Diff for /imach/src/imach.c between versions 1.34 and 1.116

version 1.34, 2002/03/13 17:19:16 version 1.116, 2006/03/06 10:29:27
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.116  2006/03/06 10:29:27  brouard
      (Module): Variance-covariance wrong links and
   This program computes Healthy Life Expectancies from    varian-covariance of ej. is needed (Saito).
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.115  2006/02/27 12:17:45  brouard
   interviewed on their health status or degree of disability (in the    (Module): One freematrix added in mlikeli! 0.98c
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.114  2006/02/26 12:57:58  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Some improvements in processing parameter
   computed from the time spent in each health state according to a    filename with strsep.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.113  2006/02/24 14:20:24  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Memory leaks checks with valgrind and:
   probabibility to be observed in state j at the second wave    datafile was not closed, some imatrix were not freed and on matrix
   conditional to be observed in state i at the first wave. Therefore    allocation too.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.112  2006/01/30 09:55:26  brouard
   complex model than "constant and age", you should modify the program    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.111  2006/01/25 20:38:18  brouard
   convergence.    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
   The advantage of this computer programme, compared to a simple    can be a simple dot '.'.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.110  2006/01/25 00:51:50  brouard
   intermediate interview, the information is lost, but taken into    (Module): Lots of cleaning and bugs added (Gompertz)
   account using an interpolation or extrapolation.    
     Revision 1.109  2006/01/24 19:37:15  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Comments (lines starting with a #) are allowed in data.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.108  2006/01/19 18:05:42  lievre
   states. This elementary transition (by month or quarter trimester,    Gnuplot problem appeared...
   semester or year) is model as a multinomial logistic.  The hPx    To be fixed
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.107  2006/01/19 16:20:37  brouard
   hPijx.    Test existence of gnuplot in imach path
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.106  2006/01/19 13:24:36  brouard
   of the life expectancies. It also computes the prevalence limits.    Some cleaning and links added in html output
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.105  2006/01/05 20:23:19  lievre
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.104  2005/09/30 16:11:43  lievre
   It is copyrighted identically to a GNU software product, ie programme and    (Module): sump fixed, loop imx fixed, and simplifications.
   software can be distributed freely for non commercial use. Latest version    (Module): If the status is missing at the last wave but we know
   can be accessed at http://euroreves.ined.fr/imach .    that the person is alive, then we can code his/her status as -2
   **********************************************************************/    (instead of missing=-1 in earlier versions) and his/her
      contributions to the likelihood is 1 - Prob of dying from last
 #include <math.h>    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #include <stdio.h>    the healthy state at last known wave). Version is 0.98
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    Revision 1.102  2004/09/15 17:31:30  brouard
 #define FILENAMELENGTH 80    Add the possibility to read data file including tab characters.
 /*#define DEBUG*/  
 #define windows    Revision 1.101  2004/09/15 10:38:38  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Fix on curr_time
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.100  2004/07/12 18:29:06  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Add version for Mac OS X. Just define UNIX in Makefile
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.99  2004/06/05 08:57:40  brouard
 #define NINTERVMAX 8    *** empty log message ***
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.98  2004/05/16 15:05:56  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    New version 0.97 . First attempt to estimate force of mortality
 #define MAXN 20000    directly from the data i.e. without the need of knowing the health
 #define YEARM 12. /* Number of months per year */    state at each age, but using a Gompertz model: log u =a + b*age .
 #define AGESUP 130    This is the basic analysis of mortality and should be done before any
 #define AGEBASE 40    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 int erreur; /* Error number */  
 int nvar;    The same imach parameter file can be used but the option for mle should be -3.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Agnès, who wrote this part of the code, tried to keep most of the
 int nlstate=2; /* Number of live states */    former routines in order to include the new code within the former code.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    The output is very simple: only an estimate of the intercept and of
 int popbased=0;    the slope with 95% confident intervals.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Current limitations:
 int maxwav; /* Maxim number of waves */    A) Even if you enter covariates, i.e. with the
 int jmin, jmax; /* min, max spacing between 2 waves */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int mle, weightopt;    B) There is no computation of Life Expectancy nor Life Table.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.97  2004/02/20 13:25:42  lievre
 double jmean; /* Mean space between 2 waves */    Version 0.96d. Population forecasting command line is (temporarily)
 double **oldm, **newm, **savm; /* Working pointers to matrices */    suppressed.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.96  2003/07/15 15:38:55  brouard
 FILE *ficgp,*ficresprob,*ficpop;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 FILE *ficreseij;    rewritten within the same printf. Workaround: many printfs.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.95  2003/07/08 07:54:34  brouard
   char fileresv[FILENAMELENGTH];    * imach.c (Repository):
  FILE  *ficresvpl;    (Repository): Using imachwizard code to output a more meaningful covariance
   char fileresvpl[FILENAMELENGTH];    matrix (cov(a12,c31) instead of numbers.
   
 #define NR_END 1    Revision 1.94  2003/06/27 13:00:02  brouard
 #define FREE_ARG char*    Just cleaning
 #define FTOL 1.0e-10  
     Revision 1.93  2003/06/25 16:33:55  brouard
 #define NRANSI    (Module): On windows (cygwin) function asctime_r doesn't
 #define ITMAX 200    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define TOL 2.0e-4  
     Revision 1.92  2003/06/25 16:30:45  brouard
 #define CGOLD 0.3819660    (Module): On windows (cygwin) function asctime_r doesn't
 #define ZEPS 1.0e-10    exist so I changed back to asctime which exists.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define GOLD 1.618034    * imach.c (Repository): Duplicated warning errors corrected.
 #define GLIMIT 100.0    (Repository): Elapsed time after each iteration is now output. It
 #define TINY 1.0e-20    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 static double maxarg1,maxarg2;    concerning matrix of covariance. It has extension -cov.htm.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.90  2003/06/24 12:34:15  brouard
      (Module): Some bugs corrected for windows. Also, when
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    mle=-1 a template is output in file "or"mypar.txt with the design
 #define rint(a) floor(a+0.5)    of the covariance matrix to be input.
   
 static double sqrarg;    Revision 1.89  2003/06/24 12:30:52  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Some bugs corrected for windows. Also, when
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int imx;  
 int stepm;    Revision 1.88  2003/06/23 17:54:56  brouard
 /* Stepm, step in month: minimum step interpolation*/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 int m,nb;    Revision 1.87  2003/06/18 12:26:01  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Version 0.96
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.86  2003/06/17 20:04:08  brouard
 double dateintmean=0;    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 double *weight;  
 int **s; /* Status */    Revision 1.85  2003/06/17 13:12:43  brouard
 double *agedc, **covar, idx;    * imach.c (Repository): Check when date of death was earlier that
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    was wrong (infinity). We still send an "Error" but patch by
 double ftolhess; /* Tolerance for computing hessian */    assuming that the date of death was just one stepm after the
     interview.
 /**************** split *************************/    (Repository): Because some people have very long ID (first column)
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
    char *s;                             /* pointer */    truncation)
    int  l1, l2;                         /* length counters */    (Repository): No more line truncation errors.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.84  2003/06/13 21:44:43  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    * imach.c (Repository): Replace "freqsummary" at a correct
 #ifdef windows    place. It differs from routine "prevalence" which may be called
    s = strrchr( path, '\\' );           /* find last / */    many times. Probs is memory consuming and must be used with
 #else    parcimony.
    s = strrchr( path, '/' );            /* find last / */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.83  2003/06/10 13:39:11  lievre
 #if     defined(__bsd__)                /* get current working directory */    *** empty log message ***
       extern char       *getwd( );  
     Revision 1.82  2003/06/05 15:57:20  brouard
       if ( getwd( dirc ) == NULL ) {    Add log in  imach.c and  fullversion number is now printed.
 #else  
       extern char       *getcwd( );  */
   /*
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {     Interpolated Markov Chain
 #endif  
          return( GLOCK_ERROR_GETCWD );    Short summary of the programme:
       }    
       strcpy( name, path );             /* we've got it */    This program computes Healthy Life Expectancies from
    } else {                             /* strip direcotry from path */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       s++;                              /* after this, the filename */    first survey ("cross") where individuals from different ages are
       l2 = strlen( s );                 /* length of filename */    interviewed on their health status or degree of disability (in the
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    case of a health survey which is our main interest) -2- at least a
       strcpy( name, s );                /* save file name */    second wave of interviews ("longitudinal") which measure each change
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (if any) in individual health status.  Health expectancies are
       dirc[l1-l2] = 0;                  /* add zero */    computed from the time spent in each health state according to a
    }    model. More health states you consider, more time is necessary to reach the
    l1 = strlen( dirc );                 /* length of directory */    Maximum Likelihood of the parameters involved in the model.  The
 #ifdef windows    simplest model is the multinomial logistic model where pij is the
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    probability to be observed in state j at the second wave
 #else    conditional to be observed in state i at the first wave. Therefore
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #endif    'age' is age and 'sex' is a covariate. If you want to have a more
    s = strrchr( name, '.' );            /* find last / */    complex model than "constant and age", you should modify the program
    s++;    where the markup *Covariates have to be included here again* invites
    strcpy(ext,s);                       /* save extension */    you to do it.  More covariates you add, slower the
    l1= strlen( name);    convergence.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    The advantage of this computer programme, compared to a simple
    finame[l1-l2]= 0;    multinomial logistic model, is clear when the delay between waves is not
    return( 0 );                         /* we're done */    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   
 /******************************************/    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 void replace(char *s, char*t)    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   int i;    semester or year) is modelled as a multinomial logistic.  The hPx
   int lg=20;    matrix is simply the matrix product of nh*stepm elementary matrices
   i=0;    and the contribution of each individual to the likelihood is simply
   lg=strlen(t);    hPijx.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Also this programme outputs the covariance matrix of the parameters but also
     if (t[i]== '\\') s[i]='/';    of the life expectancies. It also computes the stable prevalence. 
   }    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 int nbocc(char *s, char occ)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   int i,j=0;    It is copyrighted identically to a GNU software product, ie programme and
   int lg=20;    software can be distributed freely for non commercial use. Latest version
   i=0;    can be accessed at http://euroreves.ined.fr/imach .
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   if  (s[i] == occ ) j++;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   }    
   return j;    **********************************************************************/
 }  /*
     main
 void cutv(char *u,char *v, char*t, char occ)    read parameterfile
 {    read datafile
   int i,lg,j,p=0;    concatwav
   i=0;    freqsummary
   for(j=0; j<=strlen(t)-1; j++) {    if (mle >= 1)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      mlikeli
   }    print results files
     if mle==1 
   lg=strlen(t);       computes hessian
   for(j=0; j<p; j++) {    read end of parameter file: agemin, agemax, bage, fage, estepm
     (u[j] = t[j]);        begin-prev-date,...
   }    open gnuplot file
      u[p]='\0';    open html file
     stable prevalence
    for(j=0; j<= lg; j++) {     for age prevalim()
     if (j>=(p+1))(v[j-p-1] = t[j]);    h Pij x
   }    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /********************** nrerror ********************/    Variance-covariance of DFLE
     prevalence()
 void nrerror(char error_text[])     movingaverage()
 {    varevsij() 
   fprintf(stderr,"ERREUR ...\n");    if popbased==1 varevsij(,popbased)
   fprintf(stderr,"%s\n",error_text);    total life expectancies
   exit(1);    Variance of stable prevalence
 }   end
 /*********************** vector *******************/  */
 double *vector(int nl, int nh)  
 {  
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));   
   if (!v) nrerror("allocation failure in vector");  #include <math.h>
   return v-nl+NR_END;  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 /************************ free vector ******************/  #include <unistd.h>
 void free_vector(double*v, int nl, int nh)  
 {  #include <limits.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <sys/types.h>
 }  #include <sys/stat.h>
   #include <errno.h>
 /************************ivector *******************************/  extern int errno;
 int *ivector(long nl,long nh)  
 {  /* #include <sys/time.h> */
   int *v;  #include <time.h>
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #include "timeval.h"
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /******************free ivector **************************/  #define MAXLINE 256
 void free_ivector(int *v, long nl, long nh)  
 {  #define GNUPLOTPROGRAM "gnuplot"
   free((FREE_ARG)(v+nl-NR_END));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /******************* imatrix *******************************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   int **m;  
    #define NINTERVMAX 8
   /* allocate pointers to rows */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define NCOVMAX 8 /* Maximum number of covariates */
   m += NR_END;  #define MAXN 20000
   m -= nrl;  #define YEARM 12. /* Number of months per year */
    #define AGESUP 130
    #define AGEBASE 40
   /* allocate rows and set pointers to them */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #ifdef UNIX
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define DIRSEPARATOR '/'
   m[nrl] += NR_END;  #define CHARSEPARATOR "/"
   m[nrl] -= ncl;  #define ODIRSEPARATOR '\\'
    #else
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define DIRSEPARATOR '\\'
    #define CHARSEPARATOR "\\"
   /* return pointer to array of pointers to rows */  #define ODIRSEPARATOR '/'
   return m;  #endif
 }  
   /* $Id$ */
 /****************** free_imatrix *************************/  /* $State$ */
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  char version[]="Imach version 0.98c, February 2006, INED-EUROREVES ";
       long nch,ncl,nrh,nrl;  char fullversion[]="$Revision$ $Date$"; 
      /* free an int matrix allocated by imatrix() */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   free((FREE_ARG) (m+nrl-NR_END));  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************* matrix *******************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int popbased=0;
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int *wav; /* Number of waves for this individuual 0 is possible */
   double **m;  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   if (!m) nrerror("allocation failure 1 in matrix()");  int gipmx, gsw; /* Global variables on the number of contributions 
   m += NR_END;                     to the likelihood and the sum of weights (done by funcone)*/
   m -= nrl;  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m[nrl] += NR_END;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m[nrl] -= ncl;  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   return m;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 /*************************free matrix ************************/  double fretone; /* Only one call to likelihood */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  long ipmx; /* Number of contributions */
 {  double sw; /* Sum of weights */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char filerespow[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /******************* ma3x *******************************/  FILE *ficresprobmorprev;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char filerese[FILENAMELENGTH];
   double ***m;  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE  *ficresvpl;
   if (!m) nrerror("allocation failure 1 in matrix()");  char fileresvpl[FILENAMELENGTH];
   m += NR_END;  char title[MAXLINE];
   m -= nrl;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char command[FILENAMELENGTH];
   m[nrl] += NR_END;  int  outcmd=0;
   m[nrl] -= ncl;  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   char filelog[FILENAMELENGTH]; /* Log file */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char filerest[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char fileregp[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  char popfile[FILENAMELENGTH];
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     m[nrl][j]=m[nrl][j-1]+nlay;  
    struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   for (i=nrl+1; i<=nrh; i++) {  struct timezone tzp;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  extern int gettimeofday();
     for (j=ncl+1; j<=nch; j++)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       m[i][j]=m[i][j-1]+nlay;  long time_value;
   }  extern long time();
   return m;  char strcurr[80], strfor[80];
 }  
   char *endptr;
 /*************************free ma3x ************************/  long lval;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  #define NR_END 1
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define FREE_ARG char*
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define FTOL 1.0e-10
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define NRANSI 
   #define ITMAX 200 
 /***************** f1dim *************************/  
 extern int ncom;  #define TOL 2.0e-4 
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  #define CGOLD 0.3819660 
    #define ZEPS 1.0e-10 
 double f1dim(double x)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   int j;  #define GOLD 1.618034 
   double f;  #define GLIMIT 100.0 
   double *xt;  #define TINY 1.0e-20 
    
   xt=vector(1,ncom);  static double maxarg1,maxarg2;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   f=(*nrfunc)(xt);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free_vector(xt,1,ncom);    
   return f;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 }  #define rint(a) floor(a+0.5)
   
 /*****************brent *************************/  static double sqrarg;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int iter;  int agegomp= AGEGOMP;
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  int imx; 
   double ftemp;  int stepm=1;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /* Stepm, step in month: minimum step interpolation*/
   double e=0.0;  
    int estepm;
   a=(ax < cx ? ax : cx);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  int m,nb;
   fw=fv=fx=(*f)(x);  long *num;
   for (iter=1;iter<=ITMAX;iter++) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     xm=0.5*(a+b);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  double **pmmij, ***probs;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double *ageexmed,*agecens;
     printf(".");fflush(stdout);  double dateintmean=0;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double *weight;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int **s; /* Status */
 #endif  double *agedc, **covar, idx;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       *xmin=x;  double *lsurv, *lpop, *tpop;
       return fx;  
     }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     ftemp=fu;  double ftolhess; /* Tolerance for computing hessian */
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /**************** split *************************/
       q=(x-v)*(fx-fw);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       if (q > 0.0) p = -p;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       q=fabs(q);    */ 
       etemp=e;    char  *ss;                            /* pointer */
       e=d;    int   l1, l2;                         /* length counters */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    l1 = strlen(path );                   /* length of path */
       else {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         d=p/q;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         u=x+d;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         if (u-a < tol2 || b-u < tol2)      strcpy( name, path );               /* we got the fullname name because no directory */
           d=SIGN(tol1,xm-x);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     } else {      /* get current working directory */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      /*    extern  char* getcwd ( char *buf , int len);*/
     }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));        return( GLOCK_ERROR_GETCWD );
     fu=(*f)(u);      }
     if (fu <= fx) {      /* got dirc from getcwd*/
       if (u >= x) a=x; else b=x;      printf(" DIRC = %s \n",dirc);
       SHFT(v,w,x,u)    } else {                              /* strip direcotry from path */
         SHFT(fv,fw,fx,fu)      ss++;                               /* after this, the filename */
         } else {      l2 = strlen( ss );                  /* length of filename */
           if (u < x) a=u; else b=u;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
           if (fu <= fw || w == x) {      strcpy( name, ss );         /* save file name */
             v=w;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
             w=u;      dirc[l1-l2] = 0;                    /* add zero */
             fv=fw;      printf(" DIRC2 = %s \n",dirc);
             fw=fu;    }
           } else if (fu <= fv || v == x || v == w) {    /* We add a separator at the end of dirc if not exists */
             v=u;    l1 = strlen( dirc );                  /* length of directory */
             fv=fu;    if( dirc[l1-1] != DIRSEPARATOR ){
           }      dirc[l1] =  DIRSEPARATOR;
         }      dirc[l1+1] = 0; 
   }      printf(" DIRC3 = %s \n",dirc);
   nrerror("Too many iterations in brent");    }
   *xmin=x;    ss = strrchr( name, '.' );            /* find last / */
   return fx;    if (ss >0){
 }      ss++;
       strcpy(ext,ss);                     /* save extension */
 /****************** mnbrak ***********************/      l1= strlen( name);
       l2= strlen(ss)+1;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      strncpy( finame, name, l1-l2);
             double (*func)(double))      finame[l1-l2]= 0;
 {    }
   double ulim,u,r,q, dum;  
   double fu;    return( 0 );                          /* we're done */
    }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /******************************************/
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  void replace_back_to_slash(char *s, char*t)
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    int i;
   *fc=(*func)(*cx);    int lg=0;
   while (*fb > *fc) {    i=0;
     r=(*bx-*ax)*(*fb-*fc);    lg=strlen(t);
     q=(*bx-*cx)*(*fb-*fa);    for(i=0; i<= lg; i++) {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      (s[i] = t[i]);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      if (t[i]== '\\') s[i]='/';
     ulim=(*bx)+GLIMIT*(*cx-*bx);    }
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int nbocc(char *s, char occ)
       fu=(*func)(u);  {
       if (fu < *fc) {    int i,j=0;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    int lg=20;
           SHFT(*fb,*fc,fu,(*func)(u))    i=0;
           }    lg=strlen(s);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    for(i=0; i<= lg; i++) {
       u=ulim;    if  (s[i] == occ ) j++;
       fu=(*func)(u);    }
     } else {    return j;
       u=(*cx)+GOLD*(*cx-*bx);  }
       fu=(*func)(u);  
     }  void cutv(char *u,char *v, char*t, char occ)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       }       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 }       gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
 /*************** linmin ************************/    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 int ncom;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 double *pcom,*xicom;    }
 double (*nrfunc)(double []);  
      lg=strlen(t);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    for(j=0; j<p; j++) {
 {      (u[j] = t[j]);
   double brent(double ax, double bx, double cx,    }
                double (*f)(double), double tol, double *xmin);       u[p]='\0';
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,     for(j=0; j<= lg; j++) {
               double *fc, double (*func)(double));      if (j>=(p+1))(v[j-p-1] = t[j]);
   int j;    }
   double xx,xmin,bx,ax;  }
   double fx,fb,fa;  
    /********************** nrerror ********************/
   ncom=n;  
   pcom=vector(1,n);  void nrerror(char error_text[])
   xicom=vector(1,n);  {
   nrfunc=func;    fprintf(stderr,"ERREUR ...\n");
   for (j=1;j<=n;j++) {    fprintf(stderr,"%s\n",error_text);
     pcom[j]=p[j];    exit(EXIT_FAILURE);
     xicom[j]=xi[j];  }
   }  /*********************** vector *******************/
   ax=0.0;  double *vector(int nl, int nh)
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    double *v;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in vector");
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    return v-nl+NR_END;
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /************************ free vector ******************/
     p[j] += xi[j];  void free_vector(double*v, int nl, int nh)
   }  {
   free_vector(xicom,1,n);    free((FREE_ARG)(v+nl-NR_END));
   free_vector(pcom,1,n);  }
 }  
   /************************ivector *******************************/
 /*************** powell ************************/  int *ivector(long nl,long nh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   void linmin(double p[], double xi[], int n, double *fret,    if (!v) nrerror("allocation failure in ivector");
               double (*func)(double []));    return v-nl+NR_END;
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /******************free ivector **************************/
   double *xits;  void free_ivector(int *v, long nl, long nh)
   pt=vector(1,n);  {
   ptt=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  /************************lvector *******************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  long *lvector(long nl,long nh)
   for (*iter=1;;++(*iter)) {  {
     fp=(*fret);    long *v;
     ibig=0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     del=0.0;    if (!v) nrerror("allocation failure in ivector");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    return v-nl+NR_END;
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /******************free lvector **************************/
     for (i=1;i<=n;i++) {  void free_lvector(long *v, long nl, long nh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
 #endif  /******************* imatrix *******************************/
       printf("%d",i);fflush(stdout);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       linmin(p,xit,n,fret,func);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       if (fabs(fptt-(*fret)) > del) {  { 
         del=fabs(fptt-(*fret));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         ibig=i;    int **m; 
       }    
 #ifdef DEBUG    /* allocate pointers to rows */ 
       printf("%d %.12e",i,(*fret));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m += NR_END; 
         printf(" x(%d)=%.12e",j,xit[j]);    m -= nrl; 
       }    
       for(j=1;j<=n;j++)    
         printf(" p=%.12e",p[j]);    /* allocate rows and set pointers to them */ 
       printf("\n");    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     }    m[nrl] += NR_END; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl] -= ncl; 
 #ifdef DEBUG    
       int k[2],l;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       k[0]=1;    
       k[1]=-1;    /* return pointer to array of pointers to rows */ 
       printf("Max: %.12e",(*func)(p));    return m; 
       for (j=1;j<=n;j++)  } 
         printf(" %.12e",p[j]);  
       printf("\n");  /****************** free_imatrix *************************/
       for(l=0;l<=1;l++) {  void free_imatrix(m,nrl,nrh,ncl,nch)
         for (j=1;j<=n;j++) {        int **m;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        long nch,ncl,nrh,nrl; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);       /* free an int matrix allocated by imatrix() */ 
         }  { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       }    free((FREE_ARG) (m+nrl-NR_END)); 
 #endif  } 
   
   /******************* matrix *******************************/
       free_vector(xit,1,n);  double **matrix(long nrl, long nrh, long ncl, long nch)
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       free_vector(pt,1,n);    double **m;
       return;  
     }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if (!m) nrerror("allocation failure 1 in matrix()");
     for (j=1;j<=n;j++) {    m += NR_END;
       ptt[j]=2.0*p[j]-pt[j];    m -= nrl;
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     fptt=(*func)(ptt);    m[nrl] += NR_END;
     if (fptt < fp) {    m[nrl] -= ncl;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         linmin(p,xit,n,fret,func);    return m;
         for (j=1;j<=n;j++) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
           xi[j][ibig]=xi[j][n];     */
           xi[j][n]=xit[j];  }
         }  
 #ifdef DEBUG  /*************************free matrix ************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         for(j=1;j<=n;j++)  {
           printf(" %.12e",xit[j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         printf("\n");    free((FREE_ARG)(m+nrl-NR_END));
 #endif  }
       }  
     }  /******************* ma3x *******************************/
   }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 }  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 /**** Prevalence limit ****************/    double ***m;
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m += NR_END;
      matrix by transitions matrix until convergence is reached */    m -= nrl;
   
   int i, ii,j,k;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double min, max, maxmin, maxmax,sumnew=0.;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double **matprod2();    m[nrl] += NR_END;
   double **out, cov[NCOVMAX], **pmij();    m[nrl] -= ncl;
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl][ncl] += NR_END;
     }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
    cov[1]=1.;      m[nrl][j]=m[nrl][j-1]+nlay;
      
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for (i=nrl+1; i<=nrh; i++) {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     newm=savm;      for (j=ncl+1; j<=nch; j++) 
     /* Covariates have to be included here again */        m[i][j]=m[i][j-1]+nlay;
      cov[2]=agefin;    }
      return m; 
       for (k=1; k<=cptcovn;k++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    */
       }  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************************free ma3x ************************/
       for (k=1; k<=cptcovprod;k++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    free((FREE_ARG)(m+nrl-NR_END));
   }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /*************** function subdirf ***********/
     savm=oldm;  char *subdirf(char fileres[])
     oldm=newm;  {
     maxmax=0.;    /* Caution optionfilefiname is hidden */
     for(j=1;j<=nlstate;j++){    strcpy(tmpout,optionfilefiname);
       min=1.;    strcat(tmpout,"/"); /* Add to the right */
       max=0.;    strcat(tmpout,fileres);
       for(i=1; i<=nlstate; i++) {    return tmpout;
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /*************** function subdirf2 ***********/
         max=FMAX(max,prlim[i][j]);  char *subdirf2(char fileres[], char *preop)
         min=FMIN(min,prlim[i][j]);  {
       }    
       maxmin=max-min;    /* Caution optionfilefiname is hidden */
       maxmax=FMAX(maxmax,maxmin);    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     if(maxmax < ftolpl){    strcat(tmpout,preop);
       return prlim;    strcat(tmpout,fileres);
     }    return tmpout;
   }  }
 }  
   /*************** function subdirf3 ***********/
 /*************** transition probabilities ***************/  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    
 {    /* Caution optionfilefiname is hidden */
   double s1, s2;    strcpy(tmpout,optionfilefiname);
   /*double t34;*/    strcat(tmpout,"/");
   int i,j,j1, nc, ii, jj;    strcat(tmpout,preop);
     strcat(tmpout,preop2);
     for(i=1; i<= nlstate; i++){    strcat(tmpout,fileres);
     for(j=1; j<i;j++){    return tmpout;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /***************** f1dim *************************/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  extern int ncom; 
       }  extern double *pcom,*xicom;
       ps[i][j]=s2;  extern double (*nrfunc)(double []); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/   
     }  double f1dim(double x) 
     for(j=i+1; j<=nlstate+ndeath;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    int j; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double f;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    double *xt; 
       }   
       ps[i][j]=s2;    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   }    f=(*nrfunc)(xt); 
     /*ps[3][2]=1;*/    free_vector(xt,1,ncom); 
     return f; 
   for(i=1; i<= nlstate; i++){  } 
      s1=0;  
     for(j=1; j<i; j++)  /*****************brent *************************/
       s1+=exp(ps[i][j]);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     for(j=i+1; j<=nlstate+ndeath; j++)  { 
       s1+=exp(ps[i][j]);    int iter; 
     ps[i][i]=1./(s1+1.);    double a,b,d,etemp;
     for(j=1; j<i; j++)    double fu,fv,fw,fx;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double ftemp;
     for(j=i+1; j<=nlstate+ndeath; j++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double e=0.0; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */   
   } /* end i */    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    x=w=v=bx; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    fw=fv=fx=(*f)(x); 
       ps[ii][jj]=0;    for (iter=1;iter<=ITMAX;iter++) { 
       ps[ii][ii]=1;      xm=0.5*(a+b); 
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  #ifdef DEBUG
     for(jj=1; jj<= nlstate+ndeath; jj++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      printf("%lf ",ps[ii][jj]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
    }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     printf("\n ");  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     printf("\n ");printf("%lf ",cov[2]);*/        *xmin=x; 
 /*        return fx; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } 
   goto end;*/      ftemp=fu;
     return ps;      if (fabs(e) > tol1) { 
 }        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
 /**************** Product of 2 matrices ******************/        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        if (q > 0.0) p = -p; 
 {        q=fabs(q); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        etemp=e; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        e=d; 
   /* in, b, out are matrice of pointers which should have been initialized        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      before: only the contents of out is modified. The function returns          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      a pointer to pointers identical to out */        else { 
   long i, j, k;          d=p/q; 
   for(i=nrl; i<= nrh; i++)          u=x+d; 
     for(k=ncolol; k<=ncoloh; k++)          if (u-a < tol2 || b-u < tol2) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            d=SIGN(tol1,xm-x); 
         out[i][k] +=in[i][j]*b[j][k];        } 
       } else { 
   return out;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
 /************* Higher Matrix Product ***************/      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        SHFT(v,w,x,u) 
 {          SHFT(fv,fw,fx,fu) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          } else { 
      duration (i.e. until            if (u < x) a=u; else b=u; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            if (fu <= fw || w == x) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step              v=w; 
      (typically every 2 years instead of every month which is too big).              w=u; 
      Model is determined by parameters x and covariates have to be              fv=fw; 
      included manually here.              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
      */              v=u; 
               fv=fu; 
   int i, j, d, h, k;            } 
   double **out, cov[NCOVMAX];          } 
   double **newm;    } 
     nrerror("Too many iterations in brent"); 
   /* Hstepm could be zero and should return the unit matrix */    *xmin=x; 
   for (i=1;i<=nlstate+ndeath;i++)    return fx; 
     for (j=1;j<=nlstate+ndeath;j++){  } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /****************** mnbrak ***********************/
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for(h=1; h <=nhstepm; h++){              double (*func)(double)) 
     for(d=1; d <=hstepm; d++){  { 
       newm=savm;    double ulim,u,r,q, dum;
       /* Covariates have to be included here again */    double fu; 
       cov[1]=1.;   
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    *fa=(*func)(*ax); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    *fb=(*func)(*bx); 
       for (k=1; k<=cptcovage;k++)    if (*fb > *fa) { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      SHFT(dum,*ax,*bx,dum) 
       for (k=1; k<=cptcovprod;k++)        SHFT(dum,*fb,*fa,dum) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    while (*fb > *fc) { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      r=(*bx-*ax)*(*fb-*fc); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      q=(*bx-*cx)*(*fb-*fa); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       savm=oldm;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       oldm=newm;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     }      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(i=1; i<=nlstate+ndeath; i++)        fu=(*func)(u); 
       for(j=1;j<=nlstate+ndeath;j++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         po[i][j][h]=newm[i][j];        fu=(*func)(u); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        if (fu < *fc) { 
          */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       }            SHFT(*fb,*fc,fu,(*func)(u)) 
   } /* end h */            } 
   return po;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 }        u=ulim; 
         fu=(*func)(u); 
       } else { 
 /*************** log-likelihood *************/        u=(*cx)+GOLD*(*cx-*bx); 
 double func( double *x)        fu=(*func)(u); 
 {      } 
   int i, ii, j, k, mi, d, kk;      SHFT(*ax,*bx,*cx,u) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        SHFT(*fa,*fb,*fc,fu) 
   double **out;        } 
   double sw; /* Sum of weights */  } 
   double lli; /* Individual log likelihood */  
   long ipmx;  /*************** linmin ************************/
   /*extern weight */  
   /* We are differentiating ll according to initial status */  int ncom; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  double *pcom,*xicom;
   /*for(i=1;i<imx;i++)  double (*nrfunc)(double []); 
     printf(" %d\n",s[4][i]);   
   */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   cov[1]=1.;  { 
     double brent(double ax, double bx, double cx, 
   for(k=1; k<=nlstate; k++) ll[k]=0.;                 double (*f)(double), double tol, double *xmin); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double f1dim(double x); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for(mi=1; mi<= wav[i]-1; mi++){                double *fc, double (*func)(double)); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    int j; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double xx,xmin,bx,ax; 
       for(d=0; d<dh[mi][i]; d++){    double fx,fb,fa;
         newm=savm;   
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    ncom=n; 
         for (kk=1; kk<=cptcovage;kk++) {    pcom=vector(1,n); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    xicom=vector(1,n); 
         }    nrfunc=func; 
            for (j=1;j<=n;j++) { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      pcom[j]=p[j]; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      xicom[j]=xi[j]; 
         savm=oldm;    } 
         oldm=newm;    ax=0.0; 
            xx=1.0; 
            mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       } /* end mult */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
        #ifdef DEBUG
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ipmx +=1;  #endif
       sw += weight[i];    for (j=1;j<=n;j++) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      xi[j] *= xmin; 
     } /* end of wave */      p[j] += xi[j]; 
   } /* end of individual */    } 
     free_vector(xicom,1,n); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    free_vector(pcom,1,n); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  char *asc_diff_time(long time_sec, char ascdiff[])
 }  {
     long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
 /*********** Maximum Likelihood Estimation ***************/    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    sec_left = (sec_left) %(60*60);
 {    minutes = (sec_left) /60;
   int i,j, iter;    sec_left = (sec_left) % (60);
   double **xi,*delti;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double fret;    return ascdiff;
   xi=matrix(1,npar,1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /*************** powell ************************/
       xi[i][j]=(i==j ? 1.0 : 0.0);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   printf("Powell\n");              double (*func)(double [])) 
   powell(p,xi,npar,ftol,&iter,&fret,func);  { 
     void linmin(double p[], double xi[], int n, double *fret, 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));                double (*func)(double [])); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
 }    double fp,fptt;
     double *xits;
 /**** Computes Hessian and covariance matrix ***/    int niterf, itmp;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {    pt=vector(1,n); 
   double  **a,**y,*x,pd;    ptt=vector(1,n); 
   double **hess;    xit=vector(1,n); 
   int i, j,jk;    xits=vector(1,n); 
   int *indx;    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   double hessii(double p[], double delta, int theta, double delti[]);    for (*iter=1;;++(*iter)) { 
   double hessij(double p[], double delti[], int i, int j);      fp=(*fret); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      ibig=0; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      del=0.0; 
       last_time=curr_time;
   hess=matrix(1,npar,1,npar);      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   printf("\nCalculation of the hessian matrix. Wait...\n");      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   for (i=1;i<=npar;i++){      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
     printf("%d",i);fflush(stdout);      */
     hess[i][i]=hessii(p,ftolhess,i,delti);     for (i=1;i<=n;i++) {
     /*printf(" %f ",p[i]);*/        printf(" %d %.12f",i, p[i]);
     /*printf(" %lf ",hess[i][i]);*/        fprintf(ficlog," %d %.12lf",i, p[i]);
   }        fprintf(ficrespow," %.12lf", p[i]);
        }
   for (i=1;i<=npar;i++) {      printf("\n");
     for (j=1;j<=npar;j++)  {      fprintf(ficlog,"\n");
       if (j>i) {      fprintf(ficrespow,"\n");fflush(ficrespow);
         printf(".%d%d",i,j);fflush(stdout);      if(*iter <=3){
         hess[i][j]=hessij(p,delti,i,j);        tm = *localtime(&curr_time.tv_sec);
         hess[j][i]=hess[i][j];            strcpy(strcurr,asctime(&tm));
         /*printf(" %lf ",hess[i][j]);*/  /*       asctime_r(&tm,strcurr); */
       }        forecast_time=curr_time; 
     }        itmp = strlen(strcurr);
   }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   printf("\n");          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          for(niterf=10;niterf<=30;niterf+=10){
   a=matrix(1,npar,1,npar);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   y=matrix(1,npar,1,npar);          tmf = *localtime(&forecast_time.tv_sec);
   x=vector(1,npar);  /*      asctime_r(&tmf,strfor); */
   indx=ivector(1,npar);          strcpy(strfor,asctime(&tmf));
   for (i=1;i<=npar;i++)          itmp = strlen(strfor);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          if(strfor[itmp-1]=='\n')
   ludcmp(a,npar,indx,&pd);          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (j=1;j<=npar;j++) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;      }
     lubksb(a,npar,indx,x);      for (i=1;i<=n;i++) { 
     for (i=1;i<=npar;i++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       matcov[i][j]=x[i];        fptt=(*fret); 
     }  #ifdef DEBUG
   }        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   printf("\n#Hessian matrix#\n");  #endif
   for (i=1;i<=npar;i++) {        printf("%d",i);fflush(stdout);
     for (j=1;j<=npar;j++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
       printf("%.3e ",hess[i][j]);        linmin(p,xit,n,fret,func); 
     }        if (fabs(fptt-(*fret)) > del) { 
     printf("\n");          del=fabs(fptt-(*fret)); 
   }          ibig=i; 
         } 
   /* Recompute Inverse */  #ifdef DEBUG
   for (i=1;i<=npar;i++)        printf("%d %.12e",i,(*fret));
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        fprintf(ficlog,"%d %.12e",i,(*fret));
   ludcmp(a,npar,indx,&pd);        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   /*  printf("\n#Hessian matrix recomputed#\n");          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for (j=1;j<=npar;j++) {        }
     for (i=1;i<=npar;i++) x[i]=0;        for(j=1;j<=n;j++) {
     x[j]=1;          printf(" p=%.12e",p[j]);
     lubksb(a,npar,indx,x);          fprintf(ficlog," p=%.12e",p[j]);
     for (i=1;i<=npar;i++){        }
       y[i][j]=x[i];        printf("\n");
       printf("%.3e ",y[i][j]);        fprintf(ficlog,"\n");
     }  #endif
     printf("\n");      } 
   }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   */  #ifdef DEBUG
         int k[2],l;
   free_matrix(a,1,npar,1,npar);        k[0]=1;
   free_matrix(y,1,npar,1,npar);        k[1]=-1;
   free_vector(x,1,npar);        printf("Max: %.12e",(*func)(p));
   free_ivector(indx,1,npar);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   free_matrix(hess,1,npar,1,npar);        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
 }        }
         printf("\n");
 /*************** hessian matrix ****************/        fprintf(ficlog,"\n");
 double hessii( double x[], double delta, int theta, double delti[])        for(l=0;l<=1;l++) {
 {          for (j=1;j<=n;j++) {
   int i;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int l=1, lmax=20;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double k1,k2;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double p2[NPARMAX+1];          }
   double res;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double fx;        }
   int k=0,kmax=10;  #endif
   double l1;  
   
   fx=func(x);        free_vector(xit,1,n); 
   for (i=1;i<=npar;i++) p2[i]=x[i];        free_vector(xits,1,n); 
   for(l=0 ; l <=lmax; l++){        free_vector(ptt,1,n); 
     l1=pow(10,l);        free_vector(pt,1,n); 
     delts=delt;        return; 
     for(k=1 ; k <kmax; k=k+1){      } 
       delt = delta*(l1*k);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       p2[theta]=x[theta] +delt;      for (j=1;j<=n;j++) { 
       k1=func(p2)-fx;        ptt[j]=2.0*p[j]-pt[j]; 
       p2[theta]=x[theta]-delt;        xit[j]=p[j]-pt[j]; 
       k2=func(p2)-fx;        pt[j]=p[j]; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      fptt=(*func)(ptt); 
            if (fptt < fp) { 
 #ifdef DEBUG        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        if (t < 0.0) { 
 #endif          linmin(p,xit,n,fret,func); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          for (j=1;j<=n;j++) { 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            xi[j][ibig]=xi[j][n]; 
         k=kmax;            xi[j][n]=xit[j]; 
       }          }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  #ifdef DEBUG
         k=kmax; l=lmax*10.;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          for(j=1;j<=n;j++){
         delts=delt;            printf(" %.12e",xit[j]);
       }            fprintf(ficlog," %.12e",xit[j]);
     }          }
   }          printf("\n");
   delti[theta]=delts;          fprintf(ficlog,"\n");
   return res;  #endif
          }
 }      } 
     } 
 double hessij( double x[], double delti[], int thetai,int thetaj)  } 
 {  
   int i;  /**** Prevalence limit (stable prevalence)  ****************/
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double p2[NPARMAX+1];  {
   int k;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   fx=func(x);  
   for (k=1; k<=2; k++) {    int i, ii,j,k;
     for (i=1;i<=npar;i++) p2[i]=x[i];    double min, max, maxmin, maxmax,sumnew=0.;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **matprod2();
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double **out, cov[NCOVMAX], **pmij();
     k1=func(p2)-fx;    double **newm;
      double agefin, delaymax=50 ; /* Max number of years to converge */
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for (ii=1;ii<=nlstate+ndeath;ii++)
     k2=func(p2)-fx;      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]-delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;     cov[1]=1.;
     
     p2[thetai]=x[thetai]-delti[thetai]/k;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     k4=func(p2)-fx;      newm=savm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      /* Covariates have to be included here again */
 #ifdef DEBUG       cov[2]=agefin;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    
 #endif        for (k=1; k<=cptcovn;k++) {
   }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   return res;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /************** Inverse of matrix **************/        for (k=1; k<=cptcovprod;k++)
 void ludcmp(double **a, int n, int *indx, double *d)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 {  
   int i,imax,j,k;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   double big,dum,sum,temp;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double *vv;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   vv=vector(1,n);  
   *d=1.0;      savm=oldm;
   for (i=1;i<=n;i++) {      oldm=newm;
     big=0.0;      maxmax=0.;
     for (j=1;j<=n;j++)      for(j=1;j<=nlstate;j++){
       if ((temp=fabs(a[i][j])) > big) big=temp;        min=1.;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        max=0.;
     vv[i]=1.0/big;        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
   for (j=1;j<=n;j++) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for (i=1;i<j;i++) {          prlim[i][j]= newm[i][j]/(1-sumnew);
       sum=a[i][j];          max=FMAX(max,prlim[i][j]);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          min=FMIN(min,prlim[i][j]);
       a[i][j]=sum;        }
     }        maxmin=max-min;
     big=0.0;        maxmax=FMAX(maxmax,maxmin);
     for (i=j;i<=n;i++) {      }
       sum=a[i][j];      if(maxmax < ftolpl){
       for (k=1;k<j;k++)        return prlim;
         sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;    }
       if ( (dum=vv[i]*fabs(sum)) >= big) {  }
         big=dum;  
         imax=i;  /*************** transition probabilities ***************/ 
       }  
     }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     if (j != imax) {  {
       for (k=1;k<=n;k++) {    double s1, s2;
         dum=a[imax][k];    /*double t34;*/
         a[imax][k]=a[j][k];    int i,j,j1, nc, ii, jj;
         a[j][k]=dum;  
       }      for(i=1; i<= nlstate; i++){
       *d = -(*d);        for(j=1; j<i;j++){
       vv[imax]=vv[j];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }            /*s2 += param[i][j][nc]*cov[nc];*/
     indx[j]=imax;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     if (j != n) {          }
       dum=1.0/(a[j][j]);          ps[i][j]=s2;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     }        }
   }        for(j=i+1; j<=nlstate+ndeath;j++){
   free_vector(vv,1,n);  /* Doesn't work */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 ;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           }
 void lubksb(double **a, int n, int *indx, double b[])          ps[i][j]=s2;
 {        }
   int i,ii=0,ip,j;      }
   double sum;      /*ps[3][2]=1;*/
        
   for (i=1;i<=n;i++) {      for(i=1; i<= nlstate; i++){
     ip=indx[i];        s1=0;
     sum=b[ip];        for(j=1; j<i; j++)
     b[ip]=b[i];          s1+=exp(ps[i][j]);
     if (ii)        for(j=i+1; j<=nlstate+ndeath; j++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          s1+=exp(ps[i][j]);
     else if (sum) ii=i;        ps[i][i]=1./(s1+1.);
     b[i]=sum;        for(j=1; j<i; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=n;i>=1;i--) {        for(j=i+1; j<=nlstate+ndeath; j++)
     sum=b[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     b[i]=sum/a[i][i];      } /* end i */
   }      
 }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
 /************ Frequencies ********************/          ps[ii][jj]=0;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          ps[ii][ii]=1;
 {  /* Some frequencies */        }
        }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      
   double ***freq; /* Frequencies */  
   double *pp;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double pos, k2, dateintsum=0,k2cpt=0;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   FILE *ficresp;  /*         printf("ddd %lf ",ps[ii][jj]); */
   char fileresp[FILENAMELENGTH];  /*       } */
    /*       printf("\n "); */
   pp=vector(1,nlstate);  /*        } */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*        printf("\n ");printf("%lf ",cov[2]); */
   strcpy(fileresp,"p");         /*
   strcat(fileresp,fileres);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   if((ficresp=fopen(fileresp,"w"))==NULL) {        goto end;*/
     printf("Problem with prevalence resultfile: %s\n", fileresp);      return ps;
     exit(0);  }
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /**************** Product of 2 matrices ******************/
   j1=0;  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for(k1=1; k1<=j;k1++){    /* in, b, out are matrice of pointers which should have been initialized 
    for(i1=1; i1<=ncodemax[k1];i1++){       before: only the contents of out is modified. The function returns
        j1++;       a pointer to pointers identical to out */
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    long i, j, k;
          scanf("%d", i);*/    for(i=nrl; i<= nrh; i++)
         for (i=-1; i<=nlstate+ndeath; i++)        for(k=ncolol; k<=ncoloh; k++)
          for (jk=-1; jk<=nlstate+ndeath; jk++)          for(j=ncl,out[i][k]=0.; j<=nch; j++)
            for(m=agemin; m <= agemax+3; m++)          out[i][k] +=in[i][j]*b[j][k];
              freq[i][jk][m]=0;  
     return out;
         dateintsum=0;  }
         k2cpt=0;  
        for (i=1; i<=imx; i++) {  
          bool=1;  /************* Higher Matrix Product ***************/
          if  (cptcovn>0) {  
            for (z1=1; z1<=cptcoveff; z1++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  {
                bool=0;    /* Computes the transition matrix starting at age 'age' over 
          }       'nhstepm*hstepm*stepm' months (i.e. until
          if (bool==1) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
            for(m=firstpass; m<=lastpass; m++){       nhstepm*hstepm matrices. 
              k2=anint[m][i]+(mint[m][i]/12.);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
              if ((k2>=dateprev1) && (k2<=dateprev2)) {       (typically every 2 years instead of every month which is too big 
                if(agev[m][i]==0) agev[m][i]=agemax+1;       for the memory).
                if(agev[m][i]==1) agev[m][i]=agemax+2;       Model is determined by parameters x and covariates have to be 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       included manually here. 
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {       */
                  dateintsum=dateintsum+k2;  
                  k2cpt++;    int i, j, d, h, k;
                }    double **out, cov[NCOVMAX];
     double **newm;
              }  
            }    /* Hstepm could be zero and should return the unit matrix */
          }    for (i=1;i<=nlstate+ndeath;i++)
        }      for (j=1;j<=nlstate+ndeath;j++){
                oldm[i][j]=(i==j ? 1.0 : 0.0);
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
         if  (cptcovn>0) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          fprintf(ficresp, "\n#********** Variable ");    for(h=1; h <=nhstepm; h++){
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(d=1; d <=hstepm; d++){
        fprintf(ficresp, "**********\n#");        newm=savm;
         }        /* Covariates have to be included here again */
        for(i=1; i<=nlstate;i++)        cov[1]=1.;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
        fprintf(ficresp, "\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                for (k=1; k<=cptcovage;k++)
   for(i=(int)agemin; i <= (int)agemax+3; i++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if(i==(int)agemax+3)        for (k=1; k<=cptcovprod;k++)
       printf("Total");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     else  
       printf("Age %d", i);  
     for(jk=1; jk <=nlstate ; jk++){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         pp[jk] += freq[jk][m][i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(jk=1; jk <=nlstate ; jk++){        savm=oldm;
       for(m=-1, pos=0; m <=0 ; m++)        oldm=newm;
         pos += freq[jk][m][i];      }
       if(pp[jk]>=1.e-10)      for(i=1; i<=nlstate+ndeath; i++)
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for(j=1;j<=nlstate+ndeath;j++) {
       else          po[i][j][h]=newm[i][j];
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     }           */
         }
      for(jk=1; jk <=nlstate ; jk++){    } /* end h */
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    return po;
         pp[jk] += freq[jk][m][i];  }
      }  
   
     for(jk=1,pos=0; jk <=nlstate ; jk++)  /*************** log-likelihood *************/
       pos += pp[jk];  double func( double *x)
     for(jk=1; jk <=nlstate ; jk++){  {
       if(pos>=1.e-5)    int i, ii, j, k, mi, d, kk;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       else    double **out;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double sw; /* Sum of weights */
       if( i <= (int) agemax){    double lli; /* Individual log likelihood */
         if(pos>=1.e-5){    int s1, s2;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    double bbh, survp;
           probs[i][jk][j1]= pp[jk]/pos;    long ipmx;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    /*extern weight */
         }    /* We are differentiating ll according to initial status */
       else    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
     }    */
     for(jk=-1; jk <=nlstate+ndeath; jk++)    cov[1]=1.;
       for(m=-1; m <=nlstate+ndeath; m++)  
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     if(i <= (int) agemax)  
       fprintf(ficresp,"\n");    if(mle==1){
     printf("\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
  }          for (ii=1;ii<=nlstate+ndeath;ii++)
   dateintmean=dateintsum/k2cpt;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fclose(ficresp);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            }
   free_vector(pp,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   /* End of Freq */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Prevalence ********************/            }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {  /* Some frequencies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            oldm=newm;
   double ***freq; /* Frequencies */          } /* end mult */
   double *pp;        
   double pos, k2;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
   pp=vector(1,nlstate);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   j1=0;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
   j=cptcoveff;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
  for(k1=1; k1<=j;k1++){           * For stepm > 1 the results are less biased than in previous versions. 
     for(i1=1; i1<=ncodemax[k1];i1++){           */
       j1++;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)            bbh=(double)bh[mi][i]/(double)stepm; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)            /* bias bh is positive if real duration
           for(m=agemin; m <= agemax+3; m++)           * is higher than the multiple of stepm and negative otherwise.
             freq[i][jk][m]=0;           */
                /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (i=1; i<=imx; i++) {          if( s2 > nlstate){ 
         bool=1;            /* i.e. if s2 is a death state and if the date of death is known 
         if  (cptcovn>0) {               then the contribution to the likelihood is the probability to 
           for (z1=1; z1<=cptcoveff; z1++)               die between last step unit time and current  step unit time, 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])               which is also equal to probability to die before dh 
               bool=0;               minus probability to die before dh-stepm . 
         }               In version up to 0.92 likelihood was computed
         if (bool==1) {          as if date of death was unknown. Death was treated as any other
           for(m=firstpass; m<=lastpass; m++){          health state: the date of the interview describes the actual state
             k2=anint[m][i]+(mint[m][i]/12.);          and not the date of a change in health state. The former idea was
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          to consider that at each interview the state was recorded
               if(agev[m][i]==0) agev[m][i]=agemax+1;          (healthy, disable or death) and IMaCh was corrected; but when we
               if(agev[m][i]==1) agev[m][i]=agemax+2;          introduced the exact date of death then we should have modified
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          the contribution of an exact death to the likelihood. This new
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */          contribution is smaller and very dependent of the step unit
             }          stepm. It is no more the probability to die between last interview
           }          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
       }          probability to die within a month. Thanks to Chris
         for(i=(int)agemin; i <= (int)agemax+3; i++){          Jackson for correcting this bug.  Former versions increased
           for(jk=1; jk <=nlstate ; jk++){          mortality artificially. The bad side is that we add another loop
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          which slows down the processing. The difference can be up to 10%
               pp[jk] += freq[jk][m][i];          lower mortality.
           }            */
           for(jk=1; jk <=nlstate ; jk++){            lli=log(out[s1][s2] - savm[s1][s2]);
             for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  
         }          } else if  (s2==-2) {
                    for (j=1,survp=0. ; j<=nlstate; j++) 
          for(jk=1; jk <=nlstate ; jk++){              survp += out[s1][j];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            lli= survp;
              pp[jk] += freq[jk][m][i];          }
          }          
                    else if  (s2==-4) {
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            for (j=3,survp=0. ; j<=nlstate; j++) 
               survp += out[s1][j];
          for(jk=1; jk <=nlstate ; jk++){                      lli= survp;
            if( i <= (int) agemax){          }
              if(pos>=1.e-5){          
                probs[i][jk][j1]= pp[jk]/pos;          else if  (s2==-5) {
              }            for (j=1,survp=0. ; j<=2; j++) 
            }              survp += out[s1][j];
          }            lli= survp;
                    }
         }  
     }  
   }          else{
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } 
   free_vector(pp,1,nlstate);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
 }  /* End of Freq */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
 /************* Waves Concatenation ***************/          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        } /* end of wave */
 {      } /* end of individual */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    }  else if(mle==2){
      Death is a valid wave (if date is known).      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for(mi=1; mi<= wav[i]-1; mi++){
      and mw[mi+1][i]. dh depends on stepm.          for (ii=1;ii<=nlstate+ndeath;ii++)
      */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, mi, m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            }
      double sum=0., jmean=0.;*/          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
   int j, k=0,jk, ju, jl;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double sum=0.;            for (kk=1; kk<=cptcovage;kk++) {
   jmin=1e+5;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmax=-1;            }
   jmean=0.;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=imx; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     mi=0;            savm=oldm;
     m=firstpass;            oldm=newm;
     while(s[m][i] <= nlstate){          } /* end mult */
       if(s[m][i]>=1)        
         mw[++mi][i]=m;          s1=s[mw[mi][i]][i];
       if(m >=lastpass)          s2=s[mw[mi+1][i]][i];
         break;          bbh=(double)bh[mi][i]/(double)stepm; 
       else          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         m++;          ipmx +=1;
     }/* end while */          sw += weight[i];
     if (s[m][i] > nlstate){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       mi++;     /* Death is another wave */        } /* end of wave */
       /* if(mi==0)  never been interviewed correctly before death */      } /* end of individual */
          /* Only death is a correct wave */    }  else if(mle==3){  /* exponential inter-extrapolation */
       mw[mi][i]=m;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     wav[i]=mi;          for (ii=1;ii<=nlstate+ndeath;ii++)
     if(mi==0)            for (j=1;j<=nlstate+ndeath;j++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for(i=1; i<=imx; i++){          for(d=0; d<dh[mi][i]; d++){
     for(mi=1; mi<wav[i];mi++){            newm=savm;
       if (stepm <=0)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         dh[mi][i]=1;            for (kk=1; kk<=cptcovage;kk++) {
       else{              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if (s[mw[mi+1][i]][i] > nlstate) {            }
           if (agedc[i] < 2*AGESUP) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if(j==0) j=1;  /* Survives at least one month after exam */            savm=oldm;
           k=k+1;            oldm=newm;
           if (j >= jmax) jmax=j;          } /* end mult */
           if (j <= jmin) jmin=j;        
           sum=sum+j;          s1=s[mw[mi][i]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          s2=s[mw[mi+1][i]][i];
           }          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         else{          ipmx +=1;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          sw += weight[i];
           k=k+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (j >= jmax) jmax=j;        } /* end of wave */
           else if (j <= jmin)jmin=j;      } /* end of individual */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           sum=sum+j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         jk= j/stepm;        for(mi=1; mi<= wav[i]-1; mi++){
         jl= j -jk*stepm;          for (ii=1;ii<=nlstate+ndeath;ii++)
         ju= j -(jk+1)*stepm;            for (j=1;j<=nlstate+ndeath;j++){
         if(jl <= -ju)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=jk;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         else            }
           dh[mi][i]=jk+1;          for(d=0; d<dh[mi][i]; d++){
         if(dh[mi][i]==0)            newm=savm;
           dh[mi][i]=1; /* At least one step */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   jmean=sum/k;          
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*********** Tricode ****************************/            savm=oldm;
 void tricode(int *Tvar, int **nbcode, int imx)            oldm=newm;
 {          } /* end mult */
   int Ndum[20],ij=1, k, j, i;        
   int cptcode=0;          s1=s[mw[mi][i]][i];
   cptcoveff=0;          s2=s[mw[mi+1][i]][i];
            if( s2 > nlstate){ 
   for (k=0; k<19; k++) Ndum[k]=0;            lli=log(out[s1][s2] - savm[s1][s2]);
   for (k=1; k<=7; k++) ncodemax[k]=0;          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          }
     for (i=1; i<=imx; i++) {          ipmx +=1;
       ij=(int)(covar[Tvar[j]][i]);          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if (ij > cptcode) cptcode=ij;        } /* end of wave */
     }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     for (i=0; i<=cptcode; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if(Ndum[i]!=0) ncodemax[j]++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     ij=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1; i<=ncodemax[j]; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=0; k<=19; k++) {            }
         if (Ndum[k] != 0) {          for(d=0; d<dh[mi][i]; d++){
           nbcode[Tvar[j]][ij]=k;            newm=savm;
           ij++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         if (ij > ncodemax[j]) break;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }              }
     }          
   }              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (k=0; k<19; k++) Ndum[k]=0;            savm=oldm;
             oldm=newm;
  for (i=1; i<=ncovmodel-2; i++) {          } /* end mult */
       ij=Tvar[i];        
       Ndum[ij]++;          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
  ij=1;          ipmx +=1;
  for (i=1; i<=10; i++) {          sw += weight[i];
    if((Ndum[i]!=0) && (i<=ncovcol)){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      Tvaraff[ij]=i;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      ij++;        } /* end of wave */
    }      } /* end of individual */
  }    } /* End of if */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     cptcoveff=ij-1;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
 /*********** Health Expectancies ****************/  }
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  /*************** log-likelihood *************/
 {  double funcone( double *x)
   /* Health expectancies */  {
   int i, j, nhstepm, hstepm, h, nstepm, k;    /* Same as likeli but slower because of a lot of printf and if */
   double age, agelim,hf;    int i, ii, j, k, mi, d, kk;
   double ***p3mat;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
   fprintf(ficreseij,"# Health expectancies\n");    double lli; /* Individual log likelihood */
   fprintf(ficreseij,"# Age");    double llt;
   for(i=1; i<=nlstate;i++)    int s1, s2;
     for(j=1; j<=nlstate;j++)    double bbh, survp;
       fprintf(ficreseij," %1d-%1d",i,j);    /*extern weight */
   fprintf(ficreseij,"\n");    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   k=1;             /* For example stepm=6 months */    /*for(i=1;i<imx;i++) 
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */      printf(" %d\n",s[4][i]);
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */    */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    cov[1]=1.;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    for(k=1; k<=nlstate; k++) ll[k]=0.;
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      survival function given by stepm (the optimization length). Unfortunately it      for(mi=1; mi<= wav[i]-1; mi++){
      means that if the survival funtion is printed only each two years of age and if        for (ii=1;ii<=nlstate+ndeath;ii++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for (j=1;j<=nlstate+ndeath;j++){
      results. So we changed our mind and took the option of the best precision.            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */          }
         for(d=0; d<dh[mi][i]; d++){
   agelim=AGESUP;          newm=savm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* nhstepm age range expressed in number of stepm */          for (kk=1; kk<=cptcovage;kk++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          }
     /* if (stepm >= YEARM) hstepm=1;*/          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          savm=oldm;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          oldm=newm;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        } /* end mult */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        s1=s[mw[mi][i]][i];
     for(i=1; i<=nlstate;i++)        s2=s[mw[mi+1][i]][i];
       for(j=1; j<=nlstate;j++)        bbh=(double)bh[mi][i]/(double)stepm; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        /* bias is positive if real duration
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;         * is higher than the multiple of stepm and negative otherwise.
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/         */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     fprintf(ficreseij,"%3.0f",age );          lli=log(out[s1][s2] - savm[s1][s2]);
     for(i=1; i<=nlstate;i++)        } else if (mle==1){
       for(j=1; j<=nlstate;j++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);        } else if(mle==2){
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     fprintf(ficreseij,"\n");        } else if(mle==3){  /* exponential inter-extrapolation */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
 }          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 /************ Variance ******************/          lli=log(out[s1][s2]); /* Original formula */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        } /* End of if */
 {        ipmx +=1;
   /* Variance of health expectancies */        sw += weight[i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **newm;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **dnewm,**doldm;        if(globpr){
   int i, j, nhstepm, hstepm, h;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   int k, cptcode;   %10.6f %10.6f %10.6f ", \
   double *xp;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double **gp, **gm;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double ***gradg, ***trgradg;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double ***p3mat;            llt +=ll[k]*gipmx/gsw;
   double age,agelim;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   int theta;          }
           fprintf(ficresilk," %10.6f\n", -llt);
    fprintf(ficresvij,"# Covariances of life expectancies\n");        }
   fprintf(ficresvij,"# Age");      } /* end of wave */
   for(i=1; i<=nlstate;i++)    } /* end of individual */
     for(j=1; j<=nlstate;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficresvij,"\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   xp=vector(1,npar);      gipmx=ipmx;
   dnewm=matrix(1,nlstate,1,npar);      gsw=sw;
   doldm=matrix(1,nlstate,1,nlstate);    }
      return -l;
   hstepm=1*YEARM; /* Every year of age */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*************** function likelione ***********/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     if (stepm >= YEARM) hstepm=1;  {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* This routine should help understanding what is done with 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       the selection of individuals/waves and
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);       to check the exact contribution to the likelihood.
     gp=matrix(0,nhstepm,1,nlstate);       Plotting could be done.
     gm=matrix(0,nhstepm,1,nlstate);     */
     int k;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    if(*globpri !=0){ /* Just counts and sums, no printings */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      strcpy(fileresilk,"ilk"); 
       }      strcat(fileresilk,fileres);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       if (popbased==1) {      }
         for(i=1; i<=nlstate;i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           prlim[i][i]=probs[(int)age][i][ij];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
       for(j=1; j<= nlstate; j++){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         for(h=0; h<=nhstepm; h++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    *fretone=(*funcone)(p);
       }    if(*globpri !=0){
          fclose(ficresilk);
       for(i=1; i<=npar; i++) /* Computes gradient */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fflush(fichtm); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    return;
    }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  /*********** Maximum Likelihood Estimation ***************/
       }  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(j=1; j<= nlstate; j++){  {
         for(h=0; h<=nhstepm; h++){    int i,j, iter;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double **xi;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double fret;
         }    double fretone; /* Only one call to likelihood */
       }    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate; j++)    for (i=1;i<=npar;i++)
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        xi[i][j]=(i==j ? 1.0 : 0.0);
         }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     } /* End theta */    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
     for(h=0; h<=nhstepm; h++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(j=1; j<=nlstate;j++)    }
         for(theta=1; theta <=npar; theta++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           trgradg[h][j][theta]=gradg[h][theta][j];    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     for(i=1;i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       for(j=1;j<=nlstate;j++)    fprintf(ficrespow,"\n");
         vareij[i][j][(int)age] =0.;  
     for(h=0;h<=nhstepm;h++){    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    free_matrix(xi,1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    fclose(ficrespow);
         for(i=1;i<=nlstate;i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           for(j=1;j<=nlstate;j++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             vareij[i][j][(int)age] += doldm[i][j];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }  
     }  }
     h=1;  
     if (stepm >= YEARM) h=stepm/YEARM;  /**** Computes Hessian and covariance matrix ***/
     fprintf(ficresvij,"%.0f ",age );  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for(i=1; i<=nlstate;i++)  {
       for(j=1; j<=nlstate;j++){    double  **a,**y,*x,pd;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    double **hess;
       }    int i, j,jk;
     fprintf(ficresvij,"\n");    int *indx;
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   } /* End age */    double gompertz(double p[]);
      hess=matrix(1,npar,1,npar);
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
 }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
 /************ Variance of prevlim ******************/     
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 {      
   /* Variance of prevalence limit */      /*  printf(" %f ",p[i]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double **newm;    }
   double **dnewm,**doldm;    
   int i, j, nhstepm, hstepm;    for (i=1;i<=npar;i++) {
   int k, cptcode;      for (j=1;j<=npar;j++)  {
   double *xp;        if (j>i) { 
   double *gp, *gm;          printf(".%d%d",i,j);fflush(stdout);
   double **gradg, **trgradg;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double age,agelim;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   int theta;          
              hess[j][i]=hess[i][j];    
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          /*printf(" %lf ",hess[i][j]);*/
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");    printf("\n");
     fprintf(ficlog,"\n");
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   doldm=matrix(1,nlstate,1,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
   hstepm=1*YEARM; /* Every year of age */    a=matrix(1,npar,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    y=matrix(1,npar,1,npar);
   agelim = AGESUP;    x=vector(1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    indx=ivector(1,npar);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (i=1;i<=npar;i++)
     if (stepm >= YEARM) hstepm=1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    ludcmp(a,npar,indx,&pd);
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);    for (j=1;j<=npar;j++) {
     gm=vector(1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     for(theta=1; theta <=npar; theta++){      lubksb(a,npar,indx,x);
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (i=1;i<=npar;i++){ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        matcov[i][j]=x[i];
       }      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    printf("\n#Hessian matrix#\n");
        fprintf(ficlog,"\n#Hessian matrix#\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    for (i=1;i<=npar;i++) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        printf("%.3e ",hess[i][j]);
       for(i=1;i<=nlstate;i++)        fprintf(ficlog,"%.3e ",hess[i][j]);
         gm[i] = prlim[i][i];      }
       printf("\n");
       for(i=1;i<=nlstate;i++)      fprintf(ficlog,"\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }
     } /* End theta */  
     /* Recompute Inverse */
     trgradg =matrix(1,nlstate,1,npar);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     for(j=1; j<=nlstate;j++)    ludcmp(a,npar,indx,&pd);
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];    /*  printf("\n#Hessian matrix recomputed#\n");
   
     for(i=1;i<=nlstate;i++)    for (j=1;j<=npar;j++) {
       varpl[i][(int)age] =0.;      for (i=1;i<=npar;i++) x[i]=0;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      x[j]=1;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      lubksb(a,npar,indx,x);
     for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
     fprintf(ficresvpl,"%.0f ",age );        fprintf(ficlog,"%.3e ",y[i][j]);
     for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      printf("\n");
     fprintf(ficresvpl,"\n");      fprintf(ficlog,"\n");
     free_vector(gp,1,nlstate);    }
     free_vector(gm,1,nlstate);    */
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    free_matrix(a,1,npar,1,npar);
   } /* End age */    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
   free_vector(xp,1,npar);    free_ivector(indx,1,npar);
   free_matrix(doldm,1,nlstate,1,npar);    free_matrix(hess,1,npar,1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   
 }  }
   
 /************ Variance of one-step probabilities  ******************/  /*************** hessian matrix ****************/
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
 {  {
   int i, j;    int i;
   int k=0, cptcode;    int l=1, lmax=20;
   double **dnewm,**doldm;    double k1,k2;
   double *xp;    double p2[NPARMAX+1];
   double *gp, *gm;    double res;
   double **gradg, **trgradg;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double age,agelim, cov[NCOVMAX];    double fx;
   int theta;    int k=0,kmax=10;
   char fileresprob[FILENAMELENGTH];    double l1;
   
   strcpy(fileresprob,"prob");    fx=func(x);
   strcat(fileresprob,fileres);    for (i=1;i<=npar;i++) p2[i]=x[i];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    for(l=0 ; l <=lmax; l++){
     printf("Problem with resultfile: %s\n", fileresprob);      l1=pow(10,l);
   }      delts=delt;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      for(k=1 ; k <kmax; k=k+1){
          delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
   xp=vector(1,npar);        k1=func(p2)-fx;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        p2[theta]=x[theta]-delt;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        k2=func(p2)-fx;
          /*res= (k1-2.0*fx+k2)/delt/delt; */
   cov[1]=1;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   for (age=bage; age<=fage; age ++){        
     cov[2]=age;  #ifdef DEBUG
     gradg=matrix(1,npar,1,9);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     trgradg=matrix(1,9,1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  #endif
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
            if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(theta=1; theta <=npar; theta++){          k=kmax;
       for(i=1; i<=npar; i++)        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                k=kmax; l=lmax*10.;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        }
            else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       k=0;          delts=delt;
       for(i=1; i<= (nlstate+ndeath); i++){        }
         for(j=1; j<=(nlstate+ndeath);j++){      }
            k=k+1;    }
           gp[k]=pmmij[i][j];    delti[theta]=delts;
         }    return res; 
       }    
   }
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      {
     int i;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    int l=1, l1, lmax=20;
       k=0;    double k1,k2,k3,k4,res,fx;
       for(i=1; i<=(nlstate+ndeath); i++){    double p2[NPARMAX+1];
         for(j=1; j<=(nlstate+ndeath);j++){    int k;
           k=k+1;  
           gm[k]=pmmij[i][j];    fx=func(x);
         }    for (k=1; k<=2; k++) {
       }      for (i=1;i<=npar;i++) p2[i]=x[i];
            p2[thetai]=x[thetai]+delti[thetai]/k;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        k1=func(p2)-fx;
     }    
       p2[thetai]=x[thetai]+delti[thetai]/k;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(theta=1; theta <=npar; theta++)      k2=func(p2)-fx;
       trgradg[j][theta]=gradg[theta][j];    
        p2[thetai]=x[thetai]-delti[thetai]/k;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      k3=func(p2)-fx;
     
      pmij(pmmij,cov,ncovmodel,x,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      k=0;      k4=func(p2)-fx;
      for(i=1; i<=(nlstate+ndeath); i++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
        for(j=1; j<=(nlstate+ndeath);j++){  #ifdef DEBUG
          k=k+1;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
          gm[k]=pmmij[i][j];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }  #endif
      }    }
          return res;
      /*printf("\n%d ",(int)age);  }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
          /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  { 
      }*/    int i,imax,j,k; 
     double big,dum,sum,temp; 
   fprintf(ficresprob,"\n%d ",(int)age);    double *vv; 
    
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    vv=vector(1,n); 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    *d=1.0; 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    for (i=1;i<=n;i++) { 
   }      big=0.0; 
       for (j=1;j<=n;j++) 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        if ((temp=fabs(a[i][j])) > big) big=temp; 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      vv[i]=1.0/big; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    } 
 }    for (j=1;j<=n;j++) { 
  free_vector(xp,1,npar);      for (i=1;i<j;i++) { 
 fclose(ficresprob);        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 }        a[i][j]=sum; 
       } 
 /******************* Printing html file ***********/      big=0.0; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[],char rfileres[] ){      for (i=j;i<=n;i++) { 
   int jj1, k1, i1, cpt;        sum=a[i][j]; 
   FILE *fichtm;        for (k=1;k<j;k++) 
   /*char optionfilehtm[FILENAMELENGTH];*/          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   strcpy(optionfilehtm,optionfile);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   strcat(optionfilehtm,".htm");          big=dum; 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          imax=i; 
     printf("Problem with %s \n",optionfilehtm), exit(0);        } 
   }      } 
       if (j != imax) { 
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.8 </font> <hr size=\"2\" color=\"#EC5E5E\">        for (k=1;k<=n;k++) { 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
 Total number of observations=%d <br>          a[j][k]=dum; 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>        } 
 <hr  size=\"2\" color=\"#EC5E5E\">        *d = -(*d); 
 <li>Outputs files<br><br>\n        vv[imax]=vv[j]; 
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      } 
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      indx[j]=imax; 
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      if (a[j][j] == 0.0) a[j][j]=TINY; 
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      if (j != n) { 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        dum=1.0/(a[j][j]); 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      } 
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    } 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    free_vector(vv,1,n);  /* Doesn't work */
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>  ;
         - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>  } 
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
    void lubksb(double **a, int n, int *indx, double b[]) 
 fprintf(fichtm," <li>Graphs</li><p>");  { 
     int i,ii=0,ip,j; 
  m=cptcoveff;    double sum; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   
     for (i=1;i<=n;i++) { 
  jj1=0;      ip=indx[i]; 
  for(k1=1; k1<=m;k1++){      sum=b[ip]; 
    for(i1=1; i1<=ncodemax[k1];i1++){      b[ip]=b[i]; 
        jj1++;      if (ii) 
        if (cptcovn > 0) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      else if (sum) ii=i; 
          for (cpt=1; cpt<=cptcoveff;cpt++)      b[i]=sum; 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    } 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    for (i=n;i>=1;i--) { 
        }      sum=b[i]; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          b[i]=sum/a[i][i]; 
        for(cpt=1; cpt<nlstate;cpt++){    } 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  } 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }  /************ Frequencies ********************/
     for(cpt=1; cpt<=nlstate;cpt++) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  {  /* Some frequencies */
 interval) in state (%d): v%s%d%d.gif <br>    
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      int i, m, jk, k1,i1, j1, bool, z1,z2,j;
      }    int first;
      for(cpt=1; cpt<=nlstate;cpt++) {    double ***freq; /* Frequencies */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    double *pp, **prop;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      }    FILE *ficresp;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    char fileresp[FILENAMELENGTH];
 health expectancies in states (1) and (2): e%s%d.gif<br>    
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    pp=vector(1,nlstate);
 fprintf(fichtm,"\n</body>");    prop=matrix(1,nlstate,iagemin,iagemax+3);
    }    strcpy(fileresp,"p");
    }    strcat(fileresp,fileres);
 fclose(fichtm);    if((ficresp=fopen(fileresp,"w"))==NULL) {
 }      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 /******************* Gnuplot file **************/      exit(0);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemaxpar, double fage , char pathc[], double p[]){    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    j1=0;
     
   strcpy(optionfilegnuplot,optionfilefiname);    j=cptcoveff;
   strcat(optionfilegnuplot,".plt");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    first=1;
   }  
     for(k1=1; k1<=j;k1++){
 #ifdef windows      for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficgp,"cd \"%s\" \n",pathc);        j1++;
 #endif        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 m=pow(2,cptcoveff);          scanf("%d", i);*/
          for (i=-5; i<=nlstate+ndeath; i++)  
  /* 1eme*/          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   for (cpt=1; cpt<= nlstate ; cpt ++) {            for(m=iagemin; m <= iagemax+3; m++)
    for (k1=1; k1<= m ; k1 ++) {              freq[i][jk][m]=0;
   
 #ifdef windows      for (i=1; i<=nlstate; i++)  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);        for(m=iagemin; m <= iagemax+3; m++)
 #endif          prop[i][m]=0;
 #ifdef unix        
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        dateintsum=0;
 #endif        k2cpt=0;
         for (i=1; i<=imx; i++) {
 for (i=1; i<= nlstate ; i ++) {          bool=1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if  (cptcovn>0) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for (z1=1; z1<=cptcoveff; z1++) 
 }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                bool=0;
     for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if (bool==1){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(m=firstpass; m<=lastpass; m++){
 }              k2=anint[m][i]+(mint[m][i]/12.);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
      for (i=1; i<= nlstate ; i ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                  if (m<lastpass) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 #ifdef unix                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 fprintf(ficgp,"\nset ter gif small size 400,300");                }
 #endif                
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
    }                  dateintsum=dateintsum+k2;
   }                  k2cpt++;
   /*2 eme*/                }
                 /*}*/
   for (k1=1; k1<= m ; k1 ++) {            }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          }
            }
     for (i=1; i<= nlstate+1 ; i ++) {         
       k=2*i;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  fprintf(ficresp, "#Local time at start: %s", strstart);
       for (j=1; j<= nlstate+1 ; j ++) {        if  (cptcovn>0) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresp, "\n#********** Variable "); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }            fprintf(ficresp, "**********\n#");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for(i=1; i<=nlstate;i++) 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for (j=1; j<= nlstate+1 ; j ++) {        fprintf(ficresp, "\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=iagemin; i <= iagemax+3; i++){
 }            if(i==iagemax+3){
       fprintf(ficgp,"\" t\"\" w l 0,");            fprintf(ficlog,"Total");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          }else{
       for (j=1; j<= nlstate+1 ; j ++) {            if(first==1){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              first=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              printf("See log file for details...\n");
 }              }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            fprintf(ficlog,"Age %d", i);
       else fprintf(ficgp,"\" t\"\" w l 0,");          }
     }          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   }              pp[jk] += freq[jk][m][i]; 
            }
   /*3eme*/          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   for (k1=1; k1<= m ; k1 ++) {              pos += freq[jk][m][i];
     for (cpt=1; cpt<= nlstate ; cpt ++) {            if(pp[jk]>=1.e-10){
       k=2+nlstate*(cpt-1);              if(first==1){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for (i=1; i< nlstate ; i ++) {              }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }            }else{
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              if(first==1)
     }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              }
   /* CV preval stat */          }
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {          for(jk=1; jk <=nlstate ; jk++){
       k=3;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemaxpar,fileres,k1,k+cpt+1,k+1);              pp[jk] += freq[jk][m][i];
           }       
       for (i=1; i< nlstate ; i ++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         fprintf(ficgp,"+$%d",k+i+1);            pos += pp[jk];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            posprop += prop[jk][i];
                }
       l=3+(nlstate+ndeath)*cpt;          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            if(pos>=1.e-5){
       for (i=1; i< nlstate ; i ++) {              if(first==1)
         l=3+(nlstate+ndeath)*cpt;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fprintf(ficgp,"+$%d",l+i+1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }            }else{
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                if(first==1)
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   }              }
              if( i <= iagemax){
   /* proba elementaires */              if(pos>=1.e-5){
    for(i=1,jk=1; i <=nlstate; i++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     for(k=1; k <=(nlstate+ndeath); k++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
       if (k != i) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         for(j=1; j <=ncovmodel; j++){              }
                      else
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           jk++;            }
           fprintf(ficgp,"\n");          }
         }          
       }          for(jk=-1; jk <=nlstate+ndeath; jk++)
     }            for(m=-1; m <=nlstate+ndeath; m++)
     }              if(freq[jk][m][i] !=0 ) {
               if(first==1)
     for(jk=1; jk <=m; jk++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemaxpar);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
    i=1;              }
    for(k2=1; k2<=nlstate; k2++) {          if(i <= iagemax)
      k3=i;            fprintf(ficresp,"\n");
      for(k=1; k<=(nlstate+ndeath); k++) {          if(first==1)
        if (k != k2){            printf("Others in log...\n");
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          fprintf(ficlog,"\n");
 ij=1;        }
         for(j=3; j <=ncovmodel; j++) {      }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    dateintmean=dateintsum/k2cpt; 
             ij++;   
           }    fclose(ficresp);
           else    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           fprintf(ficgp,")/(1");    /* End of Freq */
          }
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  /************ Prevalence ********************/
 ij=1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           for(j=3; j <=ncovmodel; j++){  {  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       in each health status at the date of interview (if between dateprev1 and dateprev2).
             ij++;       We still use firstpass and lastpass as another selection.
           }    */
           else   
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           }    double ***freq; /* Frequencies */
           fprintf(ficgp,")");    double *pp, **prop;
         }    double pos,posprop; 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double  y2; /* in fractional years */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    int iagemin, iagemax;
         i=i+ncovmodel;  
        }    iagemin= (int) agemin;
      }    iagemax= (int) agemax;
    }    /*pp=vector(1,nlstate);*/
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
    }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        j1=0;
   fclose(ficgp);    
 }  /* end gnuplot */    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
 /*************** Moving average **************/    for(k1=1; k1<=j;k1++){
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   int i, cpt, cptcod;        
     for (agedeb=agemin; agedeb<=fage; agedeb++)        for (i=1; i<=nlstate; i++)  
       for (i=1; i<=nlstate;i++)          for(m=iagemin; m <= iagemax+3; m++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            prop[i][m]=0.0;
           mobaverage[(int)agedeb][i][cptcod]=0.;       
            for (i=1; i<=imx; i++) { /* Each individual */
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){          bool=1;
       for (i=1; i<=nlstate;i++){          if  (cptcovn>0) {
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            for (z1=1; z1<=cptcoveff; z1++) 
           for (cpt=0;cpt<=4;cpt++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                bool=0;
           }          } 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          if (bool==1) { 
         }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                    if(agev[m][i]==0) agev[m][i]=iagemax+1;
 }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
 /************** Forecasting ******************/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    prop[s[m][i]][iagemax+3] += weight[i]; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                } 
   int *popage;              }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            } /* end selection of waves */
   double *popeffectif,*popcount;          }
   double ***p3mat;        }
   char fileresf[FILENAMELENGTH];        for(i=iagemin; i <= iagemax+3; i++){  
           
  agelim=AGESUP;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            posprop += prop[jk][i]; 
           } 
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
            for(jk=1; jk <=nlstate ; jk++){     
              if( i <=  iagemax){ 
   strcpy(fileresf,"f");              if(posprop>=1.e-5){ 
   strcat(fileresf,fileres);                probs[i][jk][j1]= prop[jk][i]/posprop;
   if((ficresf=fopen(fileresf,"w"))==NULL) {              } 
     printf("Problem with forecast resultfile: %s\n", fileresf);            } 
   }          }/* end jk */ 
   printf("Computing forecasting: result on file '%s' \n", fileresf);        }/* end i */ 
       } /* end i1 */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    } /* end k1 */
     
   if (mobilav==1) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*free_vector(pp,1,nlstate);*/
     movingaverage(agedeb, fage, agemin, mobaverage);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  }  /* End of prevalence */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /************* Waves Concatenation ***************/
   if (stepm<=12) stepsize=1;  
    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   agelim=AGESUP;  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   hstepm=1;       Death is a valid wave (if date is known).
   hstepm=hstepm/stepm;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   yp1=modf(dateintmean,&yp);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   anprojmean=yp;       and mw[mi+1][i]. dh depends on stepm.
   yp2=modf((yp1*12),&yp);       */
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);    int i, mi, m;
   jprojmean=yp;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if(jprojmean==0) jprojmean=1;       double sum=0., jmean=0.;*/
   if(mprojmean==0) jprojmean=1;    int first;
      int j, k=0,jk, ju, jl;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double sum=0.;
      first=0;
   for(cptcov=1;cptcov<=i2;cptcov++){    jmin=1e+5;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    jmax=-1;
       k=k+1;    jmean=0.;
       fprintf(ficresf,"\n#******");    for(i=1; i<=imx; i++){
       for(j=1;j<=cptcoveff;j++) {      mi=0;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      m=firstpass;
       }      while(s[m][i] <= nlstate){
       fprintf(ficresf,"******\n");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       fprintf(ficresf,"# StartingAge FinalAge");          mw[++mi][i]=m;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        if(m >=lastpass)
                break;
              else
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          m++;
         fprintf(ficresf,"\n");      }/* end while */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){        /* if(mi==0)  never been interviewed correctly before death */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           /* Only death is a correct wave */
           nhstepm = nhstepm/hstepm;        mw[mi][i]=m;
                }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      wav[i]=mi;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        if(mi==0){
                nbwarn++;
           for (h=0; h<=nhstepm; h++){        if(first==0){
             if (h==(int) (calagedate+YEARM*cpt)) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);          first=1;
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {        if(first==1){
               kk1=0.;kk2=0;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
               for(i=1; i<=nlstate;i++) {                      }
                 if (mobilav==1)      } /* end mi==0 */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    } /* End individuals */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    for(i=1; i<=imx; i++){
                 }      for(mi=1; mi<wav[i];mi++){
                        if (stepm <=0)
               }          dh[mi][i]=1;
               if (h==(int)(calagedate+12*cpt)){        else{
                 fprintf(ficresf," %.3f", kk1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                                    if (agedc[i] < 2*AGESUP) {
               }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             }              if(j==0) j=1;  /* Survives at least one month after exam */
           }              else if(j<0){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                nberr++;
         }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                j=1; /* Temporary Dangerous patch */
     }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                        fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }
               k=k+1;
   fclose(ficresf);              if (j >= jmax){
 }                jmax=j;
 /************** Forecasting ******************/                ijmax=i;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              }
                if (j <= jmin){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                jmin=j;
   int *popage;                ijmin=i;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              }
   double *popeffectif,*popcount;              sum=sum+j;
   double ***p3mat,***tabpop,***tabpopprev;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   char filerespop[FILENAMELENGTH];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          else{
   agelim=AGESUP;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
    
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            k=k+1;
              if (j >= jmax) {
                jmax=j;
   strcpy(filerespop,"pop");              ijmax=i;
   strcat(filerespop,fileres);            }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            else if (j <= jmin){
     printf("Problem with forecast resultfile: %s\n", filerespop);              jmin=j;
   }              ijmin=i;
   printf("Computing forecasting: result on file '%s' \n", filerespop);            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
   if (mobilav==1) {              nberr++;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     movingaverage(agedeb, fage, agemin, mobaverage);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }            }
             sum=sum+j;
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   if (stepm<=12) stepsize=1;          jk= j/stepm;
            jl= j -jk*stepm;
   agelim=AGESUP;          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   hstepm=1;            if(jl==0){
   hstepm=hstepm/stepm;              dh[mi][i]=jk;
                bh[mi][i]=0;
   if (popforecast==1) {            }else{ /* We want a negative bias in order to only have interpolation ie
     if((ficpop=fopen(popfile,"r"))==NULL) {                    * at the price of an extra matrix product in likelihood */
       printf("Problem with population file : %s\n",popfile);exit(0);              dh[mi][i]=jk+1;
     }              bh[mi][i]=ju;
     popage=ivector(0,AGESUP);            }
     popeffectif=vector(0,AGESUP);          }else{
     popcount=vector(0,AGESUP);            if(jl <= -ju){
                  dh[mi][i]=jk;
     i=1;                bh[mi][i]=jl;       /* bias is positive if real duration
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                                   * is higher than the multiple of stepm and negative otherwise.
                                       */
     imx=i;            }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            else{
   }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   for(cptcov=1;cptcov<=i2;cptcov++){            }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            if(dh[mi][i]==0){
       k=k+1;              dh[mi][i]=1; /* At least one step */
       fprintf(ficrespop,"\n#******");              bh[mi][i]=ju; /* At least one step */
       for(j=1;j<=cptcoveff;j++) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       }          } /* end if mle */
       fprintf(ficrespop,"******\n");        }
       fprintf(ficrespop,"# Age");      } /* end wave */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    }
       if (popforecast==1)  fprintf(ficrespop," [Population]");    jmean=sum/k;
          printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     }
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){  /*********** Tricode ****************************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  void tricode(int *Tvar, int **nbcode, int imx)
           nhstepm = nhstepm/hstepm;  {
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int Ndum[20],ij=1, k, j, i, maxncov=19;
           oldm=oldms;savm=savms;    int cptcode=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      cptcoveff=0; 
           
           for (h=0; h<=nhstepm; h++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
             if (h==(int) (calagedate+YEARM*cpt)) {    for (k=1; k<=7; k++) ncodemax[k]=0;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             for(j=1; j<=nlstate+ndeath;j++) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
               kk1=0.;kk2=0;                                 modality*/ 
               for(i=1; i<=nlstate;i++) {                      ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                 if (mobilav==1)        Ndum[ij]++; /*store the modality */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                 else {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                                         Tvar[j]. If V=sex and male is 0 and 
                 }                                         female is 1, then  cptcode=1.*/
               }      }
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      for (i=0; i<=cptcode; i++) {
                   /*fprintf(ficrespop," %.3f", kk1);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      }
               }  
             }      ij=1; 
             for(i=1; i<=nlstate;i++){      for (i=1; i<=ncodemax[j]; i++) {
               kk1=0.;        for (k=0; k<= maxncov; k++) {
                 for(j=1; j<=nlstate;j++){          if (Ndum[k] != 0) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            nbcode[Tvar[j]][ij]=k; 
                 }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];            
             }            ij++;
           }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          if (ij > ncodemax[j]) break; 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        }  
           }      } 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }  
         }  
       }   for (k=0; k< maxncov; k++) Ndum[k]=0;
    
   /******/   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {     ij=Tvar[i];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       Ndum[ij]++;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){   }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;   ij=1;
             for (i=1; i<= maxncov; i++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     if((Ndum[i]!=0) && (i<=ncovcol)){
           oldm=oldms;savm=savms;       Tvaraff[ij]=i; /*For printing */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         ij++;
           for (h=0; h<=nhstepm; h++){     }
             if (h==(int) (calagedate+YEARM*cpt)) {   }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   
             }   cptcoveff=ij-1; /*Number of simple covariates*/
             for(j=1; j<=nlstate+ndeath;j++) {  }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                /*********** Health Expectancies ****************/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }  {
           }    /* Health expectancies */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         }    double age, agelim, hf;
       }    double ***p3mat,***varhe;
    }    double **dnewm,**doldm;
   }    double *xp;
      double **gp, **gm;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***gradg, ***trgradg;
     int theta;
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     free_vector(popeffectif,0,AGESUP);    xp=vector(1,npar);
     free_vector(popcount,0,AGESUP);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficreseij,"# Local time at start: %s", strstart);
   fclose(ficrespop);    fprintf(ficreseij,"# Health expectancies\n");
 }    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
 /***********************************************/      for(j=1; j<=nlstate;j++)
 /**************** Main Program *****************/        fprintf(ficreseij," %1d-%1d (SE)",i,j);
 /***********************************************/    fprintf(ficreseij,"\n");
   
 int main(int argc, char *argv[])    if(estepm < stepm){
 {      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    else  hstepm=estepm;   
   double agedeb, agefin,hf;    /* We compute the life expectancy from trapezoids spaced every estepm months
   double agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   double fret;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double **xi,tmp,delta;     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   double dum; /* Dummy variable */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double ***p3mat;     * to compare the new estimate of Life expectancy with the same linear 
   int *indx;     * hypothesis. A more precise result, taking into account a more precise
   char line[MAXLINE], linepar[MAXLINE];     * curvature will be obtained if estepm is as small as stepm. */
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /* For example we decided to compute the life expectancy with the smallest unit */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   char filerest[FILENAMELENGTH];       and note for a fixed period like estepm months */
   char fileregp[FILENAMELENGTH];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   char popfile[FILENAMELENGTH];       survival function given by stepm (the optimization length). Unfortunately it
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];       means that if the survival funtion is printed only each two years of age and if
   int firstobs=1, lastobs=10;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   int sdeb, sfin; /* Status at beginning and end */       results. So we changed our mind and took the option of the best precision.
   int c,  h , cpt,l;    */
   int ju,jl, mi;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    agelim=AGESUP;
   int mobilav=0,popforecast=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int hstepm, nhstepm;      /* nhstepm age range expressed in number of stepm */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   double bage, fage, age, agelim, agebase;      /* if (stepm >= YEARM) hstepm=1;*/
   double ftolpl=FTOL;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double **prlim;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double *severity;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   double ***param; /* Matrix of parameters */      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   double  *p;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   double *delti; /* Scale */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   double ***eij, ***vareij;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   double **varpl; /* Variances of prevalence limits by age */   
   double *epj, vepp;  
   double kk1, kk2;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
        /* Computing  Variances of health expectancies */
   
   char version[80]="Imach version 0.8, March 2002, INED-EUROREVES ";       for(theta=1; theta <=npar; theta++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   char z[1]="c", occ;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 #include <sys/time.h>    
 #include <time.h>        cptj=0;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(j=1; j<= nlstate; j++){
            for(i=1; i<=nlstate; i++){
   /* long total_usecs;            cptj=cptj+1;
   struct timeval start_time, end_time;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            }
           }
         }
   printf("\n%s",version);       
   if(argc <=1){       
     printf("\nEnter the parameter file name: ");        for(i=1; i<=npar; i++) 
     scanf("%s",pathtot);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   else{        
     strcpy(pathtot,argv[1]);        cptj=0;
   }        for(j=1; j<= nlstate; j++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          for(i=1;i<=nlstate;i++){
   /*cygwin_split_path(pathtot,path,optionfile);            cptj=cptj+1;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   /* cutv(path,optionfile,pathtot,'\\');*/  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          }
   chdir(path);        }
   replace(pathc,path);        for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
 /*-------- arguments in the command line --------*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   strcpy(fileres,"r");       } 
   strcat(fileres, optionfilefiname);     
   strcat(fileres,".txt");    /* Other files have txt extension */  /* End theta */
   
   /*---------arguments file --------*/       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       for(h=0; h<=nhstepm-1; h++)
     printf("Problem with optionfile %s\n",optionfile);        for(j=1; j<=nlstate*nlstate;j++)
     goto end;          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
        
   strcpy(filereso,"o");  
   strcat(filereso,fileres);       for(i=1;i<=nlstate*nlstate;i++)
   if((ficparo=fopen(filereso,"w"))==NULL) {        for(j=1;j<=nlstate*nlstate;j++)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          varhe[i][j][(int)age] =0.;
   }  
        printf("%d|",(int)age);fflush(stdout);
   /* Reads comments: lines beginning with '#' */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   while((c=getc(ficpar))=='#' && c!= EOF){       for(h=0;h<=nhstepm-1;h++){
     ungetc(c,ficpar);        for(k=0;k<=nhstepm-1;k++){
     fgets(line, MAXLINE, ficpar);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     puts(line);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     fputs(line,ficparo);          for(i=1;i<=nlstate*nlstate;i++)
   }            for(j=1;j<=nlstate*nlstate;j++)
   ungetc(c,ficpar);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      /* Computing expectancies */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      for(i=1; i<=nlstate;i++)
 while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate;j++)
     ungetc(c,ficpar);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     fgets(line, MAXLINE, ficpar);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     puts(line);            
     fputs(line,ficparo);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }  
   ungetc(c,ficpar);          }
    
          fprintf(ficreseij,"%3.0f",age );
   covar=matrix(0,NCOVMAX,1,n);      cptj=0;
   cptcovn=0;      for(i=1; i<=nlstate;i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(j=1; j<=nlstate;j++){
           cptj++;
   ncovmodel=2+cptcovn;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        }
        fprintf(ficreseij,"\n");
   /* Read guess parameters */     
   /* Reads comments: lines beginning with '#' */      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     ungetc(c,ficpar);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     puts(line);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);    }
   }    printf("\n");
   ungetc(c,ficpar);    fprintf(ficlog,"\n");
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_vector(xp,1,npar);
     for(i=1; i <=nlstate; i++)    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       fprintf(ficparo,"%1d%1d",i1,j1);  }
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){  /************ Variance ******************/
         fscanf(ficpar," %lf",&param[i][j][k]);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         printf(" %lf",param[i][j][k]);  {
         fprintf(ficparo," %lf",param[i][j][k]);    /* Variance of health expectancies */
       }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       fscanf(ficpar,"\n");    /* double **newm;*/
       printf("\n");    double **dnewm,**doldm;
       fprintf(ficparo,"\n");    double **dnewmp,**doldmp;
     }    int i, j, nhstepm, hstepm, h, nstepm ;
      int k, cptcode;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double *xp;
     double **gp, **gm;  /* for var eij */
   p=param[1][1];    double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
   /* Reads comments: lines beginning with '#' */    double *gpp, *gmp; /* for var p point j */
   while((c=getc(ficpar))=='#' && c!= EOF){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     ungetc(c,ficpar);    double ***p3mat;
     fgets(line, MAXLINE, ficpar);    double age,agelim, hf;
     puts(line);    double ***mobaverage;
     fputs(line,ficparo);    int theta;
   }    char digit[4];
   ungetc(c,ficpar);    char digitp[25];
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    char fileresprobmorprev[FILENAMELENGTH];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    if(popbased==1){
     for(j=1; j <=nlstate+ndeath-1; j++){      if(mobilav!=0)
       fscanf(ficpar,"%1d%1d",&i1,&j1);        strcpy(digitp,"-populbased-mobilav-");
       printf("%1d%1d",i,j);      else strcpy(digitp,"-populbased-nomobil-");
       fprintf(ficparo,"%1d%1d",i1,j1);    }
       for(k=1; k<=ncovmodel;k++){    else 
         fscanf(ficpar,"%le",&delti3[i][j][k]);      strcpy(digitp,"-stablbased-");
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fscanf(ficpar,"\n");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       printf("\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficparo,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     }      }
   }    }
   delti=delti3[1][1];  
      strcpy(fileresprobmorprev,"prmorprev"); 
   /* Reads comments: lines beginning with '#' */    sprintf(digit,"%-d",ij);
   while((c=getc(ficpar))=='#' && c!= EOF){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     ungetc(c,ficpar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     puts(line);    strcat(fileresprobmorprev,fileres);
     fputs(line,ficparo);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   matcov=matrix(1,npar,1,npar);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   for(i=1; i <=npar; i++){   
     fscanf(ficpar,"%s",&str);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     printf("%s",str);    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
     fprintf(ficparo,"%s",str);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     for(j=1; j <=i; j++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fscanf(ficpar," %le",&matcov[i][j]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       printf(" %.5le",matcov[i][j]);      fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficparo," %.5le",matcov[i][j]);      for(i=1; i<=nlstate;i++)
     }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fscanf(ficpar,"\n");    }  
     printf("\n");    fprintf(ficresprobmorprev,"\n");
     fprintf(ficparo,"\n");    fprintf(ficgp,"\n# Routine varevsij");
   }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   for(i=1; i <=npar; i++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     for(j=i+1;j<=npar;j++)    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       matcov[i][j]=matcov[j][i];  /*   } */
        varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("\n");   fprintf(ficresvij, "#Local time at start: %s", strstart);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
     /*-------- Rewriting paramater file ----------*/    for(i=1; i<=nlstate;i++)
      strcpy(rfileres,"r");    /* "Rparameterfile */      for(j=1; j<=nlstate;j++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
      strcat(rfileres,".");    /* */    fprintf(ficresvij,"\n");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {    xp=vector(1,npar);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
     fprintf(ficres,"#%s\n",version);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
        doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       printf("Problem with datafile: %s\n", datafile);goto end;    gpp=vector(nlstate+1,nlstate+ndeath);
     }    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     n= lastobs;    
     severity = vector(1,maxwav);    if(estepm < stepm){
     outcome=imatrix(1,maxwav+1,1,n);      printf ("Problem %d lower than %d\n",estepm, stepm);
     num=ivector(1,n);    }
     moisnais=vector(1,n);    else  hstepm=estepm;   
     annais=vector(1,n);    /* For example we decided to compute the life expectancy with the smallest unit */
     moisdc=vector(1,n);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     andc=vector(1,n);       nhstepm is the number of hstepm from age to agelim 
     agedc=vector(1,n);       nstepm is the number of stepm from age to agelin. 
     cod=ivector(1,n);       Look at hpijx to understand the reason of that which relies in memory size
     weight=vector(1,n);       and note for a fixed period like k years */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     mint=matrix(1,maxwav,1,n);       survival function given by stepm (the optimization length). Unfortunately it
     anint=matrix(1,maxwav,1,n);       means that if the survival funtion is printed every two years of age and if
     s=imatrix(1,maxwav+1,1,n);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     adl=imatrix(1,maxwav+1,1,n);           results. So we changed our mind and took the option of the best precision.
     tab=ivector(1,NCOVMAX);    */
     ncodemax=ivector(1,8);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     i=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     while (fgets(line, MAXLINE, fic) != NULL)    {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if ((i >= firstobs) && (i <=lastobs)) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (j=maxwav;j>=1;j--){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      gp=matrix(0,nhstepm,1,nlstate);
           strcpy(line,stra);      gm=matrix(0,nhstepm,1,nlstate);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }      for(theta=1; theta <=npar; theta++){
                for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         if (popbased==1) {
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          if(mobilav ==0){
         for (j=ncovcol;j>=1;j--){            for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              prlim[i][i]=probs[(int)age][i][ij];
         }          }else{ /* mobilav */ 
         num[i]=atol(stra);            for(i=1; i<=nlstate;i++)
                      prlim[i][i]=mobaverage[(int)age][i][ij];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        }
     
         i=i+1;        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     /* printf("ii=%d", ij);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
        scanf("%d",i);*/          }
   imx=i-1; /* Number of individuals */        }
         /* This for computing probability of death (h=1 means
   /* for (i=1; i<=imx; i++){           computed over hstepm matrices product = hstepm*stepm months) 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;           as a weighted average of prlim.
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
     for (i=1; i<=imx; i++)        }    
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        /* end probability of death */
   
   /* Calculation of the number of parameter from char model*/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   Tvar=ivector(1,15);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   Tprod=ivector(1,15);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   Tvaraff=ivector(1,15);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   Tvard=imatrix(1,15,1,2);   
   Tage=ivector(1,15);              if (popbased==1) {
              if(mobilav ==0){
   if (strlen(model) >1){            for(i=1; i<=nlstate;i++)
     j=0, j1=0, k1=1, k2=1;              prlim[i][i]=probs[(int)age][i][ij];
     j=nbocc(model,'+');          }else{ /* mobilav */ 
     j1=nbocc(model,'*');            for(i=1; i<=nlstate;i++)
     cptcovn=j+1;              prlim[i][i]=mobaverage[(int)age][i][ij];
     cptcovprod=j1;          }
            }
      
     strcpy(modelsav,model);        for(j=1; j<= nlstate; j++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for(h=0; h<=nhstepm; h++){
       printf("Error. Non available option model=%s ",model);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       goto end;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
            }
     for(i=(j+1); i>=1;i--){        /* This for computing probability of death (h=1 means
       cutv(stra,strb,modelsav,'+');           computed over hstepm matrices product = hstepm*stepm months) 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);           as a weighted average of prlim.
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        */
       /*scanf("%d",i);*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       if (strchr(strb,'*')) {          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         cutv(strd,strc,strb,'*');           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         if (strcmp(strc,"age")==0) {        }    
           cptcovprod--;        /* end probability of death */
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);        for(j=1; j<= nlstate; j++) /* vareij */
           cptcovage++;          for(h=0; h<=nhstepm; h++){
             Tage[cptcovage]=i;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             /*printf("stre=%s ", stre);*/          }
         }  
         else if (strcmp(strd,"age")==0) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           cptcovprod--;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=atoi(stre);  
           cptcovage++;      } /* End theta */
           Tage[cptcovage]=i;  
         }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         else {  
           cutv(strb,stre,strc,'V');      for(h=0; h<=nhstepm; h++) /* veij */
           Tvar[i]=ncovcol+k1;        for(j=1; j<=nlstate;j++)
           cutv(strb,strc,strd,'V');          for(theta=1; theta <=npar; theta++)
           Tprod[k1]=i;            trgradg[h][j][theta]=gradg[h][theta][j];
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           Tvar[cptcovn+k2]=Tvard[k1][1];        for(theta=1; theta <=npar; theta++)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          trgradgp[j][theta]=gradgp[theta][j];
           for (k=1; k<=lastobs;k++)    
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           k2=k2+2;      for(i=1;i<=nlstate;i++)
         }        for(j=1;j<=nlstate;j++)
       }          vareij[i][j][(int)age] =0.;
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      for(h=0;h<=nhstepm;h++){
        /*  scanf("%d",i);*/        for(k=0;k<=nhstepm;k++){
       cutv(strd,strc,strb,'V');          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       Tvar[i]=atoi(strc);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
       strcpy(modelsav,stra);              for(j=1;j<=nlstate;j++)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         scanf("%d",i);*/        }
     }      }
 }    
        /* pptj */
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   printf("cptcovprod=%d ", cptcovprod);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   scanf("%d ",i);*/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     fclose(fic);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
     /*  if(mle==1){*/      /* end ppptj */
     if (weightopt != 1) { /* Maximisation without weights*/      /*  x centered again */
       for(i=1;i<=n;i++) weight[i]=1.0;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     /*-calculation of age at interview from date of interview and age at death -*/   
     agev=matrix(1,maxwav,1,imx);      if (popbased==1) {
         if(mobilav ==0){
    for (i=1; i<=imx; i++)          for(i=1; i<=nlstate;i++)
      for(m=2; (m<= maxwav); m++)            prlim[i][i]=probs[(int)age][i][ij];
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        }else{ /* mobilav */ 
          anint[m][i]=9999;          for(i=1; i<=nlstate;i++)
          s[m][i]=-1;            prlim[i][i]=mobaverage[(int)age][i][ij];
        }        }
          }
     for (i=1; i<=imx; i++)  {               
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      /* This for computing probability of death (h=1 means
       for(m=1; (m<= maxwav); m++){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         if(s[m][i] >0){         as a weighted average of prlim.
           if (s[m][i] == nlstate+1) {      */
             if(agedc[i]>0)      for(j=nlstate+1;j<=nlstate+ndeath;j++){
               if(moisdc[i]!=99 && andc[i]!=9999)        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
               agev[m][i]=agedc[i];          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             else {      }    
               if (andc[i]!=9999){      /* end probability of death */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
               }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           }        for(i=1; i<=nlstate;i++){
           else if(s[m][i] !=9){ /* Should no more exist */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }
             if(mint[m][i]==99 || anint[m][i]==9999)      } 
               agev[m][i]=1;      fprintf(ficresprobmorprev,"\n");
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];      fprintf(ficresvij,"%.0f ",age );
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      for(i=1; i<=nlstate;i++)
             }        for(j=1; j<=nlstate;j++){
             else if(agev[m][i] >agemax){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
               agemax=agev[m][i];        }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      fprintf(ficresvij,"\n");
             }      free_matrix(gp,0,nhstepm,1,nlstate);
             /*agev[m][i]=anint[m][i]-annais[i];*/      free_matrix(gm,0,nhstepm,1,nlstate);
             /*   agev[m][i] = age[i]+2*m;*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           else { /* =9 */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             agev[m][i]=1;    } /* End age */
             s[m][i]=-1;    free_vector(gpp,nlstate+1,nlstate+ndeath);
           }    free_vector(gmp,nlstate+1,nlstate+ndeath);
         }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         else /*= 0 Unknown */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           agev[m][i]=1;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
        fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     for (i=1; i<=imx; i++)  {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for(m=1; (m<= maxwav); m++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         if (s[m][i] > (nlstate+ndeath)) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           printf("Error: Wrong value in nlstate or ndeath\n");      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           goto end;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);    free_vector(xp,1,npar);
     free_vector(moisnais,1,n);    free_matrix(doldm,1,nlstate,1,nlstate);
     free_vector(annais,1,n);    free_matrix(dnewm,1,nlstate,1,npar);
     /* free_matrix(mint,1,maxwav,1,n);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        free_matrix(anint,1,maxwav,1,n);*/    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_vector(moisdc,1,n);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_vector(andc,1,n);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
        fflush(ficgp);
     wav=ivector(1,imx);    fflush(fichtm); 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  }  /* end varevsij */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
      /************ Variance of prevlim ******************/
     /* Concatenates waves */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       Tcode=ivector(1,100);    double **newm;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double **dnewm,**doldm;
       ncodemax[1]=1;    int i, j, nhstepm, hstepm;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    int k, cptcode;
          double *xp;
    codtab=imatrix(1,100,1,10);    double *gp, *gm;
    h=0;    double **gradg, **trgradg;
    m=pow(2,cptcoveff);    double age,agelim;
      int theta;
    for(k=1;k<=cptcoveff; k++){    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
      for(i=1; i <=(m/pow(2,k));i++){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
        for(j=1; j <= ncodemax[k]; j++){    fprintf(ficresvpl,"# Age");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    for(i=1; i<=nlstate;i++)
            h++;        fprintf(ficresvpl," %1d-%1d",i,i);
            if (h>m) h=1;codtab[h][k]=j;    fprintf(ficresvpl,"\n");
          }  
        }    xp=vector(1,npar);
      }    dnewm=matrix(1,nlstate,1,npar);
    }    doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
    /*for(i=1; i <=m ;i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      for(k=1; k <=cptcovn; k++){    agelim = AGESUP;
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      printf("\n");      if (stepm >= YEARM) hstepm=1;
    }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
    scanf("%d",i);*/      gradg=matrix(1,npar,1,nlstate);
          gp=vector(1,nlstate);
    /* Calculates basic frequencies. Computes observed prevalence at single age      gm=vector(1,nlstate);
        and prints on file fileres'p'. */  
       for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ /* Computes gradient */
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1;i<=nlstate;i++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gp[i] = prlim[i][i];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      
              for(i=1; i<=npar; i++) /* Computes gradient */
     /* For Powell, parameters are in a vector p[] starting at p[1]          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for(i=1;i<=nlstate;i++)
     }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
          } /* End theta */
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      trgradg =matrix(1,nlstate,1,npar);
    
       for(j=1; j<=nlstate;j++)
    jk=1;        for(theta=1; theta <=npar; theta++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          trgradg[j][theta]=gradg[theta][j];
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){      for(i=1;i<=nlstate;i++)
      for(k=1; k <=(nlstate+ndeath); k++){        varpl[i][(int)age] =0.;
        if (k != i)      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
          {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
            printf("%d%d ",i,k);      for(i=1;i<=nlstate;i++)
            fprintf(ficres,"%1d%1d ",i,k);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);      fprintf(ficresvpl,"%.0f ",age );
              fprintf(ficres,"%f ",p[jk]);      for(i=1; i<=nlstate;i++)
              jk++;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
            }      fprintf(ficresvpl,"\n");
            printf("\n");      free_vector(gp,1,nlstate);
            fprintf(ficres,"\n");      free_vector(gm,1,nlstate);
          }      free_matrix(gradg,1,npar,1,nlstate);
      }      free_matrix(trgradg,1,nlstate,1,npar);
    }    } /* End age */
  if(mle==1){  
     /* Computing hessian and covariance matrix */    free_vector(xp,1,npar);
     ftolhess=ftol; /* Usually correct */    free_matrix(doldm,1,nlstate,1,npar);
     hesscov(matcov, p, npar, delti, ftolhess, func);    free_matrix(dnewm,1,nlstate,1,nlstate);
  }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  }
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){  /************ Variance of one-step probabilities  ******************/
       for(j=1; j <=nlstate+ndeath; j++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         if (j!=i) {  {
           fprintf(ficres,"%1d%1d",i,j);    int i, j=0,  i1, k1, l1, t, tj;
           printf("%1d%1d",i,j);    int k2, l2, j1,  z1;
           for(k=1; k<=ncovmodel;k++){    int k=0,l, cptcode;
             printf(" %.5e",delti[jk]);    int first=1, first1;
             fprintf(ficres," %.5e",delti[jk]);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
             jk++;    double **dnewm,**doldm;
           }    double *xp;
           printf("\n");    double *gp, *gm;
           fprintf(ficres,"\n");    double **gradg, **trgradg;
         }    double **mu;
       }    double age,agelim, cov[NCOVMAX];
      }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        int theta;
     k=1;    char fileresprob[FILENAMELENGTH];
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    char fileresprobcov[FILENAMELENGTH];
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    char fileresprobcor[FILENAMELENGTH];
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;    double ***varpij;
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    strcpy(fileresprob,"prob"); 
       printf("%s%d%d",alph[k],i1,tab[i]);*/    strcat(fileresprob,fileres);
       fprintf(ficres,"%3d",i);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("%3d",i);      printf("Problem with resultfile: %s\n", fileresprob);
       for(j=1; j<=i;j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         fprintf(ficres," %.5e",matcov[i][j]);    }
         printf(" %.5e",matcov[i][j]);    strcpy(fileresprobcov,"probcov"); 
       }    strcat(fileresprobcov,fileres);
       fprintf(ficres,"\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("\n");      printf("Problem with resultfile: %s\n", fileresprobcov);
       k++;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }    }
        strcpy(fileresprobcor,"probcor"); 
     while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresprobcor,fileres);
       ungetc(c,ficpar);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       fgets(line, MAXLINE, ficpar);      printf("Problem with resultfile: %s\n", fileresprobcor);
       puts(line);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       fputs(line,ficparo);    }
     }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     ungetc(c,ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemaxpar, &bage, &fage);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     if (fage <= 2) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       bage = agemin;    fprintf(ficresprob, "#Local time at start: %s", strstart);
       fage = agemaxpar;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     }    fprintf(ficresprob,"# Age");
        fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);    fprintf(ficresprobcov,"# Age");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobcov,"# Age");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  
     puts(line);    for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);      for(j=1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   ungetc(c,ficpar);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      }  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   /* fprintf(ficresprob,"\n");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficresprobcov,"\n");
          fprintf(ficresprobcor,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){   */
     ungetc(c,ficpar);   xp=vector(1,npar);
     fgets(line, MAXLINE, ficpar);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     puts(line);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   ungetc(c,ficpar);    first=1;
      fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    fprintf(fichtm,"\n");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   fprintf(ficparo,"pop_based=%d\n",popbased);      file %s<br>\n",optionfilehtmcov);
   fprintf(ficres,"pop_based=%d\n",popbased);      fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    and drawn. It helps understanding how is the covariance between two incidences.\
   while((c=getc(ficpar))=='#' && c!= EOF){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     ungetc(c,ficpar);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     fgets(line, MAXLINE, ficpar);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     puts(line);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     fputs(line,ficparo);  standard deviations wide on each axis. <br>\
   }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   ungetc(c,ficpar);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    cov[1]=1;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
 while((c=getc(ficpar))=='#' && c!= EOF){    for(t=1; t<=tj;t++){
     ungetc(c,ficpar);      for(i1=1; i1<=ncodemax[t];i1++){ 
     fgets(line, MAXLINE, ficpar);        j1++;
     puts(line);        if  (cptcovn>0) {
     fputs(line,ficparo);          fprintf(ficresprob, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   ungetc(c,ficpar);          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          fprintf(ficresprobcov, "**********\n#\n");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          
           fprintf(ficgp, "\n#********** Variable "); 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
 /*------------ gnuplot -------------*/          
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemaxpar,fage, pathc,p);          
            fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 /*------------ free_vector  -------------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  chdir(path);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
  free_ivector(wav,1,imx);          fprintf(ficresprobcor, "\n#********** Variable ");    
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficresprobcor, "**********\n#");    
  free_ivector(num,1,n);        }
  free_vector(agedc,1,n);        
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        for (age=bage; age<=fage; age ++){ 
  fclose(ficparo);          cov[2]=age;
  fclose(ficres);          for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 /*--------- index.htm --------*/          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres);          for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            
   /*--------------- Prevalence limit --------------*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   strcpy(filerespl,"pl");          gp=vector(1,(nlstate)*(nlstate+ndeath));
   strcat(filerespl,fileres);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for(theta=1; theta <=npar; theta++){
   }            for(i=1; i<=npar; i++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   fprintf(ficrespl,"#Prevalence limit\n");            
   fprintf(ficrespl,"#Age ");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            
   fprintf(ficrespl,"\n");            k=0;
              for(i=1; i<= (nlstate); i++){
   prlim=matrix(1,nlstate,1,nlstate);              for(j=1; j<=(nlstate+ndeath);j++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                k=k+1;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                gp[k]=pmmij[i][j];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            
   k=0;            for(i=1; i<=npar; i++)
   agebase=agemin;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   agelim=agemaxpar;      
   ftolpl=1.e-10;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   i1=cptcoveff;            k=0;
   if (cptcovn < 1){i1=1;}            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   for(cptcov=1;cptcov<=i1;cptcov++){                k=k+1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                gm[k]=pmmij[i][j];
         k=k+1;              }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            }
         fprintf(ficrespl,"\n#******");       
         for(j=1;j<=cptcoveff;j++)            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         fprintf(ficrespl,"******\n");          }
          
         for (age=agebase; age<=agelim; age++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for(theta=1; theta <=npar; theta++)
           fprintf(ficrespl,"%.0f",age );              trgradg[j][theta]=gradg[theta][j];
           for(i=1; i<=nlstate;i++)          
           fprintf(ficrespl," %.5f", prlim[i][i]);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           fprintf(ficrespl,"\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fclose(ficrespl);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   /*------------- h Pij x at various ages ------------*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
            
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          k=0;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          for(i=1; i<=(nlstate); i++){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            for(j=1; j<=(nlstate+ndeath);j++){
   }              k=k+1;
   printf("Computing pij: result on file '%s' \n", filerespij);              mu[k][(int) age]=pmmij[i][j];
              }
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   agelim=AGESUP;              varpij[i][j][(int)age] = doldm[i][j];
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          /*printf("\n%d ",(int)age);
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   k=0;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   for(cptcov=1;cptcov<=i1;cptcov++){            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            }*/
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");          fprintf(ficresprob,"\n%d ",(int)age);
         for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresprobcor,"\n%d ",(int)age);
         fprintf(ficrespij,"******\n");  
                  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            i=0;
           fprintf(ficrespij,"# Age");          for (k=1; k<=(nlstate);k++){
           for(i=1; i<=nlstate;i++)            for (l=1; l<=(nlstate+ndeath);l++){ 
             for(j=1; j<=nlstate+ndeath;j++)              i=i++;
               fprintf(ficrespij," %1d-%1d",i,j);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           fprintf(ficrespij,"\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           for (h=0; h<=nhstepm; h++){              for (j=1; j<=i;j++){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
             for(i=1; i<=nlstate;i++)                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               for(j=1; j<=nlstate+ndeath;j++)              }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            }
             fprintf(ficrespij,"\n");          }/* end of loop for state */
           }        } /* end of loop for age */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");        /* Confidence intervalle of pij  */
         }        /*
     }          fprintf(ficgp,"\nset noparametric;unset label");
   }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   fclose(ficrespij);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        first1=1;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        for (k2=1; k2<=(nlstate);k2++){
     free_matrix(mint,1,maxwav,1,n);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);            if(l2==k2) continue;
     free_vector(weight,1,n);}            j=(k2-1)*(nlstate+ndeath)+l2;
   else{            for (k1=1; k1<=(nlstate);k1++){
     erreur=108;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                if(l1==k1) continue;
   }                i=(k1-1)*(nlstate+ndeath)+l1;
                  if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
   /*---------- Health expectancies and variances ------------*/                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   strcpy(filerest,"t");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   strcat(filerest,fileres);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   if((ficrest=fopen(filerest,"w"))==NULL) {                    mu1=mu[i][(int) age]/stepm*YEARM ;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                    mu2=mu[j][(int) age]/stepm*YEARM;
   }                    c12=cv12/sqrt(v1*v2);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   strcpy(filerese,"e");                    /* Eigen vectors */
   strcat(filerese,fileres);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   if((ficreseij=fopen(filerese,"w"))==NULL) {                    /*v21=sqrt(1.-v11*v11); *//* error */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                    v21=(lc1-v1)/cv12*v11;
   }                    v12=-v21;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                    v22=v11;
                     tnalp=v21/v11;
  strcpy(fileresv,"v");                    if(first1==1){
   strcat(fileresv,fileres);                      first1=0;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                    }
   }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   k=0;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   for(cptcov=1;cptcov<=i1;cptcov++){                    if(first==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      first=0;
       k=k+1;                      fprintf(ficgp,"\nset parametric;unset label");
       fprintf(ficrest,"\n#****** ");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       fprintf(ficrest,"******\n");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       fprintf(ficreseij,"\n#****** ");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       for(j=1;j<=cptcoveff;j++)                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficreseij,"******\n");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficresvij,"\n#****** ");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficresvij,"******\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    }else{
       oldm=oldms;savm=savms;                      first=0;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       oldm=oldms;savm=savms;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                  mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                  } /* age mod 5 */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                } /* end loop age */
       fprintf(ficrest,"\n");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
       epj=vector(1,nlstate+1);              } /*l12 */
       for(age=bage; age <=fage ;age++){            } /* k12 */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          } /*l1 */
         if (popbased==1) {        }/* k1 */
           for(i=1; i<=nlstate;i++)      } /* loop covariates */
             prlim[i][i]=probs[(int)age][i][k];    }
         }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
            free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         fprintf(ficrest," %4.0f",age);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    free_vector(xp,1,npar);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    fclose(ficresprob);
           }    fclose(ficresprobcov);
           epj[nlstate+1] +=epj[j];    fclose(ficresprobcor);
         }    fflush(ficgp);
         for(i=1, vepp=0.;i <=nlstate;i++)    fflush(fichtmcov);
           for(j=1;j <=nlstate;j++)  }
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){  /******************* Printing html file ***********/
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         }                    int lastpass, int stepm, int weightopt, char model[],\
         fprintf(ficrest,"\n");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       }                    int popforecast, int estepm ,\
     }                    double jprev1, double mprev1,double anprev1, \
   }                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   fclose(ficreseij);  
   fclose(ficresvij);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   fclose(ficrest);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   fclose(ficpar);  </ul>");
   free_vector(epj,1,nlstate+1);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   /*------- Variance limit prevalence------*/               jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
   strcpy(fileresvpl,"vpl");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   strcat(fileresvpl,fileres);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {     fprintf(fichtm,"\
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     exit(0);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   }     fprintf(fichtm,"\
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   - Life expectancies by age and initial health status (estepm=%2d months) WRONG LINK (to be made): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   k=0;             estepm,subdirf2(fileres,"le"),subdirf2(fileres,"le"));
   for(cptcov=1;cptcov<=i1;cptcov++){     fprintf(fichtm,"\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Health expectancies by age and initial health status with standard errors (estepm=%2d months): \
       k=k+1;     <a href=\"%s\">%s</a> <br>\n</li>",
       fprintf(ficresvpl,"\n#****** ");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       for(j=1;j<=cptcoveff;j++)     fprintf(fichtm,"\
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Variances and covariances of health expectancies by age and initial health status (estepm=%2d months) TO BE MADE: \
       fprintf(ficresvpl,"******\n");     <a href=\"%s\">%s</a> <br>\n</li>",
                   estepm,subdirf2(fileres,"vch"),subdirf2(fileres,"vch"));
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     }  
  }   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   fclose(ficresvpl);  
    jj1=0;
   /*---------- End : free ----------------*/   for(k1=1; k1<=m;k1++){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);     for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       if (cptcovn > 0) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       /* Pij */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
    <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   free_matrix(matcov,1,npar,1,npar);       /* Quasi-incidences */
   free_vector(delti,1,npar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   free_matrix(agev,1,maxwav,1,imx);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
   if(erreur >0)         for(cpt=1; cpt<nlstate;cpt++){
     printf("End of Imach with error or warning %d\n",erreur);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   else   printf("End of Imach\n");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */         }
         for(cpt=1; cpt<=nlstate;cpt++) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   /*printf("Total time was %d uSec.\n", total_usecs);*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   /*------ End -----------*/       }
      } /* end i1 */
    }/* End k1 */
  end:   fprintf(fichtm,"</ul>");
 #ifdef windows  
   /* chdir(pathcd);*/  
 #endif   fprintf(fichtm,"\
  /*system("wgnuplot graph.plt");*/  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
  /*system("../gp37mgw/wgnuplot graph.plt");*/   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  strcpy(plotcmd,GNUPLOTPROGRAM);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
  strcat(plotcmd," ");   fprintf(fichtm,"\
  strcat(plotcmd,optionfilegnuplot);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  system(plotcmd);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
 #ifdef windows   fprintf(fichtm,"\
   while (z[0] != 'q') {   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     chdir(path);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     printf("\nType e to edit output files, c to start again, and q for exiting: ");   fprintf(fichtm,"\
     scanf("%s",z);   - Variances and covariances of health expectancies by age (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     if (z[0] == 'c') system("./imach");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     else if (z[0] == 'e') {   fprintf(fichtm,"\
       chdir(path);   - Life and health expectancies with their standard errors: <a href=\"%s\">%s</a> <br>\n",
       system(optionfilehtm);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     }   fprintf(fichtm,"\
     else if (z[0] == 'q') exit(0);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
 #endif  
 }  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.34  
changed lines
  Added in v.1.116


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>