps[i][j]); /* In fact sums pij/pii */        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */        /* printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     }      }
     /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     ps[i][i]=1./(s1+1.);      ps[i][i]=1./(s1+1.);
     /* Computing other pijs */      /* Computing other pijs */
     for(j=1; j<i; j++)      for(j=1; j<i; j++)
       ps[i][j]= exp(ps[i][j])*ps[i][i];        ps[i][j]= exp(ps[i][j])*ps[i][i];/* Bug valgrind */
     for(j=i+1; j<=nlstate+ndeath; j++)      for(j=i+1; j<=nlstate+ndeath; j++)
       ps[i][j]= exp(ps[i][j])*ps[i][i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
Line 2894  double **pmij(double **ps, double *cov, Line 3303  double **pmij(double **ps, double *cov,
       ps[ii][ii]=1;        ps[ii][ii]=1;
     }      }
   }    }
     
     
   /* for(ii=1; ii<= nlstate+ndeath; ii++){ */    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
Line 2915  double **pmij(double **ps, double *cov, Line 3324  double **pmij(double **ps, double *cov,
 /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */  /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
  double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )   double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
 {  {
   /* Computes the backward probability at age agefin and covariate combination ij. In fact cov is already filled and x too.    /* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too.
    * Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij.     * Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij.
    */     */
   int i, ii, j,k;    int i, ii, j,k;
Line 2923  double **pmij(double **ps, double *cov, Line 3332  double **pmij(double **ps, double *cov,
   double **out, **pmij();    double **out, **pmij();
   double sumnew=0.;    double sumnew=0.;
   double agefin;    double agefin;
   double k3=0.; /* constant of the w_x diagonal matrixe (in order for B to sum to 1 even for death state) */    double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */
   double **dnewm, **dsavm, **doldm;    double **dnewm, **dsavm, **doldm;
   double **bbmij;    double **bbmij;
       
   doldm=ddoldms; /* global pointers */    doldm=ddoldms; /* global pointers */
   dnewm=ddnewms;    dnewm=ddnewms;
   dsavm=ddsavms;    dsavm=ddsavms;
     
     /* Debug */
     /* printf("Bmij ij=%d, cov[2}=%f\n", ij, cov[2]); */
   agefin=cov[2];    agefin=cov[2];
   /* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */    /* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */
   /* bmij *//* age is cov[2], ij is included in cov, but we need for    /* bmij *//* age is cov[2], ij is included in cov, but we need for
Line 2938  double **pmij(double **ps, double *cov, Line 3349  double **pmij(double **ps, double *cov,
   /* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */    /* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   
   /* P_x */    /* P_x */
   pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm */    pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm *//* Bug valgrind */
   /* outputs pmmij which is a stochastic matrix in row */    /* outputs pmmij which is a stochastic matrix in row */
   
   /* Diag(w_x) */    /* Diag(w_x) */
   /* Problem with prevacurrent which can be zero */    /* Rescaling the cross-sectional prevalence: Problem with prevacurrent which can be zero */
   sumnew=0.;    sumnew=0.;
   /*for (ii=1;ii<=nlstate+ndeath;ii++){*/    /*for (ii=1;ii<=nlstate+ndeath;ii++){*/
   for (ii=1;ii<=nlstate;ii++){ /* Only on live states */    for (ii=1;ii<=nlstate;ii++){ /* Only on live states */
     /* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]);  */      /* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */
     sumnew+=prevacurrent[(int)agefin][ii][ij];      sumnew+=prevacurrent[(int)agefin][ii][ij];
   }    }
   if(sumnew >0.01){  /* At least some value in the prevalence */    if(sumnew >0.01){  /* At least some value in the prevalence */
Line 2969  double **pmij(double **ps, double *cov, Line 3380  double **pmij(double **ps, double *cov,
   }    }
   /* End doldm, At the end doldm is diag[(w_i)] */    /* End doldm, At the end doldm is diag[(w_i)] */
       
   /* left Product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm) */    /* Left product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm): diag[(w_i)*Px */
   bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* Bug Valgrind */    bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* was a Bug Valgrind */
   
   /* Diag(Sum_i w^i_x p^ij_x */    /* Diag(Sum_i w^i_x p^ij_x, should be the prevalence at age x+stepm */
   /* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */    /* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */
   for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=nlstate+ndeath;j++){
     sumnew=0.;      sumnew=0.;
Line 2990  double **pmij(double **ps, double *cov, Line 3401  double **pmij(double **ps, double *cov,
     } /*End ii */      } /*End ii */
   } /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */    } /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */
   
   ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* Bug Valgrind */    ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* was a Bug Valgrind */
   /* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */    /* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
   /* end bmij */    /* end bmij */
   return ps; /*pointer is unchanged */    return ps; /*pointer is unchanged */
Line 3062  double **bpmij(double **ps, double *cov, Line 3473  double **bpmij(double **ps, double *cov,
       ps[ii][ii]=1;        ps[ii][ii]=1;
     }      }
   }    }
   /* Added for backcast */ /* Transposed matrix too */    /* Added for prevbcast */ /* Transposed matrix too */
   for(jj=1; jj<= nlstate+ndeath; jj++){    for(jj=1; jj<= nlstate+ndeath; jj++){
     s1=0.;      s1=0.;
     for(ii=1; ii<= nlstate+ndeath; ii++){      for(ii=1; ii<= nlstate+ndeath; ii++){
Line 3118  double **matprod2(double **out, double * Line 3529  double **matprod2(double **out, double *
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
 {  {
   /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over     /* Already optimized with precov.
        Computes the transition matrix starting at age 'age' and dummies values in each resultline (loop on ij to find the corresponding combination) to over 
      'nhstepm*hstepm*stepm' months (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
      nhstepm*hstepm matrices.        nhstepm*hstepm matrices. 
Line 3130  double ***hpxij(double ***po, int nhstep Line 3542  double ***hpxij(double ***po, int nhstep
   
      */       */
   
   int i, j, d, h, k;    int i, j, d, h, k, k1;
   double **out, cov[NCOVMAX+1];    double **out, cov[NCOVMAX+1];
   double **newm;    double **newm;
   double agexact;    double agexact;
Line 3150  double ***hpxij(double ***po, int nhstep Line 3562  double ***hpxij(double ***po, int nhstep
       cov[1]=1.;        cov[1]=1.;
       agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
       cov[2]=agexact;        cov[2]=agexact;
       if(nagesqr==1)        if(nagesqr==1){
         cov[3]= agexact*agexact;          cov[3]= agexact*agexact;
       for (k=1; k<=nsd;k++) { /* For single dummy covariates only */  
                         /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */  
         cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];  
         /* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */  
       }  
       for (k=1; k<=nsq;k++) { /* For single varying covariates only */  
         /* Here comes the value of quantitative after renumbering k with single quantitative covariates */  
         cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];   
         /* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */  
       }  
       for (k=1; k<=cptcovage;k++){  
         if(Dummy[Tvar[Tage[k]]]){  
           cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];  
         } else{  
           cov[2+nagesqr+Tage[k]]=Tqresult[nres][k];   
         }  
         /* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */  
       }  
       for (k=1; k<=cptcovprod;k++){ /*  */  
         /* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */  
         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];  
       }        }
         /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
         /* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */
         for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
           if(Typevar[k1]==1){ /* A product with age */
             cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
           }else{
             cov[2+nagesqr+k1]=precov[nres][k1];
           }
         }/* End of loop on model equation */
           /* Old code */ 
   /*      if( Dummy[k1]==0 && Typevar[k1]==0 ){ /\* Single dummy  *\/ */
   /* /\*     V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) *\/ */
   /* /\*       for (k=1; k<=nsd;k++) { /\\* For single dummy covariates only *\\/ *\/ */
   /* /\* /\\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\\/ *\/ */
   /*      /\* codtabm(ij,k)  (1 & (ij-1) >> (k-1))+1 *\/ */
   /* /\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
   /* /\*    k        1  2   3   4     5    6    7     8    9 *\/ */
   /* /\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\/ */
   /* /\*    nsd         1   2                              3 *\/ /\* Counting single dummies covar fixed or tv *\/ */
   /* /\*TvarsD[nsd]     4   3                              1 *\/ /\* ID of single dummy cova fixed or timevary*\/ */
   /* /\*TvarsDind[k]    2   3                              9 *\/ /\* position K of single dummy cova *\/ */
   /*        /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];or [codtabm(ij,TnsdVar[TvarsD[k]] *\/ */
   /*        cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */
   /*        /\* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,TnsdVar[TvarsD[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,TnsdVar[TvarsD[k]])); *\/ */
   /*        printf("hpxij Dummy combi=%d k1=%d Tvar[%d]=V%d cov[2+%d+%d]=%lf resultmodel[nres][%d]=%d nres/nresult=%d/%d \n",ij,k1,k1, Tvar[k1],nagesqr,k1,cov[2+nagesqr+k1],k1,resultmodel[nres][k1],nres,nresult); */
   /*        printf("hpxij new Dummy precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
   /*      }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /\* Single quantitative variables  *\/ */
   /*        /\* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline *\/ */
   /*        cov[2+nagesqr+k1]=Tqresult[nres][resultmodel[nres][k1]];  */
   /*        /\* for (k=1; k<=nsq;k++) { /\\* For single varying covariates only *\\/ *\/ */
   /*        /\*   /\\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\\/ *\/ */
   /*        /\*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */
   /*        printf("hPxij Quantitative k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */
   /*        printf("hpxij new Quanti precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
   /*      }else if( Dummy[k1]==2 ){ /\* For dummy with age product *\/ */
   /*        /\* Tvar[k1] Variable in the age product age*V1 is 1 *\/ */
   /*        /\* [Tinvresult[nres][V1] is its value in the resultline nres *\/ */
   /*        cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvar[k1]]*cov[2]; */
   /*        printf("DhPxij Dummy with age k1=%d Tvar[%d]=%d TinvDoQresult[nres=%d][%d]=%.f age=%.2f,cov[2+%d+%d]=%.3f\n",k1,k1,Tvar[k1],nres,TinvDoQresult[nres][Tvar[k1]],cov[2],nagesqr,k1,cov[2+nagesqr+k1]); */
   /*        printf("hpxij new Dummy with age product precov[nres=%d][k1=%d]=%.4f * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */
   
   /*        /\* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]];    *\/ */
   /*        /\* for (k=1; k<=cptcovage;k++){ /\\* For product with age V1+V1*age +V4 +age*V3 *\\/ *\/ */
   /*        /\* 1+2 Tage[1]=2 TVar[2]=1 Dummy[2]=2, Tage[2]=4 TVar[4]=3 Dummy[4]=3 quant*\/ */
   /*        /\* *\/ */
   /* /\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
   /* /\*    k        1  2   3   4     5    6    7     8    9 *\/ */
   /* /\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\/ */
   /* /\*cptcovage=2                   1               2      *\/ */
   /* /\*Tage[k]=                      5               8      *\/   */
   /*      }else if( Dummy[k1]==3 ){ /\* For quant with age product *\/ */
   /*        cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]];        */
   /*        printf("QhPxij Quant with age k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */
   /*        printf("hpxij new Quanti with age product precov[nres=%d][k1=%d] * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */
   /*        /\* if(Dummy[Tage[k]]== 2){ /\\* dummy with age *\\/ *\/ */
   /*        /\* /\\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\\* dummy with age *\\\/ *\\/ *\/ */
   /*        /\*   /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\\/ *\/ */
   /*        /\*   /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\\/ *\/ */
   /*        /\*   cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\/ */
   /*        /\*   printf("hPxij Age combi=%d k=%d cptcovage=%d Tage[%d]=%d Tvar[Tage[%d]]=V%d nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]]])]=%d nres=%d\n",ij,k,cptcovage,k,Tage[k],k,Tvar[Tage[k]], nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]])],nres); *\/ */
   /*        /\* } else if(Dummy[Tage[k]]== 3){ /\\* quantitative with age *\\/ *\/ */
   /*        /\*   cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; *\/ */
   /*        /\* } *\/ */
   /*        /\* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
   /*      }else if(Typevar[k1]==2 ){ /\* For product (not with age) *\/ */
   /* /\*       for (k=1; k<=cptcovprod;k++){ /\\*  For product without age *\\/ *\/ */
   /* /\* /\\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\\/ *\/ */
   /* /\* /\\*    k        1  2   3   4     5    6    7     8    9 *\\/ *\/ */
   /* /\* /\\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\\/ *\/ */
   /* /\* /\\*cptcovprod=1            1               2            *\\/ *\/ */
   /* /\* /\\*Tprod[]=                4               7            *\\/ *\/ */
   /* /\* /\\*Tvard[][1]             4               1             *\\/ *\/ */
   /* /\* /\\*Tvard[][2]               3               2           *\\/ *\/ */
             
   /*        /\* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]=%d nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]=%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2],nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])],nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]); *\/ */
   /*        /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
   /*        cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];     */
   /*        printf("hPxij Prod ij=%d k1=%d  cov[2+%d+%d]=%.5f Tvard[%d][1]=V%d * Tvard[%d][2]=V%d ; TinvDoQresult[nres][Tvardk[k1][1]]=%.4f * TinvDoQresult[nres][Tvardk[k1][1]]=%.4f\n",ij,k1,nagesqr,k1,cov[2+nagesqr+k1],k1,Tvardk[k1][1], k1,Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][1]], TinvDoQresult[nres][Tvardk[k1][2]]); */
   /*        printf("hpxij new Product no age product precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
   
   /*        /\* if(Dummy[Tvardk[k1][1]]==0){ *\/ */
   /*        /\*   if(Dummy[Tvardk[k1][2]]==0){ /\\* Product of dummies *\\/ *\/ */
   /*            /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
   /*            /\* cov[2+nagesqr+k1]=Tinvresult[nres][Tvardk[k1][1]] * Tinvresult[nres][Tvardk[k1][2]];   *\/ */
   /*            /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])]; *\/ */
   /*          /\* }else{ /\\* Product of dummy by quantitative *\\/ *\/ */
   /*            /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * Tqresult[nres][k]; *\/ */
   /*            /\* cov[2+nagesqr+k1]=Tresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]; *\/ */
   /*        /\*   } *\/ */
   /*        /\* }else{ /\\* Product of quantitative by...*\\/ *\/ */
   /*        /\*   if(Dummy[Tvard[k][2]]==0){  /\\* quant by dummy *\\/ *\/ */
   /*        /\*     /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][Tvard[k][1]]; *\\/ *\/ */
   /*        /\*     cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tresult[nres][Tinvresult[nres][Tvardk[k1][2]]]  ; *\/ */
   /*        /\*   }else{ /\\* Product of two quant *\\/ *\/ */
   /*        /\*     /\\* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\\/ *\/ */
   /*        /\*     cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]  ; *\/ */
   /*        /\*   } *\/ */
   /*        /\* }/\\*end of products quantitative *\\/ *\/ */
   /*      }/\*end of products *\/ */
         /* } /\* End of loop on model equation *\/ */
       /* for (k=1; k<=cptcovn;k++)  */        /* for (k=1; k<=cptcovn;k++)  */
       /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */        /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
       /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */        /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
Line 3184  double ***hpxij(double ***po, int nhstep Line 3675  double ***hpxij(double ***po, int nhstep
               
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                         /* right multiplication of oldm by the current matrix */        /* right multiplication of oldm by the current matrix */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       /* if((int)age == 70){ */        /* if((int)age == 70){ */
Line 3219  double ***hpxij(double ***po, int nhstep Line 3710  double ***hpxij(double ***po, int nhstep
 /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */  /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
 double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres )  double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres )
 {  {
   /* For a combination of dummy covariate ij, computes the transition matrix starting at age 'age' over    /* For dummy covariates given in each resultline (for historical, computes the corresponding combination ij),
        computes the transition matrix starting at age 'age' over
      'nhstepm*hstepm*stepm' months (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
      nhstepm*hstepm matrices.       nhstepm*hstepm matrices.
Line 3231  double ***hbxij(double ***po, int nhstep Line 3723  double ***hbxij(double ***po, int nhstep
      The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output       The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output
   */    */
   
   int i, j, d, h, k;    int i, j, d, h, k, k1;
   double **out, cov[NCOVMAX+1], **bmij();    double **out, cov[NCOVMAX+1], **bmij();
   double **newm, ***newmm;    double **newm, ***newmm;
   double agexact;    double agexact;
Line 3254  double ***hbxij(double ***po, int nhstep Line 3746  double ***hbxij(double ***po, int nhstep
       cov[1]=1.;        cov[1]=1.;
       agexact=age-( (h-1)*hstepm + (d)  )*stepm/YEARM; /* age just before transition, d or d-1? */        agexact=age-( (h-1)*hstepm + (d)  )*stepm/YEARM; /* age just before transition, d or d-1? */
       /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */        /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
           /* Debug */
         /* printf("hBxij age=%lf, agexact=%lf\n", age, agexact); */
       cov[2]=agexact;        cov[2]=agexact;
       if(nagesqr==1)        if(nagesqr==1){
         cov[3]= agexact*agexact;          cov[3]= agexact*agexact;
       for (k=1; k<=cptcovn;k++){        }
       /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */        /** New code */
       /* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */        for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
         cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];          if(Typevar[k1]==1){ /* A product with age */
         /* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */            cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
       }          }else{
       for (k=1; k<=nsq;k++) { /* For single varying covariates only */            cov[2+nagesqr+k1]=precov[nres][k1];
         /* Here comes the value of quantitative after renumbering k with single quantitative covariates */          }
         cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];         }/* End of loop on model equation */
         /* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */        /** End of new code */
       }    /** This was old code */
       for (k=1; k<=cptcovage;k++){ /* Should start at cptcovn+1 */        /* for (k=1; k<=nsd;k++){ /\* For single dummy covariates only *\//\* cptcovn error *\/ */
         if(Dummy[Tvar[Tage[k]]]){        /* /\*    cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */
           cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];        /* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */
         } else{        /*        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])];/\* Bug valgrind *\/ */
           cov[2+nagesqr+Tage[k]]=Tqresult[nres][k];         /*   /\* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
         }        /* } */
         /* printf("hBxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */        /* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */
       }        /*        /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
       for (k=1; k<=cptcovprod;k++){ /* Useless because included in cptcovn */        /*        cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];  */
         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];        /*        /\* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
       }                         /* } */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /* for (k=1; k<=cptcovage;k++){ /\* Should start at cptcovn+1 *\//\* For product with age *\/ */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*        /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age error!!!*\\/ *\/ */
         /*        if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */
         /*          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
         /*        } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */
         /*          cov[2+nagesqr+Tage[k]]=Tqresult[nres][k];  */
         /*        } */
         /*        /\* printf("hBxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
         /* } */
         /* for (k=1; k<=cptcovprod;k++){ /\* Useless because included in cptcovn *\/ */
         /*        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         /*        if(Dummy[Tvard[k][1]]==0){ */
         /*          if(Dummy[Tvard[k][2]]==0){ */
         /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]; */
         /*          }else{ */
         /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
         /*          } */
         /*        }else{ */
         /*          if(Dummy[Tvard[k][2]]==0){ */
         /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
         /*          }else{ */
         /*            cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
         /*          } */
         /*        } */
         /* }                       */
         /* /\*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*\/ */
         /* /\*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*\/ */
   /** End of old code */
         
       /* Careful transposed matrix */        /* Careful transposed matrix */
       /* age is in cov[2], prevacurrent at beginning of transition. */        /* age is in cov[2], prevacurrent at beginning of transition. */
       /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */        /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
       /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */        /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
       out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\        out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
                    1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);                     1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);/* Bug valgrind */
       /* if((int)age == 70){ */        /* if((int)age == 70){ */
       /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */        /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
       /*        for(i=1; i<=nlstate+ndeath; i++) { */        /*        for(i=1; i<=nlstate+ndeath; i++) { */
Line 3341  double ***hbxij(double ***po, int nhstep Line 3861  double ***hbxij(double ***po, int nhstep
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
 double func( double *x)  double func( double *x)
 {  {
   int i, ii, j, k, mi, d, kk;    int i, ii, j, k, mi, d, kk, kf=0;
   int ioffset=0;    int ioffset=0;
   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double **out;    double **out;
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
   int s1, s2;    int s1, s2;
   int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
   
   double bbh, survp;    double bbh, survp;
   long ipmx;  
   double agexact;    double agexact;
     double agebegin, ageend;
   /*extern weight */    /*extern weight */
   /* We are differentiating ll according to initial status */    /* We are differentiating ll according to initial status */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
Line 3373  double func( double *x) Line 3894  double func( double *x)
       */        */
       ioffset=2+nagesqr ;        ioffset=2+nagesqr ;
    /* Fixed */     /* Fixed */
       for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */        for (kf=1; kf<=ncovf;kf++){ /* For each fixed covariate dummu or quant or prod */
         cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/          /* # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi */
           /*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
           /*  TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  ID of fixed covariates or product V2, V1*V2, V1 */
           /* TvarFind;  TvarFind[1]=6,  TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod)  */
           cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (TvarFind[1]=6)*/
           /* V1*V2 (7)  TvarFind[2]=7, TvarFind[3]=9 */
       }        }
       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4]         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
          is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]            is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 
          has been calculated etc */           has been calculated etc */
       /* For an individual i, wav[i] gives the number of effective waves */        /* For an individual i, wav[i] gives the number of effective waves */
       /* We compute the contribution to Likelihood of each effective transition        /* We compute the contribution to Likelihood of each effective transition
Line 3388  double func( double *x) Line 3914  double func( double *x)
          But if the variable is not in the model TTvar[iv] is the real variable effective in the model:           But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
          meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]           meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
       */        */
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
         for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/        /* Wave varying (but not age varying) */
           /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */          for(k=1; k <= ncovv ; k++){ /* Varying  covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3)  Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*/
             /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? */
           cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];            cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
         }          }
         for (ii=1;ii<=nlstate+ndeath;ii++)          for (ii=1;ii<=nlstate+ndeath;ii++)
Line 3398  double func( double *x) Line 3925  double func( double *x)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
   
           agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
           ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
         for(d=0; d<dh[mi][i]; d++){          for(d=0; d<dh[mi][i]; d++){
           newm=savm;            newm=savm;
           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
Line 3405  double func( double *x) Line 3935  double func( double *x)
           if(nagesqr==1)            if(nagesqr==1)
             cov[3]= agexact*agexact;  /* Should be changed here */              cov[3]= agexact*agexact;  /* Should be changed here */
           for (kk=1; kk<=cptcovage;kk++) {            for (kk=1; kk<=cptcovage;kk++) {
           if(!FixedV[Tvar[Tage[kk]]])              if(!FixedV[Tvar[Tage[kk]]])
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */                cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
           else              else
             cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;                cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
           }            }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
Line 3488  double func( double *x) Line 4018  double func( double *x)
           /*survp += out[s1][j]; */            /*survp += out[s1][j]; */
           lli= log(survp);            lli= log(survp);
         }          }
         else if  (s2==-4) {           /* else if  (s2==-4) {  */
           for (j=3,survp=0. ; j<=nlstate; j++)            /*   for (j=3,survp=0. ; j<=nlstate; j++)   */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          /*     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */
           lli= log(survp);           /*   lli= log(survp);  */
         }           /* }  */
         else if  (s2==-5) {           /* else if  (s2==-5) {  */
           for (j=1,survp=0. ; j<=2; j++)            /*   for (j=1,survp=0. ; j<=2; j++)   */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          /*     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */
           lli= log(survp);           /*   lli= log(survp);  */
         }           /* }  */
         else{          else{
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
Line 3516  double func( double *x) Line 4046  double func( double *x)
     } /* end of individual */      } /* end of individual */
   }  else if(mle==2){    }  else if(mle==2){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];        ioffset=2+nagesqr ;
         for (k=1; k<=ncovf;k++)
           cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(k=1; k <= ncovv ; k++){
             cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
           }
         for (ii=1;ii<=nlstate+ndeath;ii++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){            for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
Line 3667  double func( double *x) Line 4202  double func( double *x)
 double funcone( double *x)  double funcone( double *x)
 {  {
   /* Same as func but slower because of a lot of printf and if */    /* Same as func but slower because of a lot of printf and if */
   int i, ii, j, k, mi, d, kk;    int i, ii, j, k, mi, d, kk, kf=0;
   int ioffset=0;    int ioffset=0;
   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double **out;    double **out;
Line 3690  double funcone( double *x) Line 4225  double funcone( double *x)
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   ioffset=0;    ioffset=0;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       /* Computes the values of the ncovmodel covariates of the model
          depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
          Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
          to be observed in j being in i according to the model.
       */
     /* ioffset=2+nagesqr+cptcovage; */      /* ioffset=2+nagesqr+cptcovage; */
     ioffset=2+nagesqr;      ioffset=2+nagesqr;
     /* Fixed */      /* Fixed */
     /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */      /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
     /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */      /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
     for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */      for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */
       cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/        cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
 /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */  /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
 /*    cov[2+6]=covar[Tvar[6]][i];  */  /*    cov[2+6]=covar[Tvar[6]][i];  */
 /*    cov[2+6]=covar[2][i]; V2  */  /*    cov[2+6]=covar[2][i]; V2  */
Line 3707  double funcone( double *x) Line 4247  double funcone( double *x)
 /*    cov[2+9]=covar[Tvar[9]][i];  */  /*    cov[2+9]=covar[Tvar[9]][i];  */
 /*    cov[2+9]=covar[1][i]; V1  */  /*    cov[2+9]=covar[1][i]; V1  */
     }      }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 
            has been calculated etc */
         /* For an individual i, wav[i] gives the number of effective waves */
         /* We compute the contribution to Likelihood of each effective transition
            mw[mi][i] is real wave of the mi th effectve wave */
         /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
            s2=s[mw[mi+1][i]][i];
            And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
            But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
            meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
         */
       /* This part may be useless now because everythin should be in covar */
     /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */      /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
     /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */      /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
     /* } */      /* } */
Line 3764  double funcone( double *x) Line 4317  double funcone( double *x)
         savm=oldm;          savm=oldm;
         oldm=newm;          oldm=newm;
       } /* end mult */        } /* end mult */
                 /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
                                    * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                                    * -stepm/2 to stepm/2 .
                                    * For stepm=1 the results are the same as for previous versions of Imach.
                                    * For stepm > 1 the results are less biased than in previous versions. 
                                    */
       s1=s[mw[mi][i]][i];        s1=s[mw[mi][i]][i];
       s2=s[mw[mi+1][i]][i];        s2=s[mw[mi+1][i]][i];
       /* if(s2==-1){ */        /* if(s2==-1){ */
Line 3796  double funcone( double *x) Line 4361  double funcone( double *x)
       ipmx +=1;        ipmx +=1;
       sw += weight[i];        sw += weight[i];
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        /* printf("Funcone i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
       if(globpr){        if(globpr){
         fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\          fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
  %11.6f %11.6f %11.6f ", \   %11.6f %11.6f %11.6f ", \
                 num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
                 2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2]));                  2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2]));
    /*     printf("%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ */
    /* %11.6f %11.6f %11.6f ", \ */
    /*             num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, */
    /*             2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           llt +=ll[k]*gipmx/gsw;            llt +=ll[k]*gipmx/gsw;
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
             /* printf(" %10.6f",-ll[k]*gipmx/gsw); */
         }          }
         fprintf(ficresilk," %10.6f\n", -llt);          fprintf(ficresilk," %10.6f\n", -llt);
           /* printf(" %10.6f\n", -llt); */
       }        }
         } /* end of wave */      } /* end of wave */
 } /* end of individual */    } /* end of individual */
 for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 if(globpr==0){ /* First time we count the contributions and weights */    if(globpr==0){ /* First time we count the contributions and weights */
         gipmx=ipmx;      gipmx=ipmx;
         gsw=sw;      gsw=sw;
 }    }
 return -l;  return -l;
 }  }
   
   
 /*************** function likelione ***********/  /*************** function likelione ***********/
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*func)(double []))
 {  {
   /* This routine should help understanding what is done with     /* This routine should help understanding what is done with 
      the selection of individuals/waves and       the selection of individuals/waves and
Line 3846  void likelione(FILE *ficres,double p[], Line 4417  void likelione(FILE *ficres,double p[],
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }    }
   
   *fretone=(*funcone)(p);    *fretone=(*func)(p);
   if(*globpri !=0){    if(*globpri !=0){
     fclose(ficresilk);      fclose(ficresilk);
     if (mle ==0)      if (mle ==0)
Line 3854  void likelione(FILE *ficres,double p[], Line 4425  void likelione(FILE *ficres,double p[],
     else if(mle >=1)      else if(mle >=1)
       fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
     fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); 
               
     for (k=1; k<= nlstate ; k++) {      for (k=1; k<= nlstate ; k++) {
       fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \        fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
Line 3874  void likelione(FILE *ficres,double p[], Line 4445  void likelione(FILE *ficres,double p[],
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 {  {
   int i,j, iter=0;    int i,j,k, jk, jkk=0, iter=0;
   double **xi;    double **xi;
   double fret;    double fret;
   double fretone; /* Only one call to likelihood */    double fretone; /* Only one call to likelihood */
Line 3908  void mlikeli(FILE *ficres,double p[], in Line 4479  void mlikeli(FILE *ficres,double p[], in
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficrespow,"\n");    fprintf(ficrespow,"\n");
 #ifdef POWELL  #ifdef POWELL
   #ifdef LINMINORIGINAL
   #else /* LINMINORIGINAL */
     
     flatdir=ivector(1,npar); 
     for (j=1;j<=npar;j++) flatdir[j]=0; 
   #endif /*LINMINORIGINAL */
   
   #ifdef FLATSUP
     powell(p,xi,npar,ftol,&iter,&fret,flatdir,func);
     /* reorganizing p by suppressing flat directions */
     for(i=1, jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]);
           if(flatdir[jk]==1){
             printf(" To be skipped %d%d flatdir[%d]=%d ",i,k,jk, flatdir[jk]);
           }
           for(j=1; j <=ncovmodel; j++){
             printf("%12.7f ",p[jk]);
             jk++; 
           }
           printf("\n");
         }
       }
     }
   /* skipping */
     /* for(i=1, jk=1, jkk=1;(flatdir[jk]==0)&& (i <=nlstate); i++){ */
     for(i=1, jk=1, jkk=1;i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]);
           if(flatdir[jk]==1){
             printf(" To be skipped %d%d flatdir[%d]=%d jk=%d p[%d] ",i,k,jk, flatdir[jk],jk, jk);
             for(j=1; j <=ncovmodel;  jk++,j++){
               printf(" p[%d]=%12.7f",jk, p[jk]);
               /*q[jjk]=p[jk];*/
             }
           }else{
             printf(" To be kept %d%d flatdir[%d]=%d jk=%d q[%d]=p[%d] ",i,k,jk, flatdir[jk],jk, jkk, jk);
             for(j=1; j <=ncovmodel;  jk++,jkk++,j++){
               printf(" p[%d]=%12.7f=q[%d]",jk, p[jk],jkk);
               /*q[jjk]=p[jk];*/
             }
           }
           printf("\n");
         }
         fflush(stdout);
       }
     }
     powell(p,xi,npar,ftol,&iter,&fret,flatdir,func);
   #else  /* FLATSUP */
   powell(p,xi,npar,ftol,&iter,&fret,func);    powell(p,xi,npar,ftol,&iter,&fret,func);
 #endif  #endif  /* FLATSUP */
   
   #ifdef LINMINORIGINAL
   #else
         free_ivector(flatdir,1,npar); 
   #endif  /* LINMINORIGINAL*/
   #endif /* POWELL */
   
 #ifdef NLOPT  #ifdef NLOPT
 #ifdef NEWUOA  #ifdef NEWUOA
Line 3937  void mlikeli(FILE *ficres,double p[], in Line 4565  void mlikeli(FILE *ficres,double p[], in
   }    }
   nlopt_destroy(opt);    nlopt_destroy(opt);
 #endif  #endif
   #ifdef FLATSUP
     /* npared = npar -flatd/ncovmodel; */
     /* xired= matrix(1,npared,1,npared); */
     /* paramred= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */
     /* powell(pred,xired,npared,ftol,&iter,&fret,flatdir,func); */
     /* free_matrix(xire,1,npared,1,npared); */
   #else  /* FLATSUP */
   #endif /* FLATSUP */
   free_matrix(xi,1,npar,1,npar);    free_matrix(xi,1,npar,1,npar);
   fclose(ficrespow);    fclose(ficrespow);
   printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
Line 4321  void pstamp(FILE *fichier) Line 4957  void pstamp(FILE *fichier)
   fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
 }  }
   
   void date2dmy(double date,double *day, double *month, double *year){
     double yp=0., yp1=0., yp2=0.;
     
     yp1=modf(date,&yp);/* extracts integral of date in yp  and
                           fractional in yp1 */
     *year=yp;
     yp2=modf((yp1*12),&yp);
     *month=yp;
     yp1=modf((yp2*30.5),&yp);
     *day=yp;
     if(*day==0) *day=1;
     if(*month==0) *month=1;
   }
   
   
   
 /************ Frequencies ********************/  /************ Frequencies ********************/
Line 4328  void  freqsummary(char fileres[], double Line 4978  void  freqsummary(char fileres[], double
                   int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \                    int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
                   int firstpass,  int lastpass, int stepm, int weightopt, char model[])                    int firstpass,  int lastpass, int stepm, int weightopt, char model[])
 {  /* Some frequencies as well as proposing some starting values */  {  /* Some frequencies as well as proposing some starting values */
       /* Frequencies of any combination of dummy covariate used in the model equation */ 
   int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1;    int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1;
   int iind=0, iage=0;    int iind=0, iage=0;
   int mi; /* Effective wave */    int mi; /* Effective wave */
Line 4336  void  freqsummary(char fileres[], double Line 4986  void  freqsummary(char fileres[], double
   double ***freq; /* Frequencies */    double ***freq; /* Frequencies */
   double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */    double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */
   int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb);    int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb);
   double *meanq;    double *meanq, *stdq, *idq;
   double **meanqt;    double **meanqt;
   double *pp, **prop, *posprop, *pospropt;    double *pp, **prop, *posprop, *pospropt;
   double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;    double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
Line 4349  void  freqsummary(char fileres[], double Line 4999  void  freqsummary(char fileres[], double
   pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */     pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
   /* prop=matrix(1,nlstate,iagemin,iagemax+3); */    /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
   meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */    meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
     stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
     idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
   meanqt=matrix(1,lastpass,1,nqtveff);    meanqt=matrix(1,lastpass,1,nqtveff);
   strcpy(fileresp,"P_");    strcpy(fileresp,"P_");
   strcat(fileresp,fileresu);    strcat(fileresp,fileresu);
Line 4372  void  freqsummary(char fileres[], double Line 5024  void  freqsummary(char fileres[], double
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);              fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   }    }
   fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm);    fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies (weight=%d) and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm, weightopt);
       
   strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));    strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
   if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {    if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
Line 4382  Title=%s <br>Datafile=%s Firstpass=%d La Line 5034  Title=%s <br>Datafile=%s Firstpass=%d La
     exit(70);       exit(70); 
   } else{    } else{
     fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \      fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 <hr size=\"2\" color=\"#EC5E5E\"> \n                                    \  ,<hr size=\"2\" color=\"#EC5E5E\"> \n                                   \
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);              fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   }    }
   fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);    fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>(weight=%d) frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr,weightopt);
       
   y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);    y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
   x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);    x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
Line 4394  Title=%s <br>Datafile=%s Firstpass=%d La Line 5046  Title=%s <br>Datafile=%s Firstpass=%d La
   j1=0;    j1=0;
       
   /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */    /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
   j=cptcoveff;  /* Only dummy covariates of the model */    j=cptcoveff;  /* Only simple dummy covariates used in the model */
     /* j=cptcovn;  /\* Only dummy covariates of the model *\/ */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       
       
Line 4402  Title=%s <br>Datafile=%s Firstpass=%d La Line 5055  Title=%s <br>Datafile=%s Firstpass=%d La
      reference=low_education V1=0,V2=0       reference=low_education V1=0,V2=0
      med_educ                V1=1 V2=0,        med_educ                V1=1 V2=0, 
      high_educ               V1=0 V2=1       high_educ               V1=0 V2=1
      Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff        Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcovn 
   */    */
   dateintsum=0;    dateintsum=0;
   k2cpt=0;    k2cpt=0;
Line 4439  Title=%s <br>Datafile=%s Firstpass=%d La Line 5092  Title=%s <br>Datafile=%s Firstpass=%d La
     if(nj==1)      if(nj==1)
       j=0;  /* First pass for the constant */        j=0;  /* First pass for the constant */
     else{      else{
       j=cptcoveff; /* Other passes for the covariate values */        j=cptcoveff; /* Other passes for the covariate values number of simple covariates in the model V2+V1 =2 (simple dummy fixed or time varying) */
     }      }
     first=1;      first=1;
     for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all covariates combination of the model, excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */      for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all dummy covariates combination of the model, ie excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */
       posproptt=0.;        posproptt=0.;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        /*printf("cptcovn=%d Tvaraff=%d", cptcovn,Tvaraff[1]);
         scanf("%d", i);*/          scanf("%d", i);*/
       for (i=-5; i<=nlstate+ndeath; i++)          for (i=-5; i<=nlstate+ndeath; i++)  
         for (s2=-5; s2<=nlstate+ndeath; s2++)            for (s2=-5; s2<=nlstate+ndeath; s2++)  
Line 4457  Title=%s <br>Datafile=%s Firstpass=%d La Line 5110  Title=%s <br>Datafile=%s Firstpass=%d La
         posprop[i]=0;          posprop[i]=0;
         pospropt[i]=0;          pospropt[i]=0;
       }        }
       /* for (z1=1; z1<= nqfveff; z1++) {   */        for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */
       /*   meanq[z1]+=0.; */          idq[z1]=0.;
           meanq[z1]=0.;
           stdq[z1]=0.;
         }
         /* for (z1=1; z1<= nqtveff; z1++) { */
       /*   for(m=1;m<=lastpass;m++){ */        /*   for(m=1;m<=lastpass;m++){ */
       /*        meanqt[m][z1]=0.; */        /*          meanqt[m][z1]=0.; */
       /*   } */        /*        } */
       /* } */        /* }       */
         
       /* dateintsum=0; */        /* dateintsum=0; */
       /* k2cpt=0; */        /* k2cpt=0; */
               
Line 4473  Title=%s <br>Datafile=%s Firstpass=%d La Line 5129  Title=%s <br>Datafile=%s Firstpass=%d La
         if(j !=0){          if(j !=0){
           if(anyvaryingduminmodel==0){ /* If All fixed covariates */            if(anyvaryingduminmodel==0){ /* If All fixed covariates */
             if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */              if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
               /* for (z1=1; z1<= nqfveff; z1++) {   */  
               /*   meanq[z1]+=coqvar[Tvar[z1]][iind];  /\* Computes mean of quantitative with selected filter *\/ */  
               /* } */  
               for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */                for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */
                 /* if(Tvaraff[z1] ==-20){ */                  /* if(Tvaraff[z1] ==-20){ */
                 /*       /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */                  /*       /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
                 /* }else  if(Tvaraff[z1] ==-10){ */                  /* }else  if(Tvaraff[z1] ==-10){ */
                 /*       /\* sumnew+=coqvar[z1][iind]; *\/ */                  /*       /\* sumnew+=coqvar[z1][iind]; *\/ */
                 /* }else  */                  /* }else  */ /* TODO TODO codtabm(j1,z1) or codtabm(j1,Tvaraff[z1]]z1)*/
                 if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ /* for combination j1 of covariates */                  /* if( iind >=imx-3) printf("Searching error iind=%d Tvaraff[z1]=%d covar[Tvaraff[z1]][iind]=%.f TnsdVar[Tvaraff[z1]]=%d, cptcoveff=%d, cptcovs=%d \n",iind, Tvaraff[z1], covar[Tvaraff[z1]][iind],TnsdVar[Tvaraff[z1]],cptcoveff, cptcovs); */
                   if(Tvaraff[z1]<1 || Tvaraff[z1]>=NCOVMAX)
                     printf("Error Tvaraff[z1]=%d<1 or >=%d, cptcoveff=%d model=1+age+%s\n",Tvaraff[z1],NCOVMAX, cptcoveff, model);
                   if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]){ /* for combination j1 of covariates */
                   /* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */                    /* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */
                   bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */                    bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */
                   /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n",                     /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", */
                      bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),                    /*   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),*/
                      j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/                    /*   j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
                   /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/                    /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
                 } /* Onlyf fixed */                  } /* Onlyf fixed */
               } /* end z1 */                } /* end z1 */
             } /* cptcovn > 0 */              } /* cptcoveff > 0 */
           } /* end any */            } /* end any */
         }/* end j==0 */          }/* end j==0 */
         if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */          if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */
           /* for(m=firstpass; m<=lastpass; m++){ */            /* for(m=firstpass; m<=lastpass; m++){ */
           for(mi=1; mi<wav[iind];mi++){ /* For that wave */            for(mi=1; mi<wav[iind];mi++){ /* For each wave */
             m=mw[mi][iind];              m=mw[mi][iind];
             if(j!=0){              if(j!=0){
               if(anyvaryingduminmodel==1){ /* Some are varying covariates */                if(anyvaryingduminmodel==1){ /* Some are varying covariates */
                 for (z1=1; z1<=cptcoveff; z1++) {                  for (z1=1; z1<=cptcoveff; z1++) {
                   if( Fixed[Tmodelind[z1]]==1){                    if( Fixed[Tmodelind[z1]]==1){
                     iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;                      iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
                     if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality. If covariate's                       if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality. If covariate's 
                                                                                       value is -1, we don't select. It differs from the                                                                                         value is -1, we don't select. It differs from the 
                                                                                       constant and age model which counts them. */                                                                                        constant and age model which counts them. */
                       bool=0; /* not selected */                        bool=0; /* not selected */
                   }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */                    }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
                     if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {                      /* i1=Tvaraff[z1]; */
                       /* i2=TnsdVar[i1]; */
                       /* i3=nbcode[i1][i2]; */
                       /* i4=covar[i1][iind]; */
                       /* if(i4 != i3){ */
                       if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { /* Bug valgrind */
                       bool=0;                        bool=0;
                     }                      }
                   }                    }
Line 4516  Title=%s <br>Datafile=%s Firstpass=%d La Line 5177  Title=%s <br>Datafile=%s Firstpass=%d La
               }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */                }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
             } /* end j==0 */              } /* end j==0 */
             /* bool =0 we keep that guy which corresponds to the combination of dummy values */              /* bool =0 we keep that guy which corresponds to the combination of dummy values */
             if(bool==1){              if(bool==1){ /*Selected */
               /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]                /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
                  and mw[mi+1][iind]. dh depends on stepm. */                   and mw[mi+1][iind]. dh depends on stepm. */
               agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/                agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
Line 4534  Title=%s <br>Datafile=%s Firstpass=%d La Line 5195  Title=%s <br>Datafile=%s Firstpass=%d La
                   if(s[m][iind]==-1)                    if(s[m][iind]==-1)
                     printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));                      printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
                   freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */                    freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
                     for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean on known values only */
                       if(!isnan(covar[ncovcol+z1][iind])){
                         idq[z1]=idq[z1]+weight[iind];
                         meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /* Computes mean of quantitative with selected filter */
                         /* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; *//*error*/
                         stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]; /* *weight[iind];*/  /* Computes mean of quantitative with selected filter */
                       }
                     }
                   /* if((int)agev[m][iind] == 55) */                    /* if((int)agev[m][iind] == 55) */
                   /*   printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */                    /*   printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */
                   /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */                    /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
Line 4549  Title=%s <br>Datafile=%s Firstpass=%d La Line 5218  Title=%s <br>Datafile=%s Firstpass=%d La
               bool=1;                bool=1;
             }/* end bool 2 */              }/* end bool 2 */
           } /* end m */            } /* end m */
             /* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */
             /*   idq[z1]=idq[z1]+weight[iind]; */
             /*   meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /\* Computes mean of quantitative with selected filter *\/ */
             /*   stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/  /\* Computes mean of quantitative with selected filter *\/ */
             /* } */
         } /* end bool */          } /* end bool */
       } /* end iind = 1 to imx */        } /* end iind = 1 to imx */
       /* prop[s][age] is feeded for any initial and valid live state as well as        /* prop[s][age] is fed for any initial and valid live state as well as
          freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */           freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
               
               
Line 4565  Title=%s <br>Datafile=%s Firstpass=%d La Line 5239  Title=%s <br>Datafile=%s Firstpass=%d La
         fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable ");           fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
         fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable ");           fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
         fprintf(ficlog, "\n#********** Variable ");           fprintf(ficlog, "\n#********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++){          for (z1=1; z1<=cptcovs; z1++){
           if(!FixedV[Tvaraff[z1]]){            if(!FixedV[Tvaraff[z1]]){
             printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
             fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
             fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
             fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
             fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
           }else{            }else{
             printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
             fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
             fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
             fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
             fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
           }            }
         }          }
         printf( "**********\n#");          printf( "**********\n#");
Line 4586  Title=%s <br>Datafile=%s Firstpass=%d La Line 5260  Title=%s <br>Datafile=%s Firstpass=%d La
         fprintf(ficresphtmfr, "**********</h3>\n");          fprintf(ficresphtmfr, "**********</h3>\n");
         fprintf(ficlog, "**********\n");          fprintf(ficlog, "**********\n");
       }        }
         /*
           Printing means of quantitative variables if any
         */
         for (z1=1; z1<= nqfveff; z1++) {
           fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.3g (weighted) individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]);
           fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]);
           if(weightopt==1){
             printf(" Weighted mean and standard deviation of");
             fprintf(ficlog," Weighted mean and standard deviation of");
             fprintf(ficresphtmfr," Weighted mean and standard deviation of");
           }
           /* mu = \frac{w x}{\sum w}
              var = \frac{\sum w (x-mu)^2}{\sum w} = \frac{w x^2}{\sum w} - mu^2 
           */
           printf(" fixed quantitative variable V%d on  %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
           fprintf(ficlog," fixed quantitative variable V%d on  %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
           fprintf(ficresphtmfr," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
         }
         /* for (z1=1; z1<= nqtveff; z1++) { */
         /*        for(m=1;m<=lastpass;m++){ */
         /*          fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */
         /*   } */
         /* } */
   
       fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");        fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
       if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */        if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */
         fprintf(ficresp, " Age");          fprintf(ficresp, " Age");
       if(nj==2) for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);        if(nj==2) for (z1=1; z1<=cptcoveff; z1++) {
             printf(" V%d=%d, z1=%d, Tvaraff[z1]=%d, j1=%d, TnsdVar[Tvaraff[%d]]=%d |",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])], z1, Tvaraff[z1], j1,z1,TnsdVar[Tvaraff[z1]]);
             fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
           }
       for(i=1; i<=nlstate;i++) {        for(i=1; i<=nlstate;i++) {
         if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d)  N(%d)  N  ",i,i);          if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d)  N(%d)  N  ",i,i);
         fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);          fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
Line 4669  Title=%s <br>Datafile=%s Firstpass=%d La Line 5370  Title=%s <br>Datafile=%s Firstpass=%d La
         }else if( nj==2){          }else if( nj==2){
           if( iage <= iagemax){            if( iage <= iagemax){
             fprintf(ficresp," %d",iage);              fprintf(ficresp," %d",iage);
             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
           }            }
         }          }
         for(s1=1; s1 <=nlstate ; s1++){          for(s1=1; s1 <=nlstate ; s1++){
Line 4746  Title=%s <br>Datafile=%s Firstpass=%d La Line 5447  Title=%s <br>Datafile=%s Firstpass=%d La
         printf("#  This combination (%d) is not valid and no result will be produced\n",j1);          printf("#  This combination (%d) is not valid and no result will be produced\n",j1);
         invalidvarcomb[j1]=1;          invalidvarcomb[j1]=1;
       }else{        }else{
         fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1);          fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced (or no resultline).</p>",j1);
         invalidvarcomb[j1]=0;          invalidvarcomb[j1]=0;
       }        }
       fprintf(ficresphtmfr,"</table>\n");        fprintf(ficresphtmfr,"</table>\n");
Line 4820  Title=%s <br>Datafile=%s Firstpass=%d La Line 5521  Title=%s <br>Datafile=%s Firstpass=%d La
             fprintf(ficlog,"\n");              fprintf(ficlog,"\n");
           }            }
         }          }
       }        } /* end of state i */
       printf("#Freqsummary\n");        printf("#Freqsummary\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
       for(s1=-1; s1 <=nlstate+ndeath; s1++){        for(s1=-1; s1 <=nlstate+ndeath; s1++){
Line 4862  Title=%s <br>Datafile=%s Firstpass=%d La Line 5563  Title=%s <br>Datafile=%s Firstpass=%d La
     }      }
   } /* end mle=-2 */    } /* end mle=-2 */
   dateintmean=dateintsum/k2cpt;     dateintmean=dateintsum/k2cpt; 
     date2dmy(dateintmean,&jintmean,&mintmean,&aintmean);
       
   fclose(ficresp);    fclose(ficresp);
   fclose(ficresphtm);    fclose(ficresphtm);
   fclose(ficresphtmfr);    fclose(ficresphtmfr);
     free_vector(idq,1,nqfveff);
   free_vector(meanq,1,nqfveff);    free_vector(meanq,1,nqfveff);
     free_vector(stdq,1,nqfveff);
   free_matrix(meanqt,1,lastpass,1,nqtveff);    free_matrix(meanqt,1,lastpass,1,nqtveff);
   free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE);    free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
   free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE);    free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
Line 4973  void prevalence(double ***probs, double Line 5677  void prevalence(double ***probs, double
   /*j=cptcoveff;*/    /*j=cptcoveff;*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       
   first=1;    first=0;
   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of simple dummy covariates */
     for (i=1; i<=nlstate; i++)        for (i=1; i<=nlstate; i++)  
       for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++)        for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++)
         prop[i][iage]=0.0;          prop[i][iage]=0.0;
Line 4992  void prevalence(double ***probs, double Line 5696  void prevalence(double ***probs, double
         for (z1=1; z1<=cptcoveff; z1++){          for (z1=1; z1<=cptcoveff; z1++){
           if( Fixed[Tmodelind[z1]]==1){            if( Fixed[Tmodelind[z1]]==1){
             iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;              iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
             if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */              if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality */
               bool=0;                bool=0;
           }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */            }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) {
               bool=0;                bool=0;
             }              }
         }          }
Line 5031  void prevalence(double ***probs, double Line 5735  void prevalence(double ***probs, double
           if(posprop>=1.e-5){             if(posprop>=1.e-5){ 
             probs[i][jk][j1]= prop[jk][i]/posprop;              probs[i][jk][j1]= prop[jk][i]/posprop;
           } else{            } else{
             if(first==1){              if(!first){
               first=0;                first=1;
               printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]);                printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]);
               fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]);  
             }else{              }else{
               fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]);                fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]);
             }              }
           }            }
         }           } 
Line 5054  void prevalence(double ***probs, double Line 5757  void prevalence(double ***probs, double
   
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /* Concatenates waves: wav[i] is the number of effective (useful waves in the sense that a non interview is useless) of individual i.
      Death is a valid wave (if date is known).       Death is a valid wave (if date is known).
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      and mw[mi+1][i]. dh depends on stepm.       and mw[mi+1][i]. dh depends on stepm. s[m][i] exists for any wave from firstpass to lastpass
   */    */
   
   int i=0, mi=0, m=0, mli=0;    int i=0, mi=0, m=0, mli=0;
Line 5079  void  concatwav(int wav[], int **dh, int Line 5782  void  concatwav(int wav[], int **dh, int
   for(i=1; i<=imx; i++){  /* For simple cases and if state is death */    for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
     mi=0;  /* First valid wave */      mi=0;  /* First valid wave */
     mli=0; /* Last valid wave */      mli=0; /* Last valid wave */
     m=firstpass;      m=firstpass;  /* Loop on waves */
     while(s[m][i] <= nlstate){  /* a live state */      while(s[m][i] <= nlstate){  /* a live state or unknown state  */
       if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */        if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
         mli=m-1;/* mw[++mi][i]=m-1; */          mli=m-1;/* mw[++mi][i]=m-1; */
       }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */        }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
         mw[++mi][i]=m;          mw[++mi][i]=m; /* Valid wave: incrementing mi and updating mi; mw[mi] is the wave number of mi_th valid transition   */
         mli=m;          mli=m;
       } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */        } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
       if(m < lastpass){ /* m < lastpass, standard case */        if(m < lastpass){ /* m < lastpass, standard case */
         m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */          m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
       }        }
       else{ /* m >= lastpass, eventual special issue with warning */        else{ /* m = lastpass, eventual special issue with warning */
 #ifdef UNKNOWNSTATUSNOTCONTRIBUTING  #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
         break;          break;
 #else  #else
         if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){          if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ /* no death date and known date of interview, case -2 (vital status unknown is warned later */
           if(firsthree == 0){            if(firsthree == 0){
             printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p%d%d .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);              printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
             firsthree=1;              firsthree=1;
             }else if(firsthree >=1 && firsthree < 10){
               fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
               firsthree++;
             }else if(firsthree == 10){
               printf("Information, too many Information flags: no more reported to log either\n");
               fprintf(ficlog,"Information, too many Information flags: no more reported to log either\n");
               firsthree++;
             }else{
               firsthree++;
           }            }
           fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p%d%d .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);            mw[++mi][i]=m; /* Valid transition with unknown status */
           mw[++mi][i]=m;  
           mli=m;            mli=m;
         }          }
         if(s[m][i]==-2){ /* Vital status is really unknown */          if(s[m][i]==-2){ /* Vital status is really unknown */
           nbwarn++;            nbwarn++;
           if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */            if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified?not a transition */
             printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);              printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
             fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);              fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
           }            }
Line 5130  void  concatwav(int wav[], int **dh, int Line 5841  void  concatwav(int wav[], int **dh, int
 #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE  #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
     else if ((int) andc[i] != 9999) {  /* Date of death is known */      else if ((int) andc[i] != 9999) {  /* Date of death is known */
       if ((int)anint[m][i]!= 9999) { /* date of last interview is known */        if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
         if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */          if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* month of death occured before last wave month and status should have been death instead of -1 */
           nbwarn++;            nbwarn++;
           if(firstfiv==0){            if(firstfiv==0){
             printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );              printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
             firstfiv=1;              firstfiv=1;
           }else{            }else{
             fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );              fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
           }            }
         }else{ /* Death occured afer last wave potential bias */              s[m][i]=nlstate+1; /* Fixing the status as death. Be careful if multiple death states */
           }else{ /* Month of Death occured afer last wave month, potential bias */
           nberr++;            nberr++;
           if(firstwo==0){            if(firstwo==0){
             printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictive wave at the date of last vital status scan, with a dead status or alive but unknown state status (-1). See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );              printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
             firstwo=1;              firstwo=1;
           }            }
           fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictive wave at the date of last vital status scan, with a dead status or alive but unknown state status (-1). See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );            fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
         }          }
       }else{ /* if date of interview is unknown */        }else{ /* if date of interview is unknown */
         /* death is known but not confirmed by death status at any wave */          /* death is known but not confirmed by death status at any wave */
         if(firstfour==0){          if(firstfour==0){
           printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );            printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
           firstfour=1;            firstfour=1;
         }          }
         fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );          fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d  with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
       }        }
     } /* end if date of death is known */      } /* end if date of death is known */
 #endif  #endif
     wav[i]=mi; /* mi should be the last effective wave (or mli) */      wav[i]=mi; /* mi should be the last effective wave (or mli),  */
     /* wav[i]=mw[mi][i]; */      /* wav[i]=mw[mi][i];   */
     if(mi==0){      if(mi==0){
       nbwarn++;        nbwarn++;
       if(first==0){        if(first==0){
Line 5171  void  concatwav(int wav[], int **dh, int Line 5883  void  concatwav(int wav[], int **dh, int
   } /* End individuals */    } /* End individuals */
   /* wav and mw are no more changed */    /* wav and mw are no more changed */
                   
       printf("Information, you have to check %d informations which haven't been logged!\n",firsthree);
     fprintf(ficlog,"Information, you have to check %d informations which haven't been logged!\n",firsthree);
   
   
   for(i=1; i<=imx; i++){    for(i=1; i<=imx; i++){
     for(mi=1; mi<wav[i];mi++){      for(mi=1; mi<wav[i];mi++){
       if (stepm <=0)        if (stepm <=0)
Line 5282  void  concatwav(int wav[], int **dh, int Line 5997  void  concatwav(int wav[], int **dh, int
    /* *cptcov=0; */     /* *cptcov=0; */
     
    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
      for (k=1; k <= maxncov; k++)
        for(j=1; j<=2; j++)
          nbcode[k][j]=0; /* Valgrind */
   
    /* Loop on covariates without age and products and no quantitative variable */     /* Loop on covariates without age and products and no quantitative variable */
    /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */     for (k=1; k<=cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
    for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */  
      for (j=-1; (j < maxncov); j++) Ndum[j]=0;       for (j=-1; (j < maxncov); j++) Ndum[j]=0;
      if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */        if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ 
        switch(Fixed[k]) {         switch(Fixed[k]) {
        case 0: /* Testing on fixed dummy covariate, simple or product of fixed */         case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
            modmaxcovj=0;
            modmincovj=0;
          for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/           for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
            ij=(int)(covar[Tvar[k]][i]);             ij=(int)(covar[Tvar[k]][i]);
            /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i             /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
Line 5302  void  concatwav(int wav[], int **dh, int Line 6021  void  concatwav(int wav[], int **dh, int
              modmaxcovj=ij;                modmaxcovj=ij; 
            else if (ij < modmincovj)              else if (ij < modmincovj) 
              modmincovj=ij;                modmincovj=ij; 
            if ((ij < -1) && (ij > NCOVMAX)){             if (ij <0 || ij >1 ){
                printf("ERROR, IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i);
                fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i);
                fflush(ficlog);
                exit(1);
              }
              if ((ij < -1) || (ij > NCOVMAX)){
              printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );               printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
              exit(1);               exit(1);
            }else             }else
Line 5348  void  concatwav(int wav[], int **dh, int Line 6073  void  concatwav(int wav[], int **dh, int
          /* nbcode[Tvar[j]][3]=2; */           /* nbcode[Tvar[j]][3]=2; */
          /* To be continued (not working yet). */           /* To be continued (not working yet). */
          ij=0; /* ij is similar to i but can jump over null modalities */           ij=0; /* ij is similar to i but can jump over null modalities */
          for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/  
            /* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
            /* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */
            /* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of
             * nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */
            /*, could be restored in the future */
            for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
            if (Ndum[i] == 0) { /* If nobody responded to this modality k */             if (Ndum[i] == 0) { /* If nobody responded to this modality k */
              break;               break;
            }             }
            ij++;             ij++;
            nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/             nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/
            cptcode = ij; /* New max modality for covar j */             cptcode = ij; /* New max modality for covar j */
          } /* end of loop on modality i=-1 to 1 or more */           } /* end of loop on modality i=-1 to 1 or more */
          break;           break;
Line 5369  void  concatwav(int wav[], int **dh, int Line 6100  void  concatwav(int wav[], int **dh, int
          break;           break;
        } /* end switch */         } /* end switch */
      } /* end dummy test */       } /* end dummy test */
            if(Dummy[k]==1 && Typevar[k] !=1){ /* Quantitative covariate and not age product */ 
      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */         for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
      /*         /\*recode from 0 *\/ */           if(Tvar[k]<=0 || Tvar[k]>=NCOVMAX){
      /*                                      k is a modality. If we have model=V1+V1*sex  */             printf("Error k=%d \n",k);
      /*                                      then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */             exit(1);
      /*                                   But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */           }
      /*         } */           if(isnan(covar[Tvar[k]][i])){
      /*         /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */             printf("ERROR, IMaCh doesn't treat fixed quantitative covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i);
      /*         if (ij > ncodemax[j]) { */             fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i);
      /*           printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */             fflush(ficlog);
      /*           fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */             exit(1);
      /*           break; */           }
      /*         } */         }
      /*   }  /\* end of loop on modality k *\/ */       } /* end Quanti */
    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/       } /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/  
       
    for (k=-1; k< maxncov; k++) Ndum[k]=0;      for (k=-1; k< maxncov; k++) Ndum[k]=0; 
    /* Look at fixed dummy (single or product) covariates to check empty modalities */     /* Look at fixed dummy (single or product) covariates to check empty modalities */
Line 5396  void  concatwav(int wav[], int **dh, int Line 6127  void  concatwav(int wav[], int **dh, int
       
    ij=0;     ij=0;
    /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */     /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
    for (k=1; k<=  cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */     for (k=1; k<=  cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
        /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/       /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */       /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
      if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy and non empty in the model */       if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy simple and non empty in the model */
          /* Typevar[k] =0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */
          /* Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product*/
        /* If product not in single variable we don't print results */         /* If product not in single variable we don't print results */
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/         /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        ++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */         ++ij;/*    V5 + V4 + V3 + V4*V3 + V5*age + V2 +  V1*V2 + V1*age + V1, *//* V5 quanti, V2 quanti, V4, V3, V1 dummies */
          /* k=       1    2   3     4       5       6      7       8        9  */
          /* Tvar[k]= 5    4    3    6       5       2      7       1        1  */
          /* ij            1    2                                            3  */  
          /* Tvaraff[ij]=  4    3                                            1  */
          /* Tmodelind[ij]=2    3                                            9  */
          /* TmodelInvind[ij]=2 1                                            1  */
        Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/         Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
        Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */         Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
        TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */         TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
Line 5418  void  concatwav(int wav[], int **dh, int Line 6158  void  concatwav(int wav[], int **dh, int
    } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */     } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
    /* ij--; */     /* ij--; */
    /* cptcoveff=ij; /\*Number of total covariates*\/ */     /* cptcoveff=ij; /\*Number of total covariates*\/ */
    *cptcov=ij; /*Number of total real effective covariates: effective     *cptcov=ij; /* cptcov= Number of total real effective simple dummies (fixed or time  arying) effective (used as cptcoveff in other functions)
                 * because they can be excluded from the model and real                  * because they can be excluded from the model and real
                 * if in the model but excluded because missing values, but how to get k from ij?*/                  * if in the model but excluded because missing values, but how to get k from ij?*/
    for(j=ij+1; j<= cptcovt; j++){     for(j=ij+1; j<= cptcovt; j++){
Line 5439  void  concatwav(int wav[], int **dh, int Line 6179  void  concatwav(int wav[], int **dh, int
   
 {  {
   /* Health expectancies, no variances */    /* Health expectancies, no variances */
     /* cij is the combination in the list of combination of dummy covariates */
     /* strstart is a string of time at start of computing */
   int i, j, nhstepm, hstepm, h, nstepm;    int i, j, nhstepm, hstepm, h, nstepm;
   int nhstepma, nstepma; /* Decreasing with age */    int nhstepma, nstepma; /* Decreasing with age */
   double age, agelim, hf;    double age, agelim, hf;
Line 5507  void  concatwav(int wav[], int **dh, int Line 6249  void  concatwav(int wav[], int **dh, int
     /* If stepm=6 months */      /* If stepm=6 months */
     /* Computed by stepm unit matrices, product of hstepma matrices, stored      /* Computed by stepm unit matrices, product of hstepma matrices, stored
        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           /* printf("HELLO evsij Entering hpxij age=%d cij=%d hstepm=%d x[1]=%f nres=%d\n",(int) age, cij, hstepm, x[1], nres); */
     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
           
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
Line 5549  void  concatwav(int wav[], int **dh, int Line 6291  void  concatwav(int wav[], int **dh, int
   /* Covariances of health expectancies eij and of total life expectancies according    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .       to initial status i, ei. .
   */    */
     /* Very time consuming function, but already optimized with precov */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   int nhstepma, nstepma; /* Decreasing with age */    int nhstepma, nstepma; /* Decreasing with age */
   double age, agelim, hf;    double age, agelim, hf;
Line 5696  void  concatwav(int wav[], int **dh, int Line 6439  void  concatwav(int wav[], int **dh, int
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       }        }
     }      }
                       /* if((int)age ==50){ */
       /*   printf(" age=%d cij=%d nres=%d varhe[%d][%d]=%f ",(int)age, cij, nres, 1,2,varhe[1][2]); */
       /* } */
     /* Computing expectancies */      /* Computing expectancies */
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);        hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
Line 5757  void  concatwav(int wav[], int **dh, int Line 6502  void  concatwav(int wav[], int **dh, int
 /************ Variance ******************/  /************ Variance ******************/
  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
  {   {
    /* Variance of health expectancies */     /** Variance of health expectancies 
    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      *  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);
    /* double **newm;*/      * double **newm;
    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/      * int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) 
       */
       
    /* int movingaverage(); */     /* int movingaverage(); */
    double **dnewm,**doldm;     double **dnewm,**doldm;
    double **dnewmp,**doldmp;     double **dnewmp,**doldmp;
    int i, j, nhstepm, hstepm, h, nstepm ;     int i, j, nhstepm, hstepm, h, nstepm ;
      int first=0;
    int k;     int k;
    double *xp;     double *xp;
    double **gp, **gm;  /* for var eij */     double **gp, **gm;  /**< for var eij */
    double ***gradg, ***trgradg; /*for var eij */     double ***gradg, ***trgradg; /**< for var eij */
    double **gradgp, **trgradgp; /* for var p point j */     double **gradgp, **trgradgp; /**< for var p point j */
    double *gpp, *gmp; /* for var p point j */     double *gpp, *gmp; /**< for var p point j */
    double **varppt; /* for var p point j nlstate to nlstate+ndeath */     double **varppt; /**< for var p point j nlstate to nlstate+ndeath */
    double ***p3mat;     double ***p3mat;
    double age,agelim, hf;     double age,agelim, hf;
    /* double ***mobaverage; */     /* double ***mobaverage; */
Line 5813  void  concatwav(int wav[], int **dh, int Line 6560  void  concatwav(int wav[], int **dh, int
    pstamp(ficresprobmorprev);     pstamp(ficresprobmorprev);
    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
    fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");     fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
    for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */  
      fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);     /* We use TinvDoQresult[nres][resultmodel[nres][j] we sort according to the equation model and the resultline: it is a choice */
      /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ /\* To be done*\/ */
      /*   fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
      /* } */
      for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ /* To be done*/
        fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
    }     }
    for(j=1;j<=cptcoveff;j++)      /* for(j=1;j<=cptcoveff;j++)  */
      fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]);     /*   fprintf(ficresprobmorprev," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,TnsdVar[Tvaraff[j]])]); */
    fprintf(ficresprobmorprev,"\n");     fprintf(ficresprobmorprev,"\n");
   
    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
Line 5833  void  concatwav(int wav[], int **dh, int Line 6585  void  concatwav(int wav[], int **dh, int
    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */  
    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    pstamp(ficresvij);     pstamp(ficresvij);
    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
Line 5888  void  concatwav(int wav[], int **dh, int Line 6640  void  concatwav(int wav[], int **dh, int
        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
          xp[i] = x[i] + (i==theta ?delti[theta]:0);           xp[i] = x[i] + (i==theta ?delti[theta]:0);
        }         }
                                  /**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and 
           * returns into prlim .
           */
        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres);         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
                           
          /* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */
        if (popbased==1) {         if (popbased==1) {
          if(mobilav ==0){           if(mobilav ==0){
            for(i=1; i<=nlstate;i++)             for(i=1; i<=nlstate;i++)
Line 5900  void  concatwav(int wav[], int **dh, int Line 6655  void  concatwav(int wav[], int **dh, int
              prlim[i][i]=mobaverage[(int)age][i][ij];               prlim[i][i]=mobaverage[(int)age][i][ij];
          }           }
        }         }
                                  /**< Computes the shifted transition matrix \f$ {}{h}_p^{ij}x\f$ at horizon h.
        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */          */                      
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=0 to nhstepm */
          /**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}x\f$, which are the probability
           * at horizon h in state j including mortality.
           */
        for(j=1; j<= nlstate; j++){         for(j=1; j<= nlstate; j++){
          for(h=0; h<=nhstepm; h++){           for(h=0; h<=nhstepm; h++){
            for(i=1, gp[h][j]=0.;i<=nlstate;i++)             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
              gp[h][j] += prlim[i][i]*p3mat[i][j][h];               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
          }           }
        }         }
        /* Next for computing probability of death (h=1 means         /* Next for computing shifted+ probability of death (h=1 means
           computed over hstepm matrices product = hstepm*stepm months)             computed over hstepm matrices product = hstepm*stepm months) 
           as a weighted average of prlim.            as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 .
        */         */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){         for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gpp[j]=0.; i<= nlstate; i++)           for(i=1,gpp[j]=0.; i<= nlstate; i++)
            gpp[j] += prlim[i][i]*p3mat[i][j][1];             gpp[j] += prlim[i][i]*p3mat[i][j][1];
        }             }
        /* end probability of death */         
          /* Again with minus shift */
                                                   
        for(i=1; i<=npar; i++) /* Computes gradient x - delta */         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
          xp[i] = x[i] - (i==theta ?delti[theta]:0);           xp[i] = x[i] - (i==theta ?delti[theta]:0);
                           
        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres);         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres);
                                                   
        if (popbased==1) {         if (popbased==1) {
Line 5949  void  concatwav(int wav[], int **dh, int Line 6709  void  concatwav(int wav[], int **dh, int
          for(i=1,gmp[j]=0.; i<= nlstate; i++)           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];             gmp[j] += prlim[i][i]*p3mat[i][j][1];
        }             }    
        /* end probability of death */         /* end shifting computations */
                           
          /**< Computing gradient matrix at horizon h 
           */
        for(j=1; j<= nlstate; j++) /* vareij */         for(j=1; j<= nlstate; j++) /* vareij */
          for(h=0; h<=nhstepm; h++){           for(h=0; h<=nhstepm; h++){
            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
          }           }
                                  /**< Gradient of overall mortality p.3 (or p.j) 
        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          */
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu mortality from j */
          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
        }         }
                                                   
      } /* End theta */       } /* End theta */
                        
        /* We got the gradient matrix for each theta and state j */                
      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                                   
      for(h=0; h<=nhstepm; h++) /* veij */       for(h=0; h<=nhstepm; h++) /* veij */
Line 5972  void  concatwav(int wav[], int **dh, int Line 6736  void  concatwav(int wav[], int **dh, int
      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
        for(theta=1; theta <=npar; theta++)         for(theta=1; theta <=npar; theta++)
          trgradgp[j][theta]=gradgp[theta][j];           trgradgp[j][theta]=gradgp[theta][j];
                        /**< as well as its transposed matrix 
         */                
                                   
      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      for(i=1;i<=nlstate;i++)       for(i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate;j++)         for(j=1;j<=nlstate;j++)
          vareij[i][j][(int)age] =0.;           vareij[i][j][(int)age] =0.;
                   
        /* Computing trgradg by matcov by gradg at age and summing over h
         * and k (nhstepm) formula 15 of article
         * Lievre-Brouard-Heathcote
         */
        
      for(h=0;h<=nhstepm;h++){       for(h=0;h<=nhstepm;h++){
        for(k=0;k<=nhstepm;k++){         for(k=0;k<=nhstepm;k++){
          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
Line 5989  void  concatwav(int wav[], int **dh, int Line 6759  void  concatwav(int wav[], int **dh, int
        }         }
      }       }
                                   
      /* pptj */       /* pptj is p.3 or p.j = trgradgp by cov by gradgp, variance of
         * p.j overall mortality formula 49 but computed directly because
         * we compute the grad (wix pijx) instead of grad (pijx),even if
         * wix is independent of theta.
         */
      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
      for(j=nlstate+1;j<=nlstate+ndeath;j++)       for(j=nlstate+1;j<=nlstate+ndeath;j++)
Line 6092  void  concatwav(int wav[], int **dh, int Line 6866  void  concatwav(int wav[], int **dh, int
   int theta;    int theta;
       
   pstamp(ficresvpl);    pstamp(ficresvpl);
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");    fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n");
   fprintf(ficresvpl,"# Age ");    fprintf(ficresvpl,"# Age ");
   if(nresult >=1)    if(nresult >=1)
     fprintf(ficresvpl," Result# ");      fprintf(ficresvpl," Result# ");
Line 6121  void  concatwav(int wav[], int **dh, int Line 6895  void  concatwav(int wav[], int **dh, int
       for(i=1; i<=npar; i++){ /* Computes gradient */        for(i=1; i<=npar; i++){ /* Computes gradient */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       if((int)age==79 ||(int)age== 80 ||(int)age== 81 )        /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);        /*        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
       else        /* else */
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
       for(i=1;i<=nlstate;i++){        for(i=1;i<=nlstate;i++){
         gp[i] = prlim[i][i];          gp[i] = prlim[i][i];
         mgp[theta][i] = prlim[i][i];          mgp[theta][i] = prlim[i][i];
       }        }
       for(i=1; i<=npar; i++) /* Computes gradient */        for(i=1; i<=npar; i++) /* Computes gradient */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       if((int)age==79 ||(int)age== 80 ||(int)age== 81 )        /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);        /*        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
       else        /* else */
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
       for(i=1;i<=nlstate;i++){        for(i=1;i<=nlstate;i++){
         gm[i] = prlim[i][i];          gm[i] = prlim[i][i];
         mgm[theta][i] = prlim[i][i];          mgm[theta][i] = prlim[i][i];
Line 6183  void  concatwav(int wav[], int **dh, int Line 6957  void  concatwav(int wav[], int **dh, int
     fprintf(ficresvpl,"%.0f ",age );      fprintf(ficresvpl,"%.0f ",age );
     if(nresult >=1)      if(nresult >=1)
       fprintf(ficresvpl,"%d ",nres );        fprintf(ficresvpl,"%d ",nres );
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         /* for(j=1;j<=nlstate;j++) */
         /*        fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */
       }
     fprintf(ficresvpl,"\n");      fprintf(ficresvpl,"\n");
     free_vector(gp,1,nlstate);      free_vector(gp,1,nlstate);
     free_vector(gm,1,nlstate);      free_vector(gm,1,nlstate);
Line 6332  void varprob(char optionfilefiname[], do Line 7109  void varprob(char optionfilefiname[], do
    int k2, l2, j1,  z1;     int k2, l2, j1,  z1;
    int k=0, l;     int k=0, l;
    int first=1, first1, first2;     int first=1, first1, first2;
      int nres=0; /* New */
    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
    double **dnewm,**doldm;     double **dnewm,**doldm;
    double *xp;     double *xp;
Line 6401  void varprob(char optionfilefiname[], do Line 7179  void varprob(char optionfilefiname[], do
    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    fprintf(fichtm,"\n");     fprintf(fichtm,"\n");
   
    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. %s</li>\n",optionfilehtmcov,optionfilehtmcov);     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov);
    fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
 and drawn. It helps understanding how is the covariance between two incidences.\  and drawn. It helps understanding how is the covariance between two incidences.\
Line 6419  To be simple, these graphs help to under Line 7197  To be simple, these graphs help to under
    tj = (int) pow(2,cptcoveff);     tj = (int) pow(2,cptcoveff);
    if (cptcovn<1) {tj=1;ncodemax[1]=1;}     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
    j1=0;     j1=0;
    for(j1=1; j1<=tj;j1++){  /* For each valid combination of covariates or only once*/  
      for(nres=1;nres <=nresult; nres++){ /* For each resultline */
      for(j1=1; j1<=tj;j1++){ /* For any combination of dummy covariates, fixed and varying */
        printf("Varprob  TKresult[nres]=%d j1=%d, nres=%d, cptcovn=%d, cptcoveff=%d tj=%d cptcovs=%d\n",  TKresult[nres], j1, nres, cptcovn, cptcoveff, tj, cptcovs);
        if(tj != 1 && TKresult[nres]!= j1)
          continue;
   
      /* for(j1=1; j1<=tj;j1++){  /\* For each valid combination of covariates or only once*\/ */
        /* for(nres=1;nres <=1; nres++){ /\* For each resultline *\/ */
        /* /\* for(nres=1;nres <=nresult; nres++){ /\\* For each resultline *\\/ *\/ */
      if  (cptcovn>0) {       if  (cptcovn>0) {
        fprintf(ficresprob, "\n#********** Variable ");          fprintf(ficresprob, "\n#********** Variable ");
        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
        fprintf(ficresprob, "**********\n#\n");  
        fprintf(ficresprobcov, "\n#********** Variable ");          fprintf(ficresprobcov, "\n#********** Variable "); 
        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);         fprintf(ficgp, "\n#********** Variable ");
          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
          fprintf(ficresprobcor, "\n#********** Variable ");    
   
          /* Including quantitative variables of the resultline to be done */
          for (z1=1; z1<=cptcovs; z1++){ /* Loop on each variable of this resultline  */
            printf("Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model);
            fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model);
            /* fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s resultline[%d]=%s \n",nres, z1, modelresult[nres][z1], model, nres, resultline[nres]); */
            if(Dummy[modelresult[nres][z1]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to z1 in resultline  */
              if(Fixed[modelresult[nres][z1]]==0){ /* Fixed referenced to model equation */
                fprintf(ficresprob,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                fprintf(ficresprobcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                fprintf(ficgp,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                fprintf(fichtmcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                fprintf(ficresprobcor,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                fprintf(ficresprob,"fixed ");
                fprintf(ficresprobcov,"fixed ");
                fprintf(ficgp,"fixed ");
                fprintf(fichtmcov,"fixed ");
                fprintf(ficresprobcor,"fixed ");
              }else{
                fprintf(ficresprob,"varyi ");
                fprintf(ficresprobcov,"varyi ");
                fprintf(ficgp,"varyi ");
                fprintf(fichtmcov,"varyi ");
                fprintf(ficresprobcor,"varyi ");
              }
            }else if(Dummy[modelresult[nres][z1]]==1){ /* Quanti variable */
              /* For each selected (single) quantitative value */
              fprintf(ficresprob," V%d=%lg ",Tvqresult[nres][z1],Tqresult[nres][z1]);
              if(Fixed[modelresult[nres][z1]]==0){ /* Fixed */
                fprintf(ficresprob,"fixed ");
                fprintf(ficresprobcov,"fixed ");
                fprintf(ficgp,"fixed ");
                fprintf(fichtmcov,"fixed ");
                fprintf(ficresprobcor,"fixed ");
              }else{
                fprintf(ficresprob,"varyi ");
                fprintf(ficresprobcov,"varyi ");
                fprintf(ficgp,"varyi ");
                fprintf(fichtmcov,"varyi ");
                fprintf(ficresprobcor,"varyi ");
              }
            }else{
              printf("Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff);  /* end if dummy  or quanti */
              fprintf(ficlog,"Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff);  /* end if dummy  or quanti */
              exit(1);
            }
          } /* End loop on variable of this resultline */
          /* for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); */
          fprintf(ficresprob, "**********\n#\n");
        fprintf(ficresprobcov, "**********\n#\n");         fprintf(ficresprobcov, "**********\n#\n");
                           
        fprintf(ficgp, "\n#********** Variable ");   
        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
        fprintf(ficgp, "**********\n#\n");         fprintf(ficgp, "**********\n#\n");
                           
                           
        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");   
        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                           
        fprintf(ficresprobcor, "\n#********** Variable ");      
        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
        fprintf(ficresprobcor, "**********\n#");             fprintf(ficresprobcor, "**********\n#");    
        if(invalidvarcomb[j1]){         if(invalidvarcomb[j1]){
          fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1);            fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
Line 6450  To be simple, these graphs help to under Line 7276  To be simple, these graphs help to under
      trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      gp=vector(1,(nlstate)*(nlstate+ndeath));       gp=vector(1,(nlstate)*(nlstate+ndeath));
      gm=vector(1,(nlstate)*(nlstate+ndeath));       gm=vector(1,(nlstate)*(nlstate+ndeath));
      for (age=bage; age<=fage; age ++){        for (age=bage; age<=fage; age ++){ /* Fo each age we feed the model equation with covariates, using precov as in hpxij() ? */
        cov[2]=age;         cov[2]=age;
        if(nagesqr==1)         if(nagesqr==1)
          cov[3]= age*age;           cov[3]= age*age;
        for (k=1; k<=cptcovn;k++) {         /* New code end of combination but for each resultline */
          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];         for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
          /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4           if(Typevar[k1]==1){ /* A product with age */
                                                                     * 1  1 1 1 1             cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
                                                                     * 2  2 1 1 1           }else{
                                                                     * 3  1 2 1 1             cov[2+nagesqr+k1]=precov[nres][k1];
                                                                     */           }
          /* nbcode[1][1]=0 nbcode[1][2]=1;*/         }/* End of loop on model equation */
        }  /* Old code */
        /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */         /* /\* for (k=1; k<=cptcovn;k++) { *\/ */
        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];         /* /\*    cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; *\/ */
        for (k=1; k<=cptcovprod;k++)         /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */
          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];         /*        /\* Here comes the value of the covariate 'j1' after renumbering k with single dummy covariates *\/ */
                                  /*        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(j1,TnsdVar[TvarsD[k]])]; */
                                  /*        /\*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*\//\* j1 1 2 3 4 */
          /*                                                                   * 1  1 1 1 1 */
          /*                                                                   * 2  2 1 1 1 */
          /*                                                                   * 3  1 2 1 1 */
          /*                                                                   *\/ */
          /*        /\* nbcode[1][1]=0 nbcode[1][2]=1;*\/ */
          /* } */
          /* /\* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */
          /* /\* ) p nbcode[Tvar[Tage[k]]][(1 & (ij-1) >> (k-1))+1] *\/ */
          /* /\*for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; *\/ */
          /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
          /*        if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */
          /*          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(j1,TnsdVar[Tvar[Tage[k]]])]*cov[2]; */
          /*          /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
          /*        } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */
          /*          printf("Internal IMaCh error, don't know which value for quantitative covariate with age, Tage[k]%d, k=%d, Tvar[Tage[k]]=V%d, age=%d\n",Tage[k],k ,Tvar[Tage[k]], (int)cov[2]); */
          /*          /\* cov[2+nagesqr+Tage[k]]=meanq[k]/idq[k]*cov[2];/\\* Using the mean of quantitative variable Tvar[Tage[k]] /\\* Tqresult[nres][k]; *\\/ *\/ */
          /*          /\* exit(1); *\/ */
          /*          /\* cov[++k1]=Tqresult[nres][k];  *\/ */
          /*        } */
          /*        /\* cov[2+Tage[k]+nagesqr]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
          /* } */
          /* for (k=1; k<=cptcovprod;k++){/\* For product without age *\/ */
          /*        if(Dummy[Tvard[k][1]]==0){ */
          /*          if(Dummy[Tvard[k][2]]==0){ */
          /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])]; */
          /*            /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
          /*          }else{ /\* Should we use the mean of the quantitative variables? *\/ */
          /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * Tqresult[nres][resultmodel[nres][k]]; */
          /*            /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */
          /*          } */
          /*        }else{ */
          /*          if(Dummy[Tvard[k][2]]==0){ */
          /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][TnsdVar[Tvard[k][1]]]; */
          /*            /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */
          /*          }else{ */
          /*            cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][TnsdVar[Tvard[k][1]]]*  Tqinvresult[nres][TnsdVar[Tvard[k][2]]]; */
          /*            /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\/ */
          /*          } */
          /*        } */
          /*        /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
          /* } */                  
   /* For each age and combination of dummy covariates we slightly move the parameters of delti in order to get the gradient*/                     
        for(theta=1; theta <=npar; theta++){         for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++)           for(i=1; i<=npar; i++)
            xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
Line 6598  To be simple, these graphs help to under Line 7466  To be simple, these graphs help to under
                  }                   }
                                                                                                                                   
                  /* Eigen vectors */                   /* Eigen vectors */
                  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                   if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){
                      printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                      fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                      v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12)));
                    }else
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                  /*v21=sqrt(1.-v11*v11); *//* error */                   /*v21=sqrt(1.-v11*v11); *//* error */
                  v21=(lc1-v1)/cv12*v11;                   v21=(lc1-v1)/cv12*v11;
                  v12=-v21;                   v12=-v21;
Line 6629  To be simple, these graphs help to under Line 7502  To be simple, these graphs help to under
                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
                            mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)),   \                             mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \
                            mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2))); /* For gnuplot only */                             mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */
                  }else{                   }else{
                    first=0;                     first=0;
                    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
Line 6649  To be simple, these graphs help to under Line 7522  To be simple, these graphs help to under
        } /*l1 */         } /*l1 */
      }/* k1 */       }/* k1 */
    }  /* loop on combination of covariates j1 */     }  /* loop on combination of covariates j1 */
      } /* loop on nres */
    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
Line 6666  To be simple, these graphs help to under Line 7540  To be simple, these graphs help to under
 void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \  void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                   int lastpass, int stepm, int weightopt, char model[],\                    int lastpass, int stepm, int weightopt, char model[],\
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                   int popforecast, int mobilav, int prevfcast, int mobilavproj, int backcast, int estepm , \                    int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \
                   double jprev1, double mprev1,double anprev1, double dateprev1, double dateproj1, double dateback1, \                    double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \
                   double jprev2, double mprev2,double anprev2, double dateprev2, double dateproj2, double dateback2){                    double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){
   int jj1, k1, i1, cpt, k4, nres;    int jj1, k1, i1, cpt, k4, nres;
     /* In fact some results are already printed in fichtm which is open */
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 </ul>");  </ul>");
    fprintf(fichtm,"<ul><li> model=1+age+%s\n \  /*    fprintf(fichtm,"<ul><li> model=1+age+%s\n \ */
 </ul>", model);  /* </ul>", model); */
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
    fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",     fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
    fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",     fprintf(fichtm,"<li> - Observed prevalence (cross-sectional prevalence) in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
    fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));     fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
Line 6689  void printinghtml(char fileresu[], char Line 7563  void printinghtml(char fileresu[], char
  - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",   - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
            stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));             stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",   - Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));             subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",   - Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));             subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \   - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
Line 6708  void printinghtml(char fileresu[], char Line 7582  void printinghtml(char fileresu[], char
    m=pow(2,cptcoveff);     m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");     fprintf(fichtm," \n<ul><li><b>Graphs (first order)</b></li><p>");
   
    jj1=0;     jj1=0;
   
    fprintf(fichtm," \n<ul>");     fprintf(fichtm," \n<ul>");
    for(nres=1; nres <= nresult; nres++) /* For each resultline */     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
    for(k1=1; k1<=m;k1++){ /* For each combination of covariate */       /* k1=nres; */
      if(m != 1 && TKresult[nres]!= k1)       k1=TKresult[nres];
        continue;       if(TKresult[nres]==0)k1=1; /* To be checked for no result */
      /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
      /*   if(m != 1 && TKresult[nres]!= k1) */
      /*     continue; */
      jj1++;       jj1++;
      if (cptcovn > 0) {       if (cptcovn > 0) {
        fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescov");         fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescov");
        for (cpt=1; cpt<=cptcoveff;cpt++){          for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
          fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);           fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
        }  
        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */  
          fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]);  
        }         }
          /* for (cpt=1; cpt<=cptcoveff;cpt++){  */
          /*        fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */
          /* } */
          /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
          /*        fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */
          /* } */
        fprintf(fichtm,"\">");         fprintf(fichtm,"\">");
                 
        /* if(nqfveff+nqtveff 0) */ /* Test to be done */         /* if(nqfveff+nqtveff 0) */ /* Test to be done */
        fprintf(fichtm,"************ Results for covariates");         fprintf(fichtm,"************ Results for covariates");
        for (cpt=1; cpt<=cptcoveff;cpt++){          for (cpt=1; cpt<=cptcovs;cpt++){ 
          fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);           fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
        }  
        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */  
          fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);  
        }         }
          /* fprintf(fichtm,"************ Results for covariates"); */
          /* for (cpt=1; cpt<=cptcoveff;cpt++){  */
          /*        fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */
          /* } */
          /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
          /*        fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
          /* } */
        if(invalidvarcomb[k1]){         if(invalidvarcomb[k1]){
          fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1);            fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
          continue;           continue;
Line 6743  void printinghtml(char fileresu[], char Line 7627  void printinghtml(char fileresu[], char
        fprintf(fichtm,"</a></li>");         fprintf(fichtm,"</a></li>");
      } /* cptcovn >0 */       } /* cptcovn >0 */
    }     }
      fprintf(fichtm," \n</ul>");     fprintf(fichtm," \n</ul>");
   
    jj1=0;     jj1=0;
   
    for(nres=1; nres <= nresult; nres++) /* For each resultline */     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
    for(k1=1; k1<=m;k1++){ /* For each combination of covariate */       /* k1=nres; */
      if(m != 1 && TKresult[nres]!= k1)       k1=TKresult[nres];
        continue;       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
      /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
      /*   if(m != 1 && TKresult[nres]!= k1) */
      /*     continue; */
   
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */       /* for(i1=1; i1<=ncodemax[k1];i1++){ */
      jj1++;       jj1++;
      if (cptcovn > 0) {       if (cptcovn > 0) {
        fprintf(fichtm,"\n<p><a name=\"rescov");         fprintf(fichtm,"\n<p><a name=\"rescov");
        for (cpt=1; cpt<=cptcoveff;cpt++){          for (cpt=1; cpt<=cptcovs;cpt++){ 
          fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);           fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
        }  
        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */  
          fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]);  
        }         }
          /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
          /*        fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */
          /* } */
        fprintf(fichtm,"\"</a>");         fprintf(fichtm,"\"</a>");
     
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        for (cpt=1; cpt<=cptcoveff;cpt++){          for (cpt=1; cpt<=cptcovs;cpt++){ 
          fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);           fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout);           printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */           /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
          /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */           /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
        }         }
        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */  
         fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);  
         printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout);  
       }  
          
        /* if(nqfveff+nqtveff 0) */ /* Test to be done */         /* if(nqfveff+nqtveff 0) */ /* Test to be done */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");         fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model);
        if(invalidvarcomb[k1]){         if(invalidvarcomb[k1]){
          fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1);            fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
          printf("\nCombination (%d) ignored because no cases \n",k1);            printf("\nCombination (%d) ignored because no cases \n",k1); 
Line 6798  divided by h: <sub>h</sub>P<sub>ij</sub> Line 7680  divided by h: <sub>h</sub>P<sub>ij</sub>
 <img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);   <img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); 
      /* Survival functions (period) in state j */       /* Survival functions (period) in state j */
      for(cpt=1; cpt<=nlstate;cpt++){       for(cpt=1; cpt<=nlstate;cpt++){
        fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \         fprintf(fichtm,"<br>\n- Survival functions in state %d. And probability to be observed in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
 <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
          fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
      }       }
      /* State specific survival functions (period) */       /* State specific survival functions (period) */
      for(cpt=1; cpt<=nlstate;cpt++){       for(cpt=1; cpt<=nlstate;cpt++){
        fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\         fprintf(fichtm,"<br>\n- Survival functions in state %d and in any other live state (total).\
  Or probability to survive in various states (1 to %d) being in state %d at different ages.     \   And probability to be observed in various states (up to %d) being in state %d at different ages.       \
  <a href=\"%s_%d-%d-%d.svg\">%s_%d%d-%d.svg</a><br> <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);   <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> ", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
          fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
          fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
      }       }
      /* Period (stable) prevalence in each health state */       /* Period (forward stable) prevalence in each health state */
      for(cpt=1; cpt<=nlstate;cpt++){       for(cpt=1; cpt<=nlstate;cpt++){
        fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \         fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
 <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
         fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
      }       }
      if(backcast==1){       if(prevbcast==1){
        /* Period (stable) back prevalence in each health state */         /* Backward prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){         for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \           fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
 <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);           fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJB_"),subdirf2(optionfilefiname,"PIJB_"));
            fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
        }         }
      }       }
      if(prevfcast==1){       if(prevfcast==1){
        /* Projection of prevalence up to period (stable) prevalence in each health state */         /* Projection of prevalence up to period (forward stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){         for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \           fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateprojd, dateprojf, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
 <img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, mobilavproj, dateproj1, dateproj2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);           fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"F_"),subdirf2(optionfilefiname,"F_"));
            fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",
                    subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
        }         }
      }       }
      if(backcast==1){       if(prevbcast==1){
       /* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */        /* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){         for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \           fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \
  from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \   from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \
  account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \   account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \
 with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \  with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
  <img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);           fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"FB_"),subdirf2(optionfilefiname,"FB_"));
            fprintf(fichtm," <img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
        }         }
      }       }
                     
      for(cpt=1; cpt<=nlstate;cpt++) {       for(cpt=1; cpt<=nlstate;cpt++) {
        fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a> <br> \         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
 <img src=\"%s_%d-%d-%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);         fprintf(fichtm," (data from text file  <a href=\"%s.txt\"> %s.txt</a>)\n<br>",subdirf2(optionfilefiname,"E_"),subdirf2(optionfilefiname,"E_"));
          fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres );
      }       }
      /* } /\* end i1 *\/ */       /* } /\* end i1 *\/ */
    }/* End k1 */     }/* End k1=nres */
    fprintf(fichtm,"</ul>");     fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\     fprintf(fichtm,"\
Line 6875  See page 'Matrix of variance-covariance Line 7766  See page 'Matrix of variance-covariance
    <a href=\"%s\">%s</a> <br>\n</li>",     <a href=\"%s\">%s</a> <br>\n</li>",
            estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));             estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));             estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));             estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\   - Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));             subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
 /*  if(popforecast==1) fprintf(fichtm,"\n */  /*  if(popforecast==1) fprintf(fichtm,"\n */
Line 6889  See page 'Matrix of variance-covariance Line 7780  See page 'Matrix of variance-covariance
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 /*      <br>",fileres,fileres,fileres,fileres); */  /*      <br>",fileres,fileres,fileres,fileres); */
 /*  else  */  /*  else  */
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=1+age+%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);     fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");  
   
    m=pow(2,cptcoveff);     m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
      fprintf(fichtm," <ul><li><b>Graphs (second order)</b></li><p>");
   
     jj1=0;
   
      fprintf(fichtm," \n<ul>");
      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
        /* k1=nres; */
        k1=TKresult[nres];
        /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
        /* if(m != 1 && TKresult[nres]!= k1) */
        /*   continue; */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescovsecond");
          for (cpt=1; cpt<=cptcovs;cpt++){ 
            fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          }
          fprintf(fichtm,"\">");
          
          /* if(nqfveff+nqtveff 0) */ /* Test to be done */
          fprintf(fichtm,"************ Results for covariates");
          for (cpt=1; cpt<=cptcovs;cpt++){ 
            fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          }
          if(invalidvarcomb[k1]){
            fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
            continue;
          }
          fprintf(fichtm,"</a></li>");
        } /* cptcovn >0 */
      } /* End nres */
      fprintf(fichtm," \n</ul>");
   
    jj1=0;     jj1=0;
   
    for(nres=1; nres <= nresult; nres++){ /* For each resultline */     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
    for(k1=1; k1<=m;k1++){       /* k1=nres; */
      if(m != 1 && TKresult[nres]!= k1)       k1=TKresult[nres];
        continue;       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
        /* for(k1=1; k1<=m;k1++){ */
        /* if(m != 1 && TKresult[nres]!= k1) */
        /*   continue; */
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */       /* for(i1=1; i1<=ncodemax[k1];i1++){ */
      jj1++;       jj1++;
      if (cptcovn > 0) {       if (cptcovn > 0) {
          fprintf(fichtm,"\n<p><a name=\"rescovsecond");
          for (cpt=1; cpt<=cptcovs;cpt++){ 
            fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          }
          fprintf(fichtm,"\"</a>");
          
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        for (cpt=1; cpt<=cptcoveff;cpt++)  /**< cptcoveff number of variables */         for (cpt=1; cpt<=cptcovs;cpt++){  /**< cptcoveff number of variables */
          fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);           fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
            printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */           /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */         }
         fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);  
       }  
   
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");         fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model);
   
        if(invalidvarcomb[k1]){         if(invalidvarcomb[k1]){
          fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1);            fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
          continue;           continue;
        }         }
      }       } /* If cptcovn >0 */
      for(cpt=1; cpt<=nlstate;cpt++) {       for(cpt=1; cpt<=nlstate;cpt++) {
        fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \         fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \
 prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>\n <br>\  prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
 <img src=\"%s_%d-%d-%d.svg\">",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres);           fprintf(fichtm," (data from text file  <a href=\"%s\">%s</a>)\n <br>",subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
          fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"V_"), cpt,k1,nres);
      }       }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \  health expectancies in each live states (1 to %d). If popbased=1 the smooth (due to the model) \
 true period expectancies (those weighted with period prevalences are also\  true period expectancies (those weighted with period prevalences are also\
  drawn in addition to the population based expectancies computed using\   drawn in addition to the population based expectancies computed using\
  observed and cahotic prevalences:  <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>\n<br>\   observed and cahotic prevalences:  <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>",nlstate, subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres);
 <img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres);       fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>) \n<br>",subdirf2(optionfilefiname,"T_"),subdirf2(optionfilefiname,"T_"));
        fprintf(fichtm,"<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres);
      /* } /\* end i1 *\/ */       /* } /\* end i1 *\/ */
    }/* End k1 */  
   }/* End nres */    }/* End nres */
    fprintf(fichtm,"</ul>");     fprintf(fichtm,"</ul>");
    fflush(fichtm);     fflush(fichtm);
 }  }
   
 /******************* Gnuplot file **************/  /******************* Gnuplot file **************/
 void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int backcast, char pathc[], double p[], int offyear, int offbyear){  void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int prevbcast, char pathc[], double p[], int offyear, int offbyear){
   
   char dirfileres[132],optfileres[132];    char dirfileres[132],optfileres[132];
   char gplotcondition[132], gplotlabel[132];    char gplotcondition[132], gplotlabel[132];
Line 6963  void printinggnuplot(char fileresu[], ch Line 7895  void printinggnuplot(char fileresu[], ch
   /*#endif */    /*#endif */
   m=pow(2,cptcoveff);    m=pow(2,cptcoveff);
   
     /* diagram of the model */
     fprintf(ficgp,"\n#Diagram of the model \n");
     fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n");
     fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate);
     fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
   
     fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0)  ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
     fprintf(ficgp,"\n#show arrow\nunset label\n");
     fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
     fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0.  font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate);
     fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n");
     fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_"));
     fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n");
   
   /* Contribution to likelihood */    /* Contribution to likelihood */
   /* Plot the probability implied in the likelihood */    /* Plot the probability implied in the likelihood */
   fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");    fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
Line 6996  void printinggnuplot(char fileresu[], ch Line 7942  void printinggnuplot(char fileresu[], ch
   strcpy(optfileres,"vpl");    strcpy(optfileres,"vpl");
   /* 1eme*/    /* 1eme*/
   for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */    for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
     for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */      /* for (k1=1; k1<= m ; k1 ++){ /\* For each valid combination of covariate *\/ */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */        for(nres=1; nres <= nresult; nres++){ /* For each resultline */
           k1=TKresult[nres];
           if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */          /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         if(m != 1 && TKresult[nres]!= k1)          /* if(m != 1 && TKresult[nres]!= k1) */
           continue;          /*   continue; */
         /* We are interested in selected combination by the resultline */          /* We are interested in selected combination by the resultline */
         /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */          /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */
         fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);          fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
         strcpy(gplotlabel,"(");          strcpy(gplotlabel,"(");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate k get corresponding value lv for combination k1 */          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */  
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate k get corresponding value lv for combination k1 *\/ */
           vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */          /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the value of the covariate corresponding to k1 combination *\\/ *\/ */
           /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */          /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
           /* printf(" V%d=%d ",Tvaraff[k],vlv); */          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         }          /*   vlv= nbcode[Tvaraff[k]][lv]; /\* vlv is the value of the covariate lv, 0 or 1 *\/ */
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */          /*   /\* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv *\/ */
           /* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */          /*   /\* printf(" V%d=%d ",Tvaraff[k],vlv); *\/ */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   /\* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         }          }
         strcpy(gplotlabel+strlen(gplotlabel),")");          strcpy(gplotlabel+strlen(gplotlabel),")");
         /* printf("\n#\n"); */          /* printf("\n#\n"); */
Line 7032  void printinggnuplot(char fileresu[], ch Line 7985  void printinggnuplot(char fileresu[], ch
               
         fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres);          fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
         fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres);          fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres);
         fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);          /* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */
           fprintf(ficgp,"set title \"Alive state %d %s model=1+age+%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
         /* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */          /* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */
       /* k1-1 error should be nres-1*/        /* k1-1 error should be nres-1*/
Line 7040  void printinggnuplot(char fileresu[], ch Line 7994  void printinggnuplot(char fileresu[], ch
           if (i==cpt) fprintf(ficgp," %%lf (%%lf)");            if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
           else        fprintf(ficgp," %%*lf (%%*lf)");            else        fprintf(ficgp," %%*lf (%%*lf)");
         }          }
         fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);          fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
         for (i=1; i<= nlstate ; i ++) {          for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," %%lf (%%lf)");            if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");            else fprintf(ficgp," %%*lf (%%*lf)");
Line 7058  void printinggnuplot(char fileresu[], ch Line 8012  void printinggnuplot(char fileresu[], ch
         }else{          }else{
           kl=0;            kl=0;
           for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */            for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */              /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */
               lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
Line 7078  void printinggnuplot(char fileresu[], ch Line 8033  void printinggnuplot(char fileresu[], ch
           } /* end covariate */            } /* end covariate */
         } /* end if no covariate */          } /* end if no covariate */
   
         if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */          if(prevbcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
           /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */            /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
           fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */            fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */
           if(cptcoveff ==0){            if(cptcoveff ==0){
Line 7086  void printinggnuplot(char fileresu[], ch Line 8041  void printinggnuplot(char fileresu[], ch
           }else{            }else{
             kl=0;              kl=0;
             for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */              for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
               lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */                /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */
                 lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
               /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */                /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
               /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */                /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
               /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */                /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
               vlv= nbcode[Tvaraff[k]][lv];                /* vlv= nbcode[Tvaraff[k]][lv]; */
                 vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])];
               kl++;                kl++;
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */                /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */                 /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
Line 7100  void printinggnuplot(char fileresu[], ch Line 8057  void printinggnuplot(char fileresu[], ch
                 fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \                  fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                         2+cptcoveff*2+(cpt-1),  cpt );  /* 4 or 6 ?*/                          2+cptcoveff*2+(cpt-1),  cpt );  /* 4 or 6 ?*/
               }else{                }else{
                 fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);                  fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]);
                 kl++;                  kl++;
               }                }
             } /* end covariate */              } /* end covariate */
           } /* end if no covariate */            } /* end if no covariate */
           if(backcast == 1){            if(prevbcast == 1){
             fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);              fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
             /* k1-1 error should be nres-1*/              /* k1-1 error should be nres-1*/
             for (i=1; i<= nlstate ; i ++) {              for (i=1; i<= nlstate ; i ++) {
Line 7117  void printinggnuplot(char fileresu[], ch Line 8074  void printinggnuplot(char fileresu[], ch
               if (i==cpt) fprintf(ficgp," %%lf (%%lf)");                if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");                else fprintf(ficgp," %%*lf (%%*lf)");
             }               } 
             fprintf(ficgp,"\" t\"95%% CI\" w l lt 5,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);               fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); 
             for (i=1; i<= nlstate ; i ++) {              for (i=1; i<= nlstate ; i ++) {
               if (i==cpt) fprintf(ficgp," %%lf (%%lf)");                if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");                else fprintf(ficgp," %%*lf (%%*lf)");
             }               } 
             fprintf(ficgp,"\" t\"\" w l lt 5");              fprintf(ficgp,"\" t\"\" w l lt 4");
           } /* end if backprojcast */            } /* end if backprojcast */
         } /* end if backcast */          } /* end if prevbcast */
         fprintf(ficgp,"\nset out ;unset label;\n");          /* fprintf(ficgp,"\nset out ;unset label;\n"); */
           fprintf(ficgp,"\nset out ;unset title;\n");
       } /* nres */        } /* nres */
     } /* k1 */      /* } /\* k1 *\/ */
   } /* cpt */    } /* cpt */
   
       
   /*2 eme*/    /*2 eme*/
   for (k1=1; k1<= m ; k1 ++){      /* for (k1=1; k1<= m ; k1 ++){   */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(m != 1 && TKresult[nres]!= k1)        k1=TKresult[nres];
         continue;        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         /* if(m != 1 && TKresult[nres]!= k1) */
         /*        continue; */
       fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");        fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
       strcpy(gplotlabel,"(");        strcpy(gplotlabel,"(");
       for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
         lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
         /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
         /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
         /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */        /*        /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
         vlv= nbcode[Tvaraff[k]][lv];        /*        lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
         fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);        /*        /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
         sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);        /*        /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
       }        /*        /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
       /* for(k=1; k <= ncovds; k++){ */        /*        /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */        /*        vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
         printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        /*        fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
         fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
         sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        /* } */
         /* /\* for(k=1; k <= ncovds; k++){ *\/ */
         /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
         /*        printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /*        fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
       }        }
       strcpy(gplotlabel+strlen(gplotlabel),")");        strcpy(gplotlabel+strlen(gplotlabel),")");
       fprintf(ficgp,"\n#\n");        fprintf(ficgp,"\n#\n");
Line 7193  void printinggnuplot(char fileresu[], ch Line 8158  void printinggnuplot(char fileresu[], ch
       } /* vpopbased */        } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */        fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */
     } /* end nres */      } /* end nres */
   } /* k1 end 2 eme*/    /* } /\* k1 end 2 eme*\/ */
                   
                   
   /*3eme*/    /*3eme*/
   for (k1=1; k1<= m ; k1 ++){    /* for (k1=1; k1<= m ; k1 ++){ */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(m != 1 && TKresult[nres]!= k1)        k1=TKresult[nres];
         continue;        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         /* if(m != 1 && TKresult[nres]!= k1) */
         /*        continue; */
   
       for (cpt=1; cpt<= nlstate ; cpt ++) {        for (cpt=1; cpt<= nlstate ; cpt ++) { /* Fragile no verification of covariate values */
         fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);          fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);
         strcpy(gplotlabel,"(");          strcpy(gplotlabel,"(");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */          /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
           vlv= nbcode[Tvaraff[k]][lv];          /*   lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
         }          /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */          /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
         }                 /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */
           }
         strcpy(gplotlabel+strlen(gplotlabel),")");          strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");          fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){          if(invalidvarcomb[k1]){
Line 7248  plot [%.f:%.f] \"%s\" every :::%d::%d u Line 8220  plot [%.f:%.f] \"%s\" every :::%d::%d u
       }        }
       fprintf(ficgp,"\nunset label;\n");        fprintf(ficgp,"\nunset label;\n");
     } /* end nres */      } /* end nres */
   } /* end kl 3eme */    /* } /\* end kl 3eme *\/ */
       
   /* 4eme */    /* 4eme */
   /* Survival functions (period) from state i in state j by initial state i */    /* Survival functions (period) from state i in state j by initial state i */
   for (k1=1; k1<=m; k1++){    /* For each covariate and each value */    /* for (k1=1; k1<=m; k1++){    /\* For each covariate and each value *\/ */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(m != 1 && TKresult[nres]!= k1)        k1=TKresult[nres];
         continue;        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         /* if(m != 1 && TKresult[nres]!= k1) */
         /*        continue; */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/        for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
         strcpy(gplotlabel,"(");          strcpy(gplotlabel,"(");
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);          fprintf(ficgp,"\n#\n#\n# Survival functions in state %d : 'LIJ_' files, cov=%d state=%d", cpt, k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */          /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
           vlv= nbcode[Tvaraff[k]][lv];          /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
         }          /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */          /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         }                 }       
         strcpy(gplotlabel+strlen(gplotlabel),")");          strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");          fprintf(ficgp,"\n#\n");
Line 7299  set ter svg size 640, 480\nunset log y\n Line 8278  set ter svg size 640, 480\nunset log y\n
         fprintf(ficgp,"\nset out; unset label;\n");          fprintf(ficgp,"\nset out; unset label;\n");
       } /* end cpt state*/         } /* end cpt state*/ 
     } /* end nres */      } /* end nres */
   } /* end covariate k1 */      /* } /\* end covariate k1 *\/   */
   
 /* 5eme */  /* 5eme */
   /* Survival functions (period) from state i in state j by final state j */    /* Survival functions (period) from state i in state j by final state j */
   for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */    /* for (k1=1; k1<= m ; k1++){ /\* For each covariate combination if any *\/ */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(m != 1 && TKresult[nres]!= k1)        k1=TKresult[nres];
         continue;        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         /* if(m != 1 && TKresult[nres]!= k1) */
         /*        continue; */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */        for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         strcpy(gplotlabel,"(");          strcpy(gplotlabel,"(");
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);          fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */          /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
           vlv= nbcode[Tvaraff[k]][lv];          /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
         }          /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */          /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         }                 }       
         strcpy(gplotlabel+strlen(gplotlabel),")");          strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");          fprintf(ficgp,"\n#\n");
Line 7357  set ter svg size 640, 480\nunset log y\n Line 8343  set ter svg size 640, 480\nunset log y\n
         }          }
         fprintf(ficgp,"\nset out; unset label;\n");          fprintf(ficgp,"\nset out; unset label;\n");
       } /* end cpt state*/         } /* end cpt state*/ 
     } /* end covariate */        /* } /\* end covariate *\/   */
   } /* end nres */    } /* end nres */
       
 /* 6eme */  /* 6eme */
   /* CV preval stable (period) for each covariate */    /* CV preval stable (period) for each covariate */
   for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */    /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
   for(nres=1; nres <= nresult; nres++){ /* For each resultline */    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
     if(m != 1 && TKresult[nres]!= k1)       k1=TKresult[nres];
       continue;       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
        /* if(m != 1 && TKresult[nres]!= k1) */
        /*  continue; */
     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */
       strcpy(gplotlabel,"(");              strcpy(gplotlabel,"(");      
       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);        fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
       for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
         lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
         /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
         /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
         /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */        /*        /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
         vlv= nbcode[Tvaraff[k]][lv];        /*        lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
         fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);        /*        /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
         sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);        /*        /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
       }        /*        /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */        /*        /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
         fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        /*        vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
         sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        /*        fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
         /* } */
         /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
         /*        fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
       }         } 
       strcpy(gplotlabel+strlen(gplotlabel),")");        strcpy(gplotlabel+strlen(gplotlabel),")");
       fprintf(ficgp,"\n#\n");        fprintf(ficgp,"\n#\n");
Line 7411  set ter svg size 640, 480\nunset log y\n Line 8404  set ter svg size 640, 480\nunset log y\n
       
       
 /* 7eme */  /* 7eme */
   if(backcast == 1){    if(prevbcast == 1){
     /* CV back preval stable (period) for each covariate */      /* CV backward prevalence  for each covariate */
     for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */      /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(m != 1 && TKresult[nres]!= k1)        k1=TKresult[nres];
         continue;        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         /* if(m != 1 && TKresult[nres]!= k1) */
         /*        continue; */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */        for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */
         strcpy(gplotlabel,"(");                strcpy(gplotlabel,"(");      
         fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pijb' files, covariatecombination#=%d state=%d",k1, cpt);          fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */          /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
           vlv= nbcode[Tvaraff[k]][lv];          /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
         }          /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */          /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         }                 }       
         strcpy(gplotlabel+strlen(gplotlabel),")");          strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");          fprintf(ficgp,"\n#\n");
Line 7452  set ter svg size 640, 480\nunset log y\n Line 8452  set ter svg size 640, 480\nunset log y\n
             fprintf(ficgp,", '' ");              fprintf(ficgp,", '' ");
           /* l=(nlstate+ndeath)*(i-1)+1; */            /* l=(nlstate+ndeath)*(i-1)+1; */
           l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */            l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
           /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */            /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
           /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */            /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */            fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */
           /* for (j=2; j<= nlstate ; j ++) */            /* for (j=2; j<= nlstate ; j ++) */
           /*    fprintf(ficgp,"+$%d",k+l+j-1); */            /*    fprintf(ficgp,"+$%d",k+l+j-1); */
Line 7463  set ter svg size 640, 480\nunset log y\n Line 8463  set ter svg size 640, 480\nunset log y\n
         fprintf(ficgp,"\nset out; unset label;\n");          fprintf(ficgp,"\nset out; unset label;\n");
       } /* end cpt state*/         } /* end cpt state*/ 
     } /* end covariate */        } /* end covariate */  
   } /* End if backcast */    } /* End if prevbcast */
       
   /* 8eme */    /* 8eme */
   if(prevfcast==1){    if(prevfcast==1){
     /* Projection from cross-sectional to stable (period) for each covariate */      /* Projection from cross-sectional to forward stable (period) prevalence for each covariate */
           
     for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */      /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(m != 1 && TKresult[nres]!= k1)        k1=TKresult[nres];
         continue;        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         /* if(m != 1 && TKresult[nres]!= k1) */
         /*        continue; */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */        for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         strcpy(gplotlabel,"(");                strcpy(gplotlabel,"(");      
         fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);          fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */          /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
           vlv= nbcode[Tvaraff[k]][lv];          /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
         }          /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */          /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         }                 }       
         strcpy(gplotlabel+strlen(gplotlabel),")");          strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");          fprintf(ficgp,"\n#\n");
Line 7543  set ter svg size 640, 480\nunset log y\n Line 8550  set ter svg size 640, 480\nunset log y\n
             kl=0;              kl=0;
             strcpy(gplotcondition,"(");              strcpy(gplotcondition,"(");
             for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */              for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
               lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */                /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                 lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
               /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */                /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
               /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */                /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
               /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */                /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
               vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */                /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */
                 vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])];
               kl++;                kl++;
               sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);                sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
               kl++;                kl++;
Line 7579  set ter svg size 640, 480\nunset log y\n Line 8588  set ter svg size 640, 480\nunset log y\n
     } /* end covariate */      } /* end covariate */
   } /* End if prevfcast */    } /* End if prevfcast */
       
   if(backcast==1){    if(prevbcast==1){
     /* Back projection from cross-sectional to stable (mixed) for each covariate */      /* Back projection from cross-sectional to stable (mixed) for each covariate */
           
     for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */      /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(m != 1 && TKresult[nres]!= k1)       k1=TKresult[nres];
         continue;       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
          /* if(m != 1 && TKresult[nres]!= k1) */
          /*       continue; */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */        for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         strcpy(gplotlabel,"(");                strcpy(gplotlabel,"(");      
         fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt);          fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */          /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
           vlv= nbcode[Tvaraff[k]][lv];          /*   lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);          /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
         }          /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */          /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         }                 }       
         strcpy(gplotlabel+strlen(gplotlabel),")");          strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");          fprintf(ficgp,"\n#\n");
Line 7655  set ter svg size 640, 480\nunset log y\n Line 8671  set ter svg size 640, 480\nunset log y\n
             fprintf(ficgp," u %d:(",ioffset);               fprintf(ficgp," u %d:(",ioffset); 
             kl=0;              kl=0;
             strcpy(gplotcondition,"(");              strcpy(gplotcondition,"(");
             for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */              for (k=1; k<=cptcovs; k++){    /* For each covariate k of the resultline, get corresponding value lv for combination k1 */
               lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */                if(Dummy[modelresult[nres][k]]==0){  /* To be verified */
               /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */                  /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate writing the chain of conditions *\/ */
               /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */                  /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
               /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */                  /* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
               vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */                  lv=Tvresult[nres][k];
               kl++;                  vlv=TinvDoQresult[nres][Tvresult[nres][k]];
               sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);                  /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
               kl++;                  /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
               if(k <cptcoveff && cptcoveff>1)                  /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 sprintf(gplotcondition+strlen(gplotcondition)," && ");                  /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */
                   /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   kl++;
                   /* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */
                   sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%lg " ,kl,Tvresult[nres][k], kl+1,TinvDoQresult[nres][Tvresult[nres][k]]);
                   kl++;
                   if(k <cptcovs && cptcovs>1)
                     sprintf(gplotcondition+strlen(gplotcondition)," && ");
                 }
             }              }
             strcpy(gplotcondition+strlen(gplotcondition),")");              strcpy(gplotcondition+strlen(gplotcondition),")");
             /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */              /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
Line 7692  set ter svg size 640, 480\nunset log y\n Line 8716  set ter svg size 640, 480\nunset log y\n
         fprintf(ficgp,"\nset out; unset label;\n");          fprintf(ficgp,"\nset out; unset label;\n");
       } /* end cpt state*/        } /* end cpt state*/
     } /* end covariate */      } /* end covariate */
   } /* End if backcast */    } /* End if prevbcast */
       
       
   /* 9eme writing MLE parameters */    /* 9eme writing MLE parameters */
Line 7730  set ter svg size 640, 480\nunset log y\n Line 8754  set ter svg size 640, 480\nunset log y\n
   fprintf(ficgp,"#\n");    fprintf(ficgp,"#\n");
   for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/    for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
     fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");      fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");
     fprintf(ficgp,"#model=%s \n",model);      fprintf(ficgp,"#model=1+age+%s \n",model);
     fprintf(ficgp,"# Type of graphic ng=%d\n",ng);      fprintf(ficgp,"# Type of graphic ng=%d\n",ng);
     fprintf(ficgp,"#   k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */      fprintf(ficgp,"#   k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */
     for(k1=1; k1 <=m; k1++)  /* For each combination of covariate */      /* for(k1=1; k1 <=m; k1++)  /\* For each combination of covariate *\/ */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(m != 1 && TKresult[nres]!= k1)       /* k1=nres; */
         continue;        k1=TKresult[nres];
       fprintf(ficgp,"\n\n# Combination of dummy  k1=%d which is ",k1);        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         fprintf(ficgp,"\n\n# Resultline k1=%d ",k1);
       strcpy(gplotlabel,"(");        strcpy(gplotlabel,"(");
       sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);        /*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/
       for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */        for (k=1; k<=cptcovs; k++){  /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
         lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */          /* for each resultline nres, and position k, Tvresult[nres][k] gives the name of the variable and
         /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */             TinvDoQresult[nres][Tvresult[nres][k]] gives its value double or integer) */
         /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
         /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
         vlv= nbcode[Tvaraff[k]][lv];        }
         fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);        /* if(m != 1 && TKresult[nres]!= k1) */
         sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);        /*        continue; */
       }        /* fprintf(ficgp,"\n\n# Combination of dummy  k1=%d which is ",k1); */
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */        /* strcpy(gplotlabel,"("); */
         fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        /* /\*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*\/ */
         sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
       }         /*        /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
         /*        lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
         /*        /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
         /*        /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
         /*        /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         /*        /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
         /*        vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
         /*        fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
         /* } */
         /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
         /*        fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         /* }       */
       strcpy(gplotlabel+strlen(gplotlabel),")");        strcpy(gplotlabel+strlen(gplotlabel),")");
       fprintf(ficgp,"\n#\n");        fprintf(ficgp,"\n#\n");
       fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres);        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres);
       fprintf(ficgp,"\nset label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel);        fprintf(ficgp,"\nset key outside ");
         /* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */
         fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel);
       fprintf(ficgp,"\nset ter svg size 640, 480 ");        fprintf(ficgp,"\nset ter svg size 640, 480 ");
       if (ng==1){        if (ng==1){
         fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */          fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
Line 7800  set ter svg size 640, 480\nunset log y\n Line 8840  set ter svg size 640, 480\nunset log y\n
             /* for(j=3; j <=ncovmodel-nagesqr; j++) { */              /* for(j=3; j <=ncovmodel-nagesqr; j++) { */
             for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */              for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
               /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */                /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
               if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */                switch(Typevar[j]){
                 if(j==Tage[ij]) { /* Product by age  To be looked at!!*/                case 1:
                   if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */                  if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                     if(DummyV[j]==0){                    if(j==Tage[ij]) { /* Product by age  To be looked at!!*//* Bug valgrind */
                       fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;                      if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                     }else{ /* quantitative */                        if(DummyV[j]==0){/* Bug valgrind */
                       fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */                          fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;
                       /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */                        }else{ /* quantitative */
                           fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                           /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                         }
                         ij++;
                     }                      }
                     ij++;  
                   }                    }
                 }                   }
               }else if(cptcovprod >0){                  break;
                 if(j==Tprod[ijp]) { /* */                 case 2:
                   /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */                  if(cptcovprod >0){
                   if(ijp <=cptcovprod) { /* Product */                    if(j==Tprod[ijp]) { /* */ 
                     if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */                      /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                       if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */                      if(ijp <=cptcovprod) { /* Product */
                         /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */                        if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                         fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);                          if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                       }else{ /* Vn is dummy and Vm is quanti */                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                         /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */                            fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                         fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);                          }else{ /* Vn is dummy and Vm is quanti */
                       }                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                     }else{ /* Vn*Vm Vn is quanti */                            fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                       if(DummyV[Tvard[ijp][2]]==0){                          }
                         fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);                        }else{ /* Vn*Vm Vn is quanti */
                       }else{ /* Both quanti */                          if(DummyV[Tvard[ijp][2]]==0){
                         fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);                            fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                           }else{ /* Both quanti */
                             fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                           }
                       }                        }
                         ijp++;
                     }                      }
                     ijp++;                    } /* end Tprod */
                   }                  }
                 } /* end Tprod */                  break;
               } else{  /* simple covariate */                case 0:
                   /* simple covariate */
                 /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */                  /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
                 if(Dummy[j]==0){                  if(Dummy[j]==0){
                   fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */                    fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */
Line 7842  set ter svg size 640, 480\nunset log y\n Line 8890  set ter svg size 640, 480\nunset log y\n
                   fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */                    fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */
                   /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */                    /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                 }                  }
               } /* end simple */                 /* end simple */
                   break;
                 default:
                   break;
                 } /* end switch */
             } /* end j */              } /* end j */
           }else{            }else{ /* k=k2 */
             i=i-ncovmodel;              if(ng !=1 ){ /* For logit formula of log p11 is more difficult to get */
             if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */                fprintf(ficgp," (1.");i=i-ncovmodel;
               fprintf(ficgp," (1.");              }else
                 i=i-ncovmodel;
           }            }
                       
           if(ng != 1){            if(ng != 1){
Line 7860  set ter svg size 640, 480\nunset log y\n Line 8913  set ter svg size 640, 480\nunset log y\n
                 fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr);                  fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr);
                                 
               ij=1;                ij=1;
               for(j=3; j <=ncovmodel-nagesqr; j++){                ijp=1;
                  if(cptcovage >0){                 /* for(j=3; j <=ncovmodel-nagesqr; j++){ */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */                for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
                      if(ij <=cptcovage) { /* Bug valgrind */                  switch(Typevar[j]){
                        fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);                  case 1:
                        /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */                    if(cptcovage >0){ 
                        ij++;                      if(j==Tage[ij]) { /* Bug valgrind */
                      }                        if(ij <=cptcovage) { /* Bug valgrind */
                    }                          if(DummyV[j]==0){/* Bug valgrind */
                  }else                            /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); */
                    fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/* Valgrind bug nbcode */                            /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,nbcode[Tvar[j]][codtabm(k1,j)]); */
                             fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]);
                             /* fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; */
                             /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                           }else{ /* quantitative */
                             /* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */
                             fprintf(ficgp,"+p%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                             /* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */
                             /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                           }
                           ij++;
                         }
                       }
                     }
                     break;
                   case 2:
                     if(cptcovprod >0){
                       if(j==Tprod[ijp]) { /* */ 
                         /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                         if(ijp <=cptcovprod) { /* Product */
                           if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                             if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                               /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                               fprintf(ficgp,"+p%d*%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                               /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */
                             }else{ /* Vn is dummy and Vm is quanti */
                               /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                               fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                               /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                             }
                           }else{ /* Vn*Vm Vn is quanti */
                             if(DummyV[Tvard[ijp][2]]==0){
                               fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                               /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */
                             }else{ /* Both quanti */
                               fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                               /* fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                             } 
                           }
                           ijp++;
                         }
                       } /* end Tprod */
                     } /* end if */
                     break;
                   case 0: 
                     /* simple covariate */
                     /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
                     if(Dummy[j]==0){
                       /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\*  *\/ */
                       fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); /*  */
                       /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\*  *\/ */
                     }else{ /* quantitative */
                       fprintf(ficgp,"+p%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* */
                       /* fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* *\/ */
                       /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                     }
                     /* end simple */
                     /* fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/\* Valgrind bug nbcode *\/ */
                     break;
                   default:
                     break;
                   } /* end switch */
               }                }
               fprintf(ficgp,")");                fprintf(ficgp,")");
             }              }
             fprintf(ficgp,")");              fprintf(ficgp,")");
             if(ng ==2)              if(ng ==2)
               fprintf(ficgp," t \"p%d%d\" ", k2,k);                fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
             else /* ng= 3 */              else /* ng= 3 */
               fprintf(ficgp," t \"i%d%d\" ", k2,k);                fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
           }else{ /* end ng <> 1 */            }else{ /* end ng <> 1 */
             if( k !=k2) /* logit p11 is hard to draw */              if( k !=k2) /* logit p11 is hard to draw */
               fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);                fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
           }            }
           if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)            if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
             fprintf(ficgp,",");              fprintf(ficgp,",");
Line 7890  set ter svg size 640, 480\nunset log y\n Line 9004  set ter svg size 640, 480\nunset log y\n
           i=i+ncovmodel;            i=i+ncovmodel;
         } /* end k */          } /* end k */
       } /* end k2 */        } /* end k2 */
       fprintf(ficgp,"\n set out; unset label;\n");        /* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */
     } /* end k1 */        fprintf(ficgp,"\n set out; unset title;set key default;\n");
       } /* end resultline */
   } /* end ng */    } /* end ng */
   /* avoid: */    /* avoid: */
   fflush(ficgp);     fflush(ficgp); 
Line 7906  set ter svg size 640, 480\nunset log y\n Line 9021  set ter svg size 640, 480\nunset log y\n
    int modcovmax =1;     int modcovmax =1;
    int mobilavrange, mob;     int mobilavrange, mob;
    int iage=0;     int iage=0;
      int firstA1=0, firstA2=0;
   
    double sum=0., sumr=0.;     double sum=0., sumr=0.;
    double age;     double age;
Line 7914  set ter svg size 640, 480\nunset log y\n Line 9030  set ter svg size 640, 480\nunset log y\n
    double *agemingoodr, *agemaxgoodr;      double *agemingoodr, *agemaxgoodr; 
       
       
    /* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose  */     /* modcovmax=2*cptcoveff;  Max number of modalities. We suppose  */
    /*              a covariate has 2 modalities, should be equal to ncovcombmax  *\/ */     /*              a covariate has 2 modalities, should be equal to ncovcombmax   */
   
    sumnewp = vector(1,ncovcombmax);     sumnewp = vector(1,ncovcombmax);
    sumnewm = vector(1,ncovcombmax);     sumnewm = vector(1,ncovcombmax);
Line 8003  set ter svg size 640, 480\nunset log y\n Line 9119  set ter svg size 640, 480\nunset log y\n
      } /* age */       } /* age */
      /* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */       /* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */
      /* but they will change */       /* but they will change */
        firstA1=0;firstA2=0;
      for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */       for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */
        sumnewm[cptcod]=0.;         sumnewm[cptcod]=0.;
        sumnewmr[cptcod]=0.;         sumnewmr[cptcod]=0.;
Line 8035  set ter svg size 640, 480\nunset log y\n Line 9152  set ter svg size 640, 480\nunset log y\n
          sumr+=probs[(int)age][i][cptcod];           sumr+=probs[(int)age][i][cptcod];
        }         }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */         if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);           if(!firstA1){
              firstA1=1;
              printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
            }
            fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
        } /* end bad */         } /* end bad */
        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */         /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
        if(fabs(sumr - 1.) > 1.e-3) { /* bad */         if(fabs(sumr - 1.) > 1.e-3) { /* bad */
          printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);           if(!firstA2){
              firstA2=1;
              printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
            }
            fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
        } /* end bad */         } /* end bad */
      }/* age */       }/* age */
   
Line 8127  set ter svg size 640, 480\nunset log y\n Line 9252  set ter svg size 640, 480\nunset log y\n
  }/* End movingaverage */   }/* End movingaverage */
     
   
    
 /************** Forecasting ******************/  /************** Forecasting ******************/
  void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  /* void prevforecast(char fileres[], double dateintmean, double anprojd, double mprojd, double jprojd, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anprojf, double p[], int cptcoveff)*/
   /* proj1, year, month, day of starting projection   void prevforecast(char fileres[], double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
     /* dateintemean, mean date of interviews
        dateprojd, year, month, day of starting projection 
        dateprojf date of end of projection;year of end of projection (same day and month as proj1).
      agemin, agemax range of age       agemin, agemax range of age
      dateprev1 dateprev2 range of dates during which prevalence is computed       dateprev1 dateprev2 range of dates during which prevalence is computed
      anproj2 year of en of projection (same day and month as proj1).  
   */    */
     /* double anprojd, mprojd, jprojd; */
     /* double anprojf, mprojf, jprojf; */
   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;    int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
   double agec; /* generic age */    double agec; /* generic age */
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double agelim, ppij, yp,yp1,yp2;
   double *popeffectif,*popcount;    double *popeffectif,*popcount;
   double ***p3mat;    double ***p3mat;
   /* double ***mobaverage; */    /* double ***mobaverage; */
Line 8173  set ter svg size 640, 480\nunset log y\n Line 9303  set ter svg size 640, 480\nunset log y\n
   if(estepm > stepm){ /* Yes every two year */    if(estepm > stepm){ /* Yes every two year */
     stepsize=2;      stepsize=2;
   }    }
     hstepm=hstepm/stepm;
   
   hstepm=hstepm/stepm;     
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and    /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
                                fractional in yp1 */    /*                              fractional in yp1 *\/ */
   anprojmean=yp;    /* aintmean=yp; */
   yp2=modf((yp1*12),&yp);    /* yp2=modf((yp1*12),&yp); */
   mprojmean=yp;    /* mintmean=yp; */
   yp1=modf((yp2*30.5),&yp);    /* yp1=modf((yp2*30.5),&yp); */
   jprojmean=yp;    /* jintmean=yp; */
   if(jprojmean==0) jprojmean=1;    /* if(jintmean==0) jintmean=1; */
   if(mprojmean==0) jprojmean=1;    /* if(mintmean==0) mintmean=1; */
   
   
     /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */
     /* date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); */
     /* date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); */
   i1=pow(2,cptcoveff);    i1=pow(2,cptcoveff);
   if (cptcovn < 1){i1=1;}    if (cptcovn < 1){i1=1;}
       
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); 
       
   fprintf(ficresf,"#****** Routine prevforecast **\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
       
 /*            if (h==(int)(YEARM*yearp)){ */  /*            if (h==(int)(YEARM*yearp)){ */
   for(nres=1; nres <= nresult; nres++) /* For each resultline */    for(nres=1; nres <= nresult; nres++) /* For each resultline */
   for(k=1; k<=i1;k++){      for(k=1; k<=i1;k++){ /* We want to find the combination k corresponding to the values of the dummies given in this resut line (to be cleaned one day) */
     if(i1 != 1 && TKresult[nres]!= k)      if(i1 != 1 && TKresult[nres]!= k)
       continue;        continue;
     if(invalidvarcomb[k]){      if(invalidvarcomb[k]){
Line 8203  set ter svg size 640, 480\nunset log y\n Line 9338  set ter svg size 640, 480\nunset log y\n
     }      }
     fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");      fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
     for(j=1;j<=cptcoveff;j++) {      for(j=1;j<=cptcoveff;j++) {
       fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        /* fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); */
         fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
     }      }
     for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */      for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
       fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
Line 8214  set ter svg size 640, 480\nunset log y\n Line 9350  set ter svg size 640, 480\nunset log y\n
         fprintf(ficresf," p%d%d",i,j);          fprintf(ficresf," p%d%d",i,j);
       fprintf(ficresf," wp.%d",j);        fprintf(ficresf," wp.%d",j);
     }      }
     for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {      for (yearp=0; yearp<=(anprojf-anprojd);yearp +=stepsize) {
       fprintf(ficresf,"\n");        fprintf(ficresf,"\n");
       fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jprojd,mprojd,anprojd+yearp);   
       /* for (agec=fage; agec>=(ageminpar-1); agec--){  */        /* for (agec=fage; agec>=(ageminpar-1); agec--){  */
       for (agec=fage; agec>=(bage); agec--){         for (agec=fage; agec>=(bage); agec--){ 
         nhstepm=(int) rint((agelim-agec)*YEARM/stepm);           nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
Line 8233  set ter svg size 640, 480\nunset log y\n Line 9369  set ter svg size 640, 480\nunset log y\n
         }          }
         fprintf(ficresf,"\n");          fprintf(ficresf,"\n");
         for(j=1;j<=cptcoveff;j++)           for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);            /* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Tvaraff not correct *\/ */
         fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);            fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /* TnsdVar[Tvaraff]  correct */
           fprintf(ficresf,"%.f %.f ",anprojd+yearp,agec+h*hstepm/YEARM*stepm);
                   
         for(j=1; j<=nlstate+ndeath;j++) {          for(j=1; j<=nlstate+ndeath;j++) {
           ppij=0.;            ppij=0.;
           for(i=1; i<=nlstate;i++) {            for(i=1; i<=nlstate;i++) {
             /* if (mobilav>=1)  */              if (mobilav>=1)
             ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k];               ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k];
             /* else { */ /* even if mobilav==-1 we use mobaverage */              else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */
             /*  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */                  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
             /* } */              }
             fprintf(ficresf," %.3f", p3mat[i][j][h]);              fprintf(ficresf," %.3f", p3mat[i][j][h]);
           } /* end i */            } /* end i */
           fprintf(ficresf," %.3f", ppij);            fprintf(ficresf," %.3f", ppij);
Line 8262  set ter svg size 640, 480\nunset log y\n Line 9399  set ter svg size 640, 480\nunset log y\n
 }  }
   
 /************** Back Forecasting ******************/  /************** Back Forecasting ******************/
  void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){   /* void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
   /* back1, year, month, day of starting backection   void prevbackforecast(char fileres[], double ***prevacurrent, double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
     /* back1, year, month, day of starting backprojection
      agemin, agemax range of age       agemin, agemax range of age
      dateprev1 dateprev2 range of dates during which prevalence is computed       dateprev1 dateprev2 range of dates during which prevalence is computed
      anback2 year of end of backprojection (same day and month as back1).       anback2 year of end of backprojection (same day and month as back1).
Line 8271  set ter svg size 640, 480\nunset log y\n Line 9409  set ter svg size 640, 480\nunset log y\n
   */    */
   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;    int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
   double agec; /* generic age */    double agec; /* generic age */
   double agelim, ppij, ppi, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double agelim, ppij, ppi, yp,yp1,yp2; /* ,jintmean,mintmean,aintmean;*/
   double *popeffectif,*popcount;    double *popeffectif,*popcount;
   double ***p3mat;    double ***p3mat;
   /* double ***mobaverage; */    /* double ***mobaverage; */
Line 8314  set ter svg size 640, 480\nunset log y\n Line 9452  set ter svg size 640, 480\nunset log y\n
   }    }
       
   hstepm=hstepm/stepm;    hstepm=hstepm/stepm;
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and    /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
                                fractional in yp1 */    /*                              fractional in yp1 *\/ */
   anprojmean=yp;    /* aintmean=yp; */
   yp2=modf((yp1*12),&yp);    /* yp2=modf((yp1*12),&yp); */
   mprojmean=yp;    /* mintmean=yp; */
   yp1=modf((yp2*30.5),&yp);    /* yp1=modf((yp2*30.5),&yp); */
   jprojmean=yp;    /* jintmean=yp; */
   if(jprojmean==0) jprojmean=1;    /* if(jintmean==0) jintmean=1; */
   if(mprojmean==0) jprojmean=1;    /* if(mintmean==0) jintmean=1; */
       
   i1=pow(2,cptcoveff);    i1=pow(2,cptcoveff);
   if (cptcovn < 1){i1=1;}    if (cptcovn < 1){i1=1;}
       
   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
   printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
       
   fprintf(ficresfb,"#****** Routine prevbackforecast **\n");    fprintf(ficresfb,"#****** Routine prevbackforecast **\n");
       
Line 8342  set ter svg size 640, 480\nunset log y\n Line 9480  set ter svg size 640, 480\nunset log y\n
     }      }
     fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#");      fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#");
     for(j=1;j<=cptcoveff;j++) {      for(j=1;j<=cptcoveff;j++) {
       fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
     }      }
     for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */      for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
       fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
Line 8353  set ter svg size 640, 480\nunset log y\n Line 9491  set ter svg size 640, 480\nunset log y\n
         fprintf(ficresfb," b%d%d",i,j);          fprintf(ficresfb," b%d%d",i,j);
       fprintf(ficresfb," b.%d",j);        fprintf(ficresfb," b.%d",j);
     }      }
     for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) {      for (yearp=0; yearp>=(anbackf-anbackd);yearp -=stepsize) {
       /* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  */        /* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  */
       fprintf(ficresfb,"\n");        fprintf(ficresfb,"\n");
       fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp);        fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jbackd,mbackd,anbackd+yearp);
       /* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */        /* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */
       /* for (agec=bage; agec<=agemax-1; agec++){  /\* testing *\/ */        /* for (agec=bage; agec<=agemax-1; agec++){  /\* testing *\/ */
       for (agec=bage; agec<=fage; agec++){  /* testing */        for (agec=bage; agec<=fage; agec++){  /* testing */
Line 8378  set ter svg size 640, 480\nunset log y\n Line 9516  set ter svg size 640, 480\nunset log y\n
         }          }
         fprintf(ficresfb,"\n");          fprintf(ficresfb,"\n");
         for(j=1;j<=cptcoveff;j++)          for(j=1;j<=cptcoveff;j++)
           fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);            fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
         fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec-h*hstepm/YEARM*stepm);          fprintf(ficresfb,"%.f %.f ",anbackd+yearp,agec-h*hstepm/YEARM*stepm);
         for(i=1; i<=nlstate+ndeath;i++) {          for(i=1; i<=nlstate+ndeath;i++) {
           ppij=0.;ppi=0.;            ppij=0.;ppi=0.;
           for(j=1; j<=nlstate;j++) {            for(j=1; j<=nlstate;j++) {
Line 8414  set ter svg size 640, 480\nunset log y\n Line 9552  set ter svg size 640, 480\nunset log y\n
   
 /* Variance of prevalence limit: varprlim */  /* Variance of prevalence limit: varprlim */
  void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){   void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
     /*------- Variance of period (stable) prevalence------*/         /*------- Variance of forward period (stable) prevalence------*/   
     
    char fileresvpl[FILENAMELENGTH];       char fileresvpl[FILENAMELENGTH];  
    FILE *ficresvpl;     FILE *ficresvpl;
Line 8425  set ter svg size 640, 480\nunset log y\n Line 9563  set ter svg size 640, 480\nunset log y\n
     strcpy(fileresvpl,"VPL_");      strcpy(fileresvpl,"VPL_");
     strcat(fileresvpl,fileresu);      strcat(fileresvpl,fileresu);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);        printf("Problem with variance of forward period (stable) prevalence  resultfile: %s\n", fileresvpl);
       exit(0);        exit(0);
     }      }
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);      printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
     fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);      fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
           
     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){      /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
Line 8437  set ter svg size 640, 480\nunset log y\n Line 9575  set ter svg size 640, 480\nunset log y\n
     i1=pow(2,cptcoveff);      i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}      if (cptcovn < 1){i1=1;}
   
     for(nres=1; nres <= nresult; nres++) /* For each resultline */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
     for(k=1; k<=i1;k++){         k=TKresult[nres];
          if(TKresult[nres]==0) k=1; /* To be checked for noresult */
        /* for(k=1; k<=i1;k++){ /\* We find the combination equivalent to result line values of dummies *\/ */
       if(i1 != 1 && TKresult[nres]!= k)        if(i1 != 1 && TKresult[nres]!= k)
         continue;          continue;
       fprintf(ficresvpl,"\n#****** ");        fprintf(ficresvpl,"\n#****** ");
       printf("\n#****** ");        printf("\n#****** ");
       fprintf(ficlog,"\n#****** ");        fprintf(ficlog,"\n#****** ");
       for(j=1;j<=cptcoveff;j++) {        for(j=1;j<=cptcovs;j++) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficresvpl,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
       }          /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */          /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
         printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);        }
         fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);        /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
         fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);        /*        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
       }         /*        fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /*        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /* }       */
       fprintf(ficresvpl,"******\n");        fprintf(ficresvpl,"******\n");
       printf("******\n");        printf("******\n");
       fprintf(ficlog,"******\n");        fprintf(ficlog,"******\n");
Line 8466  set ter svg size 640, 480\nunset log y\n Line 9608  set ter svg size 640, 480\nunset log y\n
     }      }
           
     fclose(ficresvpl);      fclose(ficresvpl);
     printf("done variance-covariance of period prevalence\n");fflush(stdout);      printf("done variance-covariance of forward period prevalence\n");fflush(stdout);
     fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);      fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog);
   
  }   }
 /* Variance of back prevalence: varbprlim */  /* Variance of back prevalence: varbprlim */
Line 8494  set ter svg size 640, 480\nunset log y\n Line 9636  set ter svg size 640, 480\nunset log y\n
    i1=pow(2,cptcoveff);     i1=pow(2,cptcoveff);
    if (cptcovn < 1){i1=1;}     if (cptcovn < 1){i1=1;}
         
    for(nres=1; nres <= nresult; nres++) /* For each resultline */     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
      for(k=1; k<=i1;k++){       k=TKresult[nres];
        if(i1 != 1 && TKresult[nres]!= k)       if(TKresult[nres]==0) k=1; /* To be checked for noresult */
          continue;      /* for(k=1; k<=i1;k++){ */
       /*    if(i1 != 1 && TKresult[nres]!= k) */
       /*   continue; */
        fprintf(ficresvbl,"\n#****** ");         fprintf(ficresvbl,"\n#****** ");
        printf("\n#****** ");         printf("\n#****** ");
        fprintf(ficlog,"\n#****** ");         fprintf(ficlog,"\n#****** ");
        for(j=1;j<=cptcoveff;j++) {         for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */
          fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);           printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
          fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);           fprintf(ficresvbl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
          printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);           fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
        }         /* for(j=1;j<=cptcoveff;j++) { */
        for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */         /*        fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
          printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);         /*        fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
          fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);         /*        printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
          fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);         /* } */
          /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
          /*        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
          /*        fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
          /*        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
        }         }
        fprintf(ficresvbl,"******\n");         fprintf(ficresvbl,"******\n");
        printf("******\n");         printf("******\n");
Line 8827  void prwizard(int ncovmodel, int nlstate Line 9975  void prwizard(int ncovmodel, int nlstate
 /******************* Gompertz Likelihood ******************************/  /******************* Gompertz Likelihood ******************************/
 double gompertz(double x[])  double gompertz(double x[])
 {   { 
   double A,B,L=0.0,sump=0.,num=0.;    double A=0.0,B=0.,L=0.0,sump=0.,num=0.;
   int i,n=0; /* n is the size of the sample */    int i,n=0; /* n is the size of the sample */
   
   for (i=1;i<=imx ; i++) {    for (i=1;i<=imx ; i++) {
Line 8835  double gompertz(double x[]) Line 9983  double gompertz(double x[])
     /*    sump=sump+1;*/      /*    sump=sump+1;*/
     num=num+1;      num=num+1;
   }    }
      L=0.0;
      /* agegomp=AGEGOMP; */
   /* for (i=0; i<=imx; i++)     /* for (i=0; i<=imx; i++) 
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
   for (i=1;i<=imx ; i++)    for (i=1;i<=imx ; i++) {
     {      /* mu(a)=mu(agecomp)*exp(teta*(age-agegomp))
       if (cens[i] == 1 && wav[i]>1)         mu(a)=x[1]*exp(x[2]*(age-agegomp)); x[1] and x[2] are per year.
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));       * L= Product mu(agedeces)exp(-\int_ageexam^agedc mu(u) du ) for a death between agedc (in month) 
              *   and agedc +1 month, cens[i]=0: log(x[1]/YEARM)
       if (cens[i] == 0 && wav[i]>1)       * +
        * exp(-\int_ageexam^agecens mu(u) du ) when censored, cens[i]=1
        */
        if (wav[i] > 1 || agedc[i] < AGESUP) {
          if (cens[i] == 1){
            A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
          } else if (cens[i] == 0){
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);              +log(x[1]/YEARM) +x[2]*(agedc[i]-agegomp)+log(YEARM);
               } else
            printf("Gompertz cens[%d] neither 1 nor 0\n",i);
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
       if (wav[i] > 1 ) { /* ??? */         L=L+A*weight[i];
         L=L+A*weight[i];  
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       }       }
     }    }
   
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     
   return -2*L*num/sump;    return -2*L*num/sump;
 }  }
Line 8865  double gompertz(double x[]) Line 10019  double gompertz(double x[])
 /******************* Gompertz_f Likelihood ******************************/  /******************* Gompertz_f Likelihood ******************************/
 double gompertz_f(const gsl_vector *v, void *params)  double gompertz_f(const gsl_vector *v, void *params)
 {   { 
   double A,B,LL=0.0,sump=0.,num=0.;    double A=0.,B=0.,LL=0.0,sump=0.,num=0.;
   double *x= (double *) v->data;    double *x= (double *) v->data;
   int i,n=0; /* n is the size of the sample */    int i,n=0; /* n is the size of the sample */
   
Line 8958  int readdata(char datafile[], int firsto Line 10112  int readdata(char datafile[], int firsto
   int i=0, j=0, n=0, iv=0, v;    int i=0, j=0, n=0, iv=0, v;
   int lstra;    int lstra;
   int linei, month, year,iout;    int linei, month, year,iout;
     int noffset=0; /* This is the offset if BOM data file */
   char line[MAXLINE], linetmp[MAXLINE];    char line[MAXLINE], linetmp[MAXLINE];
   char stra[MAXLINE], strb[MAXLINE];    char stra[MAXLINE], strb[MAXLINE];
   char *stratrunc;    char *stratrunc;
   
   DummyV=ivector(1,NCOVMAX); /* 1 to 3 */    DummyV=ivector(1,NCOVMAX); /* 1 to 3 */
   FixedV=ivector(1,NCOVMAX); /* 1 to 3 */    FixedV=ivector(1,NCOVMAX); /* 1 to 3 */
     for(v=1;v<NCOVMAX;v++){
       DummyV[v]=0;
       FixedV[v]=0;
     }
   
   for(v=1; v <=ncovcol;v++){    for(v=1; v <=ncovcol;v++){
     DummyV[v]=0;      DummyV[v]=0;
Line 8991  int readdata(char datafile[], int firsto Line 10150  int readdata(char datafile[], int firsto
     fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;      fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
   }    }
   
   i=1;      /* Is it a BOM UTF-8 Windows file? */
     /* First data line */
   linei=0;    linei=0;
     while(fgets(line, MAXLINE, fic)) {
       noffset=0;
       if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
       {
         noffset=noffset+3;
         printf("# Data file '%s'  is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);fflush(stdout);
         fprintf(ficlog,"# Data file '%s'  is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);
         fflush(ficlog); return 1;
       }
       /*    else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/
       else if( line[0] == (char)0xFF && line[1] == (char)0xFE)
       {
         noffset=noffset+2;
         printf("# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout);
         fprintf(ficlog,"# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);
         fflush(ficlog); return 1;
       }
       else if( line[0] == 0 && line[1] == 0)
       {
         if( line[2] == (char)0xFE && line[3] == (char)0xFF){
           noffset=noffset+4;
           printf("# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout);
           fprintf(ficlog,"# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);
           fflush(ficlog); return 1;
         }
       } else{
         ;/*printf(" Not a BOM file\n");*/
       }
           /* If line starts with a # it is a comment */
       if (line[noffset] == '#') {
         linei=linei+1;
         break;
       }else{
         break;
       }
     }
     fclose(fic);
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
     }
     /* Not a Bom file */
     
     i=1;
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
     linei=linei+1;      linei=linei+1;
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
Line 9059  int readdata(char datafile[], int firsto Line 10263  int readdata(char datafile[], int firsto
         }          }
         if(lval <-1 || lval >1){          if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \   Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
  For example, for multinomial values like 1, 2 and 3,\n                 \   For example, for multinomial values like 1, 2 and 3,\n                 \
  build V1=0 V2=0 for the reference value (1),\n                         \   build V1=0 V2=0 for the reference value (1),\n                         \
         V1=1 V2=0 for (2) \n                                            \          V1=1 V2=0 for (2) \n                                            \
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
  output of IMaCh is often meaningless.\n                                \   output of IMaCh is often meaningless.\n                                \
  Exiting.\n",lval,linei, i,line,j);   Exiting.\n",lval,linei, i,line,iv,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \            fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \   Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
  For example, for multinomial values like 1, 2 and 3,\n                 \   For example, for multinomial values like 1, 2 and 3,\n                 \
  build V1=0 V2=0 for the reference value (1),\n                         \   build V1=0 V2=0 for the reference value (1),\n                         \
         V1=1 V2=0 for (2) \n                                            \          V1=1 V2=0 for (2) \n                                            \
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
  output of IMaCh is often meaningless.\n                                \   output of IMaCh is often meaningless.\n                                \
  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);   Exiting.\n",lval,linei, i,line,iv,j);fflush(ficlog);
           return 1;            return 1;
         }          }
         cotvar[j][iv][i]=(double)(lval);          cotvar[j][iv][i]=(double)(lval);
Line 9113  int readdata(char datafile[], int firsto Line 10317  int readdata(char datafile[], int firsto
         return 1;          return 1;
       }        }
       anint[j][i]= (double) year;         anint[j][i]= (double) year; 
       mint[j][i]= (double)month;         mint[j][i]= (double)month;
         /* if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ */
         /*        printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */
         /*        fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */
         /* } */
       strcpy(line,stra);        strcpy(line,stra);
     } /* End loop on waves */      } /* End loop on waves */
           
Line 9152  int readdata(char datafile[], int firsto Line 10360  int readdata(char datafile[], int firsto
               
     }      }
     annais[i]=(double)(year);      annais[i]=(double)(year);
     moisnais[i]=(double)(month);       moisnais[i]=(double)(month);
       for (j=1;j<=maxwav;j++){
         if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){
           printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j,(int)moisnais[i],(int)annais[i]);
           fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j, (int)moisnais[i],(int)annais[i]);
         }
       }
   
     strcpy(line,stra);      strcpy(line,stra);
           
     /* Sample weight */      /* Sample weight */
Line 9172  int readdata(char datafile[], int firsto Line 10387  int readdata(char datafile[], int firsto
       cutv(stra, strb, line, ' ');         cutv(stra, strb, line, ' '); 
       if(strb[0]=='.') { /* Missing value */        if(strb[0]=='.') { /* Missing value */
         lval=-1;          lval=-1;
           coqvar[iv][i]=NAN; 
           covar[ncovcol+iv][i]=NAN; /* including qvar in standard covar for performance reasons */ 
       }else{        }else{
         errno=0;          errno=0;
         /* what_kind_of_number(strb); */          /* what_kind_of_number(strb); */
Line 9265  void removefirstspace(char **stri){/*, c Line 10482  void removefirstspace(char **stri){/*, c
   *stri=p2;     *stri=p2; 
 }  }
   
 int decoderesult ( char resultline[], int nres)  int decoderesult( char resultline[], int nres)
 /**< This routine decode one result line and returns the combination # of dummy covariates only **/  /**< This routine decode one result line and returns the combination # of dummy covariates only **/
 {  {
   int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;    int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
   char resultsav[MAXLINE];    char resultsav[MAXLINE];
   int resultmodel[MAXLINE];    /* int resultmodel[MAXLINE]; */
   int modelresult[MAXLINE];    /* int modelresult[MAXLINE]; */
   char stra[80], strb[80], strc[80], strd[80],stre[80];    char stra[80], strb[80], strc[80], strd[80],stre[80];
   
   removefirstspace(&resultline);    removefirstspace(&resultline);
   printf("decoderesult:%s\n",resultline);    printf("decoderesult:%s\n",resultline);
   
   if (strstr(resultline,"v") !=0){    strcpy(resultsav,resultline);
     printf("Error. 'v' must be in upper case 'V' result: %s ",resultline);    printf("Decoderesult resultsav=\"%s\" resultline=\"%s\"\n", resultsav, resultline);
     fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog);  
     return 1;  
   }  
   trimbb(resultsav, resultline);  
   if (strlen(resultsav) >1){    if (strlen(resultsav) >1){
     j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */      j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' in this resultline */
   }    }
   if(j == 0){ /* Resultline but no = */    if(j == 0){ /* Resultline but no = */
     TKresult[nres]=0; /* Combination for the nresult and the model */      TKresult[nres]=0; /* Combination for the nresult and the model */
     return (0);      return (0);
   }    }
       
   if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */    if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
     printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);      printf("ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, %s.\n",j, cptcovs, model);
     fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);      fprintf(ficlog,"ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, %s.\n",j, cptcovs, model);
       /* return 1;*/
   }    }
   for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */    for(k=1; k<=j;k++){ /* Loop on any covariate of the RESULT LINE */
     if(nbocc(resultsav,'=') >1){      if(nbocc(resultsav,'=') >1){
        cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' '         cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' (stra is the rest of the resultline to be analyzed in the next loop *//*     resultsav= "V4=1 V5=25.1 V3=0" stra= "V5=25.1 V3=0" strb= "V4=1" */
                                       resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */        /* If resultsav= "V4= 1 V5=25.1 V3=0" with a blank then strb="V4=" and stra="1 V5=25.1 V3=0" */
        cutl(strc,strd,strb,'=');  /* strb:V4=1 strc=1 strd=V4 */        cutl(strc,strd,strb,'=');  /* strb:"V4=1" strc="1" strd="V4" */
         /* If a blank, then strc="V4=" and strd='\0' */
         if(strc[0]=='\0'){
         printf("Error in resultline, probably a blank after the \"%s\", \"result:%s\", stra=\"%s\" resultsav=\"%s\"\n",strb,resultline, stra, resultsav);
           fprintf(ficlog,"Error in resultline, probably a blank after the \"V%s=\", resultline=%s\n",strb,resultline);
           return 1;
         }
     }else      }else
       cutl(strc,strd,resultsav,'=');        cutl(strc,strd,resultsav,'=');
     Tvalsel[k]=atof(strc); /* 1 */      Tvalsel[k]=atof(strc); /* 1 */ /* Tvalsel of k is the float value of the kth covariate appearing in this result line */
           
     cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;      cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
     Tvarsel[k]=atoi(strc);      Tvarsel[k]=atoi(strc);  /* 4 */ /* Tvarsel is the id of the kth covariate in the result line Tvarsel[1] in "V4=1.." is 4.*/
     /* Typevarsel[k]=1;  /\* 1 for age product *\/ */      /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
     /* cptcovsel++;     */      /* cptcovsel++;     */
     if (nbocc(stra,'=') >0)      if (nbocc(stra,'=') >0)
       strcpy(resultsav,stra); /* and analyzes it */        strcpy(resultsav,stra); /* and analyzes it */
   }    }
   /* Checking for missing or useless values in comparison of current model needs */    /* Checking for missing or useless values in comparison of current model needs */
   for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */    /* Feeds resultmodel[nres][k1]=k2 for k1th product covariate with age in the model equation fed by the index k2 of the resutline*/
     for(k1=1; k1<= cptcovt ;k1++){ /* Loop on MODEL LINE V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
     if(Typevar[k1]==0){ /* Single covariate in model */      if(Typevar[k1]==0){ /* Single covariate in model */
         /* 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
       match=0;        match=0;
       for(k2=1; k2 <=j;k2++){/* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */        for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
         if(Tvar[k1]==Tvarsel[k2]) {/* Tvar[1]=5 == Tvarsel[2]=5   */          if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
           modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */            modelresult[nres][k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
           match=1;            match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
           break;            break;
         }          }
       }        }
       if(match == 0){        if(match == 0){
         printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);          printf("Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s. Tvar[k1=%d]=%d is different from Tvarsel[k2=%d]=%d.\n",Tvar[k1], resultline, model,k1, Tvar[k1], k2, Tvarsel[k2]);
           fprintf(ficlog,"Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s\n",Tvar[k1], resultline, model);
           return 1;
       }        }
     }      }else if(Typevar[k1]==1){ /* Product with age We want to get the position k2 in the resultline of the product k1 in the model line*/
   }        /* We feed resultmodel[k1]=k2; */
         match=0;
         for(k2=1; k2 <=j;k2++){/* Loop on resultline.  jth occurence of = signs in the result line. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
             modelresult[nres][k2]=k1;/* we found a Vn=1 corrresponding to Vn*age in the model modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
             resultmodel[nres][k1]=k2; /* Added here */
             printf("Decoderesult first modelresult[k2=%d]=%d (k1) V%d*AGE\n",k2,k1,Tvar[k1]);
             match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
             break;
           }
         }
         if(match == 0){
           printf("Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]);
           fprintf(ficlog,"Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]);
         return 1;
         }
       }else if(Typevar[k1]==2){ /* Product No age We want to get the position in the resultline of the product in the model line*/
         /* resultmodel[nres][of such a Vn * Vm product k1] is not unique, so can't exist, we feed Tvard[k1][1] and [2] */ 
         match=0;
         printf("Decoderesult very first Product Tvardk[k1=%d][1]=%d Tvardk[k1=%d][2]=%d V%d * V%d\n",k1,Tvardk[k1][1],k1,Tvardk[k1][2],Tvardk[k1][1],Tvardk[k1][2]);
         for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvardk[k1][1]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
             /* modelresult[k2]=k1; */
             printf("Decoderesult first Product modelresult[k2=%d]=%d (k1) V%d * \n",k2,k1,Tvarsel[k2]);
             match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
           }
         }
         if(match == 0){
           printf("Error in result line (Product without age first variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model);
           fprintf(ficlog,"Error in result line (Product without age first variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model);
           return 1;
         }
         match=0;
         for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvardk[k1][2]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
             /* modelresult[k2]=k1;*/
             printf("Decoderesult second Product modelresult[k2=%d]=%d (k1) * V%d \n ",k2,k1,Tvarsel[k2]);
             match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
             break;
           }
         }
         if(match == 0){
           printf("Error in result line (Product without age second variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model);
           fprintf(ficlog,"Error in result line (Product without age second variable): V%d is missing in result : %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model);
           return 1;
         }
       }/* End of testing */
     }/* End loop cptcovt */
   /* Checking for missing or useless values in comparison of current model needs */    /* Checking for missing or useless values in comparison of current model needs */
   for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */    /* Feeds resultmodel[nres][k1]=k2 for single covariate (k1) in the model equation */
     for(k2=1; k2 <=j;k2++){ /* j or cptcovs is the number of single covariates used either in the model line as well as in the result line (dummy or quantitative)
                              * Loop on resultline variables: result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
     match=0;      match=0;
     for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */      for(k1=1; k1<= cptcovt ;k1++){ /* loop on model: model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       if(Typevar[k1]==0){ /* Single */        if(Typevar[k1]==0){ /* Single only */
         if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4   */          if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4   */
           resultmodel[k1]=k2;  /* resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */            resultmodel[nres][k1]=k2;  /* k1th position in the model equation corresponds to k2th position in the result line. resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
             modelresult[nres][k2]=k1; /* k1th position in the model equation corresponds to k2th position in the result line. modelresult[1]=2 modelresult[2]=1  modelresult[3]=3  remodelresult[4]=6 modelresult[5]=9 */
           ++match;            ++match;
         }          }
       }        }
     }      }
     if(match == 0){      if(match == 0){
       printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);        printf("Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model);
         fprintf(ficlog,"Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model);
         return 1;
     }else if(match > 1){      }else if(match > 1){
       printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model);        printf("Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model);
         fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model);
         return 1;
     }      }
   }    }
           /* cptcovres=j /\* Number of variables in the resultline is equal to cptcovs and thus useless *\/     */
   /* We need to deduce which combination number is chosen and save quantitative values */    /* We need to deduce which combination number is chosen and save quantitative values */
   /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */    /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   /* result line V4=1 V5=25.1 V3=0  V2=8 V1=1 */    /* nres=1st result line: V4=1 V5=25.1 V3=0  V2=8 V1=1 */
   /* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/    /* should correspond to the combination 6 of dummy: V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 1*1 + 0*2 + 1*4 = 5 + (1offset) = 6*/
   /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */    /* nres=2nd result line: V4=1 V5=24.1 V3=1  V2=8 V1=0 */
   /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/    /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
   /*    1 0 0 0 */    /*    1 0 0 0 */
   /*    2 1 0 0 */    /*    2 1 0 0 */
   /*    3 0 1 0 */     /*    3 0 1 0 */ 
   /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 */    /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 (nres=2)*/
   /*    5 0 0 1 */    /*    5 0 0 1 */
   /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 */    /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 (nres=1)*/
   /*    7 0 1 1 */    /*    7 0 1 1 */
   /*    8 1 1 1 */    /*    8 1 1 1 */
   /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */    /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
   /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */    /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
   /* V5*age V5 known which value for nres?  */    /* V5*age V5 known which value for nres?  */
   /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */    /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */
   for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */    for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* cptcovt number of covariates (excluding 1 and age or age*age) in the MODEL equation.
     if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */                                                     * loop on position k1 in the MODEL LINE */
       k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */      /* k counting number of combination of single dummies in the equation model */
       k2=(int)Tvarsel[k3]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */      /* k4 counting single dummies in the equation model */
       k+=Tvalsel[k3]*pow(2,k4);  /*  Tvalsel[1]=1  */      /* k4q counting single quantitatives in the equation model */
       Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1)  Tresult[nres][2]=0(V3=0) */      if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Dummy and Single, k1 is sorting according to MODEL, but k3 to resultline */
       Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */         /* k4+1= (not always if quant in model) position in the resultline V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) */
         /* modelresult[k3]=k1: k3th position in the result line corresponds to the k1 position in the model line (doesn't work with products)*/
         /* Value in the (current nres) resultline of the variable at the k1th position in the model equation resultmodel[nres][k1]= k3 */
         /* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline                        */
         /*      k3 is the position in the nres result line of the k1th variable of the model equation                                  */
         /* Tvarsel[k3]: Name of the variable at the k3th position in the result line.                                                  */
         /* Tvalsel[k3]: Value of the variable at the k3th position in the result line.                                                 */
         /* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline                   */
         /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline                     */
         /* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line                                        */
         /* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line                                                      */
         k3= resultmodel[nres][k1]; /* From position k1 in model get position k3 in result line */
         /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/
         k2=(int)Tvarsel[k3]; /* from position k3 in resultline get name k2: nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/
         k+=Tvalsel[k3]*pow(2,k4);  /* nres=1 k1=2 Tvalsel[1]=1 (V4=1); k1=3 k3=2 Tvalsel[2]=0 (V3=0) */
         TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][Name]=Value; stores the value into the name of the variable. */
         /* Tinvresult[nres][4]=1 */
         /* Tresult[nres][k4+1]=Tvalsel[k3];/\* Tresult[nres=2][1]=1(V4=1)  Tresult[nres=2][2]=0(V3=0) *\/ */
         Tresult[nres][k3]=Tvalsel[k3];/* Tresult[nres=2][1]=1(V4=1)  Tresult[nres=2][2]=0(V3=0) */
         /* Tvresult[nres][k4+1]=(int)Tvarsel[k3];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */
         Tvresult[nres][k3]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
       Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */        Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
       printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4);        precov[nres][k1]=Tvalsel[k3]; /* Value from resultline of the variable at the k1 position in the model */
         printf("Decoderesult Dummy k=%d, k1=%d precov[nres=%d][k1=%d]=%.f V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k1, nres, k1,precov[nres][k1], k2, k3, (int)Tvalsel[k3], k4);
       k4++;;        k4++;;
     }  else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */      }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Quantitative and single */
       k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */        /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline                                 */
       k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */        /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline                                 */
       Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */        /* Tqinvresult[nres][Name of a quantitative variable]= value of the variable in the result line                                                      */
       Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */        k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 5 =k3q */
         k2q=(int)Tvarsel[k3q]; /*  Name of variable at k3q th position in the resultline */
         /* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */
         /* Tqresult[nres][k4q+1]=Tvalsel[k3q]; /\* Tqresult[nres][1]=25.1 *\/ */
         /* Tvresult[nres][k4q+1]=(int)Tvarsel[k3q];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */
         /* Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /\* Tvqresult[nres][1]=5 *\/ */
         Tqresult[nres][k3q]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
         Tvresult[nres][k3q]=(int)Tvarsel[k3q];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
         Tvqresult[nres][k3q]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
       Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */        Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
       printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);        TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
         precov[nres][k1]=Tvalsel[k3q];
         printf("Decoderesult Quantitative nres=%d,precov[nres=%d][k1=%d]=%.f V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, nres, k1,precov[nres][k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
       k4q++;;        k4q++;;
       }else if( Dummy[k1]==2 ){ /* For dummy with age product */
         /* Tvar[k1]; */ /* Age variable */
         /* Wrong we want the value of variable name Tvar[k1] */
         
         k3= resultmodel[nres][k1]; /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/
         k2=(int)Tvarsel[k3]; /* nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/
         TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][4]=1 */
         precov[nres][k1]=Tvalsel[k3];
         printf("Decoderesult Dummy with age k=%d, k1=%d precov[nres=%d][k1=%d]=%.f Tvar[%d]=V%d k2=Tvarsel[%d]=%d Tvalsel[%d]=%d\n",k, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k3,(int)Tvarsel[k3], k3, (int)Tvalsel[k3]);
       }else if( Dummy[k1]==3 ){ /* For quant with age product */
         k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 25.1=k3q */
         k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */
         TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* TinvDoQresult[nres][5]=25.1 */
         precov[nres][k1]=Tvalsel[k3q];
         printf("Decoderesult Quantitative with age nres=%d, k1=%d, precov[nres=%d][k1=%d]=%f Tvar[%d]=V%d V(k2q=%d)= Tvarsel[%d]=%d, Tvalsel[%d]=%f\n",nres, k1, nres, k1,precov[nres][k1], k1,  Tvar[k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
       }else if(Typevar[k1]==2 ){ /* For product quant or dummy (not with age) */
         precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];      
         printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]);
       }else{
         printf("Error Decoderesult probably a product  Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]);
         fprintf(ficlog,"Error Decoderesult probably a product  Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]);
     }      }
   }    }
       
   TKresult[nres]=++k; /* Combination for the nresult and the model */    TKresult[nres]=++k; /* Number of combinations of dummies for the nresult and the model =Tvalsel[k3]*pow(2,k4) + 1*/
   return (0);    return (0);
 }  }
   
Line 9398  int decodemodel( char model[], int lasto Line 10727  int decodemodel( char model[], int lasto
         * - cptcovs number of simple covariates          * - cptcovs number of simple covariates
         * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10          * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
         *     which is a new column after the 9 (ncovcol) variables.           *     which is a new column after the 9 (ncovcol) variables. 
         * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual          * - if k is a product Vn*Vm, covar[k][i] is filled with correct values for each individual
         * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage          * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
         *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.          *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
         * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .          * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
         */          */
   /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */
 {  {
   int i, j, k, ks, v;    int i, j, k, ks, v;
   int  j1, k1, k2, k3, k4;    int  j1, k1, k2, k3, k4;
Line 9419  int decodemodel( char model[], int lasto Line 10749  int decodemodel( char model[], int lasto
       return 1;        return 1;
     }      }
     if (strstr(model,"v") !=0){      if (strstr(model,"v") !=0){
       printf("Error. 'v' must be in upper case 'V' model=%s ",model);        printf("Error. 'v' must be in upper case 'V' model=1+age+%s ",model);
       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);        fprintf(ficlog,"Error. 'v' must be in upper case model=1+age+%s ",model);fflush(ficlog);
       return 1;        return 1;
     }      }
     strcpy(modelsav,model);       strcpy(modelsav,model); 
     if ((strpt=strstr(model,"age*age")) !=0){      if ((strpt=strstr(model,"age*age")) !=0){
       printf(" strpt=%s, model=%s\n",strpt, model);        printf(" strpt=%s, model=1+age+%s\n",strpt, model);
       if(strpt != model){        if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \          printf("Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \
  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
  corresponding column of parameters.\n",model);   corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \          fprintf(ficlog,"Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \
  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
  corresponding column of parameters.\n",model); fflush(ficlog);   corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;          return 1;
Line 9480  int decodemodel( char model[], int lasto Line 10810  int decodemodel( char model[], int lasto
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2         *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12         *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8         *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}         * p Tvar[1]@12={2,   1,     3,      3,  11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}         * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}         *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8            * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];         *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?         *How to reorganize? Tvars(orted)
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age         * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}         * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}         *       {2,   1,     4,      8,    5,      6,     3,       7}
Line 9510  int decodemodel( char model[], int lasto Line 10840  int decodemodel( char model[], int lasto
         Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;          Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
       }        }
       cptcovage=0;        cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */        for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model line */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+'           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' cutl from left to right
                                          modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */                                            modelsav==V2+V1+V5*age+V4+V3*age strb=V3*age stra=V2+V1V5*age+V4 */    /* <model> "V5+V4+V3+V4*V3+V5*age+V1*age+V1" strb="V5" stra="V4+V3+V4*V3+V5*age+V1*age+V1" */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */          if (nbocc(modelsav,'+')==0)
             strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/          /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */          if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V5*age+ V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */            cutl(strc,strd,strb,'*'); /**< k=1 strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */            if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */              /* covar is not filled and then is empty */
             cptcovprod--;              cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */              cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */              Tvar[k]=atoi(stre);  /* V2+V1+V5*age+V4+V3*age Tvar[5]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
             Typevar[k]=1;  /* 1 for age product */              Typevar[k]=1;  /* 1 for age product */
             cptcovage++; /* Sums the number of covariates which include age as a product */              cptcovage++; /* Counts the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */              Tage[cptcovage]=k;  /*  V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
             /*printf("stre=%s ", stre);*/              /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */            } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;              cptcovprod--;
Line 9542  int decodemodel( char model[], int lasto Line 10873  int decodemodel( char model[], int lasto
             Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but              Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
                                                 because this model-covariate is a construction we invent a new column                                                  because this model-covariate is a construction we invent a new column
                                                 which is after existing variables ncovcol+nqv+ntv+nqtv + k1                                                  which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                                                 If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2                                                  If already ncovcol=4 and model= V2 + V1 + V1*V4 + age*V3 + V3*V2
                                                 Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */                                                  thus after V4 we invent V5 and V6 because age*V3 will be computed in 4
                                                   Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=4 etc */
               /* Please remark that the new variables are model dependent */
               /* If we have 4 variable but the model uses only 3, like in
                * model= V1 + age*V1 + V2 + V3 + age*V2 + age*V3 + V1*V2 + V1*V3
                *  k=     1     2       3   4     5        6        7       8
                * Tvar[k]=1     1       2   3     2        3       (5       6) (and not 4 5 because of V4 missing)
                * Tage[kk]    [1]= 2           [2]=5      [3]=6                  kk=1 to cptcovage=3
                * Tvar[Tage[kk]][1]=2          [2]=2      [3]=3
                */
             Typevar[k]=2;  /* 2 for double fixed dummy covariates */              Typevar[k]=2;  /* 2 for double fixed dummy covariates */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */              cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */              Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */              Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/              Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvardk[k][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/              Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               Tvardk[k][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */              k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
             /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */              /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
             /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */              /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
Line 9562  int decodemodel( char model[], int lasto Line 10904  int decodemodel( char model[], int lasto
             }              }
           } /* End age is not in the model */            } /* End age is not in the model */
         } /* End if model includes a product */          } /* End if model includes a product */
         else { /* no more sum */          else { /* not a product */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
           /*  scanf("%d",i);*/            /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');            cutl(strd,strc,strb,'V');
Line 9593  int decodemodel( char model[], int lasto Line 10935  int decodemodel( char model[], int lasto
    model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place     model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
    k =           1    2   3     4       5       6      7      8        9     k =           1    2   3     4       5       6      7      8        9
    Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5     Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
    Typevar[k]=   0    0   0     2       1       0      2      1        1     Typevar[k]=   0    0   0     2       1       0      2      1        0
    Fixed[k]      1    1   1     1       3       0    0 or 2   2        3     Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
    Dummy[k]      1    0   0     0       3       1      1      2        3     Dummy[k]      1    0   0     0       3       1      1      2        3
           Tmodelind[combination of covar]=k;            Tmodelind[combination of covar]=k;
Line 9602  int decodemodel( char model[], int lasto Line 10944  int decodemodel( char model[], int lasto
   /* If Tvar[k] >ncovcol it is a product */    /* If Tvar[k] >ncovcol it is a product */
   /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */    /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
         /* Computing effective variables, ie used by the model, that is from the cptcovt variables */          /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
   printf("Model=%s\n\    printf("Model=1+age+%s\n\
 Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\  Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
 Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\  Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
 Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);  Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
   fprintf(ficlog,"Model=%s\n\    fprintf(ficlog,"Model=1+age+%s\n\
 Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\  Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
 Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\  Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
 Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);  Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
   for(k=1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;}    for(k=-1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;}
   for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */    for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
     if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */      if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
       Fixed[k]= 0;        Fixed[k]= 0;
Line 9621  Dummy[k] 0=dummy (0 1), 1 quantitative ( Line 10963  Dummy[k] 0=dummy (0 1), 1 quantitative (
       modell[k].maintype= FTYPE;        modell[k].maintype= FTYPE;
       TvarsD[nsd]=Tvar[k];        TvarsD[nsd]=Tvar[k];
       TvarsDind[nsd]=k;        TvarsDind[nsd]=k;
         TnsdVar[Tvar[k]]=nsd;
       TvarF[ncovf]=Tvar[k];        TvarF[ncovf]=Tvar[k];
       TvarFind[ncovf]=k;        TvarFind[ncovf]=k;
       TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */        TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
Line 9632  Dummy[k] 0=dummy (0 1), 1 quantitative ( Line 10975  Dummy[k] 0=dummy (0 1), 1 quantitative (
       ncovf++;        ncovf++;
       modell[k].maintype= FTYPE;        modell[k].maintype= FTYPE;
       TvarF[ncovf]=Tvar[k];        TvarF[ncovf]=Tvar[k];
         /* TnsdVar[Tvar[k]]=nsd; */ /* To be done */
       TvarFind[ncovf]=k;        TvarFind[ncovf]=k;
       TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */        TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */        TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
Line 9642  Dummy[k] 0=dummy (0 1), 1 quantitative ( Line 10986  Dummy[k] 0=dummy (0 1), 1 quantitative (
       modell[k].maintype= FTYPE;        modell[k].maintype= FTYPE;
       modell[k].subtype= FQ;        modell[k].subtype= FQ;
       nsq++;        nsq++;
       TvarsQ[nsq]=Tvar[k];        TvarsQ[nsq]=Tvar[k]; /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary see below */
       TvarsQind[nsq]=k;        TvarsQind[nsq]=k;    /* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */
       ncovf++;        ncovf++;
       TvarF[ncovf]=Tvar[k];        TvarF[ncovf]=Tvar[k];
       TvarFind[ncovf]=k;        TvarFind[ncovf]=k;
Line 9658  Dummy[k] 0=dummy (0 1), 1 quantitative ( Line 11002  Dummy[k] 0=dummy (0 1), 1 quantitative (
       nsd++;        nsd++;
       TvarsD[nsd]=Tvar[k];        TvarsD[nsd]=Tvar[k];
       TvarsDind[nsd]=k;        TvarsDind[nsd]=k;
         TnsdVar[Tvar[k]]=nsd; /* To be verified */
       ncovv++; /* Only simple time varying variables */        ncovv++; /* Only simple time varying variables */
       TvarV[ncovv]=Tvar[k];        TvarV[ncovv]=Tvar[k];
       TvarVind[ncovv]=k; /* TvarVind[2]=2  TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */        TvarVind[ncovv]=k; /* TvarVind[2]=2  TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
Line 9673  Dummy[k] 0=dummy (0 1), 1 quantitative ( Line 11018  Dummy[k] 0=dummy (0 1), 1 quantitative (
       modell[k].subtype= VQ;        modell[k].subtype= VQ;
       ncovv++; /* Only simple time varying variables */        ncovv++; /* Only simple time varying variables */
       nsq++;        nsq++;
       TvarsQ[nsq]=Tvar[k];        TvarsQ[nsq]=Tvar[k]; /* k=1 Tvar=5 nsq=1 TvarsQ[1]=5 */ /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary here) */
       TvarsQind[nsq]=k;        TvarsQind[nsq]=k; /* For single quantitative covariate gives the model position of each single quantitative covariate *//* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */
       TvarV[ncovv]=Tvar[k];        TvarV[ncovv]=Tvar[k];
       TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */        TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
       TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */        TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
Line 9860  Dummy[k] 0=dummy (0 1), 1 quantitative ( Line 11205  Dummy[k] 0=dummy (0 1), 1 quantitative (
   /* Searching for doublons in the model */    /* Searching for doublons in the model */
   for(k1=1; k1<= cptcovt;k1++){    for(k1=1; k1<= cptcovt;k1++){
     for(k2=1; k2 <k1;k2++){      for(k2=1; k2 <k1;k2++){
       if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){        /* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */
         if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){
         if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */          if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
           if(Tvar[k1]==Tvar[k2]){            if(Tvar[k1]==Tvar[k2]){
             printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);              printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]);
             fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);              fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog);
             return(1);              return(1);
           }            }
         }else if (Typevar[k1] ==2){          }else if (Typevar[k1] ==2){
           k3=Tposprod[k1];            k3=Tposprod[k1];
           k4=Tposprod[k2];            k4=Tposprod[k2];
           if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){            if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
             printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);              printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
             fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);              fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
             return(1);              return(1);
           }            }
         }          }
Line 10036  BOOL IsWow64() Line 11382  BOOL IsWow64()
 #endif  #endif
   
 void syscompilerinfo(int logged)  void syscompilerinfo(int logged)
  {  {
    /* #include "syscompilerinfo.h"*/  #include <stdint.h>
   
     /* #include "syscompilerinfo.h"*/
    /* command line Intel compiler 32bit windows, XP compatible:*/     /* command line Intel compiler 32bit windows, XP compatible:*/
    /* /GS /W3 /Gy     /* /GS /W3 /Gy
       /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D        /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
Line 10072  void syscompilerinfo(int logged) Line 11420  void syscompilerinfo(int logged)
       /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF        /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
       /NOLOGO /TLBID:1        /NOLOGO /TLBID:1
    */     */
   
   
 #if defined __INTEL_COMPILER  #if defined __INTEL_COMPILER
 #if defined(__GNUC__)  #if defined(__GNUC__)
         struct utsname sysInfo;  /* For Intel on Linux and OS/X */          struct utsname sysInfo;  /* For Intel on Linux and OS/X */
Line 10088  void syscompilerinfo(int logged) Line 11438  void syscompilerinfo(int logged)
    }     }
 #endif  #endif
   
 #include <stdint.h>  
   
    printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");     printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
 #if defined(__clang__)  #if defined(__clang__)
    printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */     printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
Line 10175  void syscompilerinfo(int logged) Line 11523  void syscompilerinfo(int logged)
 #endif  #endif
 #endif  #endif
   
    //   void main()     //   void main ()
    //   {     //   {
 #if defined(_MSC_VER)  #if defined(_MSC_VER)
    if (IsWow64()){     if (IsWow64()){
Line 10196  void syscompilerinfo(int logged) Line 11544  void syscompilerinfo(int logged)
 }  }
   
 int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){  int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/    /*--------------- Prevalence limit  (forward period or forward stable prevalence) --------------*/
     /* Computes the prevalence limit for each combination of the dummy covariates */
   int i, j, k, i1, k4=0, nres=0 ;    int i, j, k, i1, k4=0, nres=0 ;
   /* double ftolpl = 1.e-10; */    /* double ftolpl = 1.e-10; */
   double age, agebase, agelim;    double age, agebase, agelim;
Line 10205  int prevalence_limit(double *p, double * Line 11554  int prevalence_limit(double *p, double *
   strcpy(filerespl,"PL_");    strcpy(filerespl,"PL_");
   strcat(filerespl,fileresu);    strcat(filerespl,fileresu);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    if((ficrespl=fopen(filerespl,"w"))==NULL) {
     printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;      printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;      fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
   }    }
   printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);    printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
   fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);    fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
   pstamp(ficrespl);    pstamp(ficrespl);
   fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);    fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
   fprintf(ficrespl,"#Age ");    fprintf(ficrespl,"#Age ");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
   fprintf(ficrespl,"\n");    fprintf(ficrespl,"\n");
Line 10225  int prevalence_limit(double *p, double * Line 11574  int prevalence_limit(double *p, double *
   i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */    i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
   if (cptcovn < 1){i1=1;}    if (cptcovn < 1){i1=1;}
   
   for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */    /* for(k=1; k<=i1;k++){ /\* For each combination k of dummy covariates in the model *\/ */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(i1 != 1 && TKresult[nres]!= k)        k=TKresult[nres];
         continue;        if(TKresult[nres]==0) k=1; /* To be checked for noresult */
         /* if(i1 != 1 && TKresult[nres]!= k) /\* We found the combination k corresponding to the resultline value of dummies *\/ */
         /*        continue; */
   
       /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */        /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */        /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
       /* k=k+1; */        /* k=k+1; */
       /* to clean */        /* to clean */
       //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));        /*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*/
       fprintf(ficrespl,"#******");        fprintf(ficrespl,"#******");
       printf("#******");        printf("#******");
       fprintf(ficlog,"#******");        fprintf(ficlog,"#******");
       for(j=1;j<=cptcoveff ;j++) {/* all covariates */        for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/          /* fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Here problem for varying dummy*\/ */
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          /* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          /* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       }          fprintf(ficrespl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */          printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);          fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        }
         fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
       }        /*        printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /*        fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /*        fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /* } */
       fprintf(ficrespl,"******\n");        fprintf(ficrespl,"******\n");
       printf("******\n");        printf("******\n");
       fprintf(ficlog,"******\n");        fprintf(ficlog,"******\n");
Line 10260  int prevalence_limit(double *p, double * Line 11614  int prevalence_limit(double *p, double *
       }        }
   
       fprintf(ficrespl,"#Age ");        fprintf(ficrespl,"#Age ");
       for(j=1;j<=cptcoveff;j++) {        /* for(j=1;j<=cptcoveff;j++) { */
         fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        /*        fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
         /* } */
         for(j=1;j<=cptcovs;j++) { /* New the quanti variable is added */
           fprintf(ficrespl,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
       }        }
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);        for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
       fprintf(ficrespl,"Total Years_to_converge\n");        fprintf(ficrespl,"Total Years_to_converge\n");
           
       for (age=agebase; age<=agelim; age++){        for (age=agebase; age<=agelim; age++){
         /* for (age=agebase; age<=agebase; age++){ */          /* for (age=agebase; age<=agebase; age++){ */
         prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres);          /**< Computes the prevalence limit in each live state at age x and for covariate combination (k and) nres */
           prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); /* Nicely done */
         fprintf(ficrespl,"%.0f ",age );          fprintf(ficrespl,"%.0f ",age );
         for(j=1;j<=cptcoveff;j++)          /* for(j=1;j<=cptcoveff;j++) */
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          /*   fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
           for(j=1;j<=cptcovs;j++)
             fprintf(ficrespl,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         tot=0.;          tot=0.;
         for(i=1; i<=nlstate;i++){          for(i=1; i<=nlstate;i++){
           tot +=  prlim[i][i];            tot +=  prlim[i][i];
Line 10280  int prevalence_limit(double *p, double * Line 11640  int prevalence_limit(double *p, double *
         fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);          fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
       } /* Age */        } /* Age */
       /* was end of cptcod */        /* was end of cptcod */
     } /* cptcov */      } /* nres */
   } /* nres */    /* } /\* for each combination *\/ */
   return 0;    return 0;
 }  }
   
 int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){  int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
         /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/          /*--------------- Back Prevalence limit  (backward stable prevalence) --------------*/
                   
         /* Computes the back prevalence limit  for any combination      of covariate values           /* Computes the back prevalence limit  for any combination      of covariate values 
    * at any age between ageminpar and agemaxpar     * at any age between ageminpar and agemaxpar
Line 10301  int back_prevalence_limit(double *p, dou Line 11661  int back_prevalence_limit(double *p, dou
   strcpy(fileresplb,"PLB_");    strcpy(fileresplb,"PLB_");
   strcat(fileresplb,fileresu);    strcat(fileresplb,fileresu);
   if((ficresplb=fopen(fileresplb,"w"))==NULL) {    if((ficresplb=fopen(fileresplb,"w"))==NULL) {
     printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;      printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
     fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;      fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
   }    }
   printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);    printf("Computing backward prevalence: result on file '%s' \n", fileresplb);
   fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);    fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb);
   pstamp(ficresplb);    pstamp(ficresplb);
   fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl);    fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl);
   fprintf(ficresplb,"#Age ");    fprintf(ficresplb,"#Age ");
   for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);    for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
   fprintf(ficresplb,"\n");    fprintf(ficresplb,"\n");
Line 10323  int back_prevalence_limit(double *p, dou Line 11683  int back_prevalence_limit(double *p, dou
   if (cptcovn < 1){i1=1;}    if (cptcovn < 1){i1=1;}
       
   for(nres=1; nres <= nresult; nres++){ /* For each resultline */    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */      /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
      if(i1 != 1 && TKresult[nres]!= k)        k=TKresult[nres];
         continue;        if(TKresult[nres]==0) k=1; /* To be checked for noresult */
       //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));       /* if(i1 != 1 && TKresult[nres]!= k) */
        /*         continue; */
        /* /\*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*\/ */
       fprintf(ficresplb,"#******");        fprintf(ficresplb,"#******");
       printf("#******");        printf("#******");
       fprintf(ficlog,"#******");        fprintf(ficlog,"#******");
       for(j=1;j<=cptcoveff ;j++) {/* all covariates */        for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */
         fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficresplb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
       }        }
       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */        /* for(j=1;j<=cptcoveff ;j++) {/\* all covariates *\/ */
         printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);        /*        fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
         fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);        /*        printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
         fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);        /*        fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       }        /* } */
         /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
         /*        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /*        fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /*        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /* } */
       fprintf(ficresplb,"******\n");        fprintf(ficresplb,"******\n");
       printf("******\n");        printf("******\n");
       fprintf(ficlog,"******\n");        fprintf(ficlog,"******\n");
Line 10351  int back_prevalence_limit(double *p, dou Line 11718  int back_prevalence_limit(double *p, dou
       }        }
           
       fprintf(ficresplb,"#Age ");        fprintf(ficresplb,"#Age ");
       for(j=1;j<=cptcoveff;j++) {        for(j=1;j<=cptcovs;j++) {
         fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficresplb,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
       }        }
       for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);        for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
       fprintf(ficresplb,"Total Years_to_converge\n");        fprintf(ficresplb,"Total Years_to_converge\n");
Line 10375  int back_prevalence_limit(double *p, dou Line 11742  int back_prevalence_limit(double *p, dou
           /* exit(1); */            /* exit(1); */
         }          }
         fprintf(ficresplb,"%.0f ",age );          fprintf(ficresplb,"%.0f ",age );
         for(j=1;j<=cptcoveff;j++)          for(j=1;j<=cptcovs;j++)
           fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);            fprintf(ficresplb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         tot=0.;          tot=0.;
         for(i=1; i<=nlstate;i++){          for(i=1; i<=nlstate;i++){
           tot +=  bprlim[i][i];            tot +=  bprlim[i][i];
Line 10386  int back_prevalence_limit(double *p, dou Line 11753  int back_prevalence_limit(double *p, dou
       } /* Age */        } /* Age */
       /* was end of cptcod */        /* was end of cptcod */
       /*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */        /*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */
     } /* end of any combination */      /* } /\* end of any combination *\/ */
   } /* end of nres */      } /* end of nres */  
   /* hBijx(p, bage, fage); */    /* hBijx(p, bage, fage); */
   /* fclose(ficrespijb); */    /* fclose(ficrespijb); */
Line 10396  int back_prevalence_limit(double *p, dou Line 11763  int back_prevalence_limit(double *p, dou
     
 int hPijx(double *p, int bage, int fage){  int hPijx(double *p, int bage, int fage){
     /*------------- h Pij x at various ages ------------*/      /*------------- h Pij x at various ages ------------*/
     /* to be optimized with precov */
   int stepsize;    int stepsize;
   int agelim;    int agelim;
   int hstepm;    int hstepm;
Line 10406  int hPijx(double *p, int bage, int fage) Line 11773  int hPijx(double *p, int bage, int fage)
   double agedeb;    double agedeb;
   double ***p3mat;    double ***p3mat;
   
     strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);    strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {    if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij); return 1;      printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;      fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
     }    }
     printf("Computing pij: result on file '%s' \n", filerespij);    printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
       
     stepsize=(int) (stepm+YEARM-1)/YEARM;    stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/    /*if (stepm<=24) stepsize=2;*/
     
     agelim=AGESUP;    agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */    hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                     
     /* hstepm=1;   aff par mois*/    /* hstepm=1;   aff par mois*/
     pstamp(ficrespij);    pstamp(ficrespij);
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");    fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     i1= pow(2,cptcoveff);    i1= pow(2,cptcoveff);
                 /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */    /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                 /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */    /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                 /*      k=k+1;  */    /*    k=k+1;  */
     for(nres=1; nres <= nresult; nres++) /* For each resultline */    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
     for(k=1; k<=i1;k++){      k=TKresult[nres];
       if(i1 != 1 && TKresult[nres]!= k)      if(TKresult[nres]==0) k=1; /* To be checked for noresult */
         continue;      /* for(k=1; k<=i1;k++){ */
       fprintf(ficrespij,"\n#****** ");      /* if(i1 != 1 && TKresult[nres]!= k) */
       for(j=1;j<=cptcoveff;j++)       /*  continue; */
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);      fprintf(ficrespij,"\n#****** ");
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */      for(j=1;j<=cptcovs;j++){
         printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        fprintf(ficrespij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);        /* fprintf(ficrespij,"@wV%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       }        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
       fprintf(ficrespij,"******\n");        /*        printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
               /*        fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      }
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       fprintf(ficrespij,"******\n");
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      
               for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
         /*        nhstepm=nhstepm*YEARM; aff par mois*/        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                 nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
         oldm=oldms;savm=savms;        /*          nhstepm=nhstepm*YEARM; aff par mois*/
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);          
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         oldm=oldms;savm=savms;
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
         for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++)
             fprintf(ficrespij," %1d-%1d",i,j);
         fprintf(ficrespij,"\n");
         for (h=0; h<=nhstepm; h++){
           /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
           fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
         for(i=1; i<=nlstate;i++)          for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++)            for(j=1; j<=nlstate+ndeath;j++)
             fprintf(ficrespij," %1d-%1d",i,j);              fprintf(ficrespij," %.5f", p3mat[i][j][h]);
         fprintf(ficrespij,"\n");  
         for (h=0; h<=nhstepm; h++){  
           /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/  
           fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );  
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
           fprintf(ficrespij,"\n");  
         }  
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         fprintf(ficrespij,"\n");          fprintf(ficrespij,"\n");
       }        }
       /*}*/        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespij,"\n");
     }      }
     return 0;    }
     /*}*/
     return 0;
 }  }
     
  int hBijx(double *p, int bage, int fage, double ***prevacurrent){   int hBijx(double *p, int bage, int fage, double ***prevacurrent){
     /*------------- h Bij x at various ages ------------*/      /*------------- h Bij x at various ages ------------*/
       /* To be optimized with precov */
   int stepsize;    int stepsize;
   /* int agelim; */    /* int agelim; */
         int ageminl;          int ageminl;
Line 10496  int hPijx(double *p, int bage, int fage) Line 11866  int hPijx(double *p, int bage, int fage)
   /*if (stepm<=24) stepsize=2;*/    /*if (stepm<=24) stepsize=2;*/
       
   /* agelim=AGESUP; */    /* agelim=AGESUP; */
   ageminl=30;    ageminl=AGEINF; /* was 30 */
   hstepm=stepsize*YEARM; /* Every year of age */    hstepm=stepsize*YEARM; /* Every year of age */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
       
Line 10508  int hPijx(double *p, int bage, int fage) Line 11878  int hPijx(double *p, int bage, int fage)
   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */    /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
   /*    k=k+1;  */    /*    k=k+1;  */
   for(nres=1; nres <= nresult; nres++){ /* For each resultline */    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */      k=TKresult[nres];
       if(i1 != 1 && TKresult[nres]!= k)      if(TKresult[nres]==0) k=1; /* To be checked for noresult */
         continue;      /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
       fprintf(ficrespijb,"\n#****** ");      /*    if(i1 != 1 && TKresult[nres]!= k) */
       for(j=1;j<=cptcoveff;j++)      /*  continue; */
         fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);      fprintf(ficrespijb,"\n#****** ");
       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */      for(j=1;j<=cptcovs;j++){
         fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);        fprintf(ficrespijb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
       }        /* for(j=1;j<=cptcoveff;j++) */
       fprintf(ficrespijb,"******\n");        /*        fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       if(invalidvarcomb[k]){  /* Is it necessary here? */        /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
         fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k);         /*        fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         continue;      }
       }      fprintf(ficrespijb,"******\n");
             if(invalidvarcomb[k]){  /* Is it necessary here? */
       /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */        fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
       for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */        continue;
         /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */      }
         nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */      /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
               for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
         /*        nhstepm=nhstepm*YEARM; aff par mois*/        /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
                 nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */        nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/
         /* and memory limitations if stepm is small */        
         /*          nhstepm=nhstepm*YEARM; aff par mois*/
         /* oldm=oldms;savm=savms; */        
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */
         hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);        /* and memory limitations if stepm is small */
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */        
         fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j=");        /* oldm=oldms;savm=savms; */
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
         hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);/* Bug valgrind */
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
         fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j=");
         for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++)
             fprintf(ficrespijb," %1d-%1d",i,j);
         fprintf(ficrespijb,"\n");
         for (h=0; h<=nhstepm; h++){
           /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
           fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
           /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
         for(i=1; i<=nlstate;i++)          for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++)            for(j=1; j<=nlstate+ndeath;j++)
             fprintf(ficrespijb," %1d-%1d",i,j);              fprintf(ficrespijb," %.5f", p3mat[i][j][h]);/* Bug valgrind */
         fprintf(ficrespijb,"\n");          fprintf(ficrespijb,"\n");
         for (h=0; h<=nhstepm; h++){        }
           /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );        fprintf(ficrespijb,"\n");
           /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */      } /* end age deb */
           for(i=1; i<=nlstate;i++)      /* } /\* end combination *\/ */
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespijb," %.5f", p3mat[i][j][h]);  
           fprintf(ficrespijb,"\n");  
         }  
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         fprintf(ficrespijb,"\n");  
       } /* end age deb */  
     } /* end combination */  
   } /* end nres */    } /* end nres */
   return 0;    return 0;
  } /*  hBijx */   } /*  hBijx */
Line 10575  int main(int argc, char *argv[]) Line 11949  int main(int argc, char *argv[])
   double ssval;    double ssval;
 #endif  #endif
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;    int i,j, k, iter=0,m,size=100, cptcod; /* Suppressing because nobs */
     /* int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; */
   int ncvyear=0; /* Number of years needed for the period prevalence to converge */    int ncvyear=0; /* Number of years needed for the period prevalence to converge */
   int jj, ll, li, lj, lk;    int jj, ll, li, lj, lk;
   int numlinepar=0; /* Current linenumber of parameter file */    int numlinepar=0; /* Current linenumber of parameter file */
Line 10585  int main(int argc, char *argv[]) Line 11960  int main(int argc, char *argv[])
   int vpopbased=0;    int vpopbased=0;
   int nres=0;    int nres=0;
   int endishere=0;    int endishere=0;
     int noffset=0;
     int ncurrv=0; /* Temporary variable */
     
   char ca[32], cb[32];    char ca[32], cb[32];
   /*  FILE *fichtm; *//* Html File */    /*  FILE *fichtm; *//* Html File */
   /* FILE *ficgp;*/ /*Gnuplot File */    /* FILE *ficgp;*/ /*Gnuplot File */
Line 10599  int main(int argc, char *argv[]) Line 11976  int main(int argc, char *argv[])
   double dum=0.; /* Dummy variable */    double dum=0.; /* Dummy variable */
   double ***p3mat;    double ***p3mat;
   /* double ***mobaverage; */    /* double ***mobaverage; */
     double wald;
   
   char line[MAXLINE];    char line[MAXLINE];
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
   char  modeltemp[MAXLINE];    char  modeltemp[MAXLINE];
   char resultline[MAXLINE];    char resultline[MAXLINE], resultlineori[MAXLINE];
       
   char pathr[MAXLINE], pathimach[MAXLINE];     char pathr[MAXLINE], pathimach[MAXLINE]; 
   char *tok, *val; /* pathtot */    char *tok, *val; /* pathtot */
   int firstobs=1, lastobs=10;    /* int firstobs=1, lastobs=10; /\* nobs = lastobs-firstobs declared globally ;*\/ */
   int c,  h , cpt, c2;    int c,  h , cpt, c2;
   int jl=0;    int jl=0;
   int i1, j1, jk, stepsize=0;    int i1, j1, jk, stepsize=0;
Line 10616  int main(int argc, char *argv[]) Line 11994  int main(int argc, char *argv[])
   
   int *tab;     int *tab; 
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   int backcast=0;    /* double anprojd, mprojd, jprojd; /\* For eventual projections *\/ */
     /* double anprojf, mprojf, jprojf; */
     /* double jintmean,mintmean,aintmean;   */
     int prvforecast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
     int prvbackcast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
     double yrfproj= 10.0; /* Number of years of forward projections */
     double yrbproj= 10.0; /* Number of years of backward projections */
     int prevbcast=0; /* defined as global for mlikeli and mle, replacing backcast */
   int mobilav=0,popforecast=0;    int mobilav=0,popforecast=0;
   int hstepm=0, nhstepm=0;    int hstepm=0, nhstepm=0;
   int agemortsup;    int agemortsup;
Line 10628  int main(int argc, char *argv[]) Line 12013  int main(int argc, char *argv[])
   double ftolpl=FTOL;    double ftolpl=FTOL;
   double **prlim;    double **prlim;
   double **bprlim;    double **bprlim;
   double ***param; /* Matrix of parameters */    double ***param; /* Matrix of parameters, param[i][j][k] param=ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel) 
                       state of origin, state of destination including death, for each covariate: constante, age, and V1 V2 etc. */
   double ***paramstart; /* Matrix of starting parameter values */    double ***paramstart; /* Matrix of starting parameter values */
   double  *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */    double  *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */
   double **matcov; /* Matrix of covariance */    double **matcov; /* Matrix of covariance */
Line 10641  int main(int argc, char *argv[]) Line 12027  int main(int argc, char *argv[])
   double *epj, vepp;    double *epj, vepp;
   
   double dateprev1, dateprev2;    double dateprev1, dateprev2;
   double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0;    double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0, dateprojd=0, dateprojf=0;
   double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0;    double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0, datebackd=0, datebackf=0;
   
   
   double **ximort;    double **ximort;
   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";    char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
Line 10720  int main(int argc, char *argv[]) Line 12107  int main(int argc, char *argv[])
       if(pathr[0] == '\0') break; /* Dirty */        if(pathr[0] == '\0') break; /* Dirty */
     }      }
   }    }
     else if (argc<=2){
       strcpy(pathtot,argv[1]);
     }
   else{    else{
     strcpy(pathtot,argv[1]);      strcpy(pathtot,argv[1]);
       strcpy(z,argv[2]);
       printf("\nargv[2]=%s z=%c\n",argv[2],z[0]);
   }    }
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   /*cygwin_split_path(pathtot,path,optionfile);    /*cygwin_split_path(pathtot,path,optionfile);
Line 10799  int main(int argc, char *argv[]) Line 12191  int main(int argc, char *argv[])
     exit(70);       exit(70); 
   }    }
   
   
   
   strcpy(filereso,"o");    strcpy(filereso,"o");
   strcat(filereso,fileresu);    strcat(filereso,fileresu);
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
Line 10809  int main(int argc, char *argv[]) Line 12199  int main(int argc, char *argv[])
     fflush(ficlog);      fflush(ficlog);
     goto end;      goto end;
   }    }
         /*-------- Rewriting parameter file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name */
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", rfileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       fflush(ficlog);
       goto end;
     }
     fprintf(ficres,"#IMaCh %s\n",version);
   
                                         
   /* Reads comments: lines beginning with '#' */    /* Reads comments: lines beginning with '#' */
   numlinepar=0;    numlinepar=0;
     /* Is it a BOM UTF-8 Windows file? */
     /* First parameter line */    /* First parameter line */
   while(fgets(line, MAXLINE, ficpar)) {    while(fgets(line, MAXLINE, ficpar)) {
       noffset=0;
       if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
       {
         noffset=noffset+3;
         printf("# File is an UTF8 Bom.\n"); // 0xBF
       }
   /*    else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/
       else if( line[0] == (char)0xFF && line[1] == (char)0xFE)
       {
         noffset=noffset+2;
         printf("# File is an UTF16BE BOM file\n");
       }
       else if( line[0] == 0 && line[1] == 0)
       {
         if( line[2] == (char)0xFE && line[3] == (char)0xFF){
           noffset=noffset+4;
           printf("# File is an UTF16BE BOM file\n");
         }
       } else{
         ;/*printf(" Not a BOM file\n");*/
       }
     
     /* If line starts with a # it is a comment */      /* If line starts with a # it is a comment */
     if (line[0] == '#') {      if (line[noffset] == '#') {
       numlinepar++;        numlinepar++;
       fputs(line,stdout);        fputs(line,stdout);
       fputs(line,ficparo);        fputs(line,ficparo);
         fputs(line,ficres);
       fputs(line,ficlog);        fputs(line,ficlog);
       continue;        continue;
     }else      }else
Line 10829  int main(int argc, char *argv[]) Line 12255  int main(int argc, char *argv[])
                         title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){                          title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
     if (num_filled != 5) {      if (num_filled != 5) {
       printf("Should be 5 parameters\n");        printf("Should be 5 parameters\n");
         fprintf(ficlog,"Should be 5 parameters\n");
     }      }
     numlinepar++;      numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);      printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
       fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
       fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
   }    }
   /* Second parameter line */    /* Second parameter line */
   while(fgets(line, MAXLINE, ficpar)) {    while(fgets(line, MAXLINE, ficpar)) {
     /* If line starts with a # it is a comment */      /* while(fscanf(ficpar,"%[^\n]", line)) { */
       /* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */
     if (line[0] == '#') {      if (line[0] == '#') {
       numlinepar++;        numlinepar++;
       fputs(line,stdout);        printf("%s",line);
       fputs(line,ficparo);        fprintf(ficres,"%s",line);
       fputs(line,ficlog);        fprintf(ficparo,"%s",line);
         fprintf(ficlog,"%s",line);
       continue;        continue;
     }else      }else
       break;        break;
Line 10850  int main(int argc, char *argv[]) Line 12282  int main(int argc, char *argv[])
     if (num_filled != 11) {      if (num_filled != 11) {
       printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");        printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
       printf("but line=%s\n",line);        printf("but line=%s\n",line);
         fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         fprintf(ficlog,"but line=%s\n",line);
     }      }
     printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);      if( lastpass > maxwav){
         printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
         fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
         fflush(ficlog);
         goto end;
       }
         printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
       fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
       fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt);
       fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
   }    }
   /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */    /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
   /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */    /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
Line 10860  int main(int argc, char *argv[]) Line 12303  int main(int argc, char *argv[])
     /* If line starts with a # it is a comment */      /* If line starts with a # it is a comment */
     if (line[0] == '#') {      if (line[0] == '#') {
       numlinepar++;        numlinepar++;
       fputs(line,stdout);        printf("%s",line);
       fputs(line,ficparo);        fprintf(ficres,"%s",line);
       fputs(line,ficlog);        fprintf(ficparo,"%s",line);
         fprintf(ficlog,"%s",line);
       continue;        continue;
     }else      }else
       break;        break;
   }    }
   if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){    if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
     if (num_filled == 0){      if (num_filled != 1){
       printf("ERROR %d: Model should be at minimum 'model=1+age.' WITHOUT space:'%s'\n",num_filled, line);        printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
       fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' WITHOUT space:'%s'\n",num_filled, line);        fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
       model[0]='\0';  
       goto end;  
     } else if (num_filled != 1){  
       printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);  
       fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);  
       model[0]='\0';        model[0]='\0';
       goto end;        goto end;
     }      }
Line 10886  int main(int argc, char *argv[]) Line 12325  int main(int argc, char *argv[])
         strcpy(model,modeltemp);           strcpy(model,modeltemp); 
       }        }
     }      }
     /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */      /* printf(" model=1+age%s modeltemp= %s, model=1+age+%s\n",model, modeltemp, model);fflush(stdout); */
     printf("model=1+age+%s\n",model);fflush(stdout);      printf("model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout);
   }    }
   /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */    /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
   /* numlinepar=numlinepar+3; /\* In general *\/ */    /* numlinepar=numlinepar+3; /\* In general *\/ */
   /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */    /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);    /* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);    /* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
   fflush(ficlog);    fflush(ficlog);
   /* if(model[0]=='#'|| model[0]== '\0'){ */    /* if(model[0]=='#'|| model[0]== '\0'){ */
   if(model[0]=='#'){    if(model[0]=='#'){
     printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \      printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \
  'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \   'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \
  'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \   'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n");            \
     if(mle != -1){      if(mle != -1){
       printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");        printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n");
       exit(1);        exit(1);
     }      }
   }    }
Line 10921  int main(int argc, char *argv[]) Line 12363  int main(int argc, char *argv[])
   ungetc(c,ficpar);    ungetc(c,ficpar);
   
         
   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */    covar=matrix(0,NCOVMAX,firstobs,lastobs);  /**< used in readdata */
   if(nqv>=1)coqvar=matrix(1,nqv,1,n);  /**< Fixed quantitative covariate */    if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs);  /**< Fixed quantitative covariate */
   if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,1,n);  /**< Time varying quantitative covariate */    if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs);  /**< Time varying quantitative covariate */
   if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n);  /**< Time varying covariate (dummy and quantitative)*/    if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs);  /**< Time varying covariate (dummy and quantitative)*/
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5    /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
      v1+v2*age+v2*v3 makes cptcovn = 3       v1+v2*age+v2*v3 makes cptcovn = 3
Line 10987  int main(int argc, char *argv[]) Line 12429  int main(int argc, char *argv[])
       for(jj=1; jj <=nlstate+ndeath; jj++){        for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;          if(jj==i) continue;
         j++;          j++;
           while((c=getc(ficpar))=='#' && c!= EOF){
             ungetc(c,ficpar);
             fgets(line, MAXLINE, ficpar);
             numlinepar++;
             fputs(line,stdout);
             fputs(line,ficparo);
             fputs(line,ficlog);
           }
           ungetc(c,ficpar);
         fscanf(ficpar,"%1d%1d",&i1,&j1);          fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) || (j1 != jj)){          if ((i1 != i) || (j1 != jj)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
Line 11123  Please run with mle=-1 to get a correct Line 12574  Please run with mle=-1 to get a correct
           
     fflush(ficlog);      fflush(ficlog);
           
     /*-------- Rewriting parameter file ----------*/  
     strcpy(rfileres,"r");    /* "Rparameterfile */  
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
     strcat(rfileres,".");    /* */  
     strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", rfileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;  
     }  
     fprintf(ficres,"#%s\n",version);  
   }    /* End of mle != -3 */    }    /* End of mle != -3 */
       
   /*  Main data    /*  Main data
    */     */
   n= lastobs;    nobs=lastobs-firstobs+1; /* was = lastobs;*/
   num=lvector(1,n);    /* num=lvector(1,n); */
   moisnais=vector(1,n);    /* moisnais=vector(1,n); */
   annais=vector(1,n);    /* annais=vector(1,n); */
   moisdc=vector(1,n);    /* moisdc=vector(1,n); */
   andc=vector(1,n);    /* andc=vector(1,n); */
   weight=vector(1,n);    /* weight=vector(1,n); */
   agedc=vector(1,n);    /* agedc=vector(1,n); */
   cod=ivector(1,n);    /* cod=ivector(1,n); */
   for(i=1;i<=n;i++){    /* for(i=1;i<=n;i++){ */
     num=lvector(firstobs,lastobs);
     moisnais=vector(firstobs,lastobs);
     annais=vector(firstobs,lastobs);
     moisdc=vector(firstobs,lastobs);
     andc=vector(firstobs,lastobs);
     weight=vector(firstobs,lastobs);
     agedc=vector(firstobs,lastobs);
     cod=ivector(firstobs,lastobs);
     for(i=firstobs;i<=lastobs;i++){
     num[i]=0;      num[i]=0;
     moisnais[i]=0;      moisnais[i]=0;
     annais[i]=0;      annais[i]=0;
Line 11156  Please run with mle=-1 to get a correct Line 12606  Please run with mle=-1 to get a correct
     cod[i]=0;      cod[i]=0;
     weight[i]=1.0; /* Equal weights, 1 by default */      weight[i]=1.0; /* Equal weights, 1 by default */
   }    }
   mint=matrix(1,maxwav,1,n);    mint=matrix(1,maxwav,firstobs,lastobs);
   anint=matrix(1,maxwav,1,n);    anint=matrix(1,maxwav,firstobs,lastobs);
   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */     s=imatrix(1,maxwav+1,firstobs,lastobs); /* s[i][j] health state for wave i and individual j */
     /* printf("BUG ncovmodel=%d NCOVMAX=%d 2**ncovmodel=%f BUG\n",ncovmodel,NCOVMAX,pow(2,ncovmodel)); */
   tab=ivector(1,NCOVMAX);    tab=ivector(1,NCOVMAX);
   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */    ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */    ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
Line 11177  Please run with mle=-1 to get a correct Line 12628  Please run with mle=-1 to get a correct
       
   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */    Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
   TvarsDind=ivector(1,NCOVMAX); /*  */    TvarsDind=ivector(1,NCOVMAX); /*  */
     TnsdVar=ivector(1,NCOVMAX); /*  */
       /* for(i=1; i<=NCOVMAX;i++) TnsdVar[i]=3; */
   TvarsD=ivector(1,NCOVMAX); /*  */    TvarsD=ivector(1,NCOVMAX); /*  */
   TvarsQind=ivector(1,NCOVMAX); /*  */    TvarsQind=ivector(1,NCOVMAX); /*  */
   TvarsQ=ivector(1,NCOVMAX); /*  */    TvarsQ=ivector(1,NCOVMAX); /*  */
Line 11219  Please run with mle=-1 to get a correct Line 12672  Please run with mle=-1 to get a correct
   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm    Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                             * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd.                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                             * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */                              * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tvardk=imatrix(1,NCOVMAX,1,2);
   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age    Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                          4 covariates (3 plus signs)                           4 covariates (3 plus signs)
                          Tage[1=V3*age]= 4; Tage[2=age*V4] = 3                           Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                       */                               */  
     for(i=1;i<NCOVMAX;i++)
       Tage[i]=0;
   Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an    Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
                                 * individual dummy, fixed or varying:                                  * individual dummy, fixed or varying:
                                 * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,                                  * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
Line 11260  Please run with mle=-1 to get a correct Line 12716  Please run with mle=-1 to get a correct
   
   
   agegomp=(int)agemin;    agegomp=(int)agemin;
   free_vector(moisnais,1,n);    free_vector(moisnais,firstobs,lastobs);
   free_vector(annais,1,n);    free_vector(annais,firstobs,lastobs);
   /* free_matrix(mint,1,maxwav,1,n);    /* free_matrix(mint,1,maxwav,1,n);
      free_matrix(anint,1,maxwav,1,n);*/       free_matrix(anint,1,maxwav,1,n);*/
   /* free_vector(moisdc,1,n); */    /* free_vector(moisdc,1,n); */
Line 11287  Please run with mle=-1 to get a correct Line 12743  Please run with mle=-1 to get a correct
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   /* Concatenates waves */    /* Concatenates waves */
     
   free_vector(moisdc,1,n);    free_vector(moisdc,firstobs,lastobs);
   free_vector(andc,1,n);    free_vector(andc,firstobs,lastobs);
   
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
Line 11296  Please run with mle=-1 to get a correct Line 12752  Please run with mle=-1 to get a correct
   Ndum =ivector(-1,NCOVMAX);      Ndum =ivector(-1,NCOVMAX);  
   cptcoveff=0;    cptcoveff=0;
   if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */    if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
     tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */      tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; as well as calculate cptcoveff or number of total effective dummy covariates*/
   }    }
       
   ncovcombmax=pow(2,cptcoveff);    ncovcombmax=pow(2,cptcoveff);
   invalidvarcomb=ivector(1, ncovcombmax);     invalidvarcomb=ivector(0, ncovcombmax); 
   for(i=1;i<ncovcombmax;i++)    for(i=0;i<ncovcombmax;i++)
     invalidvarcomb[i]=0;      invalidvarcomb[i]=0;
       
   /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in    /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
Line 11326  Please run with mle=-1 to get a correct Line 12782  Please run with mle=-1 to get a correct
            * For k=4 covariates, h goes from 1 to m=2**k             * For k=4 covariates, h goes from 1 to m=2**k
            * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;             * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
            * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1             * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
            *     h\k   1     2     3     4             *     h\k   1     2     3     4   *  h-1\k-1  4  3  2  1          
            *______________________________               *______________________________   *______________________
            *     1 i=1 1 i=1 1 i=1 1 i=1 1             *     1 i=1 1 i=1 1 i=1 1 i=1 1   *     0     0  0  0  0 
            *     2     2     1     1     1             *     2     2     1     1     1   *     1     0  0  0  1 
            *     3 i=2 1     2     1     1             *     3 i=2 1     2     1     1   *     2     0  0  1  0 
            *     4     2     2     1     1             *     4     2     2     1     1   *     3     0  0  1  1 
            *     5 i=3 1 i=2 1     2     1             *     5 i=3 1 i=2 1     2     1   *     4     0  1  0  0 
            *     6     2     1     2     1             *     6     2     1     2     1   *     5     0  1  0  1 
            *     7 i=4 1     2     2     1             *     7 i=4 1     2     2     1   *     6     0  1  1  0 
            *     8     2     2     2     1             *     8     2     2     2     1   *     7     0  1  1  1 
            *     9 i=5 1 i=3 1 i=2 1     2             *     9 i=5 1 i=3 1 i=2 1     2   *     8     1  0  0  0 
            *    10     2     1     1     2             *    10     2     1     1     2   *     9     1  0  0  1 
            *    11 i=6 1     2     1     2             *    11 i=6 1     2     1     2   *    10     1  0  1  0 
            *    12     2     2     1     2             *    12     2     2     1     2   *    11     1  0  1  1 
            *    13 i=7 1 i=4 1     2     2                 *    13 i=7 1 i=4 1     2     2   *    12     1  1  0  0  
            *    14     2     1     2     2             *    14     2     1     2     2   *    13     1  1  0  1 
            *    15 i=8 1     2     2     2             *    15 i=8 1     2     2     2   *    14     1  1  1  0 
            *    16     2     2     2     2             *    16     2     2     2     2   *    15     1  1  1  1          
            */             */                                     
   /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */    /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
      /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4       /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
      * and the value of each covariate?       * and the value of each covariate?
Line 11435  Title=%s <br>Datafile=%s Firstpass=%d La Line 12891  Title=%s <br>Datafile=%s Firstpass=%d La
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   }    }
   
   fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \    fprintf(fichtm,"<html><head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n\
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  <title>IMaCh %s</title></head>\n\
    <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n\
   <font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>\
   -EUROREVES-Institut de longévité-2013-2022-Japan Society for the Promotion of Sciences 日本学術振興会 \
   (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - \
   <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \n", optionfilehtm);
     
     fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\"> \n\
 <font size=\"2\">IMaCh-%s <br> %s</font> \  <font size=\"2\">IMaCh-%s <br> %s</font> \
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  <hr size=\"2\" color=\"#EC5E5E\"> \n\
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\  This file: <a href=\"%s\">%s</a></br>Title=%s <br>Datafile=<a href=\"%s\">%s</a> Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
 \n\  \n\
 <hr  size=\"2\" color=\"#EC5E5E\">\  <hr  size=\"2\" color=\"#EC5E5E\">\
  <ul><li><h4>Parameter files</h4>\n\   <ul><li><h4>Parameter files</h4>\n\
Line 11448  Title=%s <br>Datafile=%s Firstpass=%d La Line 12911  Title=%s <br>Datafile=%s Firstpass=%d La
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
  - Date and time at start: %s</ul>\n",\   - Date and time at start: %s</ul>\n",\
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\            version,fullversion,optionfilehtm,optionfilehtm,title,datafile,datafile,firstpass,lastpass,stepm, weightopt, model, \
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
           fileres,fileres,\            fileres,fileres,\
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
Line 11470  Title=%s <br>Datafile=%s Firstpass=%d La Line 12933  Title=%s <br>Datafile=%s Firstpass=%d La
               firstpass, lastpass,  stepm,  weightopt, model);                firstpass, lastpass,  stepm,  weightopt, model);
   
   fprintf(fichtm,"\n");    fprintf(fichtm,"\n");
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\    fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\
             ftol, stepm);
     fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol);
     ncurrv=1;
     for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); 
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li> Number of time varying (wave varying) dummy covariates: ntv=%d ", ntv);
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li>Number of time varying  quantitative covariates: nqtv=%d ", nqtv);
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \
              nlstate, ndeath, maxwav, mle, weightopt);
   
     fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\
   <img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"));
   
     
     fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Number of (used) observations=%d <br>\n\
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);    imx,agemin,agemax,jmin,jmax,jmean);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
Line 11492  Interval (in months) between two waves: Line 12976  Interval (in months) between two waves:
       for(j=1;j<=NDIM;j++)        for(j=1;j<=NDIM;j++)
         ximort[i][j]=0.;          ximort[i][j]=0.;
     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */      /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
     cens=ivector(1,n);      cens=ivector(firstobs,lastobs);
     ageexmed=vector(1,n);      ageexmed=vector(firstobs,lastobs);
     agecens=vector(1,n);      agecens=vector(firstobs,lastobs);
     dcwave=ivector(1,n);      dcwave=ivector(firstobs,lastobs);
                                   
     for (i=1; i<=imx; i++){      for (i=1; i<=imx; i++){
       dcwave[i]=-1;        dcwave[i]=-1;
Line 11529  Interval (in months) between two waves: Line 13013  Interval (in months) between two waves:
         ximort[i][j]=(i == j ? 1.0 : 0.0);          ximort[i][j]=(i == j ? 1.0 : 0.0);
     }      }
           
     /*p[1]=0.0268; p[NDIM]=0.083;*/      p[1]=0.0268; p[NDIM]=0.083;
     /*printf("%lf %lf", p[1], p[2]);*/      /* printf("%lf %lf", p[1], p[2]); */
           
           
 #ifdef GSL  #ifdef GSL
Line 11656  Interval (in months) between two waves: Line 13140  Interval (in months) between two waves:
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     }      }
     lsurv=vector(1,AGESUP);      lsurv=vector(agegomp,AGESUP);
     lpop=vector(1,AGESUP);      lpop=vector(agegomp,AGESUP);
     tpop=vector(1,AGESUP);      tpop=vector(agegomp,AGESUP);
     lsurv[agegomp]=100000;      lsurv[agegomp]=100000;
           
     for (k=agegomp;k<=AGESUP;k++) {      for (k=agegomp;k<=AGESUP;k++) {
Line 11705  Please run with mle=-1 to get a correct Line 13189  Please run with mle=-1 to get a correct
                      stepm, weightopt,\                       stepm, weightopt,\
                      model,imx,p,matcov,agemortsup);                       model,imx,p,matcov,agemortsup);
           
     free_vector(lsurv,1,AGESUP);      free_vector(lsurv,agegomp,AGESUP);
     free_vector(lpop,1,AGESUP);      free_vector(lpop,agegomp,AGESUP);
     free_vector(tpop,1,AGESUP);      free_vector(tpop,agegomp,AGESUP);
     free_matrix(ximort,1,NDIM,1,NDIM);      free_matrix(ximort,1,NDIM,1,NDIM);
     free_ivector(cens,1,n);      free_ivector(dcwave,firstobs,lastobs);
     free_vector(agecens,1,n);      free_vector(agecens,firstobs,lastobs);
     free_ivector(dcwave,1,n);      free_vector(ageexmed,firstobs,lastobs);
       free_ivector(cens,firstobs,lastobs);
 #ifdef GSL  #ifdef GSL
 #endif  #endif
   } /* Endof if mle==-3 mortality only */    } /* Endof if mle==-3 mortality only */
Line 11740  Please run with mle=-1 to get a correct Line 13225  Please run with mle=-1 to get a correct
     globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */      globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
             /* exit(0); */
     for (k=1; k<=npar;k++)      for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);        printf(" %d %8.5f",k,p[k]);
     printf("\n");      printf("\n");
           
     /*--------- results files --------------*/      /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model);      /* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */
           
           
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); /* Printing model equation */
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   
       printf("#model=  1      +     age ");
       fprintf(ficres,"#model=  1      +     age ");
       fprintf(ficlog,"#model=  1      +     age ");
       fprintf(fichtm,"\n<ul><li> model=1+age+%s\n \
   </ul>", model);
   
       fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">\n");
       fprintf(fichtm, "<tr><th>Model=</th><th>1</th><th>+ age</th>");
       if(nagesqr==1){
         printf("  + age*age  ");
         fprintf(ficres,"  + age*age  ");
         fprintf(ficlog,"  + age*age  ");
         fprintf(fichtm, "<th>+ age*age</th>");
       }
       for(j=1;j <=ncovmodel-2;j++){
         if(Typevar[j]==0) {
           printf("  +      V%d  ",Tvar[j]);
           fprintf(ficres,"  +      V%d  ",Tvar[j]);
           fprintf(ficlog,"  +      V%d  ",Tvar[j]);
           fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]);
         }else if(Typevar[j]==1) {
           printf("  +    V%d*age ",Tvar[j]);
           fprintf(ficres,"  +    V%d*age ",Tvar[j]);
           fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
           fprintf(fichtm, "<th>+  V%d*age</th>",Tvar[j]);
         }else if(Typevar[j]==2) {
           printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
           fprintf(ficres,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
           fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
           fprintf(fichtm, "<th>+  V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
         }
       }
       printf("\n");
       fprintf(ficres,"\n");
       fprintf(ficlog,"\n");
       fprintf(fichtm, "</tr>");
       fprintf(fichtm, "\n");
       
       
     for(i=1,jk=1; i <=nlstate; i++){      for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){        for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {          if (k != i) {
             fprintf(fichtm, "<tr>");
           printf("%d%d ",i,k);            printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);            fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);            fprintf(ficres,"%1d%1d ",i,k);
             fprintf(fichtm, "<td>%1d%1d</td>",i,k);
           for(j=1; j <=ncovmodel; j++){            for(j=1; j <=ncovmodel; j++){
             printf("%12.7f ",p[jk]);              printf("%12.7f ",p[jk]);
             fprintf(ficlog,"%12.7f ",p[jk]);              fprintf(ficlog,"%12.7f ",p[jk]);
             fprintf(ficres,"%12.7f ",p[jk]);              fprintf(ficres,"%12.7f ",p[jk]);
               fprintf(fichtm, "<td>%12.7f</td>",p[jk]);
             jk++;               jk++; 
           }            }
           printf("\n");            printf("\n");
           fprintf(ficlog,"\n");            fprintf(ficlog,"\n");
           fprintf(ficres,"\n");            fprintf(ficres,"\n");
             fprintf(fichtm, "</tr>\n");
         }          }
       }        }
     }      }
       /* fprintf(fichtm,"</tr>\n"); */
       fprintf(fichtm,"</table>\n");
       fprintf(fichtm, "\n");
   
     if(mle != 0){      if(mle != 0){
       /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */        /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
       ftolhess=ftol; /* Usually correct */        ftolhess=ftol; /* Usually correct */
       hesscov(matcov, hess, p, npar, delti, ftolhess, func);        hesscov(matcov, hess, p, npar, delti, ftolhess, func);
       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");        printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");        fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(fichtm, "\n<p>The Wald test results are output only if the maximimzation of the Likelihood is performed (mle=1)\n</br>Parameters, Wald tests and Wald-based confidence intervals\n</br> W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n</br> And Wald-based confidence intervals plus and minus 1.96 * W \n </br> It might be better to visualize the covariance matrix. See the page '<a href=\"%s\">Matrix of variance-covariance of one-step probabilities and its graphs</a>'.\n</br>",optionfilehtmcov);
         fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">");
         fprintf(fichtm, "\n<tr><th>Model=</th><th>1</th><th>+ age</th>");
         if(nagesqr==1){
           printf("  + age*age  ");
           fprintf(ficres,"  + age*age  ");
           fprintf(ficlog,"  + age*age  ");
           fprintf(fichtm, "<th>+ age*age</th>");
         }
         for(j=1;j <=ncovmodel-2;j++){
           if(Typevar[j]==0) {
             printf("  +      V%d  ",Tvar[j]);
             fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]);
           }else if(Typevar[j]==1) {
             printf("  +    V%d*age ",Tvar[j]);
             fprintf(fichtm, "<th>+  V%d*age</th>",Tvar[j]);
           }else if(Typevar[j]==2) {
             fprintf(fichtm, "<th>+  V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
           }
         }
         fprintf(fichtm, "</tr>\n");
    
       for(i=1,jk=1; i <=nlstate; i++){        for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){          for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {            if (k != i) {
               fprintf(fichtm, "<tr valign=top>");
             printf("%d%d ",i,k);              printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);              fprintf(ficlog,"%d%d ",i,k);
               fprintf(fichtm, "<td>%1d%1d</td>",i,k);
             for(j=1; j <=ncovmodel; j++){              for(j=1; j <=ncovmodel; j++){
               printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));                wald=p[jk]/sqrt(matcov[jk][jk]);
               fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));                printf("%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 if(fabs(wald) > 1.96){
                   fprintf(fichtm, "<td><b>%12.7f</b></br> (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk]));
                 }else{
                   fprintf(fichtm, "<td>%12.7f (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk]));
                 }
                 fprintf(fichtm,"W=%8.3f</br>",wald);
                 fprintf(fichtm,"[%12.7f;%12.7f]</br></td>", p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               jk++;                 jk++; 
             }              }
             printf("\n");              printf("\n");
             fprintf(ficlog,"\n");              fprintf(ficlog,"\n");
               fprintf(fichtm, "</tr>\n");
           }            }
         }          }
       }        }
     } /* end of hesscov and Wald tests */      } /* end of hesscov and Wald tests */
       fprintf(fichtm,"</table>\n");
           
     /*  */      /*  */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
Line 11907  Please run with mle=-1 to get a correct Line 13475  Please run with mle=-1 to get a correct
         fputs(line,stdout);          fputs(line,stdout);
         fputs(line,ficparo);          fputs(line,ficparo);
         fputs(line,ficlog);          fputs(line,ficlog);
           fputs(line,ficres);
         continue;          continue;
       }else        }else
         break;          break;
Line 11952  Please run with mle=-1 to get a correct Line 13521  Please run with mle=-1 to get a correct
         fputs(line,stdout);          fputs(line,stdout);
         fputs(line,ficparo);          fputs(line,ficparo);
         fputs(line,ficlog);          fputs(line,ficlog);
           fputs(line,ficres);
         continue;          continue;
       }else        }else
         break;          break;
Line 11977  Please run with mle=-1 to get a correct Line 13547  Please run with mle=-1 to get a correct
         fputs(line,stdout);          fputs(line,stdout);
         fputs(line,ficparo);          fputs(line,ficparo);
         fputs(line,ficlog);          fputs(line,ficlog);
           fputs(line,ficres);
         continue;          continue;
       }else        }else
         break;          break;
Line 11999  Please run with mle=-1 to get a correct Line 13570  Please run with mle=-1 to get a correct
     }      }
             
     /* Results */      /* Results */
       /* Value of covariate in each resultine will be compututed (if product) and sorted according to model rank */
       /* It is precov[] because we need the varying age in order to compute the real cov[] of the model equation */  
       precov=matrix(1,MAXRESULTLINESPONE,1,NCOVMAX+1);
       endishere=0;
     nresult=0;      nresult=0;
       parameterline=0;
     do{      do{
       if(!fgets(line, MAXLINE, ficpar)){        if(!fgets(line, MAXLINE, ficpar)){
         endishere=1;          endishere=1;
         parameterline=14;          parameterline=15;
       }else if (line[0] == '#') {        }else if (line[0] == '#') {
         /* If line starts with a # it is a comment */          /* If line starts with a # it is a comment */
         numlinepar++;          numlinepar++;
         fputs(line,stdout);          fputs(line,stdout);
         fputs(line,ficparo);          fputs(line,ficparo);
         fputs(line,ficlog);          fputs(line,ficlog);
           fputs(line,ficres);
         continue;          continue;
       }else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp))        }else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp))
         parameterline=11;          parameterline=11;
       else if(sscanf(line,"backcast=%[^\n]\n",modeltemp))        else if(sscanf(line,"prevbackcast=%[^\n]\n",modeltemp))
         parameterline=12;          parameterline=12;
       else if(sscanf(line,"result:%[^\n]\n",modeltemp))        else if(sscanf(line,"result:%[^\n]\n",modeltemp)){
         parameterline=13;          parameterline=13;
         }
       else{        else{
         parameterline=14;          parameterline=14;
       }        }
       switch (parameterline){         switch (parameterline){ /* =0 only if only comments */
       case 11:        case 11:
         if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF){          if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF && (num_filled == 8)){
           if (num_filled != 8) {                    fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);  
             fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);  
             goto end;  
           }  
           fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  
           printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);            fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           /* day and month of proj2 are not used but only year anproj2.*/            /* day and month of proj2 are not used but only year anproj2.*/
           dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.;            dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.;
           dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.;            dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.;
             prvforecast = 1;
           } 
           else if((num_filled=sscanf(line,"prevforecast=%d yearsfproj=%lf mobil_average=%d\n",&prevfcast,&yrfproj,&mobilavproj)) !=EOF){/* && (num_filled == 3))*/
             printf("prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
             fprintf(ficlog,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
             fprintf(ficres,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
             prvforecast = 2;
           }
           else {
             printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearsfproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             goto end;
         }          }
         break;          break;
       case 12:        case 12:
         /*fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);*/          if((num_filled=sscanf(line,"prevbackcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&prevbcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF && (num_filled == 8)){
         if((num_filled=sscanf(line,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF){            fprintf(ficparo,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
           if (num_filled != 8) {            printf("prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             printf("Error: Not 8 (data)parameters in line but %d, for example:backcast=1 starting-back-date=1/1/1990 final-back-date=1/1/1970 mobil_average=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line);            fprintf(ficlog,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:backcast=1 starting-back-date=1/1/1990 final-back-date=1/1/1970 mobil_average=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line);            fprintf(ficres,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             goto end;            /* day and month of back2 are not used but only year anback2.*/
           }  
           printf("backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);  
           fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);  
           fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);  
           fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);  
           /* day and month of proj2 are not used but only year anproj2.*/  
           dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.;            dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.;
           dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.;            dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.;
             prvbackcast = 1;
           } 
           else if((num_filled=sscanf(line,"prevbackcast=%d yearsbproj=%lf mobil_average=%d\n",&prevbcast,&yrbproj,&mobilavproj)) ==3){/* && (num_filled == 3))*/
             printf("prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
             fprintf(ficlog,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
             fprintf(ficres,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
             prvbackcast = 2;
           }
           else {
             printf("Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearsbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             goto end;
         }          }
         break;          break;
       case 13:        case 13:
         if((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){          num_filled=sscanf(line,"result:%[^\n]\n",resultlineori);
           if (num_filled == 0){          nresult++; /* Sum of resultlines */
             resultline[0]='\0';          printf("Result %d: result:%s\n",nresult, resultlineori);
             printf("Warning %d: no result line! It should be at minimum 'result: V2=0 V1=1 or result:.\n%s\n", num_filled, line);          /* removefirstspace(&resultlineori); */
             fprintf(ficlog,"Warning %d: no result line! It should be at minimum 'result: V2=0 V1=1 or result:.\n%s\n", num_filled, line);          
             break;          if(strstr(resultlineori,"v") !=0){
           } else if (num_filled != 1){            printf("Error. 'v' must be in upper case 'V' result: %s ",resultlineori);
             printf("ERROR %d: result line! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",num_filled, line);            fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultlineori);fflush(ficlog);
             fprintf(ficlog,"ERROR %d: result line! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",num_filled, line);            return 1;
           }          }
           nresult++; /* Sum of resultlines */          trimbb(resultline, resultlineori); /* Suppressing double blank in the resultline */
           printf("Result %d: result=%s\n",nresult, resultline);          printf("Decoderesult resultline=\"%s\" resultlineori=\"%s\"\n", resultline, resultlineori);
           if(nresult > MAXRESULTLINES){          if(nresult > MAXRESULTLINESPONE-1){
             printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);            printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres);
             fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);            fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres);
             goto end;            goto end;
           }          }
           decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */          
           if(!decoderesult(resultline, nresult)){ /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
           fprintf(ficparo,"result: %s\n",resultline);            fprintf(ficparo,"result: %s\n",resultline);
           fprintf(ficres,"result: %s\n",resultline);            fprintf(ficres,"result: %s\n",resultline);
           fprintf(ficlog,"result: %s\n",resultline);            fprintf(ficlog,"result: %s\n",resultline);
           break;          } else
         case 14:             goto end;
           if(ncovmodel >2 && nresult==0 ){          break;
             printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);        case 14:
             goto end;          printf("Error: Unknown command '%s'\n",line);
           }          fprintf(ficlog,"Error: Unknown command '%s'\n",line);
           break;          if(line[0] == ' ' || line[0] == '\n'){
         default:            printf("It should not be an empty line '%s'\n",line);
           nresult=1;            fprintf(ficlog,"It should not be an empty line '%s'\n",line);
           decoderesult(".",nresult ); /* No covariate */          }         
           if(ncovmodel >=2 && nresult==0 ){
             printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
             fprintf(ficlog,"ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
         }          }
           /* goto end; */
           break;
         case 15:
           printf("End of resultlines.\n");
           fprintf(ficlog,"End of resultlines.\n");
           break;
         default: /* parameterline =0 */
           nresult=1;
           decoderesult(".",nresult ); /* No covariate */
       } /* End switch parameterline */        } /* End switch parameterline */
     }while(endishere==0); /* End do */      }while(endishere==0); /* End do */
           
Line 12104  This is probably because your parameter Line 13707  This is probably because your parameter
 Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);  Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
     }else{      }else{
       /* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */        /* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */
       printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, backcast, pathc,p, (int)anproj1-bage, (int)anback1-fage);        /* It seems that anprojd which is computed from the mean year at interview which is known yet because of freqsummary */
         /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ /* Done in freqsummary */
         if(prvforecast==1){
           dateprojd=(jproj1+12*mproj1+365*anproj1)/365;
           jprojd=jproj1;
           mprojd=mproj1;
           anprojd=anproj1;
           dateprojf=(jproj2+12*mproj2+365*anproj2)/365;
           jprojf=jproj2;
           mprojf=mproj2;
           anprojf=anproj2;
         } else if(prvforecast == 2){
           dateprojd=dateintmean;
           date2dmy(dateprojd,&jprojd, &mprojd, &anprojd);
           dateprojf=dateintmean+yrfproj;
           date2dmy(dateprojf,&jprojf, &mprojf, &anprojf);
         }
         if(prvbackcast==1){
           datebackd=(jback1+12*mback1+365*anback1)/365;
           jbackd=jback1;
           mbackd=mback1;
           anbackd=anback1;
           datebackf=(jback2+12*mback2+365*anback2)/365;
           jbackf=jback2;
           mbackf=mback2;
           anbackf=anback2;
         } else if(prvbackcast == 2){
           datebackd=dateintmean;
           date2dmy(datebackd,&jbackd, &mbackd, &anbackd);
           datebackf=dateintmean-yrbproj;
           date2dmy(datebackf,&jbackf, &mbackf, &anbackf);
         }
         
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, prevbcast, pathc,p, (int)anprojd-bage, (int)anbackd-fage);
     }      }
     printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \      printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,backcast, estepm, \                   model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,prevbcast, estepm, \
                  jprev1,mprev1,anprev1,dateprev1, dateproj1, dateback1,jprev2,mprev2,anprev2,dateprev2,dateproj2, dateback2);                   jprev1,mprev1,anprev1,dateprev1, dateprojd, datebackd,jprev2,mprev2,anprev2,dateprev2,dateprojf, datebackf);
                                   
     /*------------ free_vector  -------------*/      /*------------ free_vector  -------------*/
     /*  chdir(path); */      /*  chdir(path); */
Line 12117  Please run with mle=-1 to get a correct Line 13753  Please run with mle=-1 to get a correct
     /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */      /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
     /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */      /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
     /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */      /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
     free_lvector(num,1,n);      free_lvector(num,firstobs,lastobs);
     free_vector(agedc,1,n);      free_vector(agedc,firstobs,lastobs);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);      fclose(ficparo);
Line 12131  Please run with mle=-1 to get a correct Line 13767  Please run with mle=-1 to get a correct
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */      /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
     prlim=matrix(1,nlstate,1,nlstate);      prlim=matrix(1,nlstate,1,nlstate);
       /* Computes the prevalence limit for each combination k of the dummy covariates by calling prevalim(k) */
     prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);      prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
     fclose(ficrespl);      fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/      /*------------- h Pij x at various ages ------------*/
     /*#include "hpijx.h"*/      /*#include "hpijx.h"*/
       /** h Pij x Probability to be in state j at age x+h being in i at x, for each combination k of dummies in the model line or to nres?*/
       /* calls hpxij with combination k */
     hPijx(p, bage, fage);      hPijx(p, bage, fage);
     fclose(ficrespij);      fclose(ficrespij);
           
     /* ncovcombmax=  pow(2,cptcoveff); */      /* ncovcombmax=  pow(2,cptcoveff); */
     /*-------------- Variance of one-step probabilities---*/      /*-------------- Variance of one-step probabilities for a combination ij or for nres ?---*/
     k=1;      k=1;
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
           
Line 12181  Please run with mle=-1 to get a correct Line 13820  Please run with mle=-1 to get a correct
     }/* end if moving average */      }/* end if moving average */
           
     /*---------- Forecasting ------------------*/      /*---------- Forecasting ------------------*/
     if(prevfcast==1){      if(prevfcast==1){ 
       /*    if(stepm ==1){*/        /*   /\*    if(stepm ==1){*\/ */
       prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);        /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
         /*This done previously after freqsummary.*/
         /*   dateprojd=(jproj1+12*mproj1+365*anproj1)/365; */
         /*   dateprojf=(jproj2+12*mproj2+365*anproj2)/365; */
         
         /* } else if (prvforecast==2){ */
         /*   /\*    if(stepm ==1){*\/ */
         /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
         /* } */
         /*prevforecast(fileresu, dateintmean, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);*/
         prevforecast(fileresu,dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, p, cptcoveff);
     }      }
   
     /* Backcasting */      /* Prevbcasting */
     if(backcast==1){      if(prevbcast==1){
       ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);                ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
       ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);                ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
       ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
Line 12202  Please run with mle=-1 to get a correct Line 13851  Please run with mle=-1 to get a correct
       hBijx(p, bage, fage, mobaverage);        hBijx(p, bage, fage, mobaverage);
       fclose(ficrespijb);        fclose(ficrespijb);
   
       prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2,        /* /\* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, *\/ */
                        mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff);        /* /\*                   mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); *\/ */
         /* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, */
         /*                       mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
         prevbackforecast(fileresu, mobaverage, dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2,
                          mobilavproj, bage, fage, firstpass, lastpass, p, cptcoveff);
   
         
       varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);        varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
   
               
Line 12211  Please run with mle=-1 to get a correct Line 13866  Please run with mle=-1 to get a correct
       free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);        free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
       free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);        free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
       free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);        free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
     }    /* end  Backcasting */      }    /* end  Prevbcasting */
     
     
     /* ------ Other prevalence ratios------------ */      /* ------ Other prevalence ratios------------ */
Line 12245  Please run with mle=-1 to get a correct Line 13900  Please run with mle=-1 to get a correct
       fprintf(ficreseij,"\n#****** ");        fprintf(ficreseij,"\n#****** ");
       printf("\n#****** ");        printf("\n#****** ");
       for(j=1;j<=cptcoveff;j++) {        for(j=1;j<=cptcoveff;j++) {
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
         printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
       }        }
       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */        for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
         printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);          printf(" V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); /* TvarsQ[j] gives the name of the jth quantitative (fixed or time v) */
         fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);          fprintf(ficreseij,"V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]);
       }        }
       fprintf(ficreseij,"******\n");        fprintf(ficreseij,"******\n");
       printf("******\n");        printf("******\n");
               
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
       oldm=oldms;savm=savms;        oldm=oldms;savm=savms;
         /* printf("HELLO Entering evsij bage=%d fage=%d k=%d estepm=%d nres=%d\n",(int) bage, (int)fage, k, estepm, nres); */
       evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);          evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
               
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
Line 12267  Please run with mle=-1 to get a correct Line 13923  Please run with mle=-1 to get a correct
   
                                   
     /*---------- State-specific expectancies and variances ------------*/      /*---------- State-specific expectancies and variances ------------*/
                       /* Should be moved in a function */         
     strcpy(filerest,"T_");      strcpy(filerest,"T_");
     strcat(filerest,fileresu);      strcat(filerest,fileresu);
     if((ficrest=fopen(filerest,"w"))==NULL) {      if((ficrest=fopen(filerest,"w"))==NULL) {
Line 12306  Please run with mle=-1 to get a correct Line 13962  Please run with mle=-1 to get a correct
     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */      i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
     if (cptcovn < 1){i1=1;}      if (cptcovn < 1){i1=1;}
           
     for(nres=1; nres <= nresult; nres++) /* For each resultline */      for(nres=1; nres <= nresult; nres++) /* For each resultline, find the combination and output results according to the values of dummies and then quanti.  */
     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */      for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying. For each nres and each value at position k
       if(i1 != 1 && TKresult[nres]!= k)                            * we know Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline
                             * Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline 
                             * and Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */
         /* */
         if(i1 != 1 && TKresult[nres]!= k) /* TKresult[nres] is the combination of this nres resultline. All the i1 combinations are not output */
         continue;          continue;
       printf("\n#****** Result for:");        printf("\n# model %s \n#****** Result for:", model);
       fprintf(ficrest,"\n#****** Result for:");        fprintf(ficrest,"\n# model %s \n#****** Result for:", model);
       fprintf(ficlog,"\n#****** Result for:");        fprintf(ficlog,"\n# model %s \n#****** Result for:", model);
       for(j=1;j<=cptcoveff;j++){         /* It might not be a good idea to mix dummies and quantitative */
         printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        /* for(j=1;j<=cptcoveff;j++){ /\* j=resultpos. Could be a loop on cptcovs: number of single dummy covariate in the result line as well as in the model *\/ */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        for(j=1;j<=cptcovs;j++){ /* j=resultpos. Could be a loop on cptcovs: number of single covariate (dummy or quantitative) in the result line as well as in the model */
         fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* Output by variables in the resultline *\/ */
       }          /* Tvaraff[j] is the name of the dummy variable in position j in the equation model:
       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */           * Tvaraff[1]@9={4, 3, 0, 0, 0, 0, 0, 0, 0}, in model=V5+V4+V3+V4*V3+V5*age
         printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);           * (V5 is quanti) V4 and V3 are dummies
         fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);           * TnsdVar[4] is the position 1 and TnsdVar[3]=2 in codtabm(k,l)(V4  V3)=V4  V3
         fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);           *                                                              l=1 l=2
       }            *                                                           k=1  1   1   0   0
            *                                                           k=2  2   1   1   0
            *                                                           k=3 [1] [2]  0   1
            *                                                           k=4  2   2   1   1
            * If nres=1 result: V3=1 V4=0 then k=3 and outputs
            * If nres=2 result: V4=1 V3=0 then k=2 and outputs
            * nres=1 =>k=3 j=1 V4= nbcode[4][codtabm(3,1)=1)=0; j=2  V3= nbcode[3][codtabm(3,2)=2]=1
            * nres=2 =>k=2 j=1 V4= nbcode[4][codtabm(2,1)=2)=1; j=2  V3= nbcode[3][codtabm(2,2)=1]=0
            */
           /* Tvresult[nres][j] Name of the variable at position j in this resultline */
           /* Tresult[nres][j] Value of this variable at position j could be a float if quantitative  */
   /* We give up with the combinations!! */
           printf("\n j=%d In computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d Fixed[modelresult[nres][j]]=%d\n", j, nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff,Fixed[modelresult[nres][j]]);  /* end if dummy  or quanti */
   
           if(Dummy[modelresult[nres][j]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to j in resultline  */
             printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
             fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
             fprintf(ficrest,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
             if(Fixed[modelresult[nres][j]]==0){ /* Fixed */
               printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed ");
             }else{
               printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi ");
             }
             /* fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
             /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
           }else if(Dummy[modelresult[nres][j]]==1){ /* Quanti variable */
             /* For each selected (single) quantitative value */
             printf(" V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
             fprintf(ficlog," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
             fprintf(ficrest," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
             if(Fixed[modelresult[nres][j]]==0){ /* Fixed */
               printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed ");
             }else{
               printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi ");
             }
           }else{
             printf("Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff);  /* end if dummy  or quanti */
             fprintf(ficlog,"Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff);  /* end if dummy  or quanti */
             exit(1);
           }
         } /* End loop for each variable in the resultline */
         /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
         /*        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /\* Wrong j is not in the equation model *\/ */
         /*        fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /*        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /* }       */
       fprintf(ficrest,"******\n");        fprintf(ficrest,"******\n");
       fprintf(ficlog,"******\n");        fprintf(ficlog,"******\n");
       printf("******\n");        printf("******\n");
               
       fprintf(ficresstdeij,"\n#****** ");        fprintf(ficresstdeij,"\n#****** ");
       fprintf(ficrescveij,"\n#****** ");        fprintf(ficrescveij,"\n#****** ");
         /* It could have been: for(j=1;j<=cptcoveff;j++) {printf("V=%d=%lg",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);} */
         /* But it won't be sorted and depends on how the resultline is ordered */
       for(j=1;j<=cptcoveff;j++) {        for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficresstdeij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]);
         fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          /* fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       }          /* fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */        }
         fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);        for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value, TvarsQind gives the position of a quantitative in model equation  */
         fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);          fprintf(ficresstdeij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]);
           fprintf(ficrescveij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]);
       }         } 
       fprintf(ficresstdeij,"******\n");        fprintf(ficresstdeij,"******\n");
       fprintf(ficrescveij,"******\n");        fprintf(ficrescveij,"******\n");
Line 12343  Please run with mle=-1 to get a correct Line 14051  Please run with mle=-1 to get a correct
       fprintf(ficresvij,"\n#****** ");        fprintf(ficresvij,"\n#****** ");
       /* pstamp(ficresvij); */        /* pstamp(ficresvij); */
       for(j=1;j<=cptcoveff;j++)         for(j=1;j<=cptcoveff;j++) 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficresvij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]);
           /* fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[TnsdVar[Tvaraff[j]]])]); */
       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */        for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
         fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);          /* fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); /\* To solve *\/ */
           fprintf(ficresvij," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /* Solved */
       }         } 
       fprintf(ficresvij,"******\n");        fprintf(ficresvij,"******\n");
               
Line 12375  Please run with mle=-1 to get a correct Line 14085  Please run with mle=-1 to get a correct
         if(vpopbased==1)          if(vpopbased==1)
           fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);            fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
         else          else
           fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");            fprintf(ficrest,"the age specific forward period (stable) prevalences in each health state \n");
         fprintf(ficrest,"# Age popbased mobilav e.. (std) ");          fprintf(ficrest,"# Age popbased mobilav e.. (std) "); /* Adding covariate values? */
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");          fprintf(ficrest,"\n");
         /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */          /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
         printf("Computing age specific period (stable) prevalences in each health state \n");          printf("Computing age specific forward period (stable) prevalences in each health state \n");
         fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");          fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n");
         for(age=bage; age <=fage ;age++){          for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */            prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
           if (vpopbased==1) {            if (vpopbased==1) {
Line 12423  Please run with mle=-1 to get a correct Line 14133  Please run with mle=-1 to get a correct
       printf("done selection\n");fflush(stdout);        printf("done selection\n");fflush(stdout);
       fprintf(ficlog,"done selection\n");fflush(ficlog);        fprintf(ficlog,"done selection\n");fflush(ficlog);
               
     } /* End k selection */      } /* End k selection or end covariate selection for nres */
   
     printf("done State-specific expectancies\n");fflush(stdout);      printf("done State-specific expectancies\n");fflush(stdout);
     fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);      fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
   
     /* variance-covariance of period prevalence*/      /* variance-covariance of forward period prevalence */
     varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);      varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
   
           
     free_vector(weight,1,n);      free_vector(weight,firstobs,lastobs);
       free_imatrix(Tvardk,1,NCOVMAX,1,2);
     free_imatrix(Tvard,1,NCOVMAX,1,2);      free_imatrix(Tvard,1,NCOVMAX,1,2);
     free_imatrix(s,1,maxwav+1,1,n);      free_imatrix(s,1,maxwav+1,firstobs,lastobs);
     free_matrix(anint,1,maxwav,1,n);       free_matrix(anint,1,maxwav,firstobs,lastobs); 
     free_matrix(mint,1,maxwav,1,n);      free_matrix(mint,1,maxwav,firstobs,lastobs);
     free_ivector(cod,1,n);      free_ivector(cod,firstobs,lastobs);
     free_ivector(tab,1,NCOVMAX);      free_ivector(tab,1,NCOVMAX);
     fclose(ficresstdeij);      fclose(ficresstdeij);
     fclose(ficrescveij);      fclose(ficrescveij);
Line 12457  Please run with mle=-1 to get a correct Line 14168  Please run with mle=-1 to get a correct
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
   if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n);    if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs);
   if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n);    if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs);
   if(nqv>=1)free_matrix(coqvar,1,nqv,1,n);    if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs);
   free_matrix(covar,0,NCOVMAX,1,n);    free_matrix(covar,0,NCOVMAX,firstobs,lastobs);
   free_matrix(matcov,1,npar,1,npar);    free_matrix(matcov,1,npar,1,npar);
   free_matrix(hess,1,npar,1,npar);    free_matrix(hess,1,npar,1,npar);
   /*free_vector(delti,1,npar);*/    /*free_vector(delti,1,npar);*/
Line 12480  Please run with mle=-1 to get a correct Line 14191  Please run with mle=-1 to get a correct
   free_ivector(TvarsQ,1,NCOVMAX);    free_ivector(TvarsQ,1,NCOVMAX);
   free_ivector(TvarsQind,1,NCOVMAX);    free_ivector(TvarsQind,1,NCOVMAX);
   free_ivector(TvarsD,1,NCOVMAX);    free_ivector(TvarsD,1,NCOVMAX);
     free_ivector(TnsdVar,1,NCOVMAX);
   free_ivector(TvarsDind,1,NCOVMAX);    free_ivector(TvarsDind,1,NCOVMAX);
   free_ivector(TvarFD,1,NCOVMAX);    free_ivector(TvarFD,1,NCOVMAX);
   free_ivector(TvarFDind,1,NCOVMAX);    free_ivector(TvarFDind,1,NCOVMAX);
Line 12500  Please run with mle=-1 to get a correct Line 14212  Please run with mle=-1 to get a correct
   free_ivector(Tposprod,1,NCOVMAX);    free_ivector(Tposprod,1,NCOVMAX);
   free_ivector(Tprod,1,NCOVMAX);    free_ivector(Tprod,1,NCOVMAX);
   free_ivector(Tvaraff,1,NCOVMAX);    free_ivector(Tvaraff,1,NCOVMAX);
   free_ivector(invalidvarcomb,1,ncovcombmax);    free_ivector(invalidvarcomb,0,ncovcombmax);
   free_ivector(Tage,1,NCOVMAX);    free_ivector(Tage,1,NCOVMAX);
   free_ivector(Tmodelind,1,NCOVMAX);    free_ivector(Tmodelind,1,NCOVMAX);
   free_ivector(TmodelInvind,1,NCOVMAX);    free_ivector(TmodelInvind,1,NCOVMAX);
   free_ivector(TmodelInvQind,1,NCOVMAX);    free_ivector(TmodelInvQind,1,NCOVMAX);
     
     free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /* Could be elsewhere ?*/
   
   free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);    free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
   /* free_imatrix(codtab,1,100,1,10); */    /* free_imatrix(codtab,1,100,1,10); */
   fflush(fichtm);    fflush(fichtm);
Line 12543  Please run with mle=-1 to get a correct Line 14257  Please run with mle=-1 to get a correct
   fclose(ficlog);    fclose(ficlog);
   /*------ End -----------*/    /*------ End -----------*/
       
   
   /* Executes gnuplot */
       
   printf("Before Current directory %s!\n",pathcd);    printf("Before Current directory %s!\n",pathcd);
 #ifdef WIN32  #ifdef WIN32
Line 12578  Please run with mle=-1 to get a correct Line 14294  Please run with mle=-1 to get a correct
       
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);    sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);    printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
     strcpy(pplotcmd,plotcmd);
       
   if((outcmd=system(plotcmd)) != 0){    if((outcmd=system(plotcmd)) != 0){
     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);      printf("Error in gnuplot, command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");      printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);      sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
     if((outcmd=system(plotcmd)) != 0)      if((outcmd=system(plotcmd)) != 0){
       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);        printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
         strcpy(plotcmd,pplotcmd);
       }
   }    }
   printf(" Successful, please wait...");    printf(" Successful, please wait...");
   while (z[0] != 'q') {    while (z[0] != 'q') {
Line 12611  end: Line 14330  end:
     printf("\nType  q for exiting: "); fflush(stdout);      printf("\nType  q for exiting: "); fflush(stdout);
     scanf("%s",z);      scanf("%s",z);
   }    }
     printf("End\n");
     exit(0);
 }  }

Removed from v.1.273  
changed lines
  Added in v.1.338


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>