Diff for /imach/src/imach.c between versions 1.34 and 1.182

version 1.34, 2002/03/13 17:19:16 version 1.182, 2015/02/12 08:19:57
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.182  2015/02/12 08:19:57  brouard
      Summary: Trying to keep directest which seems simpler and more general
   This program computes Healthy Life Expectancies from    Author: Nicolas Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.181  2015/02/11 23:22:24  brouard
   interviewed on their health status or degree of disability (in the    Summary: Comments on Powell added
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Author:
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.180  2015/02/11 17:33:45  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.179  2015/01/04 09:57:06  brouard
   probabibility to be observed in state j at the second wave    Summary: back to OS/X
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.178  2015/01/04 09:35:48  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    *** empty log message ***
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.177  2015/01/03 18:40:56  brouard
   you to do it.  More covariates you add, slower the    Summary: Still testing ilc32 on OSX
   convergence.  
     Revision 1.176  2015/01/03 16:45:04  brouard
   The advantage of this computer programme, compared to a simple    *** empty log message ***
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.175  2015/01/03 16:33:42  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.174  2015/01/03 16:15:49  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: Still in cross-compilation
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.173  2015/01/03 12:06:26  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: trying to detect cross-compilation
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.172  2014/12/27 12:07:47  brouard
   and the contribution of each individual to the likelihood is simply    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   hPijx.  
     Revision 1.171  2014/12/23 13:26:59  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Summary: Back from Visual C
   of the life expectancies. It also computes the prevalence limits.  
      Still problem with utsname.h on Windows
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.170  2014/12/23 11:17:12  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: Cleaning some \%% back to %%
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.169  2014/12/22 23:08:31  brouard
   **********************************************************************/    Summary: 0.98p
    
 #include <math.h>    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.168  2014/12/22 15:17:42  brouard
 #include <unistd.h>    Summary: update
   
 #define MAXLINE 256    Revision 1.167  2014/12/22 13:50:56  brouard
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    Summary: Testing uname and compiler version and if compiled 32 or 64
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Testing on Linux 64
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.166  2014/12/22 11:40:47  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    *** empty log message ***
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.165  2014/12/16 11:20:36  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: After compiling on Visual C
   
 #define NINTERVMAX 8    * imach.c (Module): Merging 1.61 to 1.162
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.164  2014/12/16 10:52:11  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    * imach.c (Module): Merging 1.61 to 1.162
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
 int erreur; /* Error number */    Revision 1.162  2014/09/25 11:43:39  brouard
 int nvar;    Summary: temporary backup 0.99!
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.1  2014/09/16 11:06:58  brouard
 int nlstate=2; /* Number of live states */    Summary: With some code (wrong) for nlopt
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Author:
 int popbased=0;  
     Revision 1.161  2014/09/15 20:41:41  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: Problem with macro SQR on Intel compiler
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.160  2014/09/02 09:24:05  brouard
 int mle, weightopt;    *** empty log message ***
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.159  2014/09/01 10:34:10  brouard
 double jmean; /* Mean space between 2 waves */    Summary: WIN32
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Author: Brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.158  2014/08/27 17:11:51  brouard
 FILE *ficgp,*ficresprob,*ficpop;    *** empty log message ***
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.157  2014/08/27 16:26:55  brouard
  FILE  *ficresvij;    Summary: Preparing windows Visual studio version
   char fileresv[FILENAMELENGTH];    Author: Brouard
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
 #define NR_END 1    just make the differences in raw time format (time(&now).
 #define FREE_ARG char*    Trying to suppress #ifdef LINUX
 #define FTOL 1.0e-10    Add xdg-open for __linux in order to open default browser.
   
 #define NRANSI    Revision 1.156  2014/08/25 20:10:10  brouard
 #define ITMAX 200    *** empty log message ***
   
 #define TOL 2.0e-4    Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
 #define CGOLD 0.3819660    Author: Brouard
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.153  2014/06/20 16:45:46  brouard
 #define TINY 1.0e-20    Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.152  2014/06/18 17:54:09  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Summary: open browser, use gnuplot on same dir than imach if not found in the path
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.151  2014/06/18 16:43:30  brouard
 #define rint(a) floor(a+0.5)    *** empty log message ***
   
 static double sqrarg;    Revision 1.150  2014/06/18 16:42:35  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Author: brouard
   
 int imx;    Revision 1.149  2014/06/18 15:51:14  brouard
 int stepm;    Summary: Some fixes in parameter files errors
 /* Stepm, step in month: minimum step interpolation*/    Author: Nicolas Brouard
   
 int m,nb;    Revision 1.148  2014/06/17 17:38:48  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Summary: Nothing new
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Author: Brouard
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Just a new packaging for OS/X version 0.98nS
   
 double *weight;    Revision 1.147  2014/06/16 10:33:11  brouard
 int **s; /* Status */    *** empty log message ***
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Author: Brouard
 double ftolhess; /* Tolerance for computing hessian */  
     Merge, before building revised version.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.145  2014/06/10 21:23:15  brouard
 {    Summary: Debugging with valgrind
    char *s;                             /* pointer */    Author: Nicolas Brouard
    int  l1, l2;                         /* length counters */  
     Lot of changes in order to output the results with some covariates
    l1 = strlen( path );                 /* length of path */    After the Edimburgh REVES conference 2014, it seems mandatory to
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    improve the code.
 #ifdef windows    No more memory valgrind error but a lot has to be done in order to
    s = strrchr( path, '\\' );           /* find last / */    continue the work of splitting the code into subroutines.
 #else    Also, decodemodel has been improved. Tricode is still not
    s = strrchr( path, '/' );            /* find last / */    optimal. nbcode should be improved. Documentation has been added in
 #endif    the source code.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.143  2014/01/26 09:45:38  brouard
       extern char       *getwd( );    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
       if ( getwd( dirc ) == NULL ) {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #else    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
       extern char       *getcwd( );  
     Revision 1.142  2014/01/26 03:57:36  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #endif  
          return( GLOCK_ERROR_GETCWD );    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.141  2014/01/26 02:42:01  brouard
    } else {                             /* strip direcotry from path */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.140  2011/09/02 10:37:54  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Summary: times.h is ok with mingw32 now.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.139  2010/06/14 07:50:17  brouard
       dirc[l1-l2] = 0;                  /* add zero */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
    }    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.138  2010/04/30 18:19:40  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    *** empty log message ***
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.137  2010/04/29 18:11:38  brouard
 #endif    (Module): Checking covariates for more complex models
    s = strrchr( name, '.' );            /* find last / */    than V1+V2. A lot of change to be done. Unstable.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.136  2010/04/26 20:30:53  brouard
    l1= strlen( name);    (Module): merging some libgsl code. Fixing computation
    l2= strlen( s)+1;    of likelione (using inter/intrapolation if mle = 0) in order to
    strncpy( finame, name, l1-l2);    get same likelihood as if mle=1.
    finame[l1-l2]= 0;    Some cleaning of code and comments added.
    return( 0 );                         /* we're done */  
 }    Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 /******************************************/    Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 void replace(char *s, char*t)  
 {    Revision 1.133  2009/07/06 10:21:25  brouard
   int i;    just nforces
   int lg=20;  
   i=0;    Revision 1.132  2009/07/06 08:22:05  brouard
   lg=strlen(t);    Many tings
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.131  2009/06/20 16:22:47  brouard
     if (t[i]== '\\') s[i]='/';    Some dimensions resccaled
   }  
 }    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
 int nbocc(char *s, char occ)    lot of cleaning with variables initialized to 0. Trying to make
 {    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   int i,j=0;  
   int lg=20;    Revision 1.129  2007/08/31 13:49:27  lievre
   i=0;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.128  2006/06/30 13:02:05  brouard
   if  (s[i] == occ ) j++;    (Module): Clarifications on computing e.j
   }  
   return j;    Revision 1.127  2006/04/28 18:11:50  brouard
 }    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 void cutv(char *u,char *v, char*t, char occ)    loop. Now we define nhstepma in the age loop.
 {    (Module): In order to speed up (in case of numerous covariates) we
   int i,lg,j,p=0;    compute health expectancies (without variances) in a first step
   i=0;    and then all the health expectancies with variances or standard
   for(j=0; j<=strlen(t)-1; j++) {    deviation (needs data from the Hessian matrices) which slows the
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    computation.
   }    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.126  2006/04/28 17:23:28  brouard
     (u[j] = t[j]);    (Module): Yes the sum of survivors was wrong since
   }    imach-114 because nhstepm was no more computed in the age
      u[p]='\0';    loop. Now we define nhstepma in the age loop.
     Version 0.98h
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.125  2006/04/04 15:20:31  lievre
   }    Errors in calculation of health expectancies. Age was not initialized.
 }    Forecasting file added.
   
 /********************** nrerror ********************/    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 void nrerror(char error_text[])    The log-likelihood is printed in the log file
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.123  2006/03/20 10:52:43  brouard
   fprintf(stderr,"%s\n",error_text);    * imach.c (Module): <title> changed, corresponds to .htm file
   exit(1);    name. <head> headers where missing.
 }  
 /*********************** vector *******************/    * imach.c (Module): Weights can have a decimal point as for
 double *vector(int nl, int nh)    English (a comma might work with a correct LC_NUMERIC environment,
 {    otherwise the weight is truncated).
   double *v;    Modification of warning when the covariates values are not 0 or
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    1.
   if (!v) nrerror("allocation failure in vector");    Version 0.98g
   return v-nl+NR_END;  
 }    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
 /************************ free vector ******************/    English (a comma might work with a correct LC_NUMERIC environment,
 void free_vector(double*v, int nl, int nh)    otherwise the weight is truncated).
 {    Modification of warning when the covariates values are not 0 or
   free((FREE_ARG)(v+nl-NR_END));    1.
 }    Version 0.98g
   
 /************************ivector *******************************/    Revision 1.121  2006/03/16 17:45:01  lievre
 int *ivector(long nl,long nh)    * imach.c (Module): Comments concerning covariates added
 {  
   int *v;    * imach.c (Module): refinements in the computation of lli if
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    status=-2 in order to have more reliable computation if stepm is
   if (!v) nrerror("allocation failure in ivector");    not 1 month. Version 0.98f
   return v-nl+NR_END;  
 }    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 /******************free ivector **************************/    status=-2 in order to have more reliable computation if stepm is
 void free_ivector(int *v, long nl, long nh)    not 1 month. Version 0.98f
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.119  2006/03/15 17:42:26  brouard
 }    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.118  2006/03/14 18:20:07  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    (Module): varevsij Comments added explaining the second
 {    table of variances if popbased=1 .
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   int **m;    (Module): Function pstamp added
      (Module): Version 0.98d
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.117  2006/03/14 17:16:22  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): varevsij Comments added explaining the second
   m += NR_END;    table of variances if popbased=1 .
   m -= nrl;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
      (Module): Function pstamp added
      (Module): Version 0.98d
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.116  2006/03/06 10:29:27  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Variance-covariance wrong links and
   m[nrl] += NR_END;    varian-covariance of ej. is needed (Saito).
   m[nrl] -= ncl;  
      Revision 1.115  2006/02/27 12:17:45  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    (Module): One freematrix added in mlikeli! 0.98c
    
   /* return pointer to array of pointers to rows */    Revision 1.114  2006/02/26 12:57:58  brouard
   return m;    (Module): Some improvements in processing parameter
 }    filename with strsep.
   
 /****************** free_imatrix *************************/    Revision 1.113  2006/02/24 14:20:24  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): Memory leaks checks with valgrind and:
       int **m;    datafile was not closed, some imatrix were not freed and on matrix
       long nch,ncl,nrh,nrl;    allocation too.
      /* free an int matrix allocated by imatrix() */  
 {    Revision 1.112  2006/01/30 09:55:26  brouard
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /******************* matrix *******************************/    (Module): Comments can be added in data file. Missing date values
 double **matrix(long nrl, long nrh, long ncl, long nch)    can be a simple dot '.'.
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.110  2006/01/25 00:51:50  brouard
   double **m;    (Module): Lots of cleaning and bugs added (Gompertz)
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.109  2006/01/24 19:37:15  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Comments (lines starting with a #) are allowed in data.
   m += NR_END;  
   m -= nrl;    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    To be fixed
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.107  2006/01/19 16:20:37  brouard
   m[nrl] -= ncl;    Test existence of gnuplot in imach path
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.106  2006/01/19 13:24:36  brouard
   return m;    Some cleaning and links added in html output
 }  
     Revision 1.105  2006/01/05 20:23:19  lievre
 /*************************free matrix ************************/    *** empty log message ***
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.104  2005/09/30 16:11:43  lievre
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): sump fixed, loop imx fixed, and simplifications.
   free((FREE_ARG)(m+nrl-NR_END));    (Module): If the status is missing at the last wave but we know
 }    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 /******************* ma3x *******************************/    contributions to the likelihood is 1 - Prob of dying from last
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 {    the healthy state at last known wave). Version is 0.98
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.102  2004/09/15 17:31:30  brouard
   m += NR_END;    Add the possibility to read data file including tab characters.
   m -= nrl;  
     Revision 1.101  2004/09/15 10:38:38  brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Fix on curr_time
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.100  2004/07/12 18:29:06  brouard
   m[nrl] -= ncl;    Add version for Mac OS X. Just define UNIX in Makefile
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Revision 1.98  2004/05/16 15:05:56  brouard
   m[nrl][ncl] += NR_END;    New version 0.97 . First attempt to estimate force of mortality
   m[nrl][ncl] -= nll;    directly from the data i.e. without the need of knowing the health
   for (j=ncl+1; j<=nch; j++)    state at each age, but using a Gompertz model: log u =a + b*age .
     m[nrl][j]=m[nrl][j-1]+nlay;    This is the basic analysis of mortality and should be done before any
      other analysis, in order to test if the mortality estimated from the
   for (i=nrl+1; i<=nrh; i++) {    cross-longitudinal survey is different from the mortality estimated
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    from other sources like vital statistic data.
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    The same imach parameter file can be used but the option for mle should be -3.
   }  
   return m;    Agnès, who wrote this part of the code, tried to keep most of the
 }    former routines in order to include the new code within the former code.
   
 /*************************free ma3x ************************/    The output is very simple: only an estimate of the intercept and of
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    the slope with 95% confident intervals.
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Current limitations:
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    A) Even if you enter covariates, i.e. with the
   free((FREE_ARG)(m+nrl-NR_END));    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 }    B) There is no computation of Life Expectancy nor Life Table.
   
 /***************** f1dim *************************/    Revision 1.97  2004/02/20 13:25:42  lievre
 extern int ncom;    Version 0.96d. Population forecasting command line is (temporarily)
 extern double *pcom,*xicom;    suppressed.
 extern double (*nrfunc)(double []);  
      Revision 1.96  2003/07/15 15:38:55  brouard
 double f1dim(double x)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 {    rewritten within the same printf. Workaround: many printfs.
   int j;  
   double f;    Revision 1.95  2003/07/08 07:54:34  brouard
   double *xt;    * imach.c (Repository):
      (Repository): Using imachwizard code to output a more meaningful covariance
   xt=vector(1,ncom);    matrix (cov(a12,c31) instead of numbers.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.94  2003/06/27 13:00:02  brouard
   free_vector(xt,1,ncom);    Just cleaning
   return f;  
 }    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 /*****************brent *************************/    exist so I changed back to asctime which exists.
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    (Module): Version 0.96b
 {  
   int iter;    Revision 1.92  2003/06/25 16:30:45  brouard
   double a,b,d,etemp;    (Module): On windows (cygwin) function asctime_r doesn't
   double fu,fv,fw,fx;    exist so I changed back to asctime which exists.
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.91  2003/06/25 15:30:29  brouard
   double e=0.0;    * imach.c (Repository): Duplicated warning errors corrected.
      (Repository): Elapsed time after each iteration is now output. It
   a=(ax < cx ? ax : cx);    helps to forecast when convergence will be reached. Elapsed time
   b=(ax > cx ? ax : cx);    is stamped in powell.  We created a new html file for the graphs
   x=w=v=bx;    concerning matrix of covariance. It has extension -cov.htm.
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    Revision 1.90  2003/06/24 12:34:15  brouard
     xm=0.5*(a+b);    (Module): Some bugs corrected for windows. Also, when
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    mle=-1 a template is output in file "or"mypar.txt with the design
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    of the covariance matrix to be input.
     printf(".");fflush(stdout);  
 #ifdef DEBUG    Revision 1.89  2003/06/24 12:30:52  brouard
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    (Module): Some bugs corrected for windows. Also, when
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    mle=-1 a template is output in file "or"mypar.txt with the design
 #endif    of the covariance matrix to be input.
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;    Revision 1.88  2003/06/23 17:54:56  brouard
       return fx;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     }  
     ftemp=fu;    Revision 1.87  2003/06/18 12:26:01  brouard
     if (fabs(e) > tol1) {    Version 0.96
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);    Revision 1.86  2003/06/17 20:04:08  brouard
       p=(x-v)*q-(x-w)*r;    (Module): Change position of html and gnuplot routines and added
       q=2.0*(q-r);    routine fileappend.
       if (q > 0.0) p = -p;  
       q=fabs(q);    Revision 1.85  2003/06/17 13:12:43  brouard
       etemp=e;    * imach.c (Repository): Check when date of death was earlier that
       e=d;    current date of interview. It may happen when the death was just
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    prior to the death. In this case, dh was negative and likelihood
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    was wrong (infinity). We still send an "Error" but patch by
       else {    assuming that the date of death was just one stepm after the
         d=p/q;    interview.
         u=x+d;    (Repository): Because some people have very long ID (first column)
         if (u-a < tol2 || b-u < tol2)    we changed int to long in num[] and we added a new lvector for
           d=SIGN(tol1,xm-x);    memory allocation. But we also truncated to 8 characters (left
       }    truncation)
     } else {    (Repository): No more line truncation errors.
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    Revision 1.84  2003/06/13 21:44:43  brouard
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    * imach.c (Repository): Replace "freqsummary" at a correct
     fu=(*f)(u);    place. It differs from routine "prevalence" which may be called
     if (fu <= fx) {    many times. Probs is memory consuming and must be used with
       if (u >= x) a=x; else b=x;    parcimony.
       SHFT(v,w,x,u)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
         SHFT(fv,fw,fx,fu)  
         } else {    Revision 1.83  2003/06/10 13:39:11  lievre
           if (u < x) a=u; else b=u;    *** empty log message ***
           if (fu <= fw || w == x) {  
             v=w;    Revision 1.82  2003/06/05 15:57:20  brouard
             w=u;    Add log in  imach.c and  fullversion number is now printed.
             fv=fw;  
             fw=fu;  */
           } else if (fu <= fv || v == x || v == w) {  /*
             v=u;     Interpolated Markov Chain
             fv=fu;  
           }    Short summary of the programme:
         }    
   }    This program computes Healthy Life Expectancies from
   nrerror("Too many iterations in brent");    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   *xmin=x;    first survey ("cross") where individuals from different ages are
   return fx;    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 /****************** mnbrak ***********************/    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    model. More health states you consider, more time is necessary to reach the
             double (*func)(double))    Maximum Likelihood of the parameters involved in the model.  The
 {    simplest model is the multinomial logistic model where pij is the
   double ulim,u,r,q, dum;    probability to be observed in state j at the second wave
   double fu;    conditional to be observed in state i at the first wave. Therefore
      the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   *fa=(*func)(*ax);    'age' is age and 'sex' is a covariate. If you want to have a more
   *fb=(*func)(*bx);    complex model than "constant and age", you should modify the program
   if (*fb > *fa) {    where the markup *Covariates have to be included here again* invites
     SHFT(dum,*ax,*bx,dum)    you to do it.  More covariates you add, slower the
       SHFT(dum,*fb,*fa,dum)    convergence.
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    The advantage of this computer programme, compared to a simple
   *fc=(*func)(*cx);    multinomial logistic model, is clear when the delay between waves is not
   while (*fb > *fc) {    identical for each individual. Also, if a individual missed an
     r=(*bx-*ax)*(*fb-*fc);    intermediate interview, the information is lost, but taken into
     q=(*bx-*cx)*(*fb-*fa);    account using an interpolation or extrapolation.  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    hPijx is the probability to be observed in state i at age x+h
     ulim=(*bx)+GLIMIT*(*cx-*bx);    conditional to the observed state i at age x. The delay 'h' can be
     if ((*bx-u)*(u-*cx) > 0.0) {    split into an exact number (nh*stepm) of unobserved intermediate
       fu=(*func)(u);    states. This elementary transition (by month, quarter,
     } else if ((*cx-u)*(u-ulim) > 0.0) {    semester or year) is modelled as a multinomial logistic.  The hPx
       fu=(*func)(u);    matrix is simply the matrix product of nh*stepm elementary matrices
       if (fu < *fc) {    and the contribution of each individual to the likelihood is simply
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    hPijx.
           SHFT(*fb,*fc,fu,(*func)(u))  
           }    Also this programme outputs the covariance matrix of the parameters but also
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    of the life expectancies. It also computes the period (stable) prevalence. 
       u=ulim;    
       fu=(*func)(u);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     } else {             Institut national d'études démographiques, Paris.
       u=(*cx)+GOLD*(*cx-*bx);    This software have been partly granted by Euro-REVES, a concerted action
       fu=(*func)(u);    from the European Union.
     }    It is copyrighted identically to a GNU software product, ie programme and
     SHFT(*ax,*bx,*cx,u)    software can be distributed freely for non commercial use. Latest version
       SHFT(*fa,*fb,*fc,fu)    can be accessed at http://euroreves.ined.fr/imach .
       }  
 }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /*************** linmin ************************/    
     **********************************************************************/
 int ncom;  /*
 double *pcom,*xicom;    main
 double (*nrfunc)(double []);    read parameterfile
      read datafile
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    concatwav
 {    freqsummary
   double brent(double ax, double bx, double cx,    if (mle >= 1)
                double (*f)(double), double tol, double *xmin);      mlikeli
   double f1dim(double x);    print results files
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if mle==1 
               double *fc, double (*func)(double));       computes hessian
   int j;    read end of parameter file: agemin, agemax, bage, fage, estepm
   double xx,xmin,bx,ax;        begin-prev-date,...
   double fx,fb,fa;    open gnuplot file
      open html file
   ncom=n;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   pcom=vector(1,n);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   xicom=vector(1,n);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   nrfunc=func;      freexexit2 possible for memory heap.
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    h Pij x                         | pij_nom  ficrestpij
     xicom[j]=xi[j];     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   }         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   ax=0.0;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 #ifdef DEBUG    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 #endif     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    forecasting if prevfcast==1 prevforecast call prevalence()
     p[j] += xi[j];    health expectancies
   }    Variance-covariance of DFLE
   free_vector(xicom,1,n);    prevalence()
   free_vector(pcom,1,n);     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /*************** powell ************************/    total life expectancies
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    Variance of period (stable) prevalence
             double (*func)(double []))   end
 {  */
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  #define POWELL /* Instead of NLOPT */
   int i,ibig,j;  #define POWELLDIRECT /* Directest to decide new direction instead of Powell test */
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  #include <math.h>
   double *xits;  #include <stdio.h>
   pt=vector(1,n);  #include <stdlib.h>
   ptt=vector(1,n);  #include <string.h>
   xit=vector(1,n);  
   xits=vector(1,n);  #ifdef _WIN32
   *fret=(*func)(p);  #include <io.h>
   for (j=1;j<=n;j++) pt[j]=p[j];  #include <windows.h>
   for (*iter=1;;++(*iter)) {  #include <tchar.h>
     fp=(*fret);  #else
     ibig=0;  #include <unistd.h>
     del=0.0;  #endif
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  #include <limits.h>
       printf(" %d %.12f",i, p[i]);  #include <sys/types.h>
     printf("\n");  
     for (i=1;i<=n;i++) {  #if defined(__GNUC__)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #include <sys/utsname.h> /* Doesn't work on Windows */
       fptt=(*fret);  #endif
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  #include <sys/stat.h>
 #endif  #include <errno.h>
       printf("%d",i);fflush(stdout);  /* extern int errno; */
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /* #ifdef LINUX */
         del=fabs(fptt-(*fret));  /* #include <time.h> */
         ibig=i;  /* #include "timeval.h" */
       }  /* #else */
 #ifdef DEBUG  /* #include <sys/time.h> */
       printf("%d %.12e",i,(*fret));  /* #endif */
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #include <time.h>
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  #ifdef GSL
       for(j=1;j<=n;j++)  #include <gsl/gsl_errno.h>
         printf(" p=%.12e",p[j]);  #include <gsl/gsl_multimin.h>
       printf("\n");  #endif
 #endif  
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #ifdef NLOPT
 #ifdef DEBUG  #include <nlopt.h>
       int k[2],l;  typedef struct {
       k[0]=1;    double (* function)(double [] );
       k[1]=-1;  } myfunc_data ;
       printf("Max: %.12e",(*func)(p));  #endif
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /* #include <libintl.h> */
       printf("\n");  /* #define _(String) gettext (String) */
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define GNUPLOTPROGRAM "gnuplot"
         }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define FILENAMELENGTH 132
       }  
 #endif  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
       free_vector(xit,1,n);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       free_vector(xits,1,n);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  #define NINTERVMAX 8
       return;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     }  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     for (j=1;j<=n;j++) {  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       ptt[j]=2.0*p[j]-pt[j];  #define MAXN 20000
       xit[j]=p[j]-pt[j];  #define YEARM 12. /**< Number of months per year */
       pt[j]=p[j];  #define AGESUP 130
     }  #define AGEBASE 40
     fptt=(*func)(ptt);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
     if (fptt < fp) {  #ifdef _WIN32
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #define DIRSEPARATOR '\\'
       if (t < 0.0) {  #define CHARSEPARATOR "\\"
         linmin(p,xit,n,fret,func);  #define ODIRSEPARATOR '/'
         for (j=1;j<=n;j++) {  #else
           xi[j][ibig]=xi[j][n];  #define DIRSEPARATOR '/'
           xi[j][n]=xit[j];  #define CHARSEPARATOR "/"
         }  #define ODIRSEPARATOR '\\'
 #ifdef DEBUG  #endif
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /* $Id$ */
           printf(" %.12e",xit[j]);  /* $State$ */
         printf("\n");  
 #endif  char version[]="Imach version 0.98p, Février 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       }  char fullversion[]="$Revision$ $Date$"; 
     }  char strstart[80];
   }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 }  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar=0, nforce=0; /* Number of variables, number of forces */
 /**** Prevalence limit ****************/  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 {  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
      matrix by transitions matrix until convergence is reached */  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int i, ii,j,k;  int cptcov=0; /* Working variable */
   double min, max, maxmin, maxmax,sumnew=0.;  int npar=NPARMAX;
   double **matprod2();  int nlstate=2; /* Number of live states */
   double **out, cov[NCOVMAX], **pmij();  int ndeath=1; /* Number of dead states */
   double **newm;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double agefin, delaymax=50 ; /* Max number of years to converge */  int popbased=0;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  int *wav; /* Number of waves for this individuual 0 is possible */
     for (j=1;j<=nlstate+ndeath;j++){  int maxwav=0; /* Maxim number of waves */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     }  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   int gipmx=0, gsw=0; /* Global variables on the number of contributions 
    cov[1]=1.;                     to the likelihood and the sum of weights (done by funcone)*/
    int mle=1, weightopt=0;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     newm=savm;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     /* Covariates have to be included here again */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
      cov[2]=agefin;  int countcallfunc=0;  /* Count the number of calls to func */
    double jmean=1; /* Mean space between 2 waves */
       for (k=1; k<=cptcovn;k++) {  double **matprod2(); /* test */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double **oldm, **newm, **savm; /* Working pointers to matrices */
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       }  /*FILE *fic ; */ /* Used in readdata only */
       for (k=1; k<=cptcovage;k++)  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  FILE *ficlog, *ficrespow;
       for (k=1; k<=cptcovprod;k++)  int globpr=0; /* Global variable for printing or not */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double fretone; /* Only one call to likelihood */
   long ipmx=0; /* Number of contributions */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  double sw; /* Sum of weights */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     savm=oldm;  FILE *ficresprobmorprev;
     oldm=newm;  FILE *fichtm, *fichtmcov; /* Html File */
     maxmax=0.;  FILE *ficreseij;
     for(j=1;j<=nlstate;j++){  char filerese[FILENAMELENGTH];
       min=1.;  FILE *ficresstdeij;
       max=0.;  char fileresstde[FILENAMELENGTH];
       for(i=1; i<=nlstate; i++) {  FILE *ficrescveij;
         sumnew=0;  char filerescve[FILENAMELENGTH];
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  FILE  *ficresvij;
         prlim[i][j]= newm[i][j]/(1-sumnew);  char fileresv[FILENAMELENGTH];
         max=FMAX(max,prlim[i][j]);  FILE  *ficresvpl;
         min=FMIN(min,prlim[i][j]);  char fileresvpl[FILENAMELENGTH];
       }  char title[MAXLINE];
       maxmin=max-min;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       maxmax=FMAX(maxmax,maxmin);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     if(maxmax < ftolpl){  char command[FILENAMELENGTH];
       return prlim;  int  outcmd=0;
     }  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  
   char filelog[FILENAMELENGTH]; /* Log file */
 /*************** transition probabilities ***************/  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  char popfile[FILENAMELENGTH];
 {  
   double s1, s2;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   /* struct timezone tzp; */
     for(i=1; i<= nlstate; i++){  /* extern int gettimeofday(); */
     for(j=1; j<i;j++){  struct tm tml, *gmtime(), *localtime();
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  extern time_t time();
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  struct tm start_time, end_time, curr_time, last_time, forecast_time;
       }  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       ps[i][j]=s2;  struct tm tm;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  char strcurr[80], strfor[80];
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char *endptr;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  long lval;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  double dval;
       }  
       ps[i][j]=s2;  #define NR_END 1
     }  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
     /*ps[3][2]=1;*/  
   #define NRANSI 
   for(i=1; i<= nlstate; i++){  #define ITMAX 200 
      s1=0;  
     for(j=1; j<i; j++)  #define TOL 2.0e-4 
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  #define CGOLD 0.3819660 
       s1+=exp(ps[i][j]);  #define ZEPS 1.0e-10 
     ps[i][i]=1./(s1+1.);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define GOLD 1.618034 
     for(j=i+1; j<=nlstate+ndeath; j++)  #define GLIMIT 100.0 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define TINY 1.0e-20 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     for(jj=1; jj<= nlstate+ndeath; jj++){    
       ps[ii][jj]=0;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       ps[ii][ii]=1;  #define rint(a) floor(a+0.5)
     }  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   }  /* #define mytinydouble 1.0e-16 */
   /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /* static double dsqrarg; */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
      printf("%lf ",ps[ii][jj]);  static double sqrarg;
    }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     printf("\n ");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     }  int agegomp= AGEGOMP;
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  int imx; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  int stepm=1;
   goto end;*/  /* Stepm, step in month: minimum step interpolation*/
     return ps;  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /**************** Product of 2 matrices ******************/  
   int m,nb;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  double **pmmij, ***probs;
   /* in, b, out are matrice of pointers which should have been initialized  double *ageexmed,*agecens;
      before: only the contents of out is modified. The function returns  double dateintmean=0;
      a pointer to pointers identical to out */  
   long i, j, k;  double *weight;
   for(i=nrl; i<= nrh; i++)  int **s; /* Status */
     for(k=ncolol; k<=ncoloh; k++)  double *agedc;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         out[i][k] +=in[i][j]*b[j][k];                    * covar=matrix(0,NCOVMAX,1,n); 
                     * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   return out;  double  idx; 
 }  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int *Ndum; /** Freq of modality (tricode */
   int **codtab; /**< codtab=imatrix(1,100,1,10); */
 /************* Higher Matrix Product ***************/  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  double ftolhess; /**< Tolerance for computing hessian */
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /**************** split *************************/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
      (typically every 2 years instead of every month which is too big).  {
      Model is determined by parameters x and covariates have to be    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
      included manually here.       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
      */    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];    l1 = strlen(path );                   /* length of path */
   double **newm;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   /* Hstepm could be zero and should return the unit matrix */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   for (i=1;i<=nlstate+ndeath;i++)      strcpy( name, path );               /* we got the fullname name because no directory */
     for (j=1;j<=nlstate+ndeath;j++){      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       oldm[i][j]=(i==j ? 1.0 : 0.0);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       po[i][j][0]=(i==j ? 1.0 : 0.0);      /* get current working directory */
     }      /*    extern  char* getcwd ( char *buf , int len);*/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   for(h=1; h <=nhstepm; h++){        return( GLOCK_ERROR_GETCWD );
     for(d=1; d <=hstepm; d++){      }
       newm=savm;      /* got dirc from getcwd*/
       /* Covariates have to be included here again */      printf(" DIRC = %s \n",dirc);
       cov[1]=1.;    } else {                              /* strip direcotry from path */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      ss++;                               /* after this, the filename */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      l2 = strlen( ss );                  /* length of filename */
       for (k=1; k<=cptcovage;k++)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      strcpy( name, ss );         /* save file name */
       for (k=1; k<=cptcovprod;k++)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
     }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /* We add a separator at the end of dirc if not exists */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    l1 = strlen( dirc );                  /* length of directory */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    if( dirc[l1-1] != DIRSEPARATOR ){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      dirc[l1] =  DIRSEPARATOR;
       savm=oldm;      dirc[l1+1] = 0; 
       oldm=newm;      printf(" DIRC3 = %s \n",dirc);
     }    }
     for(i=1; i<=nlstate+ndeath; i++)    ss = strrchr( name, '.' );            /* find last / */
       for(j=1;j<=nlstate+ndeath;j++) {    if (ss >0){
         po[i][j][h]=newm[i][j];      ss++;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      strcpy(ext,ss);                     /* save extension */
          */      l1= strlen( name);
       }      l2= strlen(ss)+1;
   } /* end h */      strncpy( finame, name, l1-l2);
   return po;      finame[l1-l2]= 0;
 }    }
   
     return( 0 );                          /* we're done */
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  
   int i, ii, j, k, mi, d, kk;  /******************************************/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  void replace_back_to_slash(char *s, char*t)
   double sw; /* Sum of weights */  {
   double lli; /* Individual log likelihood */    int i;
   long ipmx;    int lg=0;
   /*extern weight */    i=0;
   /* We are differentiating ll according to initial status */    lg=strlen(t);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    for(i=0; i<= lg; i++) {
   /*for(i=1;i<imx;i++)      (s[i] = t[i]);
     printf(" %d\n",s[4][i]);      if (t[i]== '\\') s[i]='/';
   */    }
   cov[1]=1.;  }
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  char *trimbb(char *out, char *in)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    char *s;
     for(mi=1; mi<= wav[i]-1; mi++){    s=out;
       for (ii=1;ii<=nlstate+ndeath;ii++)    while (*in != '\0'){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       for(d=0; d<dh[mi][i]; d++){        in++;
         newm=savm;      }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      *out++ = *in++;
         for (kk=1; kk<=cptcovage;kk++) {    }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    *out='\0';
         }    return s;
          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  char *cutl(char *blocc, char *alocc, char *in, char occ)
         savm=oldm;  {
         oldm=newm;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
               and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
               gives blocc="abcdef2ghi" and alocc="j".
       } /* end mult */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
          */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    char *s, *t;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    t=in;s=in;
       ipmx +=1;    while ((*in != occ) && (*in != '\0')){
       sw += weight[i];      *alocc++ = *in++;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    }
     } /* end of wave */    if( *in == occ){
   } /* end of individual */      *(alocc)='\0';
       s=++in;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */   
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    if (s == t) {/* occ not found */
   return -l;      *(alocc-(in-s))='\0';
 }      in=s;
     }
     while ( *in != '\0'){
 /*********** Maximum Likelihood Estimation ***************/      *blocc++ = *in++;
     }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {    *blocc='\0';
   int i,j, iter;    return t;
   double **xi,*delti;  }
   double fret;  char *cutv(char *blocc, char *alocc, char *in, char occ)
   xi=matrix(1,npar,1,npar);  {
   for (i=1;i<=npar;i++)    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     for (j=1;j<=npar;j++)       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       xi[i][j]=(i==j ? 1.0 : 0.0);       gives blocc="abcdef2ghi" and alocc="j".
   printf("Powell\n");       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   powell(p,xi,npar,ftol,&iter,&fret,func);    */
     char *s, *t;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    t=in;s=in;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    while (*in != '\0'){
       while( *in == occ){
 }        *blocc++ = *in++;
         s=in;
 /**** Computes Hessian and covariance matrix ***/      }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      *blocc++ = *in++;
 {    }
   double  **a,**y,*x,pd;    if (s == t) /* occ not found */
   double **hess;      *(blocc-(in-s))='\0';
   int i, j,jk;    else
   int *indx;      *(blocc-(in-s)-1)='\0';
     in=s;
   double hessii(double p[], double delta, int theta, double delti[]);    while ( *in != '\0'){
   double hessij(double p[], double delti[], int i, int j);      *alocc++ = *in++;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
     *alocc='\0';
   hess=matrix(1,npar,1,npar);    return s;
   }
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  int nbocc(char *s, char occ)
     printf("%d",i);fflush(stdout);  {
     hess[i][i]=hessii(p,ftolhess,i,delti);    int i,j=0;
     /*printf(" %f ",p[i]);*/    int lg=20;
     /*printf(" %lf ",hess[i][i]);*/    i=0;
   }    lg=strlen(s);
      for(i=0; i<= lg; i++) {
   for (i=1;i<=npar;i++) {    if  (s[i] == occ ) j++;
     for (j=1;j<=npar;j++)  {    }
       if (j>i) {    return j;
         printf(".%d%d",i,j);fflush(stdout);  }
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      /* void cutv(char *u,char *v, char*t, char occ) */
         /*printf(" %lf ",hess[i][j]);*/  /* { */
       }  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   }  /*      gives u="abcdef2ghi" and v="j" *\/ */
   printf("\n");  /*   int i,lg,j,p=0; */
   /*   i=0; */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*   lg=strlen(t); */
    /*   for(j=0; j<=lg-1; j++) { */
   a=matrix(1,npar,1,npar);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   y=matrix(1,npar,1,npar);  /*   } */
   x=vector(1,npar);  
   indx=ivector(1,npar);  /*   for(j=0; j<p; j++) { */
   for (i=1;i<=npar;i++)  /*     (u[j] = t[j]); */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /*   } */
   ludcmp(a,npar,indx,&pd);  /*      u[p]='\0'; */
   
   for (j=1;j<=npar;j++) {  /*    for(j=0; j<= lg; j++) { */
     for (i=1;i<=npar;i++) x[i]=0;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     x[j]=1;  /*   } */
     lubksb(a,npar,indx,x);  /* } */
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  #ifdef _WIN32
     }  char * strsep(char **pp, const char *delim)
   }  {
     char *p, *q;
   printf("\n#Hessian matrix#\n");           
   for (i=1;i<=npar;i++) {    if ((p = *pp) == NULL)
     for (j=1;j<=npar;j++) {      return 0;
       printf("%.3e ",hess[i][j]);    if ((q = strpbrk (p, delim)) != NULL)
     }    {
     printf("\n");      *pp = q + 1;
   }      *q = '\0';
     }
   /* Recompute Inverse */    else
   for (i=1;i<=npar;i++)      *pp = 0;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    return p;
   ludcmp(a,npar,indx,&pd);  }
   #endif
   /*  printf("\n#Hessian matrix recomputed#\n");  
   /********************** nrerror ********************/
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  void nrerror(char error_text[])
     x[j]=1;  {
     lubksb(a,npar,indx,x);    fprintf(stderr,"ERREUR ...\n");
     for (i=1;i<=npar;i++){    fprintf(stderr,"%s\n",error_text);
       y[i][j]=x[i];    exit(EXIT_FAILURE);
       printf("%.3e ",y[i][j]);  }
     }  /*********************** vector *******************/
     printf("\n");  double *vector(int nl, int nh)
   }  {
   */    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   free_matrix(a,1,npar,1,npar);    if (!v) nrerror("allocation failure in vector");
   free_matrix(y,1,npar,1,npar);    return v-nl+NR_END;
   free_vector(x,1,npar);  }
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   int i;  {
   int l=1, lmax=20;    int *v;
   double k1,k2;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double p2[NPARMAX+1];    if (!v) nrerror("allocation failure in ivector");
   double res;    return v-nl+NR_END;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  }
   double fx;  
   int k=0,kmax=10;  /******************free ivector **************************/
   double l1;  void free_ivector(int *v, long nl, long nh)
   {
   fx=func(x);    free((FREE_ARG)(v+nl-NR_END));
   for (i=1;i<=npar;i++) p2[i]=x[i];  }
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  /************************lvector *******************************/
     delts=delt;  long *lvector(long nl,long nh)
     for(k=1 ; k <kmax; k=k+1){  {
       delt = delta*(l1*k);    long *v;
       p2[theta]=x[theta] +delt;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       k1=func(p2)-fx;    if (!v) nrerror("allocation failure in ivector");
       p2[theta]=x[theta]-delt;    return v-nl+NR_END;
       k2=func(p2)-fx;  }
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /******************free lvector **************************/
        void free_lvector(long *v, long nl, long nh)
 #ifdef DEBUG  {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /******************* imatrix *******************************/
         k=kmax;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  { 
         k=kmax; l=lmax*10.;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    
         delts=delt;    /* allocate pointers to rows */ 
       }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
   delti[theta]=delts;    m -= nrl; 
   return res;    
      
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 double hessij( double x[], double delti[], int thetai,int thetaj)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 {    m[nrl] += NR_END; 
   int i;    m[nrl] -= ncl; 
   int l=1, l1, lmax=20;    
   double k1,k2,k3,k4,res,fx;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double p2[NPARMAX+1];    
   int k;    /* return pointer to array of pointers to rows */ 
     return m; 
   fx=func(x);  } 
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /****************** free_imatrix *************************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  void free_imatrix(m,nrl,nrh,ncl,nch)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        int **m;
     k1=func(p2)-fx;        long nch,ncl,nrh,nrl; 
         /* free an int matrix allocated by imatrix() */ 
     p2[thetai]=x[thetai]+delti[thetai]/k;  { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     k2=func(p2)-fx;    free((FREE_ARG) (m+nrl-NR_END)); 
    } 
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /******************* matrix *******************************/
     k3=func(p2)-fx;  double **matrix(long nrl, long nrh, long ncl, long nch)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **m;
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    m += NR_END;
 #endif    m -= nrl;
   }  
   return res;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /************** Inverse of matrix **************/    m[nrl] -= ncl;
 void ludcmp(double **a, int n, int *indx, double *d)  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   int i,imax,j,k;    return m;
   double big,dum,sum,temp;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   double *vv;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
    that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   vv=vector(1,n);     */
   *d=1.0;  }
   for (i=1;i<=n;i++) {  
     big=0.0;  /*************************free matrix ************************/
     for (j=1;j<=n;j++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       if ((temp=fabs(a[i][j])) > big) big=temp;  {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     vv[i]=1.0/big;    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  /******************* ma3x *******************************/
       sum=a[i][j];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     big=0.0;  
     for (i=j;i<=n;i++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       sum=a[i][j];    if (!m) nrerror("allocation failure 1 in matrix()");
       for (k=1;k<j;k++)    m += NR_END;
         sum -= a[i][k]*a[k][j];    m -= nrl;
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         big=dum;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         imax=i;    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
     }  
     if (j != imax) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         a[imax][k]=a[j][k];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         a[j][k]=dum;    m[nrl][ncl] += NR_END;
       }    m[nrl][ncl] -= nll;
       *d = -(*d);    for (j=ncl+1; j<=nch; j++) 
       vv[imax]=vv[j];      m[nrl][j]=m[nrl][j-1]+nlay;
     }    
     indx[j]=imax;    for (i=nrl+1; i<=nrh; i++) {
     if (a[j][j] == 0.0) a[j][j]=TINY;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     if (j != n) {      for (j=ncl+1; j<=nch; j++) 
       dum=1.0/(a[j][j]);        m[i][j]=m[i][j-1]+nlay;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    }
     }    return m; 
   }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   free_vector(vv,1,n);  /* Doesn't work */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 ;    */
 }  }
   
 void lubksb(double **a, int n, int *indx, double b[])  /*************************free ma3x ************************/
 {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   int i,ii=0,ip,j;  {
   double sum;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (i=1;i<=n;i++) {    free((FREE_ARG)(m+nrl-NR_END));
     ip=indx[i];  }
     sum=b[ip];  
     b[ip]=b[i];  /*************** function subdirf ***********/
     if (ii)  char *subdirf(char fileres[])
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  {
     else if (sum) ii=i;    /* Caution optionfilefiname is hidden */
     b[i]=sum;    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/"); /* Add to the right */
   for (i=n;i>=1;i--) {    strcat(tmpout,fileres);
     sum=b[i];    return tmpout;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  }
     b[i]=sum/a[i][i];  
   }  /*************** function subdirf2 ***********/
 }  char *subdirf2(char fileres[], char *preop)
   {
 /************ Frequencies ********************/    
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    /* Caution optionfilefiname is hidden */
 {  /* Some frequencies */    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/");
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    strcat(tmpout,preop);
   double ***freq; /* Frequencies */    strcat(tmpout,fileres);
   double *pp;    return tmpout;
   double pos, k2, dateintsum=0,k2cpt=0;  }
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  /*************** function subdirf3 ***********/
    char *subdirf3(char fileres[], char *preop, char *preop2)
   pp=vector(1,nlstate);  {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   strcpy(fileresp,"p");    /* Caution optionfilefiname is hidden */
   strcat(fileresp,fileres);    strcpy(tmpout,optionfilefiname);
   if((ficresp=fopen(fileresp,"w"))==NULL) {    strcat(tmpout,"/");
     printf("Problem with prevalence resultfile: %s\n", fileresp);    strcat(tmpout,preop);
     exit(0);    strcat(tmpout,preop2);
   }    strcat(tmpout,fileres);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    return tmpout;
   j1=0;  }
   
   j=cptcoveff;  char *asc_diff_time(long time_sec, char ascdiff[])
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
     long sec_left, days, hours, minutes;
   for(k1=1; k1<=j;k1++){    days = (time_sec) / (60*60*24);
    for(i1=1; i1<=ncodemax[k1];i1++){    sec_left = (time_sec) % (60*60*24);
        j1++;    hours = (sec_left) / (60*60) ;
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    sec_left = (sec_left) %(60*60);
          scanf("%d", i);*/    minutes = (sec_left) /60;
         for (i=-1; i<=nlstate+ndeath; i++)      sec_left = (sec_left) % (60);
          for (jk=-1; jk<=nlstate+ndeath; jk++)      sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
            for(m=agemin; m <= agemax+3; m++)    return ascdiff;
              freq[i][jk][m]=0;  }
   
         dateintsum=0;  /***************** f1dim *************************/
         k2cpt=0;  extern int ncom; 
        for (i=1; i<=imx; i++) {  extern double *pcom,*xicom;
          bool=1;  extern double (*nrfunc)(double []); 
          if  (cptcovn>0) {   
            for (z1=1; z1<=cptcoveff; z1++)  double f1dim(double x) 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  { 
                bool=0;    int j; 
          }    double f;
          if (bool==1) {    double *xt; 
            for(m=firstpass; m<=lastpass; m++){   
              k2=anint[m][i]+(mint[m][i]/12.);    xt=vector(1,ncom); 
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                if(agev[m][i]==0) agev[m][i]=agemax+1;    f=(*nrfunc)(xt); 
                if(agev[m][i]==1) agev[m][i]=agemax+2;    free_vector(xt,1,ncom); 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    return f; 
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  } 
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                  dateintsum=dateintsum+k2;  /*****************brent *************************/
                  k2cpt++;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
                }  { 
     int iter; 
              }    double a,b,d,etemp;
            }    double fu=0,fv,fw,fx;
          }    double ftemp=0.;
        }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
            double e=0.0; 
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   
     a=(ax < cx ? ax : cx); 
         if  (cptcovn>0) {    b=(ax > cx ? ax : cx); 
          fprintf(ficresp, "\n#********** Variable ");    x=w=v=bx; 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fw=fv=fx=(*f)(x); 
        fprintf(ficresp, "**********\n#");    for (iter=1;iter<=ITMAX;iter++) { 
         }      xm=0.5*(a+b); 
        for(i=1; i<=nlstate;i++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
        fprintf(ficresp, "\n");      printf(".");fflush(stdout);
              fprintf(ficlog,".");fflush(ficlog);
   for(i=(int)agemin; i <= (int)agemax+3; i++){  #ifdef DEBUGBRENT
     if(i==(int)agemax+3)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf("Total");      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     else      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       printf("Age %d", i);  #endif
     for(jk=1; jk <=nlstate ; jk++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        *xmin=x; 
         pp[jk] += freq[jk][m][i];        return fx; 
     }      } 
     for(jk=1; jk <=nlstate ; jk++){      ftemp=fu;
       for(m=-1, pos=0; m <=0 ; m++)      if (fabs(e) > tol1) { 
         pos += freq[jk][m][i];        r=(x-w)*(fx-fv); 
       if(pp[jk]>=1.e-10)        q=(x-v)*(fx-fw); 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        p=(x-v)*q-(x-w)*r; 
       else        q=2.0*(q-r); 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        if (q > 0.0) p = -p; 
     }        q=fabs(q); 
         etemp=e; 
      for(jk=1; jk <=nlstate ; jk++){        e=d; 
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         pp[jk] += freq[jk][m][i];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      }        else { 
           d=p/q; 
     for(jk=1,pos=0; jk <=nlstate ; jk++)          u=x+d; 
       pos += pp[jk];          if (u-a < tol2 || b-u < tol2) 
     for(jk=1; jk <=nlstate ; jk++){            d=SIGN(tol1,xm-x); 
       if(pos>=1.e-5)        } 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } else { 
       else        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      } 
       if( i <= (int) agemax){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         if(pos>=1.e-5){      fu=(*f)(u); 
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      if (fu <= fx) { 
           probs[i][jk][j1]= pp[jk]/pos;        if (u >= x) a=x; else b=x; 
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        SHFT(v,w,x,u) 
         }          SHFT(fv,fw,fx,fu) 
       else          } else { 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
     }              v=w; 
     for(jk=-1; jk <=nlstate+ndeath; jk++)              w=u; 
       for(m=-1; m <=nlstate+ndeath; m++)              fv=fw; 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);              fw=fu; 
     if(i <= (int) agemax)            } else if (fu <= fv || v == x || v == w) { 
       fprintf(ficresp,"\n");              v=u; 
     printf("\n");              fv=fu; 
     }            } 
     }          } 
  }    } 
   dateintmean=dateintsum/k2cpt;    nrerror("Too many iterations in brent"); 
      *xmin=x; 
   fclose(ficresp);    return fx; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  } 
   free_vector(pp,1,nlstate);  
   /****************** mnbrak ***********************/
   /* End of Freq */  
 }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
 /************ Prevalence ********************/  { 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    double ulim,u,r,q, dum;
 {  /* Some frequencies */    double fu; 
     
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    *fa=(*func)(*ax); 
   double ***freq; /* Frequencies */    *fb=(*func)(*bx); 
   double *pp;    if (*fb > *fa) { 
   double pos, k2;      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
   pp=vector(1,nlstate);        } 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    *cx=(*bx)+GOLD*(*bx-*ax); 
      *fc=(*func)(*cx); 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    while (*fb > *fc) { /* Declining fa, fb, fc */
   j1=0;      r=(*bx-*ax)*(*fb-*fc); 
        q=(*bx-*cx)*(*fb-*fa); 
   j=cptcoveff;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
        ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
  for(k1=1; k1<=j;k1++){      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
     for(i1=1; i1<=ncodemax[k1];i1++){        fu=(*func)(u); 
       j1++;  #ifdef DEBUG
          /* f(x)=A(x-u)**2+f(u) */
       for (i=-1; i<=nlstate+ndeath; i++)          double A, fparabu; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
           for(m=agemin; m <= agemax+3; m++)        fparabu= *fa - A*(*ax-u)*(*ax-u);
             freq[i][jk][m]=0;        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
              fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       for (i=1; i<=imx; i++) {  #endif 
         bool=1;      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
         if  (cptcovn>0) {        fu=(*func)(u); 
           for (z1=1; z1<=cptcoveff; z1++)        if (fu < *fc) { 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
               bool=0;            SHFT(*fb,*fc,fu,(*func)(u)) 
         }            } 
         if (bool==1) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
           for(m=firstpass; m<=lastpass; m++){        u=ulim; 
             k2=anint[m][i]+(mint[m][i]/12.);        fu=(*func)(u); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } else { 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        u=(*cx)+GOLD*(*cx-*bx); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        fu=(*func)(u); 
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      } 
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */      SHFT(*ax,*bx,*cx,u) 
             }        SHFT(*fa,*fb,*fc,fu) 
           }        } 
         }  } 
       }  
         for(i=(int)agemin; i <= (int)agemax+3; i++){  /*************** linmin ************************/
           for(jk=1; jk <=nlstate ; jk++){  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
               pp[jk] += freq[jk][m][i];  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
           }  the value of func at the returned location p . This is actually all accomplished by calling the
           for(jk=1; jk <=nlstate ; jk++){  routines mnbrak and brent .*/
             for(m=-1, pos=0; m <=0 ; m++)  int ncom; 
             pos += freq[jk][m][i];  double *pcom,*xicom;
         }  double (*nrfunc)(double []); 
           
          for(jk=1; jk <=nlstate ; jk++){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  { 
              pp[jk] += freq[jk][m][i];    double brent(double ax, double bx, double cx, 
          }                 double (*f)(double), double tol, double *xmin); 
              double f1dim(double x); 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
          for(jk=1; jk <=nlstate ; jk++){              int j; 
            if( i <= (int) agemax){    double xx,xmin,bx,ax; 
              if(pos>=1.e-5){    double fx,fb,fa;
                probs[i][jk][j1]= pp[jk]/pos;   
              }    ncom=n; 
            }    pcom=vector(1,n); 
          }    xicom=vector(1,n); 
              nrfunc=func; 
         }    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
   }      xicom[j]=xi[j]; 
      } 
      ax=0.0; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    xx=1.0; 
   free_vector(pp,1,nlstate);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
      *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
 }  /* End of Freq */  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /************* Waves Concatenation ***************/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    for (j=1;j<=n;j++) { 
 {      xi[j] *= xmin; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      p[j] += xi[j]; 
      Death is a valid wave (if date is known).    } 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    free_vector(xicom,1,n); 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    free_vector(pcom,1,n); 
      and mw[mi+1][i]. dh depends on stepm.  } 
      */  
   
   int i, mi, m;  /*************** powell ************************/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /*
      double sum=0., jmean=0.;*/  Minimization of a function func of n variables. Input consists of an initial starting point
   p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   int j, k=0,jk, ju, jl;  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   double sum=0.;  such that failure to decrease by more than this amount on one iteration signals doneness. On
   jmin=1e+5;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   jmax=-1;  function value at p , and iter is the number of iterations taken. The routine linmin is used.
   jmean=0.;   */
   for(i=1; i<=imx; i++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     mi=0;              double (*func)(double [])) 
     m=firstpass;  { 
     while(s[m][i] <= nlstate){    void linmin(double p[], double xi[], int n, double *fret, 
       if(s[m][i]>=1)                double (*func)(double [])); 
         mw[++mi][i]=m;    int i,ibig,j; 
       if(m >=lastpass)    double del,t,*pt,*ptt,*xit;
         break;    double directest;
       else    double fp,fptt;
         m++;    double *xits;
     }/* end while */    int niterf, itmp;
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */    pt=vector(1,n); 
       /* if(mi==0)  never been interviewed correctly before death */    ptt=vector(1,n); 
          /* Only death is a correct wave */    xit=vector(1,n); 
       mw[mi][i]=m;    xits=vector(1,n); 
     }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
     wav[i]=mi;      rcurr_time = time(NULL);  
     if(mi==0)    for (*iter=1;;++(*iter)) { 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      fp=(*fret); 
   }      ibig=0; 
       del=0.0; 
   for(i=1; i<=imx; i++){      rlast_time=rcurr_time;
     for(mi=1; mi<wav[i];mi++){      /* (void) gettimeofday(&curr_time,&tzp); */
       if (stepm <=0)      rcurr_time = time(NULL);  
         dh[mi][i]=1;      curr_time = *localtime(&rcurr_time);
       else{      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
         if (s[mw[mi+1][i]][i] > nlstate) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
           if (agedc[i] < 2*AGESUP) {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);     for (i=1;i<=n;i++) {
           if(j==0) j=1;  /* Survives at least one month after exam */        printf(" %d %.12f",i, p[i]);
           k=k+1;        fprintf(ficlog," %d %.12lf",i, p[i]);
           if (j >= jmax) jmax=j;        fprintf(ficrespow," %.12lf", p[i]);
           if (j <= jmin) jmin=j;      }
           sum=sum+j;      printf("\n");
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      fprintf(ficlog,"\n");
           }      fprintf(ficrespow,"\n");fflush(ficrespow);
         }      if(*iter <=3){
         else{        tml = *localtime(&rcurr_time);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        strcpy(strcurr,asctime(&tml));
           k=k+1;        rforecast_time=rcurr_time; 
           if (j >= jmax) jmax=j;        itmp = strlen(strcurr);
           else if (j <= jmin)jmin=j;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          strcurr[itmp-1]='\0';
           sum=sum+j;        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         jk= j/stepm;        for(niterf=10;niterf<=30;niterf+=10){
         jl= j -jk*stepm;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         ju= j -(jk+1)*stepm;          forecast_time = *localtime(&rforecast_time);
         if(jl <= -ju)          strcpy(strfor,asctime(&forecast_time));
           dh[mi][i]=jk;          itmp = strlen(strfor);
         else          if(strfor[itmp-1]=='\n')
           dh[mi][i]=jk+1;          strfor[itmp-1]='\0';
         if(dh[mi][i]==0)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           dh[mi][i]=1; /* At least one step */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       }        }
     }      }
   }      for (i=1;i<=n;i++) { 
   jmean=sum/k;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        fptt=(*fret); 
  }  #ifdef DEBUG
 /*********** Tricode ****************************/            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 void tricode(int *Tvar, int **nbcode, int imx)            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 {  #endif
   int Ndum[20],ij=1, k, j, i;        printf("%d",i);fflush(stdout);
   int cptcode=0;        fprintf(ficlog,"%d",i);fflush(ficlog);
   cptcoveff=0;        linmin(p,xit,n,fret,func); 
          if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
   for (k=0; k<19; k++) Ndum[k]=0;                                         because that direction will be replaced unless the gain del is small
   for (k=1; k<=7; k++) ncodemax[k]=0;                                        in comparison with the 'probable' gain, mu^2, with the last average direction.
                                         Unless the n directions are conjugate some gain in the determinant may be obtained
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                                        with the new direction.
     for (i=1; i<=imx; i++) {                                        */
       ij=(int)(covar[Tvar[j]][i]);          del=fabs(fptt-(*fret)); 
       Ndum[ij]++;          ibig=i; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        } 
       if (ij > cptcode) cptcode=ij;  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
     for (i=0; i<=cptcode; i++) {        for (j=1;j<=n;j++) {
       if(Ndum[i]!=0) ncodemax[j]++;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     }          printf(" x(%d)=%.12e",j,xit[j]);
     ij=1;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
         for(j=1;j<=n;j++) {
     for (i=1; i<=ncodemax[j]; i++) {          printf(" p(%d)=%.12e",j,p[j]);
       for (k=0; k<=19; k++) {          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
         if (Ndum[k] != 0) {        }
           nbcode[Tvar[j]][ij]=k;        printf("\n");
           ij++;        fprintf(ficlog,"\n");
         }  #endif
         if (ij > ncodemax[j]) break;      } /* end i */
       }        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
     }  #ifdef DEBUG
   }          int k[2],l;
         k[0]=1;
  for (k=0; k<19; k++) Ndum[k]=0;        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
  for (i=1; i<=ncovmodel-2; i++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
       ij=Tvar[i];        for (j=1;j<=n;j++) {
       Ndum[ij]++;          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
         }
  ij=1;        printf("\n");
  for (i=1; i<=10; i++) {        fprintf(ficlog,"\n");
    if((Ndum[i]!=0) && (i<=ncovcol)){        for(l=0;l<=1;l++) {
      Tvaraff[ij]=i;          for (j=1;j<=n;j++) {
      ij++;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
    }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
     cptcoveff=ij-1;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
 /*********** Health Expectancies ****************/  #endif
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  
 {        free_vector(xit,1,n); 
   /* Health expectancies */        free_vector(xits,1,n); 
   int i, j, nhstepm, hstepm, h, nstepm, k;        free_vector(ptt,1,n); 
   double age, agelim,hf;        free_vector(pt,1,n); 
   double ***p3mat;        return; 
        } 
   fprintf(ficreseij,"# Health expectancies\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   fprintf(ficreseij,"# Age");      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   for(i=1; i<=nlstate;i++)        ptt[j]=2.0*p[j]-pt[j]; 
     for(j=1; j<=nlstate;j++)        xit[j]=p[j]-pt[j]; 
       fprintf(ficreseij," %1d-%1d",i,j);        pt[j]=p[j]; 
   fprintf(ficreseij,"\n");      } 
       fptt=(*func)(ptt); /* f_3 */
   k=1;             /* For example stepm=6 months */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
      nhstepm is the number of hstepm from age to agelim        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
      nstepm is the number of stepm from age to agelin.        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
      Look at hpijx to understand the reason of that which relies in memory size        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
      and note for a fixed period like k years */        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line */
      means that if the survival funtion is printed only each two years of age and if        t= t- del*SQR(fp-fptt);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
      results. So we changed our mind and took the option of the best precision.  #ifdef DEBUG
   */        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   agelim=AGESUP;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     /* nhstepm age range expressed in number of stepm */               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     /* if (stepm >= YEARM) hstepm=1;*/  #endif
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  #ifdef POWELLDIRECT
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (directest*t < 0.0) { /* Contradiction between both tests */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     for(i=1; i<=nlstate;i++)      } 
       for(j=1; j<=nlstate;j++)        if (directest < 0.0) { /* Then we use it for new direction */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  #else
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        if (t < 0.0) { /* Then we use it for new direction */
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  #endif
         }          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
     fprintf(ficreseij,"%3.0f",age );          for (j=1;j<=n;j++) { 
     for(i=1; i<=nlstate;i++)            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
       for(j=1; j<=nlstate;j++){            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);          }
       }          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
     fprintf(ficreseij,"\n");          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  #ifdef DEBUG
 }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /************ Variance ******************/          for(j=1;j<=n;j++){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            printf(" %.12e",xit[j]);
 {            fprintf(ficlog," %.12e",xit[j]);
   /* Variance of health expectancies */          }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          printf("\n");
   double **newm;          fprintf(ficlog,"\n");
   double **dnewm,**doldm;  #endif
   int i, j, nhstepm, hstepm, h;        } /* end of t negative */
   int k, cptcode;      } /* end if (fptt < fp)  */
   double *xp;    } 
   double **gp, **gm;  } 
   double ***gradg, ***trgradg;  
   double ***p3mat;  /**** Prevalence limit (stable or period prevalence)  ****************/
   double age,agelim;  
   int theta;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
    fprintf(ficresvij,"# Covariances of life expectancies\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   fprintf(ficresvij,"# Age");       matrix by transitions matrix until convergence is reached */
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=nlstate;j++)    int i, ii,j,k;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double min, max, maxmin, maxmax,sumnew=0.;
   fprintf(ficresvij,"\n");    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij();
   xp=vector(1,npar);    double **newm;
   dnewm=matrix(1,nlstate,1,npar);    double agefin, delaymax=50 ; /* Max number of years to converge */
   doldm=matrix(1,nlstate,1,nlstate);    
      for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=1*YEARM; /* Every year of age */      for (j=1;j<=nlstate+ndeath;j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    cov[1]=1.;
     if (stepm >= YEARM) hstepm=1;    
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      newm=savm;
     gp=matrix(0,nhstepm,1,nlstate);      /* Covariates have to be included here again */
     gm=matrix(0,nhstepm,1,nlstate);      cov[2]=agefin;
       
     for(theta=1; theta <=npar; theta++){      for (k=1; k<=cptcovn;k++) {
       for(i=1; i<=npar; i++){ /* Computes gradient */        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
       }      }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       if (popbased==1) {      
         for(i=1; i<=nlstate;i++)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           prlim[i][i]=probs[(int)age][i][ij];      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       for(j=1; j<= nlstate; j++){      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         for(h=0; h<=nhstepm; h++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      savm=oldm;
         }      oldm=newm;
       }      maxmax=0.;
          for(j=1;j<=nlstate;j++){
       for(i=1; i<=npar; i++) /* Computes gradient */        min=1.;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        max=0.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(i=1; i<=nlstate; i++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       if (popbased==1) {          prlim[i][j]= newm[i][j]/(1-sumnew);
         for(i=1; i<=nlstate;i++)          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           prlim[i][i]=probs[(int)age][i][ij];          max=FMAX(max,prlim[i][j]);
       }          min=FMIN(min,prlim[i][j]);
         }
       for(j=1; j<= nlstate; j++){        maxmin=max-min;
         for(h=0; h<=nhstepm; h++){        maxmax=FMAX(maxmax,maxmin);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      } /* j loop */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      if(maxmax < ftolpl){
         }        return prlim;
       }      }
     } /* age loop */
       for(j=1; j<= nlstate; j++)    return prlim; /* should not reach here */
         for(h=0; h<=nhstepm; h++){  }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  /*************** transition probabilities ***************/ 
     } /* End theta */  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  {
     /* According to parameters values stored in x and the covariate's values stored in cov,
     for(h=0; h<=nhstepm; h++)       computes the probability to be observed in state j being in state i by appying the
       for(j=1; j<=nlstate;j++)       model to the ncovmodel covariates (including constant and age).
         for(theta=1; theta <=npar; theta++)       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           trgradg[h][j][theta]=gradg[h][theta][j];       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
        ncth covariate in the global vector x is given by the formula:
     for(i=1;i<=nlstate;i++)       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
       for(j=1;j<=nlstate;j++)       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         vareij[i][j][(int)age] =0.;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     for(h=0;h<=nhstepm;h++){       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
       for(k=0;k<=nhstepm;k++){       Outputs ps[i][j] the probability to be observed in j being in j according to
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    */
         for(i=1;i<=nlstate;i++)    double s1, lnpijopii;
           for(j=1;j<=nlstate;j++)    /*double t34;*/
             vareij[i][j][(int)age] += doldm[i][j];    int i,j, nc, ii, jj;
       }  
     }      for(i=1; i<= nlstate; i++){
     h=1;        for(j=1; j<i;j++){
     if (stepm >= YEARM) h=stepm/YEARM;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     fprintf(ficresvij,"%.0f ",age );            /*lnpijopii += param[i][j][nc]*cov[nc];*/
     for(i=1; i<=nlstate;i++)            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
       for(j=1; j<=nlstate;j++){  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          }
       }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     fprintf(ficresvij,"\n");  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     free_matrix(gp,0,nhstepm,1,nlstate);        }
     free_matrix(gm,0,nhstepm,1,nlstate);        for(j=i+1; j<=nlstate+ndeath;j++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   } /* End age */  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
            }
   free_vector(xp,1,npar);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);      }
       
 }      for(i=1; i<= nlstate; i++){
         s1=0;
 /************ Variance of prevlim ******************/        for(j=1; j<i; j++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 {          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   /* Variance of prevalence limit */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for(j=i+1; j<=nlstate+ndeath; j++){
   double **newm;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   double **dnewm,**doldm;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   int i, j, nhstepm, hstepm;        }
   int k, cptcode;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   double *xp;        ps[i][i]=1./(s1+1.);
   double *gp, *gm;        /* Computing other pijs */
   double **gradg, **trgradg;        for(j=1; j<i; j++)
   double age,agelim;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   int theta;        for(j=i+1; j<=nlstate+ndeath; j++)
              ps[i][j]= exp(ps[i][j])*ps[i][i];
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   fprintf(ficresvpl,"# Age");      } /* end i */
   for(i=1; i<=nlstate;i++)      
       fprintf(ficresvpl," %1d-%1d",i,i);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   fprintf(ficresvpl,"\n");        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
   xp=vector(1,npar);          ps[ii][ii]=1;
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);      }
        
   hstepm=1*YEARM; /* Every year of age */      
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   agelim = AGESUP;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      /*   } */
     if (stepm >= YEARM) hstepm=1;      /*   printf("\n "); */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      /* } */
     gradg=matrix(1,npar,1,nlstate);      /* printf("\n ");printf("%lf ",cov[2]);*/
     gp=vector(1,nlstate);      /*
     gm=vector(1,nlstate);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
     for(theta=1; theta <=npar; theta++){      return ps;
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  /**************** Product of 2 matrices ******************/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
         gp[i] = prlim[i][i];  {
        /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for(i=1; i<=npar; i++) /* Computes gradient */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* in, b, out are matrice of pointers which should have been initialized 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       before: only the contents of out is modified. The function returns
       for(i=1;i<=nlstate;i++)       a pointer to pointers identical to out */
         gm[i] = prlim[i][i];    int i, j, k;
     for(i=nrl; i<= nrh; i++)
       for(i=1;i<=nlstate;i++)      for(k=ncolol; k<=ncoloh; k++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        out[i][k]=0.;
     } /* End theta */        for(j=ncl; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
     trgradg =matrix(1,nlstate,1,npar);      }
     return out;
     for(j=1; j<=nlstate;j++)  }
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  
   /************* Higher Matrix Product ***************/
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    /* Computes the transition matrix starting at age 'age' over 
     for(i=1;i<=nlstate;i++)       'nhstepm*hstepm*stepm' months (i.e. until
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
     fprintf(ficresvpl,"%.0f ",age );       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(i=1; i<=nlstate;i++)       (typically every 2 years instead of every month which is too big 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));       for the memory).
     fprintf(ficresvpl,"\n");       Model is determined by parameters x and covariates have to be 
     free_vector(gp,1,nlstate);       included manually here. 
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);       */
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
   free_vector(xp,1,npar);    double **newm;
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
 /************ Variance of one-step probabilities  ******************/        po[i][j][0]=(i==j ? 1.0 : 0.0);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)      }
 {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i, j;    for(h=1; h <=nhstepm; h++){
   int k=0, cptcode;      for(d=1; d <=hstepm; d++){
   double **dnewm,**doldm;        newm=savm;
   double *xp;        /* Covariates have to be included here again */
   double *gp, *gm;        cov[1]=1.;
   double **gradg, **trgradg;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double age,agelim, cov[NCOVMAX];        for (k=1; k<=cptcovn;k++) 
   int theta;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   char fileresprob[FILENAMELENGTH];        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   strcpy(fileresprob,"prob");        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   strcat(fileresprob,fileres);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
   xp=vector(1,npar);        savm=oldm;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        oldm=newm;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      }
        for(i=1; i<=nlstate+ndeath; i++)
   cov[1]=1;        for(j=1;j<=nlstate+ndeath;j++) {
   for (age=bage; age<=fage; age ++){          po[i][j][h]=newm[i][j];
     cov[2]=age;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     gradg=matrix(1,npar,1,9);        }
     trgradg=matrix(1,9,1,npar);      /*printf("h=%d ",h);*/
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    } /* end h */
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  /*     printf("\n H=%d \n",h); */
        return po;
     for(theta=1; theta <=npar; theta++){  }
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #ifdef NLOPT
          double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    double fret;
        double *xt;
       k=0;    int j;
       for(i=1; i<= (nlstate+ndeath); i++){    myfunc_data *d2 = (myfunc_data *) pd;
         for(j=1; j<=(nlstate+ndeath);j++){  /* xt = (p1-1); */
            k=k+1;    xt=vector(1,n); 
           gp[k]=pmmij[i][j];    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
         }  
       }    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
       for(i=1; i<=npar; i++)    printf("Function = %.12lf ",fret);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
        printf("\n");
    free_vector(xt,1,n);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    return fret;
       k=0;  }
       for(i=1; i<=(nlstate+ndeath); i++){  #endif
         for(j=1; j<=(nlstate+ndeath);j++){  
           k=k+1;  /*************** log-likelihood *************/
           gm[k]=pmmij[i][j];  double func( double *x)
         }  {
       }    int i, ii, j, k, mi, d, kk;
          double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    double **out;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     int s1, s2;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double bbh, survp;
       for(theta=1; theta <=npar; theta++)    long ipmx;
       trgradg[j][theta]=gradg[theta][j];    /*extern weight */
      /* We are differentiating ll according to initial status */
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
      pmij(pmmij,cov,ncovmodel,x,nlstate);    */
   
      k=0;    ++countcallfunc;
      for(i=1; i<=(nlstate+ndeath); i++){  
        for(j=1; j<=(nlstate+ndeath);j++){    cov[1]=1.;
          k=k+1;  
          gm[k]=pmmij[i][j];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
      }    if(mle==1){
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      /*printf("\n%d ",(int)age);        /* Computes the values of the ncovmodel covariates of the model
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
                   Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));         */
      }*/        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
           cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresprob,"\n%d ",(int)age);        }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);           has been calculated etc */
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
  free_vector(xp,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 fclose(ficresprob);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /******************* Printing html file ***********/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[],char rfileres[] ){            savm=oldm;
   int jj1, k1, i1, cpt;            oldm=newm;
   FILE *fichtm;          } /* end mult */
   /*char optionfilehtm[FILENAMELENGTH];*/        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   strcpy(optionfilehtm,optionfile);          /* But now since version 0.9 we anticipate for bias at large stepm.
   strcat(optionfilehtm,".htm");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {           * (in months) between two waves is not a multiple of stepm, we rounded to 
     printf("Problem with %s \n",optionfilehtm), exit(0);           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.8 </font> <hr size=\"2\" color=\"#EC5E5E\">           * probability in order to take into account the bias as a fraction of the way
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 Total number of observations=%d <br>           * For stepm=1 the results are the same as for previous versions of Imach.
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>           * For stepm > 1 the results are less biased than in previous versions. 
 <hr  size=\"2\" color=\"#EC5E5E\">           */
 <li>Outputs files<br><br>\n          s1=s[mw[mi][i]][i];
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          s2=s[mw[mi+1][i]][i];
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          bbh=(double)bh[mi][i]/(double)stepm; 
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          /* bias bh is positive if real duration
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>           * is higher than the multiple of stepm and negative otherwise.
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>           */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>          if( s2 > nlstate){ 
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>            /* i.e. if s2 is a death state and if the date of death is known 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>               then the contribution to the likelihood is the probability to 
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>               die between last step unit time and current  step unit time, 
         - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>               which is also equal to probability to die before dh 
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
 fprintf(fichtm," <li>Graphs</li><p>");          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
  m=cptcoveff;          and not the date of a change in health state. The former idea was
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
  jj1=0;          introduced the exact date of death then we should have modified
  for(k1=1; k1<=m;k1++){          the contribution of an exact death to the likelihood. This new
    for(i1=1; i1<=ncodemax[k1];i1++){          contribution is smaller and very dependent of the step unit
        jj1++;          stepm. It is no more the probability to die between last interview
        if (cptcovn > 0) {          and month of death but the probability to survive from last
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          interview up to one month before death multiplied by the
          for (cpt=1; cpt<=cptcoveff;cpt++)          probability to die within a month. Thanks to Chris
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          Jackson for correcting this bug.  Former versions increased
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          mortality artificially. The bad side is that we add another loop
        }          which slows down the processing. The difference can be up to 10%
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          lower mortality.
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                */
        for(cpt=1; cpt<nlstate;cpt++){            lli=log(out[s1][s2] - savm[s1][s2]);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }          } else if  (s2==-2) {
     for(cpt=1; cpt<=nlstate;cpt++) {            for (j=1,survp=0. ; j<=nlstate; j++) 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 interval) in state (%d): v%s%d%d.gif <br>            /*survp += out[s1][j]; */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              lli= log(survp);
      }          }
      for(cpt=1; cpt<=nlstate;cpt++) {          
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          else if  (s2==-4) { 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for (j=3,survp=0. ; j<=nlstate; j++)  
      }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            lli= log(survp); 
 health expectancies in states (1) and (2): e%s%d.gif<br>          } 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
 fprintf(fichtm,"\n</body>");          else if  (s2==-5) { 
    }            for (j=1,survp=0. ; j<=2; j++)  
    }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 fclose(fichtm);            lli= log(survp); 
 }          } 
           
 /******************* Gnuplot file **************/          else{
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemaxpar, double fage , char pathc[], double p[]){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   strcpy(optionfilegnuplot,optionfilefiname);          /*if(lli ==000.0)*/
   strcat(optionfilegnuplot,".plt");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          ipmx +=1;
     printf("Problem with file %s",optionfilegnuplot);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 #ifdef windows      } /* end of individual */
     fprintf(ficgp,"cd \"%s\" \n",pathc);    }  else if(mle==2){
 #endif      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 m=pow(2,cptcoveff);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
  /* 1eme*/          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (cpt=1; cpt<= nlstate ; cpt ++) {            for (j=1;j<=nlstate+ndeath;j++){
    for (k1=1; k1<= m ; k1 ++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef windows            }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          for(d=0; d<=dh[mi][i]; d++){
 #endif            newm=savm;
 #ifdef unix            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            for (kk=1; kk<=cptcovage;kk++) {
 #endif              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 for (i=1; i<= nlstate ; i ++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else fprintf(ficgp," \%%*lf (\%%*lf)");            savm=oldm;
 }            oldm=newm;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          } /* end mult */
     for (i=1; i<= nlstate ; i ++) {        
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          s1=s[mw[mi][i]][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          s2=s[mw[mi+1][i]][i];
 }          bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      for (i=1; i<= nlstate ; i ++) {          ipmx +=1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          sw += weight[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }          } /* end of wave */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      } /* end of individual */
 #ifdef unix    }  else if(mle==3){  /* exponential inter-extrapolation */
 fprintf(ficgp,"\nset ter gif small size 400,300");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 #endif        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(mi=1; mi<= wav[i]-1; mi++){
    }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   /*2 eme*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k1=1; k1<= m ; k1 ++) {            }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          for(d=0; d<dh[mi][i]; d++){
                newm=savm;
     for (i=1; i<= nlstate+1 ; i ++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       k=2*i;            for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   else fprintf(ficgp," \%%*lf (\%%*lf)");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }              savm=oldm;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            oldm=newm;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          } /* end mult */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        
       for (j=1; j<= nlstate+1 ; j ++) {          s1=s[mw[mi][i]][i];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          s2=s[mw[mi+1][i]][i];
         else fprintf(ficgp," \%%*lf (\%%*lf)");          bbh=(double)bh[mi][i]/(double)stepm; 
 }            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       fprintf(ficgp,"\" t\"\" w l 0,");          ipmx +=1;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          sw += weight[i];
       for (j=1; j<= nlstate+1 ; j ++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        } /* end of wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } /* end of individual */
 }      }else if (mle==4){  /* ml=4 no inter-extrapolation */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       else fprintf(ficgp,"\" t\"\" w l 0,");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*3eme*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for (k1=1; k1<= m ; k1 ++) {          for(d=0; d<dh[mi][i]; d++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {            newm=savm;
       k=2+nlstate*(cpt-1);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);            for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i< nlstate ; i ++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            }
       }          
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
              oldm=newm;
   /* CV preval stat */          } /* end mult */
     for (k1=1; k1<= m ; k1 ++) {        
     for (cpt=1; cpt<nlstate ; cpt ++) {          s1=s[mw[mi][i]][i];
       k=3;          s2=s[mw[mi+1][i]][i];
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemaxpar,fileres,k1,k+cpt+1,k+1);          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
       for (i=1; i< nlstate ; i ++)          }else{
         fprintf(ficgp,"+$%d",k+i+1);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          }
                ipmx +=1;
       l=3+(nlstate+ndeath)*cpt;          sw += weight[i];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (i=1; i< nlstate ; i ++) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         l=3+(nlstate+ndeath)*cpt;        } /* end of wave */
         fprintf(ficgp,"+$%d",l+i+1);      } /* end of individual */
       }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }            for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   /* proba elementaires */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    for(i=1,jk=1; i <=nlstate; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(k=1; k <=(nlstate+ndeath); k++){            }
       if (k != i) {          for(d=0; d<dh[mi][i]; d++){
         for(j=1; j <=ncovmodel; j++){            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            for (kk=1; kk<=cptcovage;kk++) {
           jk++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           fprintf(ficgp,"\n");            }
         }          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
             oldm=newm;
     for(jk=1; jk <=m; jk++) {          } /* end mult */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemaxpar);        
    i=1;          s1=s[mw[mi][i]][i];
    for(k2=1; k2<=nlstate; k2++) {          s2=s[mw[mi+1][i]][i];
      k3=i;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      for(k=1; k<=(nlstate+ndeath); k++) {          ipmx +=1;
        if (k != k2){          sw += weight[i];
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 ij=1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for(j=3; j <=ncovmodel; j++) {        } /* end of wave */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      } /* end of individual */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    } /* End of if */
             ij++;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           else    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    return -l;
         }  }
           fprintf(ficgp,")/(1");  
          /*************** log-likelihood *************/
         for(k1=1; k1 <=nlstate; k1++){    double funcone( double *x)
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  {
 ij=1;    /* Same as likeli but slower because of a lot of printf and if */
           for(j=3; j <=ncovmodel; j++){    int i, ii, j, k, mi, d, kk;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double **out;
             ij++;    double lli; /* Individual log likelihood */
           }    double llt;
           else    int s1, s2;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double bbh, survp;
           }    /*extern weight */
           fprintf(ficgp,")");    /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    /*for(i=1;i<imx;i++) 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      printf(" %d\n",s[4][i]);
         i=i+ncovmodel;    */
        }    cov[1]=1.;
      }  
    }    for(k=1; k<=nlstate; k++) ll[k]=0.;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
    }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fclose(ficgp);      for(mi=1; mi<= wav[i]-1; mi++){
 }  /* end gnuplot */        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*************** Moving average **************/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){          }
         for(d=0; d<dh[mi][i]; d++){
   int i, cpt, cptcod;          newm=savm;
     for (agedeb=agemin; agedeb<=fage; agedeb++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (i=1; i<=nlstate;i++)          for (kk=1; kk<=cptcovage;kk++) {
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           mobaverage[(int)agedeb][i][cptcod]=0.;          }
              /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (i=1; i<=nlstate;i++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           for (cpt=0;cpt<=4;cpt++){          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          savm=oldm;
           }          oldm=newm;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        } /* end mult */
         }        
       }        s1=s[mw[mi][i]][i];
     }        s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
 }        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
          */
 /************** Forecasting ******************/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          lli=log(out[s1][s2] - savm[s1][s2]);
          } else if  (s2==-2) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          for (j=1,survp=0. ; j<=nlstate; j++) 
   int *popage;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          lli= log(survp);
   double *popeffectif,*popcount;        }else if (mle==1){
   double ***p3mat;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   char fileresf[FILENAMELENGTH];        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  agelim=AGESUP;        } else if(mle==3){  /* exponential inter-extrapolation */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          lli=log(out[s1][s2]); /* Original formula */
          } else{  /* mle=0 back to 1 */
            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   strcpy(fileresf,"f");          /*lli=log(out[s1][s2]); */ /* Original formula */
   strcat(fileresf,fileres);        } /* End of if */
   if((ficresf=fopen(fileresf,"w"))==NULL) {        ipmx +=1;
     printf("Problem with forecast resultfile: %s\n", fileresf);        sw += weight[i];
   }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   printf("Computing forecasting: result on file '%s' \n", fileresf);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
   if (mobilav==1) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     movingaverage(agedeb, fage, agemin, mobaverage);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   if (stepm<=12) stepsize=1;          fprintf(ficresilk," %10.6f\n", -llt);
          }
   agelim=AGESUP;      } /* end of wave */
      } /* end of individual */
   hstepm=1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   hstepm=hstepm/stepm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   yp1=modf(dateintmean,&yp);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   anprojmean=yp;    if(globpr==0){ /* First time we count the contributions and weights */
   yp2=modf((yp1*12),&yp);      gipmx=ipmx;
   mprojmean=yp;      gsw=sw;
   yp1=modf((yp2*30.5),&yp);    }
   jprojmean=yp;    return -l;
   if(jprojmean==0) jprojmean=1;  }
   if(mprojmean==0) jprojmean=1;  
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   for(cptcov=1;cptcov<=i2;cptcov++){  {
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* This routine should help understanding what is done with 
       k=k+1;       the selection of individuals/waves and
       fprintf(ficresf,"\n#******");       to check the exact contribution to the likelihood.
       for(j=1;j<=cptcoveff;j++) {       Plotting could be done.
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     */
       }    int k;
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");    if(*globpri !=0){ /* Just counts and sums, no printings */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      strcpy(fileresilk,"ilk"); 
            strcat(fileresilk,fileres);
            if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficresf,"\n");        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           nhstepm = nhstepm/hstepm;      for(k=1; k<=nlstate; k++) 
                  fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            *fretone=(*funcone)(p);
           for (h=0; h<=nhstepm; h++){    if(*globpri !=0){
             if (h==(int) (calagedate+YEARM*cpt)) {      fclose(ficresilk);
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
             }      fflush(fichtm); 
             for(j=1; j<=nlstate+ndeath;j++) {    } 
               kk1=0.;kk2=0;    return;
               for(i=1; i<=nlstate;i++) {                }
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {  /*********** Maximum Likelihood Estimation ***************/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                  {
               }    int i,j, iter=0;
               if (h==(int)(calagedate+12*cpt)){    double **xi;
                 fprintf(ficresf," %.3f", kk1);    double fret;
                            double fretone; /* Only one call to likelihood */
               }    /*  char filerespow[FILENAMELENGTH];*/
             }  
           }  #ifdef NLOPT
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int creturn;
         }    nlopt_opt opt;
       }    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
     }    double *lb;
   }    double minf; /* the minimum objective value, upon return */
            double * p1; /* Shifted parameters from 0 instead of 1 */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    myfunc_data dinst, *d = &dinst;
   #endif
   fclose(ficresf);  
 }  
 /************** Forecasting ******************/    xi=matrix(1,npar,1,npar);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        xi[i][j]=(i==j ? 1.0 : 0.0);
   int *popage;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    strcpy(filerespow,"pow"); 
   double *popeffectif,*popcount;    strcat(filerespow,fileres);
   double ***p3mat,***tabpop,***tabpopprev;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   char filerespop[FILENAMELENGTH];      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   agelim=AGESUP;    for (i=1;i<=nlstate;i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficrespow,"\n");
    #ifdef POWELL
      powell(p,xi,npar,ftol,&iter,&fret,func);
   strcpy(filerespop,"pop");  #endif
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  #ifdef NLOPT
     printf("Problem with forecast resultfile: %s\n", filerespop);  #ifdef NEWUOA
   }    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   printf("Computing forecasting: result on file '%s' \n", filerespop);  #else
     opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  #endif
     lb=vector(0,npar-1);
   if (mobilav==1) {    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    nlopt_set_lower_bounds(opt, lb);
     movingaverage(agedeb, fage, agemin, mobaverage);    nlopt_set_initial_step1(opt, 0.1);
   }    
     p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    d->function = func;
   if (stepm<=12) stepsize=1;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
      nlopt_set_min_objective(opt, myfunc, d);
   agelim=AGESUP;    nlopt_set_xtol_rel(opt, ftol);
      if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   hstepm=1;      printf("nlopt failed! %d\n",creturn); 
   hstepm=hstepm/stepm;    }
      else {
   if (popforecast==1) {      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
     if((ficpop=fopen(popfile,"r"))==NULL) {      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       printf("Problem with population file : %s\n",popfile);exit(0);      iter=1; /* not equal */
     }    }
     popage=ivector(0,AGESUP);    nlopt_destroy(opt);
     popeffectif=vector(0,AGESUP);  #endif
     popcount=vector(0,AGESUP);    free_matrix(xi,1,npar,1,npar);
        fclose(ficrespow);
     i=1;      printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
        fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  }
   }  
   /**** Computes Hessian and covariance matrix ***/
   for(cptcov=1;cptcov<=i2;cptcov++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  {
       k=k+1;    double  **a,**y,*x,pd;
       fprintf(ficrespop,"\n#******");    double **hess;
       for(j=1;j<=cptcoveff;j++) {    int i, j;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int *indx;
       }  
       fprintf(ficrespop,"******\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       fprintf(ficrespop,"# Age");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    void lubksb(double **a, int npar, int *indx, double b[]) ;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    void ludcmp(double **a, int npar, int *indx, double *d) ;
          double gompertz(double p[]);
       for (cpt=0; cpt<=0;cpt++) {    hess=matrix(1,npar,1,npar);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
            printf("\nCalculation of the hessian matrix. Wait...\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for (i=1;i<=npar;i++){
           nhstepm = nhstepm/hstepm;      printf("%d",i);fflush(stdout);
                fprintf(ficlog,"%d",i);fflush(ficlog);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     
           oldm=oldms;savm=savms;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        
              /*  printf(" %f ",p[i]);
           for (h=0; h<=nhstepm; h++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
             if (h==(int) (calagedate+YEARM*cpt)) {    }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    
             }    for (i=1;i<=npar;i++) {
             for(j=1; j<=nlstate+ndeath;j++) {      for (j=1;j<=npar;j++)  {
               kk1=0.;kk2=0;        if (j>i) { 
               for(i=1; i<=nlstate;i++) {                        printf(".%d%d",i,j);fflush(stdout);
                 if (mobilav==1)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          hess[i][j]=hessij(p,delti,i,j,func,npar);
                 else {          
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          hess[j][i]=hess[i][j];    
                 }          /*printf(" %lf ",hess[i][j]);*/
               }        }
               if (h==(int)(calagedate+12*cpt)){      }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    }
                   /*fprintf(ficrespop," %.3f", kk1);    printf("\n");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficlog,"\n");
               }  
             }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
             for(i=1; i<=nlstate;i++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
               kk1=0.;    
                 for(j=1; j<=nlstate;j++){    a=matrix(1,npar,1,npar);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    y=matrix(1,npar,1,npar);
                 }    x=vector(1,npar);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    indx=ivector(1,npar);
             }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    ludcmp(a,npar,indx,&pd);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    for (j=1;j<=npar;j++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
       }      lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
   /******/        matcov[i][j]=x[i];
       }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){    printf("\n#Hessian matrix#\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficlog,"\n#Hessian matrix#\n");
           nhstepm = nhstepm/hstepm;    for (i=1;i<=npar;i++) { 
                for (j=1;j<=npar;j++) { 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("%.3e ",hess[i][j]);
           oldm=oldms;savm=savms;        fprintf(ficlog,"%.3e ",hess[i][j]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
           for (h=0; h<=nhstepm; h++){      printf("\n");
             if (h==(int) (calagedate+YEARM*cpt)) {      fprintf(ficlog,"\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    }
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    /* Recompute Inverse */
               kk1=0.;kk2=0;    for (i=1;i<=npar;i++)
               for(i=1; i<=nlstate;i++) {                    for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        ludcmp(a,npar,indx,&pd);
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    /*  printf("\n#Hessian matrix recomputed#\n");
             }  
           }    for (j=1;j<=npar;j++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
       }      lubksb(a,npar,indx,x);
    }      for (i=1;i<=npar;i++){ 
   }        y[i][j]=x[i];
          printf("%.3e ",y[i][j]);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficlog,"%.3e ",y[i][j]);
       }
   if (popforecast==1) {      printf("\n");
     free_ivector(popage,0,AGESUP);      fprintf(ficlog,"\n");
     free_vector(popeffectif,0,AGESUP);    }
     free_vector(popcount,0,AGESUP);    */
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(a,1,npar,1,npar);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(y,1,npar,1,npar);
   fclose(ficrespop);    free_vector(x,1,npar);
 }    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
 /***********************************************/  
 /**************** Main Program *****************/  
 /***********************************************/  }
   
 int main(int argc, char *argv[])  /*************** hessian matrix ****************/
 {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    int i;
   double agedeb, agefin,hf;    int l=1, lmax=20;
   double agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    double k1,k2;
     double p2[MAXPARM+1]; /* identical to x */
   double fret;    double res;
   double **xi,tmp,delta;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
   double dum; /* Dummy variable */    int k=0,kmax=10;
   double ***p3mat;    double l1;
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    fx=func(x);
   char title[MAXLINE];    for (i=1;i<=npar;i++) p2[i]=x[i];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      l1=pow(10,l);
        delts=delt;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   char filerest[FILENAMELENGTH];        p2[theta]=x[theta] +delt;
   char fileregp[FILENAMELENGTH];        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   char popfile[FILENAMELENGTH];        p2[theta]=x[theta]-delt;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        k2=func(p2)-fx;
   int firstobs=1, lastobs=10;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int sdeb, sfin; /* Status at beginning and end */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int c,  h , cpt,l;        
   int ju,jl, mi;  #ifdef DEBUGHESS
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int mobilav=0,popforecast=0;  #endif
   int hstepm, nhstepm;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **prlim;          k=kmax; l=lmax*10;
   double *severity;        }
   double ***param; /* Matrix of parameters */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double  *p;          delts=delt;
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */      }
   double *delti; /* Scale */    }
   double ***eij, ***vareij;    delti[theta]=delts;
   double **varpl; /* Variances of prevalence limits by age */    return res; 
   double *epj, vepp;    
   double kk1, kk2;  }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   char version[80]="Imach version 0.8, March 2002, INED-EUROREVES ";    int i;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int l=1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
   char z[1]="c", occ;    int k;
 #include <sys/time.h>  
 #include <time.h>    fx=func(x);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    for (k=1; k<=2; k++) {
        for (i=1;i<=npar;i++) p2[i]=x[i];
   /* long total_usecs;      p2[thetai]=x[thetai]+delti[thetai]/k;
   struct timeval start_time, end_time;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    
       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   printf("\n%s",version);      k2=func(p2)-fx;
   if(argc <=1){    
     printf("\nEnter the parameter file name: ");      p2[thetai]=x[thetai]-delti[thetai]/k;
     scanf("%s",pathtot);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k3=func(p2)-fx;
   else{    
     strcpy(pathtot,argv[1]);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      k4=func(p2)-fx;
   /*cygwin_split_path(pathtot,path,optionfile);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  #ifdef DEBUG
   /* cutv(path,optionfile,pathtot,'\\');*/      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  #endif
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    }
   chdir(path);    return res;
   replace(pathc,path);  }
   
 /*-------- arguments in the command line --------*/  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   strcpy(fileres,"r");  { 
   strcat(fileres, optionfilefiname);    int i,imax,j,k; 
   strcat(fileres,".txt");    /* Other files have txt extension */    double big,dum,sum,temp; 
     double *vv; 
   /*---------arguments file --------*/   
     vv=vector(1,n); 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    *d=1.0; 
     printf("Problem with optionfile %s\n",optionfile);    for (i=1;i<=n;i++) { 
     goto end;      big=0.0; 
   }      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   strcpy(filereso,"o");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   strcat(filereso,fileres);      vv[i]=1.0/big; 
   if((ficparo=fopen(filereso,"w"))==NULL) {    } 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    for (j=1;j<=n;j++) { 
   }      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
   /* Reads comments: lines beginning with '#' */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   while((c=getc(ficpar))=='#' && c!= EOF){        a[i][j]=sum; 
     ungetc(c,ficpar);      } 
     fgets(line, MAXLINE, ficpar);      big=0.0; 
     puts(line);      for (i=j;i<=n;i++) { 
     fputs(line,ficparo);        sum=a[i][j]; 
   }        for (k=1;k<j;k++) 
   ungetc(c,ficpar);          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          big=dum; 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          imax=i; 
 while((c=getc(ficpar))=='#' && c!= EOF){        } 
     ungetc(c,ficpar);      } 
     fgets(line, MAXLINE, ficpar);      if (j != imax) { 
     puts(line);        for (k=1;k<=n;k++) { 
     fputs(line,ficparo);          dum=a[imax][k]; 
   }          a[imax][k]=a[j][k]; 
   ungetc(c,ficpar);          a[j][k]=dum; 
          } 
            *d = -(*d); 
   covar=matrix(0,NCOVMAX,1,n);        vv[imax]=vv[j]; 
   cptcovn=0;      } 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   ncovmodel=2+cptcovn;      if (j != n) { 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        dum=1.0/(a[j][j]); 
          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   /* Read guess parameters */      } 
   /* Reads comments: lines beginning with '#' */    } 
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(vv,1,n);  /* Doesn't work */
     ungetc(c,ficpar);  ;
     fgets(line, MAXLINE, ficpar);  } 
     puts(line);  
     fputs(line,ficparo);  void lubksb(double **a, int n, int *indx, double b[]) 
   }  { 
   ungetc(c,ficpar);    int i,ii=0,ip,j; 
      double sum; 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   
     for(i=1; i <=nlstate; i++)    for (i=1;i<=n;i++) { 
     for(j=1; j <=nlstate+ndeath-1; j++){      ip=indx[i]; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      sum=b[ip]; 
       fprintf(ficparo,"%1d%1d",i1,j1);      b[ip]=b[i]; 
       printf("%1d%1d",i,j);      if (ii) 
       for(k=1; k<=ncovmodel;k++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         fscanf(ficpar," %lf",&param[i][j][k]);      else if (sum) ii=i; 
         printf(" %lf",param[i][j][k]);      b[i]=sum; 
         fprintf(ficparo," %lf",param[i][j][k]);    } 
       }    for (i=n;i>=1;i--) { 
       fscanf(ficpar,"\n");      sum=b[i]; 
       printf("\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficparo,"\n");      b[i]=sum/a[i][i]; 
     }    } 
    } 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
   void pstamp(FILE *fichier)
   p=param[1][1];  {
      fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   /* Reads comments: lines beginning with '#' */  }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Frequencies ********************/
     fgets(line, MAXLINE, ficpar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     puts(line);  {  /* Some frequencies */
     fputs(line,ficparo);    
   }    int i, m, jk, j1, bool, z1,j;
   ungetc(c,ficpar);    int first;
     double ***freq; /* Frequencies */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double *pp, **prop;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   for(i=1; i <=nlstate; i++){    char fileresp[FILENAMELENGTH];
     for(j=1; j <=nlstate+ndeath-1; j++){    
       fscanf(ficpar,"%1d%1d",&i1,&j1);    pp=vector(1,nlstate);
       printf("%1d%1d",i,j);    prop=matrix(1,nlstate,iagemin,iagemax+3);
       fprintf(ficparo,"%1d%1d",i1,j1);    strcpy(fileresp,"p");
       for(k=1; k<=ncovmodel;k++){    strcat(fileresp,fileres);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    if((ficresp=fopen(fileresp,"w"))==NULL) {
         printf(" %le",delti3[i][j][k]);      printf("Problem with prevalence resultfile: %s\n", fileresp);
         fprintf(ficparo," %le",delti3[i][j][k]);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       }      exit(0);
       fscanf(ficpar,"\n");    }
       printf("\n");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       fprintf(ficparo,"\n");    j1=0;
     }    
   }    j=cptcoveff;
   delti=delti3[1][1];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
   /* Reads comments: lines beginning with '#' */    first=1;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
     fgets(line, MAXLINE, ficpar);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
     puts(line);    /*    j1++; */
     fputs(line,ficparo);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
   }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   ungetc(c,ficpar);          scanf("%d", i);*/
          for (i=-5; i<=nlstate+ndeath; i++)  
   matcov=matrix(1,npar,1,npar);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   for(i=1; i <=npar; i++){            for(m=iagemin; m <= iagemax+3; m++)
     fscanf(ficpar,"%s",&str);              freq[i][jk][m]=0;
     printf("%s",str);        
     fprintf(ficparo,"%s",str);        for (i=1; i<=nlstate; i++)  
     for(j=1; j <=i; j++){          for(m=iagemin; m <= iagemax+3; m++)
       fscanf(ficpar," %le",&matcov[i][j]);            prop[i][m]=0;
       printf(" %.5le",matcov[i][j]);        
       fprintf(ficparo," %.5le",matcov[i][j]);        dateintsum=0;
     }        k2cpt=0;
     fscanf(ficpar,"\n");        for (i=1; i<=imx; i++) {
     printf("\n");          bool=1;
     fprintf(ficparo,"\n");          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
   }            for (z1=1; z1<=cptcoveff; z1++)       
   for(i=1; i <=npar; i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
     for(j=i+1;j<=npar;j++)                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
       matcov[i][j]=matcov[j][i];                bool=0;
                    /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   printf("\n");                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                   j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                 /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     /*-------- Rewriting paramater file ----------*/              } 
      strcpy(rfileres,"r");    /* "Rparameterfile */          }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/   
      strcat(rfileres,".");    /* */          if (bool==1){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            for(m=firstpass; m<=lastpass; m++){
     if((ficres =fopen(rfileres,"w"))==NULL) {              k2=anint[m][i]+(mint[m][i]/12.);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fprintf(ficres,"#%s\n",version);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     /*-------- data file ----------*/                if (m<lastpass) {
     if((fic=fopen(datafile,"r"))==NULL)    {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       printf("Problem with datafile: %s\n", datafile);goto end;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     }                }
                 
     n= lastobs;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     severity = vector(1,maxwav);                  dateintsum=dateintsum+k2;
     outcome=imatrix(1,maxwav+1,1,n);                  k2cpt++;
     num=ivector(1,n);                }
     moisnais=vector(1,n);                /*}*/
     annais=vector(1,n);            }
     moisdc=vector(1,n);          }
     andc=vector(1,n);        } /* end i */
     agedc=vector(1,n);         
     cod=ivector(1,n);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     weight=vector(1,n);        pstamp(ficresp);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        if  (cptcovn>0) {
     mint=matrix(1,maxwav,1,n);          fprintf(ficresp, "\n#********** Variable "); 
     anint=matrix(1,maxwav,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     s=imatrix(1,maxwav+1,1,n);          fprintf(ficresp, "**********\n#");
     adl=imatrix(1,maxwav+1,1,n);              fprintf(ficlog, "\n#********** Variable "); 
     tab=ivector(1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ncodemax=ivector(1,8);          fprintf(ficlog, "**********\n#");
         }
     i=1;        for(i=1; i<=nlstate;i++) 
     while (fgets(line, MAXLINE, fic) != NULL)    {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       if ((i >= firstobs) && (i <=lastobs)) {        fprintf(ficresp, "\n");
                
         for (j=maxwav;j>=1;j--){        for(i=iagemin; i <= iagemax+3; i++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          if(i==iagemax+3){
           strcpy(line,stra);            fprintf(ficlog,"Total");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }else{
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if(first==1){
         }              first=0;
                      printf("See log file for details...\n");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"Age %d", i);
           }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1; jk <=nlstate ; jk++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         for (j=ncovcol;j>=1;j--){          for(jk=1; jk <=nlstate ; jk++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=-1, pos=0; m <=0 ; m++)
         }              pos += freq[jk][m][i];
         num[i]=atol(stra);            if(pp[jk]>=1.e-10){
                      if(first==1){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         i=i+1;            }else{
       }              if(first==1)
     }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     /* printf("ii=%d", ij);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
        scanf("%d",i);*/            }
   imx=i-1; /* Number of individuals */          }
   
   /* for (i=1; i<=imx; i++){          for(jk=1; jk <=nlstate ; jk++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              pp[jk] += freq[jk][m][i];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          }       
     }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
     for (i=1; i<=imx; i++)            posprop += prop[jk][i];
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          }
           for(jk=1; jk <=nlstate ; jk++){
   /* Calculation of the number of parameter from char model*/            if(pos>=1.e-5){
   Tvar=ivector(1,15);              if(first==1)
   Tprod=ivector(1,15);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   Tvaraff=ivector(1,15);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   Tvard=imatrix(1,15,1,2);            }else{
   Tage=ivector(1,15);                    if(first==1)
                    printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if (strlen(model) >1){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     j=0, j1=0, k1=1, k2=1;            }
     j=nbocc(model,'+');            if( i <= iagemax){
     j1=nbocc(model,'*');              if(pos>=1.e-5){
     cptcovn=j+1;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     cptcovprod=j1;                /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                  }
     strcpy(modelsav,model);              else
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       printf("Error. Non available option model=%s ",model);            }
       goto end;          }
     }          
              for(jk=-1; jk <=nlstate+ndeath; jk++)
     for(i=(j+1); i>=1;i--){            for(m=-1; m <=nlstate+ndeath; m++)
       cutv(stra,strb,modelsav,'+');              if(freq[jk][m][i] !=0 ) {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              if(first==1)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       /*scanf("%d",i);*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       if (strchr(strb,'*')) {              }
         cutv(strd,strc,strb,'*');          if(i <= iagemax)
         if (strcmp(strc,"age")==0) {            fprintf(ficresp,"\n");
           cptcovprod--;          if(first==1)
           cutv(strb,stre,strd,'V');            printf("Others in log...\n");
           Tvar[i]=atoi(stre);          fprintf(ficlog,"\n");
           cptcovage++;        }
             Tage[cptcovage]=i;        /*}*/
             /*printf("stre=%s ", stre);*/    }
         }    dateintmean=dateintsum/k2cpt; 
         else if (strcmp(strd,"age")==0) {   
           cptcovprod--;    fclose(ficresp);
           cutv(strb,stre,strc,'V');    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           Tvar[i]=atoi(stre);    free_vector(pp,1,nlstate);
           cptcovage++;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           Tage[cptcovage]=i;    /* End of Freq */
         }  }
         else {  
           cutv(strb,stre,strc,'V');  /************ Prevalence ********************/
           Tvar[i]=ncovcol+k1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           cutv(strb,strc,strd,'V');  {  
           Tprod[k1]=i;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           Tvard[k1][1]=atoi(strc);       in each health status at the date of interview (if between dateprev1 and dateprev2).
           Tvard[k1][2]=atoi(stre);       We still use firstpass and lastpass as another selection.
           Tvar[cptcovn+k2]=Tvard[k1][1];    */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   
           for (k=1; k<=lastobs;k++)    int i, m, jk, j1, bool, z1,j;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;    double **prop;
           k2=k2+2;    double posprop; 
         }    double  y2; /* in fractional years */
       }    int iagemin, iagemax;
       else {    int first; /** to stop verbosity which is redirected to log file */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/    iagemin= (int) agemin;
       cutv(strd,strc,strb,'V');    iagemax= (int) agemax;
       Tvar[i]=atoi(strc);    /*pp=vector(1,nlstate);*/
       }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       strcpy(modelsav,stra);      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    j1=0;
         scanf("%d",i);*/    
     }    /*j=cptcoveff;*/
 }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    first=1;
   printf("cptcovprod=%d ", cptcovprod);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   scanf("%d ",i);*/      /*for(i1=1; i1<=ncodemax[k1];i1++){
     fclose(fic);        j1++;*/
         
     /*  if(mle==1){*/        for (i=1; i<=nlstate; i++)  
     if (weightopt != 1) { /* Maximisation without weights*/          for(m=iagemin; m <= iagemax+3; m++)
       for(i=1;i<=n;i++) weight[i]=1.0;            prop[i][m]=0.0;
     }       
     /*-calculation of age at interview from date of interview and age at death -*/        for (i=1; i<=imx; i++) { /* Each individual */
     agev=matrix(1,maxwav,1,imx);          bool=1;
           if  (cptcovn>0) {
    for (i=1; i<=imx; i++)            for (z1=1; z1<=cptcoveff; z1++) 
      for(m=2; (m<= maxwav); m++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                bool=0;
          anint[m][i]=9999;          } 
          s[m][i]=-1;          if (bool==1) { 
        }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                  y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for (i=1; i<=imx; i++)  {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(m=1; (m<= maxwav); m++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         if(s[m][i] >0){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           if (s[m][i] == nlstate+1) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             if(agedc[i]>0)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
               if(moisdc[i]!=99 && andc[i]!=9999)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               agev[m][i]=agedc[i];                  prop[s[m][i]][iagemax+3] += weight[i]; 
             else {                } 
               if (andc[i]!=9999){              }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            } /* end selection of waves */
               agev[m][i]=-1;          }
               }        }
             }        for(i=iagemin; i <= iagemax+3; i++){  
           }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           else if(s[m][i] !=9){ /* Should no more exist */            posprop += prop[jk][i]; 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          } 
             if(mint[m][i]==99 || anint[m][i]==9999)          
               agev[m][i]=1;          for(jk=1; jk <=nlstate ; jk++){     
             else if(agev[m][i] <agemin){            if( i <=  iagemax){ 
               agemin=agev[m][i];              if(posprop>=1.e-5){ 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                probs[i][jk][j1]= prop[jk][i]/posprop;
             }              } else{
             else if(agev[m][i] >agemax){                if(first==1){
               agemax=agev[m][i];                  first=0;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
             }                }
             /*agev[m][i]=anint[m][i]-annais[i];*/              }
             /*   agev[m][i] = age[i]+2*m;*/            } 
           }          }/* end jk */ 
           else { /* =9 */        }/* end i */ 
             agev[m][i]=1;      /*} *//* end i1 */
             s[m][i]=-1;    } /* end j1 */
           }    
         }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         else /*= 0 Unknown */    /*free_vector(pp,1,nlstate);*/
           agev[m][i]=1;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       }  }  /* End of prevalence */
      
     }  /************* Waves Concatenation ***************/
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         if (s[m][i] > (nlstate+ndeath)) {  {
           printf("Error: Wrong value in nlstate or ndeath\n");      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           goto end;       Death is a valid wave (if date is known).
         }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     }       and mw[mi+1][i]. dh depends on stepm.
        */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
     int i, mi, m;
     free_vector(severity,1,maxwav);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     free_imatrix(outcome,1,maxwav+1,1,n);       double sum=0., jmean=0.;*/
     free_vector(moisnais,1,n);    int first;
     free_vector(annais,1,n);    int j, k=0,jk, ju, jl;
     /* free_matrix(mint,1,maxwav,1,n);    double sum=0.;
        free_matrix(anint,1,maxwav,1,n);*/    first=0;
     free_vector(moisdc,1,n);    jmin=100000;
     free_vector(andc,1,n);    jmax=-1;
     jmean=0.;
        for(i=1; i<=imx; i++){
     wav=ivector(1,imx);      mi=0;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      m=firstpass;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      while(s[m][i] <= nlstate){
            if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     /* Concatenates waves */          mw[++mi][i]=m;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        if(m >=lastpass)
           break;
         else
       Tcode=ivector(1,100);          m++;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      }/* end while */
       ncodemax[1]=1;      if (s[m][i] > nlstate){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        mi++;     /* Death is another wave */
              /* if(mi==0)  never been interviewed correctly before death */
    codtab=imatrix(1,100,1,10);           /* Only death is a correct wave */
    h=0;        mw[mi][i]=m;
    m=pow(2,cptcoveff);      }
    
    for(k=1;k<=cptcoveff; k++){      wav[i]=mi;
      for(i=1; i <=(m/pow(2,k));i++){      if(mi==0){
        for(j=1; j <= ncodemax[k]; j++){        nbwarn++;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        if(first==0){
            h++;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
            if (h>m) h=1;codtab[h][k]=j;          first=1;
          }        }
        }        if(first==1){
      }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
    }        }
       } /* end mi==0 */
     } /* End individuals */
    /*for(i=1; i <=m ;i++){  
      for(k=1; k <=cptcovn; k++){    for(i=1; i<=imx; i++){
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);      for(mi=1; mi<wav[i];mi++){
      }        if (stepm <=0)
      printf("\n");          dh[mi][i]=1;
    }        else{
    scanf("%d",i);*/          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                if (agedc[i] < 2*AGESUP) {
    /* Calculates basic frequencies. Computes observed prevalence at single age              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
        and prints on file fileres'p'. */              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
                    nberr++;
                    printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                j=1; /* Temporary Dangerous patch */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              }
                    k=k+1;
     /* For Powell, parameters are in a vector p[] starting at p[1]              if (j >= jmax){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                jmax=j;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                ijmax=i;
               }
     if(mle==1){              if (j <= jmin){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                jmin=j;
     }                ijmin=i;
                  }
     /*--------- results files --------------*/              sum=sum+j;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
    jk=1;          }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          else{
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    for(i=1,jk=1; i <=nlstate; i++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)            k=k+1;
          {            if (j >= jmax) {
            printf("%d%d ",i,k);              jmax=j;
            fprintf(ficres,"%1d%1d ",i,k);              ijmax=i;
            for(j=1; j <=ncovmodel; j++){            }
              printf("%f ",p[jk]);            else if (j <= jmin){
              fprintf(ficres,"%f ",p[jk]);              jmin=j;
              jk++;              ijmin=i;
            }            }
            printf("\n");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
            fprintf(ficres,"\n");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
          }            if(j<0){
      }              nberr++;
    }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  if(mle==1){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /* Computing hessian and covariance matrix */            }
     ftolhess=ftol; /* Usually correct */            sum=sum+j;
     hesscov(matcov, p, npar, delti, ftolhess, func);          }
  }          jk= j/stepm;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          jl= j -jk*stepm;
     printf("# Scales (for hessian or gradient estimation)\n");          ju= j -(jk+1)*stepm;
      for(i=1,jk=1; i <=nlstate; i++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       for(j=1; j <=nlstate+ndeath; j++){            if(jl==0){
         if (j!=i) {              dh[mi][i]=jk;
           fprintf(ficres,"%1d%1d",i,j);              bh[mi][i]=0;
           printf("%1d%1d",i,j);            }else{ /* We want a negative bias in order to only have interpolation ie
           for(k=1; k<=ncovmodel;k++){                    * to avoid the price of an extra matrix product in likelihood */
             printf(" %.5e",delti[jk]);              dh[mi][i]=jk+1;
             fprintf(ficres," %.5e",delti[jk]);              bh[mi][i]=ju;
             jk++;            }
           }          }else{
           printf("\n");            if(jl <= -ju){
           fprintf(ficres,"\n");              dh[mi][i]=jk;
         }              bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
      }                                   */
                }
     k=1;            else{
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              dh[mi][i]=jk+1;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              bh[mi][i]=ju;
     for(i=1;i<=npar;i++){            }
       /*  if (k>nlstate) k=1;            if(dh[mi][i]==0){
       i1=(i-1)/(ncovmodel*nlstate)+1;              dh[mi][i]=1; /* At least one step */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              bh[mi][i]=ju; /* At least one step */
       printf("%s%d%d",alph[k],i1,tab[i]);*/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficres,"%3d",i);            }
       printf("%3d",i);          } /* end if mle */
       for(j=1; j<=i;j++){        }
         fprintf(ficres," %.5e",matcov[i][j]);      } /* end wave */
         printf(" %.5e",matcov[i][j]);    }
       }    jmean=sum/k;
       fprintf(ficres,"\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       printf("\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       k++;   }
     }  
      /*********** Tricode ****************************/
     while((c=getc(ficpar))=='#' && c!= EOF){  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
       ungetc(c,ficpar);  {
       fgets(line, MAXLINE, ficpar);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       puts(line);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       fputs(line,ficparo);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
     }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     ungetc(c,ficpar);     * nbcode[Tvar[j]][1]= 
      */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemaxpar, &bage, &fage);  
        int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     if (fage <= 2) {    int modmaxcovj=0; /* Modality max of covariates j */
       bage = agemin;    int cptcode=0; /* Modality max of covariates j */
       fage = agemaxpar;    int modmincovj=0; /* Modality min of covariates j */
     }  
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    cptcoveff=0; 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);   
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
      for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    /* Loop on covariates without age and products */
     fgets(line, MAXLINE, ficpar);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     puts(line);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
     fputs(line,ficparo);                                 modality of this covariate Vj*/ 
   }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   ungetc(c,ficpar);                                      * If product of Vn*Vm, still boolean *:
                                        * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                                        modality of the nth covariate of individual i. */
              if (ij > modmaxcovj)
   while((c=getc(ficpar))=='#' && c!= EOF){          modmaxcovj=ij; 
     ungetc(c,ficpar);        else if (ij < modmincovj) 
     fgets(line, MAXLINE, ficpar);          modmincovj=ij; 
     puts(line);        if ((ij < -1) && (ij > NCOVMAX)){
     fputs(line,ficparo);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   }          exit(1);
   ungetc(c,ficpar);        }else
          Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   fscanf(ficpar,"pop_based=%d\n",&popbased);           female is 1, then modmaxcovj=1.*/
   fprintf(ficparo,"pop_based=%d\n",popbased);        }
   fprintf(ficres,"pop_based=%d\n",popbased);        printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
        cptcode=modmaxcovj;
   while((c=getc(ficpar))=='#' && c!= EOF){      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     ungetc(c,ficpar);     /*for (i=0; i<=cptcode; i++) {*/
     fgets(line, MAXLINE, ficpar);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     puts(line);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     fputs(line,ficparo);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   }          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   ungetc(c,ficpar);        }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      } /* Ndum[-1] number of undefined modalities */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 while((c=getc(ficpar))=='#' && c!= EOF){      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     ungetc(c,ficpar);         modmincovj=3; modmaxcovj = 7;
     fgets(line, MAXLINE, ficpar);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     puts(line);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
     fputs(line,ficparo);         variables V1_1 and V1_2.
   }         nbcode[Tvar[j]][ij]=k;
   ungetc(c,ficpar);         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);         nbcode[Tvar[j]][3]=2;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      ij=1; /* ij is similar to i but can jumps over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           /*recode from 0 */
 /*------------ gnuplot -------------*/          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemaxpar,fage, pathc,p);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                         k is a modality. If we have model=V1+V1*sex 
 /*------------ free_vector  -------------*/                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
  chdir(path);            ij++;
            }
  free_ivector(wav,1,imx);          if (ij > ncodemax[j]) break; 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        }  /* end of loop on */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        } /* end of loop on modality */ 
  free_ivector(num,1,n);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
  free_vector(agedc,1,n);    
  /*free_matrix(covar,1,NCOVMAX,1,n);*/   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
  fclose(ficparo);    
  fclose(ficres);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 /*--------- index.htm --------*/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; 
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres);   } 
   
     ij=1;
   /*--------------- Prevalence limit --------------*/   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   strcpy(filerespl,"pl");     if((Ndum[i]!=0) && (i<=ncovcol)){
   strcat(filerespl,fileres);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       Tvaraff[ij]=i; /*For printing (unclear) */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       ij++;
   }     }else
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);         Tvaraff[ij]=0;
   fprintf(ficrespl,"#Prevalence limit\n");   }
   fprintf(ficrespl,"#Age ");   ij--;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);   cptcoveff=ij; /*Number of total covariates*/
   fprintf(ficrespl,"\n");  
    }
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*********** Health Expectancies ****************/
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;  {
   agebase=agemin;    /* Health expectancies, no variances */
   agelim=agemaxpar;    int i, j, nhstepm, hstepm, h, nstepm;
   ftolpl=1.e-10;    int nhstepma, nstepma; /* Decreasing with age */
   i1=cptcoveff;    double age, agelim, hf;
   if (cptcovn < 1){i1=1;}    double ***p3mat;
     double eip;
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    pstamp(ficreseij);
         k=k+1;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(ficreseij,"# Age");
         fprintf(ficrespl,"\n#******");    for(i=1; i<=nlstate;i++){
         for(j=1;j<=cptcoveff;j++)      for(j=1; j<=nlstate;j++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficreseij," e%1d%1d ",i,j);
         fprintf(ficrespl,"******\n");      }
              fprintf(ficreseij," e%1d. ",i);
         for (age=agebase; age<=agelim; age++){    }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficreseij,"\n");
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)    
           fprintf(ficrespl," %.5f", prlim[i][i]);    if(estepm < stepm){
           fprintf(ficrespl,"\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
       }    else  hstepm=estepm;   
     }    /* We compute the life expectancy from trapezoids spaced every estepm months
   fclose(ficrespl);     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   /*------------- h Pij x at various ages ------------*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);     * to the curvature of the survival function. If, for the same date, we 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
   printf("Computing pij: result on file '%s' \n", filerespij);     * curvature will be obtained if estepm is as small as stepm. */
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* For example we decided to compute the life expectancy with the smallest unit */
   /*if (stepm<=24) stepsize=2;*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   agelim=AGESUP;       nstepm is the number of stepm from age to agelin. 
   hstepm=stepsize*YEARM; /* Every year of age */       Look at hpijx to understand the reason of that which relies in memory size
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       and note for a fixed period like estepm months */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   k=0;       survival function given by stepm (the optimization length). Unfortunately it
   for(cptcov=1;cptcov<=i1;cptcov++){       means that if the survival funtion is printed only each two years of age and if
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       k=k+1;       results. So we changed our mind and took the option of the best precision.
         fprintf(ficrespij,"\n#****** ");    */
         for(j=1;j<=cptcoveff;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");    agelim=AGESUP;
            /* If stepm=6 months */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /* nhstepm age range expressed in number of stepm */
           oldm=oldms;savm=savms;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           fprintf(ficrespij,"# Age");    /* if (stepm >= YEARM) hstepm=1;*/
           for(i=1; i<=nlstate;i++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             for(j=1; j<=nlstate+ndeath;j++)    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");    for (age=bage; age<=fage; age ++){ 
           for (h=0; h<=nhstepm; h++){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             for(i=1; i<=nlstate;i++)      /* if (stepm >= YEARM) hstepm=1;*/
               for(j=1; j<=nlstate+ndeath;j++)      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");      /* If stepm=6 months */
           }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           fprintf(ficrespij,"\n");      
         }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     }      
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   fclose(ficrespij);      
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   /*---------- Forecasting ------------------*/        for(j=1; j<=nlstate;j++)
   if((stepm == 1) && (strcmp(model,".")==0)){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            
     free_matrix(mint,1,maxwav,1,n);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);}          }
   else{  
     erreur=108;      fprintf(ficreseij,"%3.0f",age );
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      for(i=1; i<=nlstate;i++){
   }        eip=0;
          for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
   /*---------- Health expectancies and variances ------------*/          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
   strcpy(filerest,"t");        fprintf(ficreseij,"%9.4f", eip );
   strcat(filerest,fileres);      }
   if((ficrest=fopen(filerest,"w"))==NULL) {      fprintf(ficreseij,"\n");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      
   }    }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   strcpy(filerese,"e");    
   strcat(filerese,fileres);  }
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  {
     /* Covariances of health expectancies eij and of total life expectancies according
  strcpy(fileresv,"v");     to initial status i, ei. .
   strcat(fileresv,fileres);    */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    int nhstepma, nstepma; /* Decreasing with age */
   }    double age, agelim, hf;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
   k=0;    double *xp, *xm;
   for(cptcov=1;cptcov<=i1;cptcov++){    double **gp, **gm;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***gradg, ***trgradg;
       k=k+1;    int theta;
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    double eip, vip;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
       fprintf(ficreseij,"\n#****** ");    xm=vector(1,npar);
       for(j=1;j<=cptcoveff;j++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficreseij,"******\n");    
     pstamp(ficresstdeij);
       fprintf(ficresvij,"\n#****** ");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresstdeij,"# Age");
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    for(i=1; i<=nlstate;i++){
       fprintf(ficresvij,"******\n");      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fprintf(ficresstdeij," e%1d. ",i);
       oldm=oldms;savm=savms;    }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      fprintf(ficresstdeij,"\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    pstamp(ficrescveij);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
        fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        cptj= (j-1)*nlstate+i;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        for(i2=1; i2<=nlstate;i2++)
       fprintf(ficrest,"\n");          for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
       epj=vector(1,nlstate+1);            if(cptj2 <= cptj)
       for(age=bage; age <=fage ;age++){              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          }
         if (popbased==1) {      }
           for(i=1; i<=nlstate;i++)    fprintf(ficrescveij,"\n");
             prlim[i][i]=probs[(int)age][i][k];    
         }    if(estepm < stepm){
              printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrest," %4.0f",age);    }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    else  hstepm=estepm;   
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
             epj[j] += prlim[i][i]*eij[i][j][(int)age];     * This is mainly to measure the difference between two models: for example
           }     * if stepm=24 months pijx are given only every 2 years and by summing them
           epj[nlstate+1] +=epj[j];     * we are calculating an estimate of the Life Expectancy assuming a linear 
         }     * progression in between and thus overestimating or underestimating according
         for(i=1, vepp=0.;i <=nlstate;i++)     * to the curvature of the survival function. If, for the same date, we 
           for(j=1;j <=nlstate;j++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             vepp += vareij[i][j][(int)age];     * to compare the new estimate of Life expectancy with the same linear 
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));     * hypothesis. A more precise result, taking into account a more precise
         for(j=1;j <=nlstate;j++){     * curvature will be obtained if estepm is as small as stepm. */
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficrest,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   fclose(ficreseij);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fclose(ficresvij);       survival function given by stepm (the optimization length). Unfortunately it
   fclose(ficrest);       means that if the survival funtion is printed only each two years of age and if
   fclose(ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   free_vector(epj,1,nlstate+1);       results. So we changed our mind and took the option of the best precision.
      */
   /*------- Variance limit prevalence------*/      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   strcpy(fileresvpl,"vpl");    /* If stepm=6 months */
   strcat(fileresvpl,fileres);    /* nhstepm age range expressed in number of stepm */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    agelim=AGESUP;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     exit(0);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }    /* if (stepm >= YEARM) hstepm=1;*/
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
   k=0;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(cptcov=1;cptcov<=i1;cptcov++){    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       k=k+1;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fprintf(ficresvpl,"\n#****** ");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       for(j=1;j<=cptcoveff;j++)    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");    for (age=bage; age<=fage; age ++){ 
            nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       oldm=oldms;savm=savms;      /* if (stepm >= YEARM) hstepm=1;*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     }  
  }      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
   fclose(ficresvpl);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
   /*---------- End : free ----------------*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
        /* Computing  Variances of health expectancies */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         decrease memory allocation */
        for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);        for(j=1; j<= nlstate; j++){
   free_matrix(agev,1,maxwav,1,imx);          for(i=1; i<=nlstate; i++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   if(erreur >0)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     printf("End of Imach with error or warning %d\n",erreur);            }
   else   printf("End of Imach\n");          }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        }
         
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        for(ij=1; ij<= nlstate*nlstate; ij++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/          for(h=0; h<=nhstepm-1; h++){
   /*------ End -----------*/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
  end:      
 #ifdef windows      
   /* chdir(pathcd);*/      for(h=0; h<=nhstepm-1; h++)
 #endif        for(j=1; j<=nlstate*nlstate;j++)
  /*system("wgnuplot graph.plt");*/          for(theta=1; theta <=npar; theta++)
  /*system("../gp37mgw/wgnuplot graph.plt");*/            trgradg[h][j][theta]=gradg[h][theta][j];
  /*system("cd ../gp37mgw");*/      
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);       for(ij=1;ij<=nlstate*nlstate;ij++)
  strcat(plotcmd," ");        for(ji=1;ji<=nlstate*nlstate;ji++)
  strcat(plotcmd,optionfilegnuplot);          varhe[ij][ji][(int)age] =0.;
  system(plotcmd);  
        printf("%d|",(int)age);fflush(stdout);
 #ifdef windows       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   while (z[0] != 'q') {       for(h=0;h<=nhstepm-1;h++){
     chdir(path);        for(k=0;k<=nhstepm-1;k++){
     printf("\nType e to edit output files, c to start again, and q for exiting: ");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     scanf("%s",z);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     if (z[0] == 'c') system("./imach");          for(ij=1;ij<=nlstate*nlstate;ij++)
     else if (z[0] == 'e') {            for(ji=1;ji<=nlstate*nlstate;ji++)
       chdir(path);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       system(optionfilehtm);        }
     }      }
     else if (z[0] == 'q') exit(0);  
   }      /* Computing expectancies */
 #endif      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
 }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
   
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         /*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
           k=k+1; 
       /* for (k=1; k <= (int) pow(2,cptcoveff); k++){*/
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
               fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         /*}*/
       }
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.34  
changed lines
  Added in v.1.182


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>