Diff for /imach/src/imach.c between versions 1.35 and 1.124

version 1.35, 2002/03/26 17:08:39 version 1.124, 2006/03/22 17:13:53
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.124  2006/03/22 17:13:53  lievre
      Parameters are printed with %lf instead of %f (more numbers after the comma).
   This program computes Healthy Life Expectancies from    The log-likelihood is printed in the log file
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.123  2006/03/20 10:52:43  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Module): <title> changed, corresponds to .htm file
   case of a health survey which is our main interest) -2- at least a    name. <head> headers where missing.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    * imach.c (Module): Weights can have a decimal point as for
   computed from the time spent in each health state according to a    English (a comma might work with a correct LC_NUMERIC environment,
   model. More health states you consider, more time is necessary to reach the    otherwise the weight is truncated).
   Maximum Likelihood of the parameters involved in the model.  The    Modification of warning when the covariates values are not 0 or
   simplest model is the multinomial logistic model where pij is the    1.
   probabibility to be observed in state j at the second wave    Version 0.98g
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.122  2006/03/20 09:45:41  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Weights can have a decimal point as for
   complex model than "constant and age", you should modify the program    English (a comma might work with a correct LC_NUMERIC environment,
   where the markup *Covariates have to be included here again* invites    otherwise the weight is truncated).
   you to do it.  More covariates you add, slower the    Modification of warning when the covariates values are not 0 or
   convergence.    1.
     Version 0.98g
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.121  2006/03/16 17:45:01  lievre
   identical for each individual. Also, if a individual missed an    * imach.c (Module): Comments concerning covariates added
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   hPijx is the probability to be observed in state i at age x+h    not 1 month. Version 0.98f
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.120  2006/03/16 15:10:38  lievre
   states. This elementary transition (by month or quarter trimester,    (Module): refinements in the computation of lli if
   semester or year) is model as a multinomial logistic.  The hPx    status=-2 in order to have more reliable computation if stepm is
   matrix is simply the matrix product of nh*stepm elementary matrices    not 1 month. Version 0.98f
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Also this programme outputs the covariance matrix of the parameters but also    computed as likelihood omitting the logarithm. Version O.98e
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.118  2006/03/14 18:20:07  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): varevsij Comments added explaining the second
            Institut national d'études démographiques, Paris.    table of variances if popbased=1 .
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   from the European Union.    (Module): Function pstamp added
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.98d
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.117  2006/03/14 17:16:22  brouard
   **********************************************************************/    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
 #include <math.h>    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #include <stdio.h>    (Module): Function pstamp added
 #include <stdlib.h>    (Module): Version 0.98d
 #include <unistd.h>  
     Revision 1.116  2006/03/06 10:29:27  brouard
 #define MAXLINE 256    (Module): Variance-covariance wrong links and
 #define GNUPLOTPROGRAM "wgnuplot"    varian-covariance of ej. is needed (Saito).
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.115  2006/02/27 12:17:45  brouard
 /*#define DEBUG*/    (Module): One freematrix added in mlikeli! 0.98c
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.114  2006/02/26 12:57:58  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Some improvements in processing parameter
     filename with strsep.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define NINTERVMAX 8    datafile was not closed, some imatrix were not freed and on matrix
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    allocation too.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.112  2006/01/30 09:55:26  brouard
 #define MAXN 20000    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.111  2006/01/25 20:38:18  brouard
 #define AGEBASE 40    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 int erreur; /* Error number */  
 int nvar;    Revision 1.110  2006/01/25 00:51:50  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Lots of cleaning and bugs added (Gompertz)
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.109  2006/01/24 19:37:15  brouard
 int ndeath=1; /* Number of dead states */    (Module): Comments (lines starting with a #) are allowed in data.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 int *wav; /* Number of waves for this individuual 0 is possible */    To be fixed
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.107  2006/01/19 16:20:37  brouard
 int mle, weightopt;    Test existence of gnuplot in imach path
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.106  2006/01/19 13:24:36  brouard
 double jmean; /* Mean space between 2 waves */    Some cleaning and links added in html output
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.105  2006/01/05 20:23:19  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.104  2005/09/30 16:11:43  lievre
   char filerese[FILENAMELENGTH];    (Module): sump fixed, loop imx fixed, and simplifications.
  FILE  *ficresvij;    (Module): If the status is missing at the last wave but we know
   char fileresv[FILENAMELENGTH];    that the person is alive, then we can code his/her status as -2
  FILE  *ficresvpl;    (instead of missing=-1 in earlier versions) and his/her
   char fileresvpl[FILENAMELENGTH];    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define NR_END 1    the healthy state at last known wave). Version is 0.98
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define NRANSI  
 #define ITMAX 200    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 #define TOL 2.0e-4  
     Revision 1.101  2004/09/15 10:38:38  brouard
 #define CGOLD 0.3819660    Fix on curr_time
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.99  2004/06/05 08:57:40  brouard
 #define TINY 1.0e-20    *** empty log message ***
   
 static double maxarg1,maxarg2;    Revision 1.98  2004/05/16 15:05:56  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    New version 0.97 . First attempt to estimate force of mortality
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    directly from the data i.e. without the need of knowing the health
      state at each age, but using a Gompertz model: log u =a + b*age .
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    This is the basic analysis of mortality and should be done before any
 #define rint(a) floor(a+0.5)    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 static double sqrarg;    from other sources like vital statistic data.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    The same imach parameter file can be used but the option for mle should be -3.
   
 int imx;    Agnès, who wrote this part of the code, tried to keep most of the
 int stepm;    former routines in order to include the new code within the former code.
 /* Stepm, step in month: minimum step interpolation*/  
     The output is very simple: only an estimate of the intercept and of
 int m,nb;    the slope with 95% confident intervals.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Current limitations:
 double **pmmij, ***probs, ***mobaverage;    A) Even if you enter covariates, i.e. with the
 double dateintmean=0;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 double *weight;  
 int **s; /* Status */    Revision 1.97  2004/02/20 13:25:42  lievre
 double *agedc, **covar, idx;    Version 0.96d. Population forecasting command line is (temporarily)
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    suppressed.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.96  2003/07/15 15:38:55  brouard
 double ftolhess; /* Tolerance for computing hessian */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.95  2003/07/08 07:54:34  brouard
 {    * imach.c (Repository):
    char *s;                             /* pointer */    (Repository): Using imachwizard code to output a more meaningful covariance
    int  l1, l2;                         /* length counters */    matrix (cov(a12,c31) instead of numbers.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.94  2003/06/27 13:00:02  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Just cleaning
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.93  2003/06/25 16:33:55  brouard
 #else    (Module): On windows (cygwin) function asctime_r doesn't
    s = strrchr( path, '/' );            /* find last / */    exist so I changed back to asctime which exists.
 #endif    (Module): Version 0.96b
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.92  2003/06/25 16:30:45  brouard
       extern char       *getwd( );    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.91  2003/06/25 15:30:29  brouard
       extern char       *getcwd( );    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    helps to forecast when convergence will be reached. Elapsed time
 #endif    is stamped in powell.  We created a new html file for the graphs
          return( GLOCK_ERROR_GETCWD );    concerning matrix of covariance. It has extension -cov.htm.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.90  2003/06/24 12:34:15  brouard
    } else {                             /* strip direcotry from path */    (Module): Some bugs corrected for windows. Also, when
       s++;                              /* after this, the filename */    mle=-1 a template is output in file "or"mypar.txt with the design
       l2 = strlen( s );                 /* length of filename */    of the covariance matrix to be input.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.89  2003/06/24 12:30:52  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Some bugs corrected for windows. Also, when
       dirc[l1-l2] = 0;                  /* add zero */    mle=-1 a template is output in file "or"mypar.txt with the design
    }    of the covariance matrix to be input.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.88  2003/06/23 17:54:56  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.87  2003/06/18 12:26:01  brouard
 #endif    Version 0.96
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.86  2003/06/17 20:04:08  brouard
    strcpy(ext,s);                       /* save extension */    (Module): Change position of html and gnuplot routines and added
    l1= strlen( name);    routine fileappend.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.85  2003/06/17 13:12:43  brouard
    finame[l1-l2]= 0;    * imach.c (Repository): Check when date of death was earlier that
    return( 0 );                         /* we're done */    current date of interview. It may happen when the death was just
 }    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 /******************************************/    interview.
     (Repository): Because some people have very long ID (first column)
 void replace(char *s, char*t)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   int i;    truncation)
   int lg=20;    (Repository): No more line truncation errors.
   i=0;  
   lg=strlen(t);    Revision 1.84  2003/06/13 21:44:43  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository): Replace "freqsummary" at a correct
     (s[i] = t[i]);    place. It differs from routine "prevalence" which may be called
     if (t[i]== '\\') s[i]='/';    many times. Probs is memory consuming and must be used with
   }    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 int nbocc(char *s, char occ)    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
   int i,j=0;  
   int lg=20;    Revision 1.82  2003/06/05 15:57:20  brouard
   i=0;    Add log in  imach.c and  fullversion number is now printed.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  */
   if  (s[i] == occ ) j++;  /*
   }     Interpolated Markov Chain
   return j;  
 }    Short summary of the programme:
     
 void cutv(char *u,char *v, char*t, char occ)    This program computes Healthy Life Expectancies from
 {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   int i,lg,j,p=0;    first survey ("cross") where individuals from different ages are
   i=0;    interviewed on their health status or degree of disability (in the
   for(j=0; j<=strlen(t)-1; j++) {    case of a health survey which is our main interest) -2- at least a
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    second wave of interviews ("longitudinal") which measure each change
   }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
   lg=strlen(t);    model. More health states you consider, more time is necessary to reach the
   for(j=0; j<p; j++) {    Maximum Likelihood of the parameters involved in the model.  The
     (u[j] = t[j]);    simplest model is the multinomial logistic model where pij is the
   }    probability to be observed in state j at the second wave
      u[p]='\0';    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    for(j=0; j<= lg; j++) {    'age' is age and 'sex' is a covariate. If you want to have a more
     if (j>=(p+1))(v[j-p-1] = t[j]);    complex model than "constant and age", you should modify the program
   }    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
 /********************** nrerror ********************/  
     The advantage of this computer programme, compared to a simple
 void nrerror(char error_text[])    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   fprintf(stderr,"ERREUR ...\n");    intermediate interview, the information is lost, but taken into
   fprintf(stderr,"%s\n",error_text);    account using an interpolation or extrapolation.  
   exit(1);  
 }    hPijx is the probability to be observed in state i at age x+h
 /*********************** vector *******************/    conditional to the observed state i at age x. The delay 'h' can be
 double *vector(int nl, int nh)    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   double *v;    semester or year) is modelled as a multinomial logistic.  The hPx
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    matrix is simply the matrix product of nh*stepm elementary matrices
   if (!v) nrerror("allocation failure in vector");    and the contribution of each individual to the likelihood is simply
   return v-nl+NR_END;    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /************************ free vector ******************/    of the life expectancies. It also computes the period (stable) prevalence. 
 void free_vector(double*v, int nl, int nh)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   free((FREE_ARG)(v+nl-NR_END));             Institut national d'études démographiques, Paris.
 }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 /************************ivector *******************************/    It is copyrighted identically to a GNU software product, ie programme and
 int *ivector(long nl,long nh)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   if (!v) nrerror("allocation failure in ivector");    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   return v-nl+NR_END;    
 }    **********************************************************************/
   /*
 /******************free ivector **************************/    main
 void free_ivector(int *v, long nl, long nh)    read parameterfile
 {    read datafile
   free((FREE_ARG)(v+nl-NR_END));    concatwav
 }    freqsummary
     if (mle >= 1)
 /******************* imatrix *******************************/      mlikeli
 int **imatrix(long nrl, long nrh, long ncl, long nch)    print results files
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    if mle==1 
 {       computes hessian
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    read end of parameter file: agemin, agemax, bage, fage, estepm
   int **m;        begin-prev-date,...
      open gnuplot file
   /* allocate pointers to rows */    open html file
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    period (stable) prevalence
   if (!m) nrerror("allocation failure 1 in matrix()");     for age prevalim()
   m += NR_END;    h Pij x
   m -= nrl;    variance of p varprob
      forecasting if prevfcast==1 prevforecast call prevalence()
      health expectancies
   /* allocate rows and set pointers to them */    Variance-covariance of DFLE
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    prevalence()
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     movingaverage()
   m[nrl] += NR_END;    varevsij() 
   m[nrl] -= ncl;    if popbased==1 varevsij(,popbased)
      total life expectancies
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Variance of period (stable) prevalence
     end
   /* return pointer to array of pointers to rows */  */
   return m;  
 }  
   
 /****************** free_imatrix *************************/   
 void free_imatrix(m,nrl,nrh,ncl,nch)  #include <math.h>
       int **m;  #include <stdio.h>
       long nch,ncl,nrh,nrl;  #include <stdlib.h>
      /* free an int matrix allocated by imatrix() */  #include <string.h>
 {  #include <unistd.h>
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /******************* matrix *******************************/  #include <errno.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  extern int errno;
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /* #include <sys/time.h> */
   double **m;  #include <time.h>
   #include "timeval.h"
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /* #include <libintl.h> */
   m += NR_END;  /* #define _(String) gettext (String) */
   m -= nrl;  
   #define MAXLINE 256
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GNUPLOTPROGRAM "gnuplot"
   m[nrl] += NR_END;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m[nrl] -= ncl;  #define FILENAMELENGTH 132
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   return m;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 /*************************free matrix ************************/  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define NINTERVMAX 8
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   free((FREE_ARG)(m+nrl-NR_END));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /******************* ma3x *******************************/  #define YEARM 12. /* Number of months per year */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define AGESUP 130
 {  #define AGEBASE 40
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double ***m;  #ifdef UNIX
   #define DIRSEPARATOR '/'
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define CHARSEPARATOR "/"
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ODIRSEPARATOR '\\'
   m += NR_END;  #else
   m -= nrl;  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define ODIRSEPARATOR '/'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #endif
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /* $Id$ */
   /* $State$ */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char fullversion[]="$Revision$ $Date$"; 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char strstart[80];
   m[nrl][ncl] += NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   m[nrl][ncl] -= nll;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   for (j=ncl+1; j<=nch; j++)  int nvar;
     m[nrl][j]=m[nrl][j-1]+nlay;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    int npar=NPARMAX;
   for (i=nrl+1; i<=nrh; i++) {  int nlstate=2; /* Number of live states */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int ndeath=1; /* Number of dead states */
     for (j=ncl+1; j<=nch; j++)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       m[i][j]=m[i][j-1]+nlay;  int popbased=0;
   }  
   return m;  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /*************************free ma3x ************************/  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int mle, weightopt;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   free((FREE_ARG)(m+nrl-NR_END));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /***************** f1dim *************************/  double jmean; /* Mean space between 2 waves */
 extern int ncom;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 extern double *pcom,*xicom;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 extern double (*nrfunc)(double []);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
 double f1dim(double x)  int globpr; /* Global variable for printing or not */
 {  double fretone; /* Only one call to likelihood */
   int j;  long ipmx; /* Number of contributions */
   double f;  double sw; /* Sum of weights */
   double *xt;  char filerespow[FILENAMELENGTH];
    char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   xt=vector(1,ncom);  FILE *ficresilk;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   f=(*nrfunc)(xt);  FILE *ficresprobmorprev;
   free_vector(xt,1,ncom);  FILE *fichtm, *fichtmcov; /* Html File */
   return f;  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 /*****************brent *************************/  char fileresstde[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  FILE *ficrescveij;
 {  char filerescve[FILENAMELENGTH];
   int iter;  FILE  *ficresvij;
   double a,b,d,etemp;  char fileresv[FILENAMELENGTH];
   double fu,fv,fw,fx;  FILE  *ficresvpl;
   double ftemp;  char fileresvpl[FILENAMELENGTH];
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char title[MAXLINE];
   double e=0.0;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   b=(ax > cx ? ax : cx);  char command[FILENAMELENGTH];
   x=w=v=bx;  int  outcmd=0;
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char filelog[FILENAMELENGTH]; /* Log file */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char filerest[FILENAMELENGTH];
     printf(".");fflush(stdout);  char fileregp[FILENAMELENGTH];
 #ifdef DEBUG  char popfile[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       *xmin=x;  struct timezone tzp;
       return fx;  extern int gettimeofday();
     }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     ftemp=fu;  long time_value;
     if (fabs(e) > tol1) {  extern long time();
       r=(x-w)*(fx-fv);  char strcurr[80], strfor[80];
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  char *endptr;
       q=2.0*(q-r);  long lval;
       if (q > 0.0) p = -p;  double dval;
       q=fabs(q);  
       etemp=e;  #define NR_END 1
       e=d;  #define FREE_ARG char*
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define FTOL 1.0e-10
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  #define NRANSI 
         d=p/q;  #define ITMAX 200 
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  #define TOL 2.0e-4 
           d=SIGN(tol1,xm-x);  
       }  #define CGOLD 0.3819660 
     } else {  #define ZEPS 1.0e-10 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define GOLD 1.618034 
     fu=(*f)(u);  #define GLIMIT 100.0 
     if (fu <= fx) {  #define TINY 1.0e-20 
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  static double maxarg1,maxarg2;
         SHFT(fv,fw,fx,fu)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         } else {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
           if (u < x) a=u; else b=u;    
           if (fu <= fw || w == x) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
             v=w;  #define rint(a) floor(a+0.5)
             w=u;  
             fv=fw;  static double sqrarg;
             fw=fu;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
           } else if (fu <= fv || v == x || v == w) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
             v=u;  int agegomp= AGEGOMP;
             fv=fu;  
           }  int imx; 
         }  int stepm=1;
   }  /* Stepm, step in month: minimum step interpolation*/
   nrerror("Too many iterations in brent");  
   *xmin=x;  int estepm;
   return fx;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /****************** mnbrak ***********************/  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
             double (*func)(double))  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   double ulim,u,r,q, dum;  double dateintmean=0;
   double fu;  
    double *weight;
   *fa=(*func)(*ax);  int **s; /* Status */
   *fb=(*func)(*bx);  double *agedc, **covar, idx;
   if (*fb > *fa) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     SHFT(dum,*ax,*bx,dum)  double *lsurv, *lpop, *tpop;
       SHFT(dum,*fb,*fa,dum)  
       }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   *cx=(*bx)+GOLD*(*bx-*ax);  double ftolhess; /* Tolerance for computing hessian */
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /**************** split *************************/
     r=(*bx-*ax)*(*fb-*fc);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     q=(*bx-*cx)*(*fb-*fa);  {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     ulim=(*bx)+GLIMIT*(*cx-*bx);    */ 
     if ((*bx-u)*(u-*cx) > 0.0) {    char  *ss;                            /* pointer */
       fu=(*func)(u);    int   l1, l2;                         /* length counters */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    l1 = strlen(path );                   /* length of path */
       if (fu < *fc) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
           SHFT(*fb,*fc,fu,(*func)(u))    if ( ss == NULL ) {                   /* no directory, so determine current directory */
           }      strcpy( name, path );               /* we got the fullname name because no directory */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       u=ulim;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       fu=(*func)(u);      /* get current working directory */
     } else {      /*    extern  char* getcwd ( char *buf , int len);*/
       u=(*cx)+GOLD*(*cx-*bx);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       fu=(*func)(u);        return( GLOCK_ERROR_GETCWD );
     }      }
     SHFT(*ax,*bx,*cx,u)      /* got dirc from getcwd*/
       SHFT(*fa,*fb,*fc,fu)      printf(" DIRC = %s \n",dirc);
       }    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /*************** linmin ************************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 int ncom;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 double *pcom,*xicom;      dirc[l1-l2] = 0;                    /* add zero */
 double (*nrfunc)(double []);      printf(" DIRC2 = %s \n",dirc);
      }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    /* We add a separator at the end of dirc if not exists */
 {    l1 = strlen( dirc );                  /* length of directory */
   double brent(double ax, double bx, double cx,    if( dirc[l1-1] != DIRSEPARATOR ){
                double (*f)(double), double tol, double *xmin);      dirc[l1] =  DIRSEPARATOR;
   double f1dim(double x);      dirc[l1+1] = 0; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      printf(" DIRC3 = %s \n",dirc);
               double *fc, double (*func)(double));    }
   int j;    ss = strrchr( name, '.' );            /* find last / */
   double xx,xmin,bx,ax;    if (ss >0){
   double fx,fb,fa;      ss++;
        strcpy(ext,ss);                     /* save extension */
   ncom=n;      l1= strlen( name);
   pcom=vector(1,n);      l2= strlen(ss)+1;
   xicom=vector(1,n);      strncpy( finame, name, l1-l2);
   nrfunc=func;      finame[l1-l2]= 0;
   for (j=1;j<=n;j++) {    }
     pcom[j]=p[j];  
     xicom[j]=xi[j];    return( 0 );                          /* we're done */
   }  }
   ax=0.0;  
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /******************************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  void replace_back_to_slash(char *s, char*t)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    int i;
   for (j=1;j<=n;j++) {    int lg=0;
     xi[j] *= xmin;    i=0;
     p[j] += xi[j];    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
   free_vector(xicom,1,n);      (s[i] = t[i]);
   free_vector(pcom,1,n);      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  int nbocc(char *s, char occ)
             double (*func)(double []))  {
 {    int i,j=0;
   void linmin(double p[], double xi[], int n, double *fret,    int lg=20;
               double (*func)(double []));    i=0;
   int i,ibig,j;    lg=strlen(s);
   double del,t,*pt,*ptt,*xit;    for(i=0; i<= lg; i++) {
   double fp,fptt;    if  (s[i] == occ ) j++;
   double *xits;    }
   pt=vector(1,n);    return j;
   ptt=vector(1,n);  }
   xit=vector(1,n);  
   xits=vector(1,n);  void cutv(char *u,char *v, char*t, char occ)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   for (*iter=1;;++(*iter)) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     fp=(*fret);       gives u="abcedf" and v="ghi2j" */
     ibig=0;    int i,lg,j,p=0;
     del=0.0;    i=0;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for(j=0; j<=strlen(t)-1; j++) {
     for (i=1;i<=n;i++)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       printf(" %d %.12f",i, p[i]);    }
     printf("\n");  
     for (i=1;i<=n;i++) {    lg=strlen(t);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for(j=0; j<p; j++) {
       fptt=(*fret);      (u[j] = t[j]);
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);       u[p]='\0';
 #endif  
       printf("%d",i);fflush(stdout);     for(j=0; j<= lg; j++) {
       linmin(p,xit,n,fret,func);      if (j>=(p+1))(v[j-p-1] = t[j]);
       if (fabs(fptt-(*fret)) > del) {    }
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /********************** nrerror ********************/
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  void nrerror(char error_text[])
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    fprintf(stderr,"ERREUR ...\n");
         printf(" x(%d)=%.12e",j,xit[j]);    fprintf(stderr,"%s\n",error_text);
       }    exit(EXIT_FAILURE);
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  /*********************** vector *******************/
       printf("\n");  double *vector(int nl, int nh)
 #endif  {
     }    double *v;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in vector");
       int k[2],l;    return v-nl+NR_END;
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /************************ free vector ******************/
       for (j=1;j<=n;j++)  void free_vector(double*v, int nl, int nh)
         printf(" %.12e",p[j]);  {
       printf("\n");    free((FREE_ARG)(v+nl-NR_END));
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /************************ivector *******************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int *ivector(long nl,long nh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    int *v;
       }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 #endif    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /******************free ivector **************************/
       free_vector(ptt,1,n);  void free_ivector(int *v, long nl, long nh)
       free_vector(pt,1,n);  {
       return;    free((FREE_ARG)(v+nl-NR_END));
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /************************lvector *******************************/
       ptt[j]=2.0*p[j]-pt[j];  long *lvector(long nl,long nh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     fptt=(*func)(ptt);    if (!v) nrerror("allocation failure in ivector");
     if (fptt < fp) {    return v-nl+NR_END;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /******************free lvector **************************/
         for (j=1;j<=n;j++) {  void free_lvector(long *v, long nl, long nh)
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    free((FREE_ARG)(v+nl-NR_END));
         }  }
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /******************* imatrix *******************************/
         for(j=1;j<=n;j++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
           printf(" %.12e",xit[j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         printf("\n");  { 
 #endif    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
     }    
   }    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 /**** Prevalence limit ****************/    m += NR_END; 
     m -= nrl; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    
 {    
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* allocate rows and set pointers to them */ 
      matrix by transitions matrix until convergence is reached */    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   int i, ii,j,k;    m[nrl] += NR_END; 
   double min, max, maxmin, maxmax,sumnew=0.;    m[nrl] -= ncl; 
   double **matprod2();    
   double **out, cov[NCOVMAX], **pmij();    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double **newm;    
   double agefin, delaymax=50 ; /* Max number of years to converge */    /* return pointer to array of pointers to rows */ 
     return m; 
   for (ii=1;ii<=nlstate+ndeath;ii++)  } 
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /****************** free_imatrix *************************/
     }  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
    cov[1]=1.;        long nch,ncl,nrh,nrl; 
         /* free an int matrix allocated by imatrix() */ 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     newm=savm;    free((FREE_ARG) (m+nrl-NR_END)); 
     /* Covariates have to be included here again */  } 
      cov[2]=agefin;  
    /******************* matrix *******************************/
       for (k=1; k<=cptcovn;k++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    m -= nrl;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
     savm=oldm;    m[nrl] -= ncl;
     oldm=newm;  
     maxmax=0.;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(j=1;j<=nlstate;j++){    return m;
       min=1.;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       max=0.;     */
       for(i=1; i<=nlstate; i++) {  }
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*************************free matrix ************************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         max=FMAX(max,prlim[i][j]);  {
         min=FMIN(min,prlim[i][j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /******************* ma3x *******************************/
     if(maxmax < ftolpl){  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       return prlim;  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   }    double ***m;
 }  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /*************** transition probabilities ***************/    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m -= nrl;
 {  
   double s1, s2;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /*double t34;*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   int i,j,j1, nc, ii, jj;    m[nrl] += NR_END;
     m[nrl] -= ncl;
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl][ncl] += NR_END;
       }    m[nrl][ncl] -= nll;
       ps[i][j]=s2;    for (j=ncl+1; j<=nch; j++) 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      m[nrl][j]=m[nrl][j-1]+nlay;
     }    
     for(j=i+1; j<=nlstate+ndeath;j++){    for (i=nrl+1; i<=nrh; i++) {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      for (j=ncl+1; j<=nch; j++) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        m[i][j]=m[i][j-1]+nlay;
       }    }
       ps[i][j]=s2;    return m; 
     }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     /*ps[3][2]=1;*/    */
   }
   for(i=1; i<= nlstate; i++){  
      s1=0;  /*************************free ma3x ************************/
     for(j=1; j<i; j++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       s1+=exp(ps[i][j]);  {
     for(j=i+1; j<=nlstate+ndeath; j++)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       s1+=exp(ps[i][j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     ps[i][i]=1./(s1+1.);    free((FREE_ARG)(m+nrl-NR_END));
     for(j=1; j<i; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  /*************** function subdirf ***********/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  char *subdirf(char fileres[])
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  {
   } /* end i */    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    strcat(tmpout,"/"); /* Add to the right */
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,fileres);
       ps[ii][jj]=0;    return tmpout;
       ps[ii][ii]=1;  }
     }  
   }  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    
     for(jj=1; jj<= nlstate+ndeath; jj++){    /* Caution optionfilefiname is hidden */
      printf("%lf ",ps[ii][jj]);    strcpy(tmpout,optionfilefiname);
    }    strcat(tmpout,"/");
     printf("\n ");    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
     printf("\n ");printf("%lf ",cov[2]);*/    return tmpout;
 /*  }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  /*************** function subdirf3 ***********/
     return ps;  char *subdirf3(char fileres[], char *preop, char *preop2)
 }  {
     
 /**************** Product of 2 matrices ******************/    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    strcat(tmpout,preop2);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    strcat(tmpout,fileres);
   /* in, b, out are matrice of pointers which should have been initialized    return tmpout;
      before: only the contents of out is modified. The function returns  }
      a pointer to pointers identical to out */  
   long i, j, k;  /***************** f1dim *************************/
   for(i=nrl; i<= nrh; i++)  extern int ncom; 
     for(k=ncolol; k<=ncoloh; k++)  extern double *pcom,*xicom;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  extern double (*nrfunc)(double []); 
         out[i][k] +=in[i][j]*b[j][k];   
   double f1dim(double x) 
   return out;  { 
 }    int j; 
     double f;
     double *xt; 
 /************* Higher Matrix Product ***************/   
     xt=vector(1,ncom); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 {    f=(*nrfunc)(xt); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    free_vector(xt,1,ncom); 
      duration (i.e. until    return f; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /*****************brent *************************/
      Model is determined by parameters x and covariates have to be  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
      included manually here.  { 
     int iter; 
      */    double a,b,d,etemp;
     double fu,fv,fw,fx;
   int i, j, d, h, k;    double ftemp;
   double **out, cov[NCOVMAX];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double **newm;    double e=0.0; 
    
   /* Hstepm could be zero and should return the unit matrix */    a=(ax < cx ? ax : cx); 
   for (i=1;i<=nlstate+ndeath;i++)    b=(ax > cx ? ax : cx); 
     for (j=1;j<=nlstate+ndeath;j++){    x=w=v=bx; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    fw=fv=fx=(*f)(x); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for(h=1; h <=nhstepm; h++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for(d=1; d <=hstepm; d++){      printf(".");fflush(stdout);
       newm=savm;      fprintf(ficlog,".");fflush(ficlog);
       /* Covariates have to be included here again */  #ifdef DEBUG
       cov[1]=1.;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       for (k=1; k<=cptcovage;k++)  #endif
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (k=1; k<=cptcovprod;k++)        *xmin=x; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        return fx; 
       } 
       ftemp=fu;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      if (fabs(e) > tol1) { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        r=(x-w)*(fx-fv); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        q=(x-v)*(fx-fw); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        p=(x-v)*q-(x-w)*r; 
       savm=oldm;        q=2.0*(q-r); 
       oldm=newm;        if (q > 0.0) p = -p; 
     }        q=fabs(q); 
     for(i=1; i<=nlstate+ndeath; i++)        etemp=e; 
       for(j=1;j<=nlstate+ndeath;j++) {        e=d; 
         po[i][j][h]=newm[i][j];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          */        else { 
       }          d=p/q; 
   } /* end h */          u=x+d; 
   return po;          if (u-a < tol2 || b-u < tol2) 
 }            d=SIGN(tol1,xm-x); 
         } 
       } else { 
 /*************** log-likelihood *************/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 double func( double *x)      } 
 {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   int i, ii, j, k, mi, d, kk;      fu=(*f)(u); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      if (fu <= fx) { 
   double **out;        if (u >= x) a=x; else b=x; 
   double sw; /* Sum of weights */        SHFT(v,w,x,u) 
   double lli; /* Individual log likelihood */          SHFT(fv,fw,fx,fu) 
   long ipmx;          } else { 
   /*extern weight */            if (u < x) a=u; else b=u; 
   /* We are differentiating ll according to initial status */            if (fu <= fw || w == x) { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/              v=w; 
   /*for(i=1;i<imx;i++)              w=u; 
     printf(" %d\n",s[4][i]);              fv=fw; 
   */              fw=fu; 
   cov[1]=1.;            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;              fv=fu; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          } 
     for(mi=1; mi<= wav[i]-1; mi++){    } 
       for (ii=1;ii<=nlstate+ndeath;ii++)    nrerror("Too many iterations in brent"); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    *xmin=x; 
       for(d=0; d<dh[mi][i]; d++){    return fx; 
         newm=savm;  } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  /****************** mnbrak ***********************/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                      double (*func)(double)) 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double ulim,u,r,q, dum;
         savm=oldm;    double fu; 
         oldm=newm;   
            *fa=(*func)(*ax); 
            *fb=(*func)(*bx); 
       } /* end mult */    if (*fb > *fa) { 
            SHFT(dum,*ax,*bx,dum) 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        SHFT(dum,*fb,*fa,dum) 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        } 
       ipmx +=1;    *cx=(*bx)+GOLD*(*bx-*ax); 
       sw += weight[i];    *fc=(*func)(*cx); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    while (*fb > *fc) { 
     } /* end of wave */      r=(*bx-*ax)*(*fb-*fc); 
   } /* end of individual */      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      if ((*bx-u)*(u-*cx) > 0.0) { 
   return -l;        fu=(*func)(u); 
 }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
         if (fu < *fc) { 
 /*********** Maximum Likelihood Estimation ***************/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            } 
 {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   int i,j, iter;        u=ulim; 
   double **xi,*delti;        fu=(*func)(u); 
   double fret;      } else { 
   xi=matrix(1,npar,1,npar);        u=(*cx)+GOLD*(*cx-*bx); 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++)      } 
       xi[i][j]=(i==j ? 1.0 : 0.0);      SHFT(*ax,*bx,*cx,u) 
   printf("Powell\n");        SHFT(*fa,*fb,*fc,fu) 
   powell(p,xi,npar,ftol,&iter,&fret,func);        } 
   } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*************** linmin ************************/
   
 }  int ncom; 
   double *pcom,*xicom;
 /**** Computes Hessian and covariance matrix ***/  double (*nrfunc)(double []); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))   
 {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double  **a,**y,*x,pd;  { 
   double **hess;    double brent(double ax, double bx, double cx, 
   int i, j,jk;                 double (*f)(double), double tol, double *xmin); 
   int *indx;    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double hessii(double p[], double delta, int theta, double delti[]);                double *fc, double (*func)(double)); 
   double hessij(double p[], double delti[], int i, int j);    int j; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double xx,xmin,bx,ax; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double fx,fb,fa;
    
   hess=matrix(1,npar,1,npar);    ncom=n; 
     pcom=vector(1,n); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    xicom=vector(1,n); 
   for (i=1;i<=npar;i++){    nrfunc=func; 
     printf("%d",i);fflush(stdout);    for (j=1;j<=n;j++) { 
     hess[i][i]=hessii(p,ftolhess,i,delti);      pcom[j]=p[j]; 
     /*printf(" %f ",p[i]);*/      xicom[j]=xi[j]; 
     /*printf(" %lf ",hess[i][i]);*/    } 
   }    ax=0.0; 
      xx=1.0; 
   for (i=1;i<=npar;i++) {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (j=1;j<=npar;j++)  {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       if (j>i) {  #ifdef DEBUG
         printf(".%d%d",i,j);fflush(stdout);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         hess[i][j]=hessij(p,delti,i,j);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         hess[j][i]=hess[i][j];      #endif
         /*printf(" %lf ",hess[i][j]);*/    for (j=1;j<=n;j++) { 
       }      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
   }    } 
   printf("\n");    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  } 
    
   a=matrix(1,npar,1,npar);  char *asc_diff_time(long time_sec, char ascdiff[])
   y=matrix(1,npar,1,npar);  {
   x=vector(1,npar);    long sec_left, days, hours, minutes;
   indx=ivector(1,npar);    days = (time_sec) / (60*60*24);
   for (i=1;i<=npar;i++)    sec_left = (time_sec) % (60*60*24);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    hours = (sec_left) / (60*60) ;
   ludcmp(a,npar,indx,&pd);    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   for (j=1;j<=npar;j++) {    sec_left = (sec_left) % (60);
     for (i=1;i<=npar;i++) x[i]=0;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     x[j]=1;    return ascdiff;
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /*************** powell ************************/
     }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   }              double (*func)(double [])) 
   { 
   printf("\n#Hessian matrix#\n");    void linmin(double p[], double xi[], int n, double *fret, 
   for (i=1;i<=npar;i++) {                double (*func)(double [])); 
     for (j=1;j<=npar;j++) {    int i,ibig,j; 
       printf("%.3e ",hess[i][j]);    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
     printf("\n");    double *xits;
   }    int niterf, itmp;
   
   /* Recompute Inverse */    pt=vector(1,n); 
   for (i=1;i<=npar;i++)    ptt=vector(1,n); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    xit=vector(1,n); 
   ludcmp(a,npar,indx,&pd);    xits=vector(1,n); 
     *fret=(*func)(p); 
   /*  printf("\n#Hessian matrix recomputed#\n");    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   for (j=1;j<=npar;j++) {      fp=(*fret); 
     for (i=1;i<=npar;i++) x[i]=0;      ibig=0; 
     x[j]=1;      del=0.0; 
     lubksb(a,npar,indx,x);      last_time=curr_time;
     for (i=1;i<=npar;i++){      (void) gettimeofday(&curr_time,&tzp);
       y[i][j]=x[i];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       printf("%.3e ",y[i][j]);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     printf("\n");     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
   */        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   free_matrix(a,1,npar,1,npar);      }
   free_matrix(y,1,npar,1,npar);      printf("\n");
   free_vector(x,1,npar);      fprintf(ficlog,"\n");
   free_ivector(indx,1,npar);      fprintf(ficrespow,"\n");fflush(ficrespow);
   free_matrix(hess,1,npar,1,npar);      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
 }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
 /*************** hessian matrix ****************/        itmp = strlen(strcurr);
 double hessii( double x[], double delta, int theta, double delti[])        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 {          strcurr[itmp-1]='\0';
   int i;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   int l=1, lmax=20;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double k1,k2;        for(niterf=10;niterf<=30;niterf+=10){
   double p2[NPARMAX+1];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double res;          tmf = *localtime(&forecast_time.tv_sec);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*      asctime_r(&tmf,strfor); */
   double fx;          strcpy(strfor,asctime(&tmf));
   int k=0,kmax=10;          itmp = strlen(strfor);
   double l1;          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   fx=func(x);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++) p2[i]=x[i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for(l=0 ; l <=lmax; l++){        }
     l1=pow(10,l);      }
     delts=delt;      for (i=1;i<=n;i++) { 
     for(k=1 ; k <kmax; k=k+1){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       delt = delta*(l1*k);        fptt=(*fret); 
       p2[theta]=x[theta] +delt;  #ifdef DEBUG
       k1=func(p2)-fx;        printf("fret=%lf \n",*fret);
       p2[theta]=x[theta]-delt;        fprintf(ficlog,"fret=%lf \n",*fret);
       k2=func(p2)-fx;  #endif
       /*res= (k1-2.0*fx+k2)/delt/delt; */        printf("%d",i);fflush(stdout);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        fprintf(ficlog,"%d",i);fflush(ficlog);
              linmin(p,xit,n,fret,func); 
 #ifdef DEBUG        if (fabs(fptt-(*fret)) > del) { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          del=fabs(fptt-(*fret)); 
 #endif          ibig=i; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        } 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  #ifdef DEBUG
         k=kmax;        printf("%d %.12e",i,(*fret));
       }        fprintf(ficlog,"%d %.12e",i,(*fret));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for (j=1;j<=n;j++) {
         k=kmax; l=lmax*10.;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       }          printf(" x(%d)=%.12e",j,xit[j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         delts=delt;        }
       }        for(j=1;j<=n;j++) {
     }          printf(" p=%.12e",p[j]);
   }          fprintf(ficlog," p=%.12e",p[j]);
   delti[theta]=delts;        }
   return res;        printf("\n");
          fprintf(ficlog,"\n");
 }  #endif
       } 
 double hessij( double x[], double delti[], int thetai,int thetaj)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 {  #ifdef DEBUG
   int i;        int k[2],l;
   int l=1, l1, lmax=20;        k[0]=1;
   double k1,k2,k3,k4,res,fx;        k[1]=-1;
   double p2[NPARMAX+1];        printf("Max: %.12e",(*func)(p));
   int k;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
   fx=func(x);          printf(" %.12e",p[j]);
   for (k=1; k<=2; k++) {          fprintf(ficlog," %.12e",p[j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        }
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog,"\n");
     k1=func(p2)-fx;        for(l=0;l<=1;l++) {
            for (j=1;j<=n;j++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     k2=func(p2)-fx;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
     p2[thetai]=x[thetai]-delti[thetai]/k;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     k3=func(p2)-fx;        }
    #endif
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;        free_vector(xit,1,n); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        free_vector(xits,1,n); 
 #ifdef DEBUG        free_vector(ptt,1,n); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        free_vector(pt,1,n); 
 #endif        return; 
   }      } 
   return res;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 }      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
 /************** Inverse of matrix **************/        xit[j]=p[j]-pt[j]; 
 void ludcmp(double **a, int n, int *indx, double *d)        pt[j]=p[j]; 
 {      } 
   int i,imax,j,k;      fptt=(*func)(ptt); 
   double big,dum,sum,temp;      if (fptt < fp) { 
   double *vv;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          if (t < 0.0) { 
   vv=vector(1,n);          linmin(p,xit,n,fret,func); 
   *d=1.0;          for (j=1;j<=n;j++) { 
   for (i=1;i<=n;i++) {            xi[j][ibig]=xi[j][n]; 
     big=0.0;            xi[j][n]=xit[j]; 
     for (j=1;j<=n;j++)          }
       if ((temp=fabs(a[i][j])) > big) big=temp;  #ifdef DEBUG
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     vv[i]=1.0/big;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
   for (j=1;j<=n;j++) {            printf(" %.12e",xit[j]);
     for (i=1;i<j;i++) {            fprintf(ficlog," %.12e",xit[j]);
       sum=a[i][j];          }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          printf("\n");
       a[i][j]=sum;          fprintf(ficlog,"\n");
     }  #endif
     big=0.0;        }
     for (i=j;i<=n;i++) {      } 
       sum=a[i][j];    } 
       for (k=1;k<j;k++)  } 
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /**** Prevalence limit (stable or period prevalence)  ****************/
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         imax=i;  {
       }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
     if (j != imax) {  
       for (k=1;k<=n;k++) {    int i, ii,j,k;
         dum=a[imax][k];    double min, max, maxmin, maxmax,sumnew=0.;
         a[imax][k]=a[j][k];    double **matprod2();
         a[j][k]=dum;    double **out, cov[NCOVMAX], **pmij();
       }    double **newm;
       *d = -(*d);    double agefin, delaymax=50 ; /* Max number of years to converge */
       vv[imax]=vv[j];  
     }    for (ii=1;ii<=nlstate+ndeath;ii++)
     indx[j]=imax;      for (j=1;j<=nlstate+ndeath;j++){
     if (a[j][j] == 0.0) a[j][j]=TINY;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (j != n) {      }
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     cov[1]=1.;
     }   
   }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_vector(vv,1,n);  /* Doesn't work */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 ;      newm=savm;
 }      /* Covariates have to be included here again */
        cov[2]=agefin;
 void lubksb(double **a, int n, int *indx, double b[])    
 {        for (k=1; k<=cptcovn;k++) {
   int i,ii=0,ip,j;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double sum;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          }
   for (i=1;i<=n;i++) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     ip=indx[i];        for (k=1; k<=cptcovprod;k++)
     sum=b[ip];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     b[ip]=b[i];  
     if (ii)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     else if (sum) ii=i;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     b[i]=sum;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   }  
   for (i=n;i>=1;i--) {      savm=oldm;
     sum=b[i];      oldm=newm;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      maxmax=0.;
     b[i]=sum/a[i][i];      for(j=1;j<=nlstate;j++){
   }        min=1.;
 }        max=0.;
         for(i=1; i<=nlstate; i++) {
 /************ Frequencies ********************/          sumnew=0;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 {  /* Some frequencies */          prlim[i][j]= newm[i][j]/(1-sumnew);
            max=FMAX(max,prlim[i][j]);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          min=FMIN(min,prlim[i][j]);
   double ***freq; /* Frequencies */        }
   double *pp;        maxmin=max-min;
   double pos, k2, dateintsum=0,k2cpt=0;        maxmax=FMAX(maxmax,maxmin);
   FILE *ficresp;      }
   char fileresp[FILENAMELENGTH];      if(maxmax < ftolpl){
          return prlim;
   pp=vector(1,nlstate);      }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   strcpy(fileresp,"p");  }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /*************** transition probabilities ***************/ 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   }  {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double s1, s2;
   j1=0;    /*double t34;*/
      int i,j,j1, nc, ii, jj;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
   for(k1=1; k1<=j;k1++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for(i1=1; i1<=ncodemax[k1];i1++){            /*s2 += param[i][j][nc]*cov[nc];*/
       j1++;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         scanf("%d", i);*/          }
       for (i=-1; i<=nlstate+ndeath; i++)            ps[i][j]=s2;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
           for(m=agemin; m <= agemax+3; m++)        }
             freq[i][jk][m]=0;        for(j=i+1; j<=nlstate+ndeath;j++){
                for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       dateintsum=0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       k2cpt=0;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       for (i=1; i<=imx; i++) {          }
         bool=1;          ps[i][j]=s2;
         if  (cptcovn>0) {        }
           for (z1=1; z1<=cptcoveff; z1++)      }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      /*ps[3][2]=1;*/
               bool=0;      
         }      for(i=1; i<= nlstate; i++){
         if (bool==1) {        s1=0;
           for(m=firstpass; m<=lastpass; m++){        for(j=1; j<i; j++)
             k2=anint[m][i]+(mint[m][i]/12.);          s1+=exp(ps[i][j]);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(j=i+1; j<=nlstate+ndeath; j++)
               if(agev[m][i]==0) agev[m][i]=agemax+1;          s1+=exp(ps[i][j]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;        ps[i][i]=1./(s1+1.);
               if (m<lastpass) {        for(j=1; j<i; j++)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(j=i+1; j<=nlstate+ndeath; j++)
               }          ps[i][j]= exp(ps[i][j])*ps[i][i];
                      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      } /* end i */
                 dateintsum=dateintsum+k2;      
                 k2cpt++;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
               }        for(jj=1; jj<= nlstate+ndeath; jj++){
             }          ps[ii][jj]=0;
           }          ps[ii][ii]=1;
         }        }
       }      }
              
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
   /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       if  (cptcovn>0) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         fprintf(ficresp, "\n#********** Variable ");  /*         printf("ddd %lf ",ps[ii][jj]); */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*       } */
         fprintf(ficresp, "**********\n#");  /*       printf("\n "); */
       }  /*        } */
       for(i=1; i<=nlstate;i++)  /*        printf("\n ");printf("%lf ",cov[2]); */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);         /*
       fprintf(ficresp, "\n");        for(i=1; i<= npar; i++) printf("%f ",x[i]);
              goto end;*/
       for(i=(int)agemin; i <= (int)agemax+3; i++){      return ps;
         if(i==(int)agemax+3)  }
           printf("Total");  
         else  /**************** Product of 2 matrices ******************/
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  {
             pp[jk] += freq[jk][m][i];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         for(jk=1; jk <=nlstate ; jk++){    /* in, b, out are matrice of pointers which should have been initialized 
           for(m=-1, pos=0; m <=0 ; m++)       before: only the contents of out is modified. The function returns
             pos += freq[jk][m][i];       a pointer to pointers identical to out */
           if(pp[jk]>=1.e-10)    long i, j, k;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for(i=nrl; i<= nrh; i++)
           else      for(k=ncolol; k<=ncoloh; k++)
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         }          out[i][k] +=in[i][j]*b[j][k];
   
         for(jk=1; jk <=nlstate ; jk++){    return out;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  }
             pp[jk] += freq[jk][m][i];  
         }  
   /************* Higher Matrix Product ***************/
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         for(jk=1; jk <=nlstate ; jk++){  {
           if(pos>=1.e-5)    /* Computes the transition matrix starting at age 'age' over 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);       'nhstepm*hstepm*stepm' months (i.e. until
           else       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       nhstepm*hstepm matrices. 
           if( i <= (int) agemax){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             if(pos>=1.e-5){       (typically every 2 years instead of every month which is too big 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);       for the memory).
               probs[i][jk][j1]= pp[jk]/pos;       Model is determined by parameters x and covariates have to be 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/       included manually here. 
             }  
             else       */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }    int i, j, d, h, k;
         }    double **out, cov[NCOVMAX];
            double **newm;
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)    /* Hstepm could be zero and should return the unit matrix */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    for (i=1;i<=nlstate+ndeath;i++)
         if(i <= (int) agemax)      for (j=1;j<=nlstate+ndeath;j++){
           fprintf(ficresp,"\n");        oldm[i][j]=(i==j ? 1.0 : 0.0);
         printf("\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
   dateintmean=dateintsum/k2cpt;      for(d=1; d <=hstepm; d++){
          newm=savm;
   fclose(ficresp);        /* Covariates have to be included here again */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        cov[1]=1.;
   free_vector(pp,1,nlstate);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* End of Freq */        for (k=1; k<=cptcovage;k++)
 }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 /************ Prevalence ********************/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */  
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   double ***freq; /* Frequencies */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double *pp;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double pos, k2;        savm=oldm;
         oldm=newm;
   pp=vector(1,nlstate);      }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          po[i][j][h]=newm[i][j];
   j1=0;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    } /* end h */
      return po;
  for(k1=1; k1<=j;k1++){  }
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  
    /*************** log-likelihood *************/
       for (i=-1; i<=nlstate+ndeath; i++)    double func( double *x)
         for (jk=-1; jk<=nlstate+ndeath; jk++)    {
           for(m=agemin; m <= agemax+3; m++)    int i, ii, j, k, mi, d, kk;
             freq[i][jk][m]=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
          double **out;
       for (i=1; i<=imx; i++) {    double sw; /* Sum of weights */
         bool=1;    double lli; /* Individual log likelihood */
         if  (cptcovn>0) {    int s1, s2;
           for (z1=1; z1<=cptcoveff; z1++)    double bbh, survp;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    long ipmx;
               bool=0;    /*extern weight */
         }    /* We are differentiating ll according to initial status */
         if (bool==1) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(m=firstpass; m<=lastpass; m++){    /*for(i=1;i<imx;i++) 
             k2=anint[m][i]+(mint[m][i]/12.);      printf(" %d\n",s[4][i]);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    cov[1]=1.;
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */  
             }    if(mle==1){
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
         for(i=(int)agemin; i <= (int)agemax+3; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
           for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
             for(m=-1, pos=0; m <=0 ; m++)            newm=savm;
             pos += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          for(jk=1; jk <=nlstate ; jk++){            }
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
              pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          }            savm=oldm;
                      oldm=newm;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          } /* end mult */
         
          for(jk=1; jk <=nlstate ; jk++){                    /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            if( i <= (int) agemax){          /* But now since version 0.9 we anticipate for bias at large stepm.
              if(pos>=1.e-5){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                probs[i][jk][j1]= pp[jk]/pos;           * (in months) between two waves is not a multiple of stepm, we rounded to 
              }           * the nearest (and in case of equal distance, to the lowest) interval but now
            }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                     * probability in order to take into account the bias as a fraction of the way
         }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
             */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s1=s[mw[mi][i]][i];
   free_vector(pp,1,nlstate);          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
 }  /* End of Freq */          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 /************* Waves Concatenation ***************/           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          if( s2 > nlstate){ 
 {            /* i.e. if s2 is a death state and if the date of death is known 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.               then the contribution to the likelihood is the probability to 
      Death is a valid wave (if date is known).               die between last step unit time and current  step unit time, 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i               which is also equal to probability to die before dh 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]               minus probability to die before dh-stepm . 
      and mw[mi+1][i]. dh depends on stepm.               In version up to 0.92 likelihood was computed
      */          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
   int i, mi, m;          and not the date of a change in health state. The former idea was
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          to consider that at each interview the state was recorded
      double sum=0., jmean=0.;*/          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
   int j, k=0,jk, ju, jl;          the contribution of an exact death to the likelihood. This new
   double sum=0.;          contribution is smaller and very dependent of the step unit
   jmin=1e+5;          stepm. It is no more the probability to die between last interview
   jmax=-1;          and month of death but the probability to survive from last
   jmean=0.;          interview up to one month before death multiplied by the
   for(i=1; i<=imx; i++){          probability to die within a month. Thanks to Chris
     mi=0;          Jackson for correcting this bug.  Former versions increased
     m=firstpass;          mortality artificially. The bad side is that we add another loop
     while(s[m][i] <= nlstate){          which slows down the processing. The difference can be up to 10%
       if(s[m][i]>=1)          lower mortality.
         mw[++mi][i]=m;            */
       if(m >=lastpass)            lli=log(out[s1][s2] - savm[s1][s2]);
         break;  
       else  
         m++;          } else if  (s2==-2) {
     }/* end while */            for (j=1,survp=0. ; j<=nlstate; j++) 
     if (s[m][i] > nlstate){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       mi++;     /* Death is another wave */            /*survp += out[s1][j]; */
       /* if(mi==0)  never been interviewed correctly before death */            lli= log(survp);
          /* Only death is a correct wave */          }
       mw[mi][i]=m;          
     }          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
     wav[i]=mi;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     if(mi==0)            lli= log(survp); 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          } 
   }  
           else if  (s2==-5) { 
   for(i=1; i<=imx; i++){            for (j=1,survp=0. ; j<=2; j++)  
     for(mi=1; mi<wav[i];mi++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if (stepm <=0)            lli= log(survp); 
         dh[mi][i]=1;          } 
       else{          
         if (s[mw[mi+1][i]][i] > nlstate) {          else{
           if (agedc[i] < 2*AGESUP) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           if(j==0) j=1;  /* Survives at least one month after exam */          } 
           k=k+1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           if (j >= jmax) jmax=j;          /*if(lli ==000.0)*/
           if (j <= jmin) jmin=j;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           sum=sum+j;          ipmx +=1;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
         else{      } /* end of individual */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    }  else if(mle==2){
           k=k+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (j >= jmax) jmax=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           else if (j <= jmin)jmin=j;        for(mi=1; mi<= wav[i]-1; mi++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          for (ii=1;ii<=nlstate+ndeath;ii++)
           sum=sum+j;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         jk= j/stepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         jl= j -jk*stepm;            }
         ju= j -(jk+1)*stepm;          for(d=0; d<=dh[mi][i]; d++){
         if(jl <= -ju)            newm=savm;
           dh[mi][i]=jk;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else            for (kk=1; kk<=cptcovage;kk++) {
           dh[mi][i]=jk+1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(dh[mi][i]==0)            }
           dh[mi][i]=1; /* At least one step */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }            oldm=newm;
   jmean=sum/k;          } /* end mult */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        
  }          s1=s[mw[mi][i]][i];
 /*********** Tricode ****************************/          s2=s[mw[mi+1][i]][i];
 void tricode(int *Tvar, int **nbcode, int imx)          bbh=(double)bh[mi][i]/(double)stepm; 
 {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int Ndum[20],ij=1, k, j, i;          ipmx +=1;
   int cptcode=0;          sw += weight[i];
   cptcoveff=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   for (k=0; k<19; k++) Ndum[k]=0;      } /* end of individual */
   for (k=1; k<=7; k++) ncodemax[k]=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1; i<=imx; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       ij=(int)(covar[Tvar[j]][i]);          for (ii=1;ii<=nlstate+ndeath;ii++)
       Ndum[ij]++;            for (j=1;j<=nlstate+ndeath;j++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
           for(d=0; d<dh[mi][i]; d++){
     for (i=0; i<=cptcode; i++) {            newm=savm;
       if(Ndum[i]!=0) ncodemax[j]++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
     ij=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=ncodemax[j]; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=0; k<=19; k++) {            savm=oldm;
         if (Ndum[k] != 0) {            oldm=newm;
           nbcode[Tvar[j]][ij]=k;          } /* end mult */
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/        
           ij++;          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         if (ij > ncodemax[j]) break;          bbh=(double)bh[mi][i]/(double)stepm; 
       }            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }          ipmx +=1;
   }            sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  for (k=0; k<19; k++) Ndum[k]=0;        } /* end of wave */
       } /* end of individual */
  for (i=1; i<=ncovmodel-2; i++) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       ij=Tvar[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       Ndum[ij]++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
  ij=1;            for (j=1;j<=nlstate+ndeath;j++){
  for (i=1; i<=10; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    if((Ndum[i]!=0) && (i<=ncovcol)){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      Tvaraff[ij]=i;            }
      ij++;          for(d=0; d<dh[mi][i]; d++){
    }            newm=savm;
  }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
     cptcoveff=ij-1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
           
 /*********** Health Expectancies ****************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            savm=oldm;
 {            oldm=newm;
   /* Health expectancies */          } /* end mult */
   int i, j, nhstepm, hstepm, h, nstepm, k;        
   double age, agelim, hf;          s1=s[mw[mi][i]][i];
   double ***p3mat;          s2=s[mw[mi+1][i]][i];
            if( s2 > nlstate){ 
   fprintf(ficreseij,"# Health expectancies\n");            lli=log(out[s1][s2] - savm[s1][s2]);
   fprintf(ficreseij,"# Age");          }else{
   for(i=1; i<=nlstate;i++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(j=1; j<=nlstate;j++)          }
       fprintf(ficreseij," %1d-%1d",i,j);          ipmx +=1;
   fprintf(ficreseij,"\n");          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   k=1;             /* For example stepm=6 months */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */        } /* end of wave */
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */      } /* end of individual */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
      nhstepm is the number of hstepm from age to agelim      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      nstepm is the number of stepm from age to agelin.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      Look at hpijx to understand the reason of that which relies in memory size        for(mi=1; mi<= wav[i]-1; mi++){
      and note for a fixed period like k years */          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            for (j=1;j<=nlstate+ndeath;j++){
      survival function given by stepm (the optimization length). Unfortunately it              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      means that if the survival funtion is printed only each two years of age and if              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            }
      results. So we changed our mind and took the option of the best precision.          for(d=0; d<dh[mi][i]; d++){
   */            newm=savm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   agelim=AGESUP;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     /* nhstepm age range expressed in number of stepm */          
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* if (stepm >= YEARM) hstepm=1;*/            savm=oldm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            oldm=newm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } /* end mult */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          s1=s[mw[mi][i]][i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            s2=s[mw[mi+1][i]][i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(i=1; i<=nlstate;i++)          ipmx +=1;
       for(j=1; j<=nlstate;j++)          sw += weight[i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        } /* end of wave */
         }      } /* end of individual */
     fprintf(ficreseij,"%3.0f",age );    } /* End of if */
     for(i=1; i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<=nlstate;j++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    return -l;
     fprintf(ficreseij,"\n");  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  /*************** log-likelihood *************/
 }  double funcone( double *x)
   {
 /************ Variance ******************/    /* Same as likeli but slower because of a lot of printf and if */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int i, ii, j, k, mi, d, kk;
 {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   /* Variance of health expectancies */    double **out;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double lli; /* Individual log likelihood */
   double **newm;    double llt;
   double **dnewm,**doldm;    int s1, s2;
   int i, j, nhstepm, hstepm, h, nstepm, kk;    double bbh, survp;
   int k, cptcode;    /*extern weight */
   double *xp;    /* We are differentiating ll according to initial status */
   double **gp, **gm;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double ***gradg, ***trgradg;    /*for(i=1;i<imx;i++) 
   double ***p3mat;      printf(" %d\n",s[4][i]);
   double age,agelim, hf;    */
   int theta;    cov[1]=1.;
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(j=1; j<=nlstate;j++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresvij,"\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
   xp=vector(1,npar);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);          }
          for(d=0; d<dh[mi][i]; d++){
   kk=1;             /* For example stepm=6 months */          newm=savm;
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */          for (kk=1; kk<=cptcovage;kk++) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      nhstepm is the number of hstepm from age to agelim          }
      nstepm is the number of stepm from age to agelin.          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Look at hpijx to understand the reason of that which relies in memory size                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      and note for a fixed period like k years */          savm=oldm;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          oldm=newm;
      survival function given by stepm (the optimization length). Unfortunately it        } /* end mult */
      means that if the survival funtion is printed only each two years of age and if        
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        s1=s[mw[mi][i]][i];
      results. So we changed our mind and took the option of the best precision.        s2=s[mw[mi+1][i]][i];
   */        bbh=(double)bh[mi][i]/(double)stepm; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */        /* bias is positive if real duration
   agelim = AGESUP;         * is higher than the multiple of stepm and negative otherwise.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */         */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          lli=log(out[s1][s2] - savm[s1][s2]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } else if  (s2==-2) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          for (j=1,survp=0. ; j<=nlstate; j++) 
     gp=matrix(0,nhstepm,1,nlstate);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gm=matrix(0,nhstepm,1,nlstate);          lli= log(survp);
         }else if (mle==1){
     for(theta=1; theta <=npar; theta++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(i=1; i<=npar; i++){ /* Computes gradient */        } else if(mle==2){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }        } else if(mle==3){  /* exponential inter-extrapolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
       if (popbased==1) {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         for(i=1; i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
           prlim[i][i]=probs[(int)age][i][ij];        } /* End of if */
       }        ipmx +=1;
          sw += weight[i];
       for(j=1; j<= nlstate; j++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(h=0; h<=nhstepm; h++){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        if(globpr){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         }   %11.6f %11.6f %11.6f ", \
       }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                      2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(i=1; i<=npar; i++) /* Computes gradient */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            llt +=ll[k]*gipmx/gsw;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
            fprintf(ficresilk," %10.6f\n", -llt);
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)      } /* end of wave */
           prlim[i][i]=probs[(int)age][i][ij];    } /* end of individual */
       }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1; j<= nlstate; j++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(h=0; h<=nhstepm; h++){    if(globpr==0){ /* First time we count the contributions and weights */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      gipmx=ipmx;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      gsw=sw;
         }    }
       }    return -l;
   }
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  /*************** function likelione ***********/
         }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     } /* End theta */  {
     /* This routine should help understanding what is done with 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
     for(h=0; h<=nhstepm; h++)       Plotting could be done.
       for(j=1; j<=nlstate;j++)     */
         for(theta=1; theta <=npar; theta++)    int k;
           trgradg[h][j][theta]=gradg[h][theta][j];  
     if(*globpri !=0){ /* Just counts and sums, no printings */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      strcpy(fileresilk,"ilk"); 
     for(i=1;i<=nlstate;i++)      strcat(fileresilk,fileres);
       for(j=1;j<=nlstate;j++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         vareij[i][j][(int)age] =0.;        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(h=0;h<=nhstepm;h++){      }
       for(k=0;k<=nhstepm;k++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         for(i=1;i<=nlstate;i++)      for(k=1; k<=nlstate; k++) 
           for(j=1;j<=nlstate;j++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       }    }
     }  
     *fretone=(*funcone)(p);
     fprintf(ficresvij,"%.0f ",age );    if(*globpri !=0){
     for(i=1; i<=nlstate;i++)      fclose(ficresilk);
       for(j=1; j<=nlstate;j++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      fflush(fichtm); 
       }    } 
     fprintf(ficresvij,"\n");    return;
     free_matrix(gp,0,nhstepm,1,nlstate);  }
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  /*********** Maximum Likelihood Estimation ***************/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    {
   free_vector(xp,1,npar);    int i,j, iter;
   free_matrix(doldm,1,nlstate,1,npar);    double **xi;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double fret;
     double fretone; /* Only one call to likelihood */
 }    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
 /************ Variance of prevlim ******************/    for (i=1;i<=npar;i++)
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (j=1;j<=npar;j++)
 {        xi[i][j]=(i==j ? 1.0 : 0.0);
   /* Variance of prevalence limit */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    strcpy(filerespow,"pow"); 
   double **newm;    strcat(filerespow,fileres);
   double **dnewm,**doldm;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   int i, j, nhstepm, hstepm;      printf("Problem with resultfile: %s\n", filerespow);
   int k, cptcode;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double *xp;    }
   double *gp, *gm;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double **gradg, **trgradg;    for (i=1;i<=nlstate;i++)
   double age,agelim;      for(j=1;j<=nlstate+ndeath;j++)
   int theta;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
        fprintf(ficrespow,"\n");
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");    powell(p,xi,npar,ftol,&iter,&fret,func);
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);    free_matrix(xi,1,npar,1,npar);
   fprintf(ficresvpl,"\n");    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   xp=vector(1,npar);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   dnewm=matrix(1,nlstate,1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   doldm=matrix(1,nlstate,1,nlstate);  
    }
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /**** Computes Hessian and covariance matrix ***/
   agelim = AGESUP;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double  **a,**y,*x,pd;
     if (stepm >= YEARM) hstepm=1;    double **hess;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int i, j,jk;
     gradg=matrix(1,npar,1,nlstate);    int *indx;
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for(theta=1; theta <=npar; theta++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(i=1; i<=npar; i++){ /* Computes gradient */    void ludcmp(double **a, int npar, int *indx, double *d) ;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double gompertz(double p[]);
       }    hess=matrix(1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
         gp[i] = prlim[i][i];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        for (i=1;i<=npar;i++){
       for(i=1; i<=npar; i++) /* Computes gradient */      printf("%d",i);fflush(stdout);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficlog,"%d",i);fflush(ficlog);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     
       for(i=1;i<=nlstate;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         gm[i] = prlim[i][i];      
       /*  printf(" %f ",p[i]);
       for(i=1;i<=nlstate;i++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }
     } /* End theta */    
     for (i=1;i<=npar;i++) {
     trgradg =matrix(1,nlstate,1,npar);      for (j=1;j<=npar;j++)  {
         if (j>i) { 
     for(j=1; j<=nlstate;j++)          printf(".%d%d",i,j);fflush(stdout);
       for(theta=1; theta <=npar; theta++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         trgradg[j][theta]=gradg[theta][j];          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
     for(i=1;i<=nlstate;i++)          hess[j][i]=hess[i][j];    
       varpl[i][(int)age] =0.;          /*printf(" %lf ",hess[i][j]);*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      }
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    printf("\n");
     fprintf(ficlog,"\n");
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficresvpl,"\n");    
     free_vector(gp,1,nlstate);    a=matrix(1,npar,1,npar);
     free_vector(gm,1,nlstate);    y=matrix(1,npar,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    x=vector(1,npar);
     free_matrix(trgradg,1,nlstate,1,npar);    indx=ivector(1,npar);
   } /* End age */    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   free_vector(xp,1,npar);    ludcmp(a,npar,indx,&pd);
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
       lubksb(a,npar,indx,x);
 /************ Variance of one-step probabilities  ******************/      for (i=1;i<=npar;i++){ 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)        matcov[i][j]=x[i];
 {      }
   int i, j;    }
   int k=0, cptcode;  
   double **dnewm,**doldm;    printf("\n#Hessian matrix#\n");
   double *xp;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double *gp, *gm;    for (i=1;i<=npar;i++) { 
   double **gradg, **trgradg;      for (j=1;j<=npar;j++) { 
   double age,agelim, cov[NCOVMAX];        printf("%.3e ",hess[i][j]);
   int theta;        fprintf(ficlog,"%.3e ",hess[i][j]);
   char fileresprob[FILENAMELENGTH];      }
       printf("\n");
   strcpy(fileresprob,"prob");      fprintf(ficlog,"\n");
   strcat(fileresprob,fileres);    }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);    /* Recompute Inverse */
   }    for (i=1;i<=npar;i++)
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      ludcmp(a,npar,indx,&pd);
   
   xp=vector(1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
   cov[1]=1;      x[j]=1;
   for (age=bage; age<=fage; age ++){      lubksb(a,npar,indx,x);
     cov[2]=age;      for (i=1;i<=npar;i++){ 
     gradg=matrix(1,npar,1,9);        y[i][j]=x[i];
     trgradg=matrix(1,9,1,npar);        printf("%.3e ",y[i][j]);
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        fprintf(ficlog,"%.3e ",y[i][j]);
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      }
          printf("\n");
     for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++)    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    */
        
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_matrix(a,1,npar,1,npar);
        free_matrix(y,1,npar,1,npar);
       k=0;    free_vector(x,1,npar);
       for(i=1; i<= (nlstate+ndeath); i++){    free_ivector(indx,1,npar);
         for(j=1; j<=(nlstate+ndeath);j++){    free_matrix(hess,1,npar,1,npar);
            k=k+1;  
           gp[k]=pmmij[i][j];  
         }  }
       }  
   /*************** hessian matrix ****************/
       for(i=1; i<=npar; i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
        int i;
     int l=1, lmax=20;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    double k1,k2;
       k=0;    double p2[NPARMAX+1];
       for(i=1; i<=(nlstate+ndeath); i++){    double res;
         for(j=1; j<=(nlstate+ndeath);j++){    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           k=k+1;    double fx;
           gm[k]=pmmij[i][j];    int k=0,kmax=10;
         }    double l1;
       }  
          fx=func(x);
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    for (i=1;i<=npar;i++) p2[i]=x[i];
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      for(l=0 ; l <=lmax; l++){
     }      l1=pow(10,l);
       delts=delt;
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      for(k=1 ; k <kmax; k=k+1){
       for(theta=1; theta <=npar; theta++)        delt = delta*(l1*k);
       trgradg[j][theta]=gradg[theta][j];        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        p2[theta]=x[theta]-delt;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
      pmij(pmmij,cov,ncovmodel,x,nlstate);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
      k=0;  #ifdef DEBUG
      for(i=1; i<=(nlstate+ndeath); i++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        for(j=1; j<=(nlstate+ndeath);j++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          k=k+1;  #endif
          gm[k]=pmmij[i][j];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
      }          k=kmax;
              }
      /*printf("\n%d ",(int)age);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          k=kmax; l=lmax*10.;
                }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          delts=delt;
      }*/        }
       }
   fprintf(ficresprob,"\n%d ",(int)age);    }
     delti[theta]=delts;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    return res; 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  }
   }  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  {
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    int i;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int l=1, l1, lmax=20;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double k1,k2,k3,k4,res,fx;
 }    double p2[NPARMAX+1];
  free_vector(xp,1,npar);    int k;
 fclose(ficresprob);  
     fx=func(x);
 }    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
 /******************* Printing html file ***********/      p2[thetai]=x[thetai]+delti[thetai]/k;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  int lastpass, int stepm, int weightopt, char model[],\      k1=func(p2)-fx;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      p2[thetai]=x[thetai]+delti[thetai]/k;
  char version[], int popforecast ){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int jj1, k1, i1, cpt;      k2=func(p2)-fx;
   FILE *fichtm;    
   /*char optionfilehtm[FILENAMELENGTH];*/      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   strcpy(optionfilehtm,optionfile);      k3=func(p2)-fx;
   strcat(optionfilehtm,".htm");    
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      p2[thetai]=x[thetai]-delti[thetai]/k;
     printf("Problem with %s \n",optionfilehtm), exit(0);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  #ifdef DEBUG
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 \n      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 Total number of observations=%d <br>\n  #endif
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    }
 <hr  size=\"2\" color=\"#EC5E5E\">    return res;
  <ul><li>Outputs files<br>\n  }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  /************** Inverse of matrix **************/
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  void ludcmp(double **a, int n, int *indx, double *d) 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  { 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    int i,imax,j,k; 
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    double big,dum,sum,temp; 
     double *vv; 
  fprintf(fichtm,"\n   
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    vv=vector(1,n); 
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n    *d=1.0; 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    for (i=1;i<=n;i++) { 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);      big=0.0; 
       for (j=1;j<=n;j++) 
  if(popforecast==1) fprintf(fichtm,"\n        if ((temp=fabs(a[i][j])) > big) big=temp; 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      vv[i]=1.0/big; 
         <br>",fileres,fileres,fileres,fileres);    } 
  else    for (j=1;j<=n;j++) { 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      for (i=1;i<j;i++) { 
 fprintf(fichtm," <li>Graphs</li><p>");        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
  m=cptcoveff;        a[i][j]=sum; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      } 
       big=0.0; 
  jj1=0;      for (i=j;i<=n;i++) { 
  for(k1=1; k1<=m;k1++){        sum=a[i][j]; 
    for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1;k<j;k++) 
        jj1++;          sum -= a[i][k]*a[k][j]; 
        if (cptcovn > 0) {        a[i][j]=sum; 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
          for (cpt=1; cpt<=cptcoveff;cpt++)          big=dum; 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          imax=i; 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        } 
        }      } 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      if (j != imax) { 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for (k=1;k<=n;k++) { 
        for(cpt=1; cpt<nlstate;cpt++){          dum=a[imax][k]; 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          a[imax][k]=a[j][k]; 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          a[j][k]=dum; 
        }        } 
     for(cpt=1; cpt<=nlstate;cpt++) {        *d = -(*d); 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        vv[imax]=vv[j]; 
 interval) in state (%d): v%s%d%d.gif <br>      } 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        indx[j]=imax; 
      }      if (a[j][j] == 0.0) a[j][j]=TINY; 
      for(cpt=1; cpt<=nlstate;cpt++) {      if (j != n) { 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        dum=1.0/(a[j][j]); 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
      }      } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    } 
 health expectancies in states (1) and (2): e%s%d.gif<br>    free_vector(vv,1,n);  /* Doesn't work */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  ;
 fprintf(fichtm,"\n</body>");  } 
    }  
    }  void lubksb(double **a, int n, int *indx, double b[]) 
 fclose(fichtm);  { 
 }    int i,ii=0,ip,j; 
     double sum; 
 /******************* Gnuplot file **************/   
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      sum=b[ip]; 
       b[ip]=b[i]; 
   strcpy(optionfilegnuplot,optionfilefiname);      if (ii) 
   strcat(optionfilegnuplot,".gp.txt");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      else if (sum) ii=i; 
     printf("Problem with file %s",optionfilegnuplot);      b[i]=sum; 
   }    } 
     for (i=n;i>=1;i--) { 
 #ifdef windows      sum=b[i]; 
     fprintf(ficgp,"cd \"%s\" \n",pathc);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 #endif      b[i]=sum/a[i][i]; 
 m=pow(2,cptcoveff);    } 
    } 
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {  void pstamp(FILE *fichier)
    for (k1=1; k1<= m ; k1 ++) {  {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 #ifdef windows  }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif  /************ Frequencies ********************/
 #ifdef unix  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  {  /* Some frequencies */
 #endif    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 for (i=1; i<= nlstate ; i ++) {    int first;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double ***freq; /* Frequencies */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *pp, **prop;
 }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    char fileresp[FILENAMELENGTH];
     for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    pp=vector(1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    prop=matrix(1,nlstate,iagemin,iagemax+3);
 }    strcpy(fileresp,"p");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    strcat(fileresp,fileres);
      for (i=1; i<= nlstate ; i ++) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      printf("Problem with prevalence resultfile: %s\n", fileresp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 }        exit(0);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    }
 #ifdef unix    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 fprintf(ficgp,"\nset ter gif small size 400,300");    j1=0;
 #endif    
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    j=cptcoveff;
    }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }  
   /*2 eme*/    first=1;
   
   for (k1=1; k1<= m ; k1 ++) {    for(k1=1; k1<=j;k1++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
     for (i=1; i<= nlstate+1 ; i ++) {        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       k=2*i;          scanf("%d", i);*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for (i=-5; i<=nlstate+ndeath; i++)  
       for (j=1; j<= nlstate+1 ; j ++) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(m=iagemin; m <= iagemax+3; m++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              freq[i][jk][m]=0;
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for (i=1; i<=nlstate; i++)  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          prop[i][m]=0;
       for (j=1; j<= nlstate+1 ; j ++) {        
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        dateintsum=0;
         else fprintf(ficgp," \%%*lf (\%%*lf)");        k2cpt=0;
 }          for (i=1; i<=imx; i++) {
       fprintf(ficgp,"\" t\"\" w l 0,");          bool=1;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          if  (cptcovn>0) {
       for (j=1; j<= nlstate+1 ; j ++) {            for (z1=1; z1<=cptcoveff; z1++) 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                bool=0;
 }            }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          if (bool==1){
       else fprintf(ficgp,"\" t\"\" w l 0,");            for(m=firstpass; m<=lastpass; m++){
     }              k2=anint[m][i]+(mint[m][i]/12.);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /*3eme*/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
   for (k1=1; k1<= m ; k1 ++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     for (cpt=1; cpt<= nlstate ; cpt ++) {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       k=2+nlstate*(cpt-1);                }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                
       for (i=1; i< nlstate ; i ++) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);                  dateintsum=dateintsum+k2;
       }                  k2cpt++;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                }
     }                /*}*/
     }            }
            }
   /* CV preval stat */        }
     for (k1=1; k1<= m ; k1 ++) {         
     for (cpt=1; cpt<nlstate ; cpt ++) {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       k=3;        pstamp(ficresp);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
       for (i=1; i< nlstate ; i ++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficgp,"+$%d",k+i+1);          fprintf(ficresp, "**********\n#");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        }
              for(i=1; i<=nlstate;i++) 
       l=3+(nlstate+ndeath)*cpt;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        fprintf(ficresp, "\n");
       for (i=1; i< nlstate ; i ++) {        
         l=3+(nlstate+ndeath)*cpt;        for(i=iagemin; i <= iagemax+3; i++){
         fprintf(ficgp,"+$%d",l+i+1);          if(i==iagemax+3){
       }            fprintf(ficlog,"Total");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              fprintf(fichtm,"<br>Total<br>");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }else{
     }            if(first==1){
   }                first=0;
                printf("See log file for details...\n");
   /* proba elementaires */            }
    for(i=1,jk=1; i <=nlstate; i++){            fprintf(ficlog,"Age %d", i);
     for(k=1; k <=(nlstate+ndeath); k++){          }
       if (k != i) {          for(jk=1; jk <=nlstate ; jk++){
         for(j=1; j <=ncovmodel; j++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                      pp[jk] += freq[jk][m][i]; 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          }
           jk++;          for(jk=1; jk <=nlstate ; jk++){
           fprintf(ficgp,"\n");            for(m=-1, pos=0; m <=0 ; m++)
         }              pos += freq[jk][m][i];
       }            if(pp[jk]>=1.e-10){
     }              if(first==1){
     }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     for(jk=1; jk <=m; jk++) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            }else{
    i=1;              if(first==1)
    for(k2=1; k2<=nlstate; k2++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      k3=i;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      for(k=1; k<=(nlstate+ndeath); k++) {            }
        if (k != k2){          }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;          for(jk=1; jk <=nlstate ; jk++){
         for(j=3; j <=ncovmodel; j++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              pp[jk] += freq[jk][m][i];
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }       
             ij++;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           }            pos += pp[jk];
           else            posprop += prop[jk][i];
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
         }          for(jk=1; jk <=nlstate ; jk++){
           fprintf(ficgp,")/(1");            if(pos>=1.e-5){
                      if(first==1)
         for(k1=1; k1 <=nlstate; k1++){                  printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 ij=1;            }else{
           for(j=3; j <=ncovmodel; j++){              if(first==1)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             ij++;            }
           }            if( i <= iagemax){
           else              if(pos>=1.e-5){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           }                /*probs[i][jk][j1]= pp[jk]/pos;*/
           fprintf(ficgp,")");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         }              }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              else
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         i=i+ncovmodel;            }
        }          }
      }          
    }          for(jk=-1; jk <=nlstate+ndeath; jk++)
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            for(m=-1; m <=nlstate+ndeath; m++)
    }              if(freq[jk][m][i] !=0 ) {
                  if(first==1)
   fclose(ficgp);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 }  /* end gnuplot */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
           if(i <= iagemax)
 /*************** Moving average **************/            fprintf(ficresp,"\n");
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          if(first==1)
             printf("Others in log...\n");
   int i, cpt, cptcod;          fprintf(ficlog,"\n");
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        }
       for (i=1; i<=nlstate;i++)      }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    }
           mobaverage[(int)agedeb][i][cptcod]=0.;    dateintmean=dateintsum/k2cpt; 
       
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    fclose(ficresp);
       for (i=1; i<=nlstate;i++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_vector(pp,1,nlstate);
           for (cpt=0;cpt<=4;cpt++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    /* End of Freq */
           }  }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }  /************ Prevalence ********************/
       }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     }  {  
        /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
 /************** Forecasting ******************/   
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      double ***freq; /* Frequencies */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double *pp, **prop;
   int *popage;    double pos,posprop; 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double  y2; /* in fractional years */
   double *popeffectif,*popcount;    int iagemin, iagemax;
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];    iagemin= (int) agemin;
     iagemax= (int) agemax;
  agelim=AGESUP;    /*pp=vector(1,nlstate);*/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    j1=0;
      
      j=cptcoveff;
   strcpy(fileresf,"f");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   strcat(fileresf,fileres);    
   if((ficresf=fopen(fileresf,"w"))==NULL) {    for(k1=1; k1<=j;k1++){
     printf("Problem with forecast resultfile: %s\n", fileresf);      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   printf("Computing forecasting: result on file '%s' \n", fileresf);        
         for (i=1; i<=nlstate; i++)  
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
   if (mobilav==1) {       
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (i=1; i<=imx; i++) { /* Each individual */
     movingaverage(agedeb, fage, ageminpar, mobaverage);          bool=1;
   }          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   stepsize=(int) (stepm+YEARM-1)/YEARM;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if (stepm<=12) stepsize=1;                bool=0;
            } 
   agelim=AGESUP;          if (bool==1) { 
              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   hstepm=1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   hstepm=hstepm/stepm;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   yp1=modf(dateintmean,&yp);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   anprojmean=yp;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   yp2=modf((yp1*12),&yp);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   mprojmean=yp;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   yp1=modf((yp2*30.5),&yp);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   jprojmean=yp;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if(jprojmean==0) jprojmean=1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   if(mprojmean==0) jprojmean=1;                } 
                }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            } /* end selection of waves */
            }
   for(cptcov=1;cptcov<=i2;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(i=iagemin; i <= iagemax+3; i++){  
       k=k+1;          
       fprintf(ficresf,"\n#******");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       for(j=1;j<=cptcoveff;j++) {            posprop += prop[jk][i]; 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          } 
       }  
       fprintf(ficresf,"******\n");          for(jk=1; jk <=nlstate ; jk++){     
       fprintf(ficresf,"# StartingAge FinalAge");            if( i <=  iagemax){ 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              if(posprop>=1.e-5){ 
                      probs[i][jk][j1]= prop[jk][i]/posprop;
                    } 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {            } 
         fprintf(ficresf,"\n");          }/* end jk */ 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          }/* end i */ 
       } /* end i1 */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    } /* end k1 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
              /*free_vector(pp,1,nlstate);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           oldm=oldms;savm=savms;  }  /* End of prevalence */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
          /************* Waves Concatenation ***************/
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  {
             }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             for(j=1; j<=nlstate+ndeath;j++) {       Death is a valid wave (if date is known).
               kk1=0.;kk2=0;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               for(i=1; i<=nlstate;i++) {                     dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                 if (mobilav==1)       and mw[mi+1][i]. dh depends on stepm.
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    int i, mi, m;
                 }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                       double sum=0., jmean=0.;*/
               }    int first;
               if (h==(int)(calagedate+12*cpt)){    int j, k=0,jk, ju, jl;
                 fprintf(ficresf," %.3f", kk1);    double sum=0.;
                            first=0;
               }    jmin=1e+5;
             }    jmax=-1;
           }    jmean=0.;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=imx; i++){
         }      mi=0;
       }      m=firstpass;
     }      while(s[m][i] <= nlstate){
   }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                  mw[++mi][i]=m;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(m >=lastpass)
           break;
   fclose(ficresf);        else
 }          m++;
 /************** Forecasting ******************/      }/* end while */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        /* if(mi==0)  never been interviewed correctly before death */
   int *popage;           /* Only death is a correct wave */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        mw[mi][i]=m;
   double *popeffectif,*popcount;      }
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];      wav[i]=mi;
       if(mi==0){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        nbwarn++;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(first==0){
   agelim=AGESUP;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          first=1;
          }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        if(first==1){
            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
          }
   strcpy(filerespop,"pop");      } /* end mi==0 */
   strcat(filerespop,fileres);    } /* End individuals */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);    for(i=1; i<=imx; i++){
   }      for(mi=1; mi<wav[i];mi++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);        if (stepm <=0)
           dh[mi][i]=1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   if (mobilav==1) {            if (agedc[i] < 2*AGESUP) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     movingaverage(agedeb, fage, ageminpar, mobaverage);              if(j==0) j=1;  /* Survives at least one month after exam */
   }              else if(j<0){
                 nberr++;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (stepm<=12) stepsize=1;                j=1; /* Temporary Dangerous patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   agelim=AGESUP;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   hstepm=1;              }
   hstepm=hstepm/stepm;              k=k+1;
                if (j >= jmax){
   if (popforecast==1) {                jmax=j;
     if((ficpop=fopen(popfile,"r"))==NULL) {                ijmax=i;
       printf("Problem with population file : %s\n",popfile);exit(0);              }
     }              if (j <= jmin){
     popage=ivector(0,AGESUP);                jmin=j;
     popeffectif=vector(0,AGESUP);                ijmin=i;
     popcount=vector(0,AGESUP);              }
                  sum=sum+j;
     i=1;                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                }
     imx=i;          }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          else{
   }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            k=k+1;
       k=k+1;            if (j >= jmax) {
       fprintf(ficrespop,"\n#******");              jmax=j;
       for(j=1;j<=cptcoveff;j++) {              ijmax=i;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       }            else if (j <= jmin){
       fprintf(ficrespop,"******\n");              jmin=j;
       fprintf(ficrespop,"# Age");              ijmin=i;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            }
       if (popforecast==1)  fprintf(ficrespop," [Population]");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                  /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       for (cpt=0; cpt<=0;cpt++) {            if(j<0){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                nberr++;
                      printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }
           nhstepm = nhstepm/hstepm;            sum=sum+j;
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          jk= j/stepm;
           oldm=oldms;savm=savms;          jl= j -jk*stepm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            ju= j -(jk+1)*stepm;
                  if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           for (h=0; h<=nhstepm; h++){            if(jl==0){
             if (h==(int) (calagedate+YEARM*cpt)) {              dh[mi][i]=jk;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              bh[mi][i]=0;
             }            }else{ /* We want a negative bias in order to only have interpolation ie
             for(j=1; j<=nlstate+ndeath;j++) {                    * at the price of an extra matrix product in likelihood */
               kk1=0.;kk2=0;              dh[mi][i]=jk+1;
               for(i=1; i<=nlstate;i++) {                            bh[mi][i]=ju;
                 if (mobilav==1)            }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }else{
                 else {            if(jl <= -ju){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              dh[mi][i]=jk;
                 }              bh[mi][i]=jl;       /* bias is positive if real duration
               }                                   * is higher than the multiple of stepm and negative otherwise.
               if (h==(int)(calagedate+12*cpt)){                                   */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            }
                   /*fprintf(ficrespop," %.3f", kk1);            else{
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              dh[mi][i]=jk+1;
               }              bh[mi][i]=ju;
             }            }
             for(i=1; i<=nlstate;i++){            if(dh[mi][i]==0){
               kk1=0.;              dh[mi][i]=1; /* At least one step */
                 for(j=1; j<=nlstate;j++){              bh[mi][i]=ju; /* At least one step */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                 }            }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          } /* end if mle */
             }        }
       } /* end wave */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    jmean=sum/k;
           }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         }   }
       }  
    /*********** Tricode ****************************/
   /******/  void tricode(int *Tvar, int **nbcode, int imx)
   {
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      int Ndum[20],ij=1, k, j, i, maxncov=19;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int cptcode=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    cptcoveff=0; 
           nhstepm = nhstepm/hstepm;   
              for (k=0; k<maxncov; k++) Ndum[k]=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (k=1; k<=7; k++) ncodemax[k]=0;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           for (h=0; h<=nhstepm; h++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
             if (h==(int) (calagedate+YEARM*cpt)) {                                 modality*/ 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
             }        Ndum[ij]++; /*store the modality */
             for(j=1; j<=nlstate+ndeath;j++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
               kk1=0.;kk2=0;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
               for(i=1; i<=nlstate;i++) {                                                       Tvar[j]. If V=sex and male is 0 and 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                                             female is 1, then  cptcode=1.*/
               }      }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }      for (i=0; i<=cptcode; i++) {
           }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
         }  
       }      ij=1; 
    }      for (i=1; i<=ncodemax[j]; i++) {
   }        for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if (popforecast==1) {            
     free_ivector(popage,0,AGESUP);            ij++;
     free_vector(popeffectif,0,AGESUP);          }
     free_vector(popcount,0,AGESUP);          if (ij > ncodemax[j]) break; 
   }        }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }  
   fclose(ficrespop);  
 }   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
 /***********************************************/   for (i=1; i<=ncovmodel-2; i++) { 
 /**************** Main Program *****************/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 /***********************************************/     ij=Tvar[i];
      Ndum[ij]++;
 int main(int argc, char *argv[])   }
 {  
    ij=1;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;   for (i=1; i<= maxncov; i++) {
   double agedeb, agefin,hf;     if((Ndum[i]!=0) && (i<=ncovcol)){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;       Tvaraff[ij]=i; /*For printing */
        ij++;
   double fret;     }
   double **xi,tmp,delta;   }
    
   double dum; /* Dummy variable */   cptcoveff=ij-1; /*Number of simple covariates*/
   double ***p3mat;  }
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];  /*********** Health Expectancies ****************/
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
    {
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   char filerest[FILENAMELENGTH];    double age, agelim, hf;
   char fileregp[FILENAMELENGTH];    double ***p3mat;
   char popfile[FILENAMELENGTH];    double eip;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;    pstamp(ficreseij);
   int sdeb, sfin; /* Status at beginning and end */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   int c,  h , cpt,l;    fprintf(ficreseij,"# Age");
   int ju,jl, mi;    for(i=1; i<=nlstate;i++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      for(j=1; j<=nlstate;j++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        fprintf(ficreseij," e%1d%1d ",i,j);
   int mobilav=0,popforecast=0;      }
   int hstepm, nhstepm;      fprintf(ficreseij," e%1d. ",i);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;    }
     fprintf(ficreseij,"\n");
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    
   double **prlim;    if(estepm < stepm){
   double *severity;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double ***param; /* Matrix of parameters */    }
   double  *p;    else  hstepm=estepm;   
   double **matcov; /* Matrix of covariance */    /* We compute the life expectancy from trapezoids spaced every estepm months
   double ***delti3; /* Scale */     * This is mainly to measure the difference between two models: for example
   double *delti; /* Scale */     * if stepm=24 months pijx are given only every 2 years and by summing them
   double ***eij, ***vareij;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double **varpl; /* Variances of prevalence limits by age */     * progression in between and thus overestimating or underestimating according
   double *epj, vepp;     * to the curvature of the survival function. If, for the same date, we 
   double kk1, kk2;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   char z[1]="c", occ;       nstepm is the number of stepm from age to agelin. 
 #include <sys/time.h>       Look at hpijx to understand the reason of that which relies in memory size
 #include <time.h>       and note for a fixed period like estepm months */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   /* long total_usecs;       means that if the survival funtion is printed only each two years of age and if
   struct timeval start_time, end_time;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    */
   getcwd(pathcd, size);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   printf("\n%s",version);    agelim=AGESUP;
   if(argc <=1){    /* nhstepm age range expressed in number of stepm */
     printf("\nEnter the parameter file name: ");    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     scanf("%s",pathtot);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }    /* if (stepm >= YEARM) hstepm=1;*/
   else{    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     strcpy(pathtot,argv[1]);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /*cygwin_split_path(pathtot,path,optionfile);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /* cutv(path,optionfile,pathtot,'\\');*/      
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   chdir(path);      
   replace(pathc,path);      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /*-------- arguments in the command line --------*/      
       /* Computing expectancies */
   strcpy(fileres,"r");      for(i=1; i<=nlstate;i++)
   strcat(fileres, optionfilefiname);        for(j=1; j<=nlstate;j++)
   strcat(fileres,".txt");    /* Other files have txt extension */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   /*---------arguments file --------*/            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);          }
     goto end;  
   }      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   strcpy(filereso,"o");        eip=0;
   strcat(filereso,fileres);        for(j=1; j<=nlstate;j++){
   if((ficparo=fopen(filereso,"w"))==NULL) {          eip +=eij[i][j][(int)age];
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   }        }
         fprintf(ficreseij,"%9.4f", eip );
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficreseij,"\n");
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);    printf("\n");
   }    fprintf(ficlog,"\n");
   ungetc(c,ficpar);    
   }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    /* Covariances of health expectancies eij and of total life expectancies according
     fgets(line, MAXLINE, ficpar);     to initial status i, ei. .
     puts(line);    */
     fputs(line,ficparo);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    double age, agelim, hf;
   ungetc(c,ficpar);    double ***p3matp, ***p3matm, ***varhe;
      double **dnewm,**doldm;
        double *xp, *xm;
   covar=matrix(0,NCOVMAX,1,n);    double **gp, **gm;
   cptcovn=0;    double ***gradg, ***trgradg;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    int theta;
   
   ncovmodel=2+cptcovn;    double eip, vip;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /* Read guess parameters */    xp=vector(1,npar);
   /* Reads comments: lines beginning with '#' */    xm=vector(1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    dnewm=matrix(1,nlstate*nlstate,1,npar);
     ungetc(c,ficpar);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);    
     puts(line);    pstamp(ficresstdeij);
     fputs(line,ficparo);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   }    fprintf(ficresstdeij,"# Age");
   ungetc(c,ficpar);    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     for(i=1; i <=nlstate; i++)      fprintf(ficresstdeij," e%1d. ",i);
     for(j=1; j <=nlstate+ndeath-1; j++){    }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresstdeij,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);    pstamp(ficrescveij);
       for(k=1; k<=ncovmodel;k++){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficrescveij,"# Age");
         printf(" %lf",param[i][j][k]);    for(i=1; i<=nlstate;i++)
         fprintf(ficparo," %lf",param[i][j][k]);      for(j=1; j<=nlstate;j++){
       }        cptj= (j-1)*nlstate+i;
       fscanf(ficpar,"\n");        for(i2=1; i2<=nlstate;i2++)
       printf("\n");          for(j2=1; j2<=nlstate;j2++){
       fprintf(ficparo,"\n");            cptj2= (j2-1)*nlstate+i2;
     }            if(cptj2 <= cptj)
                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          }
       }
   p=param[1][1];    fprintf(ficrescveij,"\n");
      
   /* Reads comments: lines beginning with '#' */    if(estepm < stepm){
   while((c=getc(ficpar))=='#' && c!= EOF){      printf ("Problem %d lower than %d\n",estepm, stepm);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    else  hstepm=estepm;   
     puts(line);    /* We compute the life expectancy from trapezoids spaced every estepm months
     fputs(line,ficparo);     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
   ungetc(c,ficpar);     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);     * to the curvature of the survival function. If, for the same date, we 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   for(i=1; i <=nlstate; i++){     * to compare the new estimate of Life expectancy with the same linear 
     for(j=1; j <=nlstate+ndeath-1; j++){     * hypothesis. A more precise result, taking into account a more precise
       fscanf(ficpar,"%1d%1d",&i1,&j1);     * curvature will be obtained if estepm is as small as stepm. */
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);    /* For example we decided to compute the life expectancy with the smallest unit */
       for(k=1; k<=ncovmodel;k++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fscanf(ficpar,"%le",&delti3[i][j][k]);       nhstepm is the number of hstepm from age to agelim 
         printf(" %le",delti3[i][j][k]);       nstepm is the number of stepm from age to agelin. 
         fprintf(ficparo," %le",delti3[i][j][k]);       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
       fscanf(ficpar,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       printf("\n");       survival function given by stepm (the optimization length). Unfortunately it
       fprintf(ficparo,"\n");       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   delti=delti3[1][1];    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    /* If stepm=6 months */
     ungetc(c,ficpar);    /* nhstepm age range expressed in number of stepm */
     fgets(line, MAXLINE, ficpar);    agelim=AGESUP;
     puts(line);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     fputs(line,ficparo);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }    /* if (stepm >= YEARM) hstepm=1;*/
   ungetc(c,ficpar);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      
   matcov=matrix(1,npar,1,npar);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(i=1; i <=npar; i++){    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fscanf(ficpar,"%s",&str);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     printf("%s",str);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     fprintf(ficparo,"%s",str);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     for(j=1; j <=i; j++){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);    for (age=bage; age<=fage; age ++){ 
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fscanf(ficpar,"\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     printf("\n");   
     fprintf(ficparo,"\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
   for(i=1; i <=npar; i++)      /* Computing  Variances of health expectancies */
     for(j=i+1;j<=npar;j++)      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       matcov[i][j]=matcov[j][i];         decrease memory allocation */
          for(theta=1; theta <=npar; theta++){
   printf("\n");        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
     /*-------- Rewriting paramater file ----------*/        }
      strcpy(rfileres,"r");    /* "Rparameterfile */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
      strcat(rfileres,".");    /* */    
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(j=1; j<= nlstate; j++){
     if((ficres =fopen(rfileres,"w"))==NULL) {          for(i=1; i<=nlstate; i++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            for(h=0; h<=nhstepm-1; h++){
     }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     fprintf(ficres,"#%s\n",version);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                }
     /*-------- data file ----------*/          }
     if((fic=fopen(datafile,"r"))==NULL)    {        }
       printf("Problem with datafile: %s\n", datafile);goto end;       
     }        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
     n= lastobs;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     severity = vector(1,maxwav);          }
     outcome=imatrix(1,maxwav+1,1,n);      }/* End theta */
     num=ivector(1,n);      
     moisnais=vector(1,n);      
     annais=vector(1,n);      for(h=0; h<=nhstepm-1; h++)
     moisdc=vector(1,n);        for(j=1; j<=nlstate*nlstate;j++)
     andc=vector(1,n);          for(theta=1; theta <=npar; theta++)
     agedc=vector(1,n);            trgradg[h][j][theta]=gradg[h][theta][j];
     cod=ivector(1,n);      
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       for(ij=1;ij<=nlstate*nlstate;ij++)
     mint=matrix(1,maxwav,1,n);        for(ji=1;ji<=nlstate*nlstate;ji++)
     anint=matrix(1,maxwav,1,n);          varhe[ij][ji][(int)age] =0.;
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);           printf("%d|",(int)age);fflush(stdout);
     tab=ivector(1,NCOVMAX);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     ncodemax=ivector(1,8);       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
     i=1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     while (fgets(line, MAXLINE, fic) != NULL)    {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       if ((i >= firstobs) && (i <=lastobs)) {          for(ij=1;ij<=nlstate*nlstate;ij++)
                    for(ji=1;ji<=nlstate*nlstate;ji++)
         for (j=maxwav;j>=1;j--){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        }
           strcpy(line,stra);      }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /* Computing expectancies */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         }      for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
           }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){      fprintf(ficresstdeij,"%3.0f",age );
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1; i<=nlstate;i++){
         }        eip=0.;
         num[i]=atol(stra);        vip=0.;
                for(j=1; j<=nlstate;j++){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          eip += eij[i][j][(int)age];
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         i=i+1;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       }        }
     }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     /* printf("ii=%d", ij);      }
        scanf("%d",i);*/      fprintf(ficresstdeij,"\n");
   imx=i-1; /* Number of individuals */  
       fprintf(ficrescveij,"%3.0f",age );
   /* for (i=1; i<=imx; i++){      for(i=1; i<=nlstate;i++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(j=1; j<=nlstate;j++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          cptj= (j-1)*nlstate+i;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for(i2=1; i2<=nlstate;i2++)
     }*/            for(j2=1; j2<=nlstate;j2++){
                cptj2= (j2-1)*nlstate+i2;
   /* for (i=1; i<=imx; i++){              if(cptj2 <= cptj)
      if (s[4][i]==9)  s[4][i]=-1;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}            }
   */        }
        fprintf(ficrescveij,"\n");
   /* Calculation of the number of parameter from char model*/     
   Tvar=ivector(1,15);    }
   Tprod=ivector(1,15);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   Tvaraff=ivector(1,15);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   Tvard=imatrix(1,15,1,2);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   Tage=ivector(1,15);          free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (strlen(model) >1){    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     j=0, j1=0, k1=1, k2=1;    printf("\n");
     j=nbocc(model,'+');    fprintf(ficlog,"\n");
     j1=nbocc(model,'*');  
     cptcovn=j+1;    free_vector(xm,1,npar);
     cptcovprod=j1;    free_vector(xp,1,npar);
        free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     strcpy(modelsav,model);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       printf("Error. Non available option model=%s ",model);  }
       goto end;  
     }  /************ Variance ******************/
      void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     for(i=(j+1); i>=1;i--){  {
       cutv(stra,strb,modelsav,'+');    /* Variance of health expectancies */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /* double **newm;*/
       /*scanf("%d",i);*/    double **dnewm,**doldm;
       if (strchr(strb,'*')) {    double **dnewmp,**doldmp;
         cutv(strd,strc,strb,'*');    int i, j, nhstepm, hstepm, h, nstepm ;
         if (strcmp(strc,"age")==0) {    int k, cptcode;
           cptcovprod--;    double *xp;
           cutv(strb,stre,strd,'V');    double **gp, **gm;  /* for var eij */
           Tvar[i]=atoi(stre);    double ***gradg, ***trgradg; /*for var eij */
           cptcovage++;    double **gradgp, **trgradgp; /* for var p point j */
             Tage[cptcovage]=i;    double *gpp, *gmp; /* for var p point j */
             /*printf("stre=%s ", stre);*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         }    double ***p3mat;
         else if (strcmp(strd,"age")==0) {    double age,agelim, hf;
           cptcovprod--;    double ***mobaverage;
           cutv(strb,stre,strc,'V');    int theta;
           Tvar[i]=atoi(stre);    char digit[4];
           cptcovage++;    char digitp[25];
           Tage[cptcovage]=i;  
         }    char fileresprobmorprev[FILENAMELENGTH];
         else {  
           cutv(strb,stre,strc,'V');    if(popbased==1){
           Tvar[i]=ncovcol+k1;      if(mobilav!=0)
           cutv(strb,strc,strd,'V');        strcpy(digitp,"-populbased-mobilav-");
           Tprod[k1]=i;      else strcpy(digitp,"-populbased-nomobil-");
           Tvard[k1][1]=atoi(strc);    }
           Tvard[k1][2]=atoi(stre);    else 
           Tvar[cptcovn+k2]=Tvard[k1][1];      strcpy(digitp,"-stablbased-");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)    if (mobilav!=0) {
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           k1++;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           k2=k2+2;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }      }
       else {    }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/    strcpy(fileresprobmorprev,"prmorprev"); 
       cutv(strd,strc,strb,'V');    sprintf(digit,"%-d",ij);
       Tvar[i]=atoi(strc);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       strcpy(modelsav,stra);      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    strcat(fileresprobmorprev,fileres);
         scanf("%d",i);*/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   printf("cptcovprod=%d ", cptcovprod);   
   scanf("%d ",i);*/    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fclose(fic);    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     /*  if(mle==1){*/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     if (weightopt != 1) { /* Maximisation without weights*/    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for(i=1;i<=n;i++) weight[i]=1.0;      fprintf(ficresprobmorprev," p.%-d SE",j);
     }      for(i=1; i<=nlstate;i++)
     /*-calculation of age at interview from date of interview and age at death -*/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     agev=matrix(1,maxwav,1,imx);    }  
     fprintf(ficresprobmorprev,"\n");
     for (i=1; i<=imx; i++) {    fprintf(ficgp,"\n# Routine varevsij");
       for(m=2; (m<= maxwav); m++) {    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
          anint[m][i]=9999;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
          s[m][i]=-1;  /*   } */
        }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    pstamp(ficresvij);
       }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     }    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     for (i=1; i<=imx; i++)  {    else
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       for(m=1; (m<= maxwav); m++){    fprintf(ficresvij,"# Age");
         if(s[m][i] >0){    for(i=1; i<=nlstate;i++)
           if (s[m][i] >= nlstate+1) {      for(j=1; j<=nlstate;j++)
             if(agedc[i]>0)        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
               if(moisdc[i]!=99 && andc[i]!=9999)    fprintf(ficresvij,"\n");
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    xp=vector(1,npar);
            else {    dnewm=matrix(1,nlstate,1,npar);
               if (andc[i]!=9999){    doldm=matrix(1,nlstate,1,nlstate);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
               agev[m][i]=-1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               }  
             }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           }    gpp=vector(nlstate+1,nlstate+ndeath);
           else if(s[m][i] !=9){ /* Should no more exist */    gmp=vector(nlstate+1,nlstate+ndeath);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             if(mint[m][i]==99 || anint[m][i]==9999)    
               agev[m][i]=1;    if(estepm < stepm){
             else if(agev[m][i] <agemin){      printf ("Problem %d lower than %d\n",estepm, stepm);
               agemin=agev[m][i];    }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    else  hstepm=estepm;   
             }    /* For example we decided to compute the life expectancy with the smallest unit */
             else if(agev[m][i] >agemax){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               agemax=agev[m][i];       nhstepm is the number of hstepm from age to agelim 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       nstepm is the number of stepm from age to agelin. 
             }       Look at hpijx to understand the reason of that which relies in memory size
             /*agev[m][i]=anint[m][i]-annais[i];*/       and note for a fixed period like k years */
             /*   agev[m][i] = age[i]+2*m;*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           else { /* =9 */       means that if the survival funtion is printed every two years of age and if
             agev[m][i]=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             s[m][i]=-1;       results. So we changed our mind and took the option of the best precision.
           }    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         else /*= 0 Unknown */    agelim = AGESUP;
           agev[m][i]=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for (i=1; i<=imx; i++)  {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       for(m=1; (m<= maxwav); m++){      gp=matrix(0,nhstepm,1,nlstate);
         if (s[m][i] > (nlstate+ndeath)) {      gm=matrix(0,nhstepm,1,nlstate);
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;  
         }      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);        if (popbased==1) {
     free_vector(moisnais,1,n);          if(mobilav ==0){
     free_vector(annais,1,n);            for(i=1; i<=nlstate;i++)
     /* free_matrix(mint,1,maxwav,1,n);              prlim[i][i]=probs[(int)age][i][ij];
        free_matrix(anint,1,maxwav,1,n);*/          }else{ /* mobilav */ 
     free_vector(moisdc,1,n);            for(i=1; i<=nlstate;i++)
     free_vector(andc,1,n);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
            }
     wav=ivector(1,imx);    
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        for(j=1; j<= nlstate; j++){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          for(h=0; h<=nhstepm; h++){
                for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     /* Concatenates waves */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          }
         }
         /* This for computing probability of death (h=1 means
       Tcode=ivector(1,100);           computed over hstepm matrices product = hstepm*stepm months) 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);           as a weighted average of prlim.
       ncodemax[1]=1;        */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                for(i=1,gpp[j]=0.; i<= nlstate; i++)
    codtab=imatrix(1,100,1,10);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
    h=0;        }    
    m=pow(2,cptcoveff);        /* end probability of death */
    
    for(k=1;k<=cptcoveff; k++){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
      for(i=1; i <=(m/pow(2,k));i++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        for(j=1; j <= ncodemax[k]; j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            h++;   
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        if (popbased==1) {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          if(mobilav ==0){
          }            for(i=1; i<=nlstate;i++)
        }              prlim[i][i]=probs[(int)age][i][ij];
      }          }else{ /* mobilav */ 
    }            for(i=1; i<=nlstate;i++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);              prlim[i][i]=mobaverage[(int)age][i][ij];
       codtab[1][2]=1;codtab[2][2]=2; */          }
    /* for(i=1; i <=m ;i++){        }
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
       printf("\n");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       scanf("%d",i);*/          }
            }
    /* Calculates basic frequencies. Computes observed prevalence at single age        /* This for computing probability of death (h=1 means
        and prints on file fileres'p'. */           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
            */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }    
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* end probability of death */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
              for(j=1; j<= nlstate; j++) /* vareij */
     /* For Powell, parameters are in a vector p[] starting at p[1]          for(h=0; h<=nhstepm; h++){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          }
   
     if(mle==1){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     }        }
      
     /*--------- results files --------------*/      } /* End theta */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
    jk=1;      for(h=0; h<=nhstepm; h++) /* veij */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(j=1; j<=nlstate;j++)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for(theta=1; theta <=npar; theta++)
    for(i=1,jk=1; i <=nlstate; i++){            trgradg[h][j][theta]=gradg[h][theta][j];
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          {        for(theta=1; theta <=npar; theta++)
            printf("%d%d ",i,k);          trgradgp[j][theta]=gradgp[theta][j];
            fprintf(ficres,"%1d%1d ",i,k);    
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              fprintf(ficres,"%f ",p[jk]);      for(i=1;i<=nlstate;i++)
              jk++;        for(j=1;j<=nlstate;j++)
            }          vareij[i][j][(int)age] =0.;
            printf("\n");  
            fprintf(ficres,"\n");      for(h=0;h<=nhstepm;h++){
          }        for(k=0;k<=nhstepm;k++){
      }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
    }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
  if(mle==1){          for(i=1;i<=nlstate;i++)
     /* Computing hessian and covariance matrix */            for(j=1;j<=nlstate;j++)
     ftolhess=ftol; /* Usually correct */              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     hesscov(matcov, p, npar, delti, ftolhess, func);        }
  }      }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    
     printf("# Scales (for hessian or gradient estimation)\n");      /* pptj */
      for(i=1,jk=1; i <=nlstate; i++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       for(j=1; j <=nlstate+ndeath; j++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         if (j!=i) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           fprintf(ficres,"%1d%1d",i,j);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           printf("%1d%1d",i,j);          varppt[j][i]=doldmp[j][i];
           for(k=1; k<=ncovmodel;k++){      /* end ppptj */
             printf(" %.5e",delti[jk]);      /*  x centered again */
             fprintf(ficres," %.5e",delti[jk]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             jk++;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           }   
           printf("\n");      if (popbased==1) {
           fprintf(ficres,"\n");        if(mobilav ==0){
         }          for(i=1; i<=nlstate;i++)
       }            prlim[i][i]=probs[(int)age][i][ij];
      }        }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
     k=1;            prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }
     for(i=1;i<=npar;i++){               
       /*  if (k>nlstate) k=1;      /* This for computing probability of death (h=1 means
       i1=(i-1)/(ncovmodel*nlstate)+1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);         as a weighted average of prlim.
       printf("%s%d%d",alph[k],i1,tab[i]);*/      */
       fprintf(ficres,"%3d",i);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       printf("%3d",i);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       for(j=1; j<=i;j++){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         fprintf(ficres," %.5e",matcov[i][j]);      }    
         printf(" %.5e",matcov[i][j]);      /* end probability of death */
       }  
       fprintf(ficres,"\n");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       printf("\n");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       k++;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     }        for(i=1; i<=nlstate;i++){
              fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);      } 
       fgets(line, MAXLINE, ficpar);      fprintf(ficresprobmorprev,"\n");
       puts(line);  
       fputs(line,ficparo);      fprintf(ficresvij,"%.0f ",age );
     }      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);        }
          fprintf(ficresvij,"\n");
     if (fage <= 2) {      free_matrix(gp,0,nhstepm,1,nlstate);
       bage = ageminpar;      free_matrix(gm,0,nhstepm,1,nlstate);
       fage = agemaxpar;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    } /* End age */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     ungetc(c,ficpar);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     fgets(line, MAXLINE, ficpar);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     puts(line);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fputs(line,ficparo);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   ungetc(c,ficpar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
          fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   while((c=getc(ficpar))=='#' && c!= EOF){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     ungetc(c,ficpar);  */
     fgets(line, MAXLINE, ficpar);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     puts(line);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fputs(line,ficparo);  
   }    free_vector(xp,1,npar);
   ungetc(c,ficpar);    free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fclose(ficresprobmorprev);
   fprintf(ficparo,"pop_based=%d\n",popbased);      fflush(ficgp);
   fprintf(ficres,"pop_based=%d\n",popbased);      fflush(fichtm); 
    }  /* end varevsij */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance of prevlim ******************/
     fgets(line, MAXLINE, ficpar);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     puts(line);  {
     fputs(line,ficparo);    /* Variance of prevalence limit */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   ungetc(c,ficpar);    double **newm;
     double **dnewm,**doldm;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    int i, j, nhstepm, hstepm;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    int k, cptcode;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
 while((c=getc(ficpar))=='#' && c!= EOF){    double age,agelim;
     ungetc(c,ficpar);    int theta;
     fgets(line, MAXLINE, ficpar);    
     puts(line);    pstamp(ficresvpl);
     fputs(line,ficparo);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   }    fprintf(ficresvpl,"# Age");
   ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    fprintf(ficresvpl,"\n");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    doldm=matrix(1,nlstate,1,nlstate);
     
 /*------------ gnuplot -------------*/    hstepm=1*YEARM; /* Every year of age */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      agelim = AGESUP;
 /*------------ free_vector  -------------*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  chdir(path);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        if (stepm >= YEARM) hstepm=1;
  free_ivector(wav,1,imx);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      gradg=matrix(1,npar,1,nlstate);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        gp=vector(1,nlstate);
  free_ivector(num,1,n);      gm=vector(1,nlstate);
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      for(theta=1; theta <=npar; theta++){
  fclose(ficparo);        for(i=1; i<=npar; i++){ /* Computes gradient */
  fclose(ficres);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
 /*--------- index.htm --------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);          gp[i] = prlim[i][i];
       
          for(i=1; i<=npar; i++) /* Computes gradient */
   /*--------------- Prevalence limit --------------*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcpy(filerespl,"pl");        for(i=1;i<=nlstate;i++)
   strcat(filerespl,fileres);          gm[i] = prlim[i][i];
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for(i=1;i<=nlstate;i++)
   }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      } /* End theta */
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");      trgradg =matrix(1,nlstate,1,npar);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");      for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
   prlim=matrix(1,nlstate,1,nlstate);          trgradg[j][theta]=gradg[theta][j];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1;i<=nlstate;i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        varpl[i][(int)age] =0.;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   k=0;      for(i=1;i<=nlstate;i++)
   agebase=ageminpar;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   agelim=agemaxpar;  
   ftolpl=1.e-10;      fprintf(ficresvpl,"%.0f ",age );
   i1=cptcoveff;      for(i=1; i<=nlstate;i++)
   if (cptcovn < 1){i1=1;}        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){      free_vector(gp,1,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      free_vector(gm,1,nlstate);
         k=k+1;      free_matrix(gradg,1,npar,1,nlstate);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      free_matrix(trgradg,1,nlstate,1,npar);
         fprintf(ficrespl,"\n#******");    } /* End age */
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(xp,1,npar);
         fprintf(ficrespl,"******\n");    free_matrix(doldm,1,nlstate,1,npar);
            free_matrix(dnewm,1,nlstate,1,nlstate);
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  }
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)  /************ Variance of one-step probabilities  ******************/
           fprintf(ficrespl," %.5f", prlim[i][i]);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
           fprintf(ficrespl,"\n");  {
         }    int i, j=0,  i1, k1, l1, t, tj;
       }    int k2, l2, j1,  z1;
     }    int k=0,l, cptcode;
   fclose(ficrespl);    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   /*------------- h Pij x at various ages ------------*/    double **dnewm,**doldm;
      double *xp;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double *gp, *gm;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double **gradg, **trgradg;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double **mu;
   }    double age,agelim, cov[NCOVMAX];
   printf("Computing pij: result on file '%s' \n", filerespij);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      int theta;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    char fileresprob[FILENAMELENGTH];
   /*if (stepm<=24) stepsize=2;*/    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    double ***varpij;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
      strcpy(fileresprob,"prob"); 
   k=0;    strcat(fileresprob,fileres);
   for(cptcov=1;cptcov<=i1;cptcov++){    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf("Problem with resultfile: %s\n", fileresprob);
       k=k+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         fprintf(ficrespij,"\n#****** ");    }
         for(j=1;j<=cptcoveff;j++)    strcpy(fileresprobcov,"probcov"); 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(fileresprobcov,fileres);
         fprintf(ficrespij,"******\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", fileresprobcov);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    strcpy(fileresprobcor,"probcor"); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprobcor,fileres);
           oldm=oldms;savm=savms;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf("Problem with resultfile: %s\n", fileresprobcor);
           fprintf(ficrespij,"# Age");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           for(i=1; i<=nlstate;i++)    }
             for(j=1; j<=nlstate+ndeath;j++)    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           fprintf(ficrespij,"\n");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           for (h=0; h<=nhstepm; h++){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             for(i=1; i<=nlstate;i++)    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
               for(j=1; j<=nlstate+ndeath;j++)    pstamp(ficresprob);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
             fprintf(ficrespij,"\n");    fprintf(ficresprob,"# Age");
           }    pstamp(ficresprobcov);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           fprintf(ficrespij,"\n");    fprintf(ficresprobcov,"# Age");
         }    pstamp(ficresprobcor);
     }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   }    fprintf(ficresprobcor,"# Age");
   
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/  
     for(i=1; i<=nlstate;i++)
   fclose(ficrespij);      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
   /*---------- Forecasting ------------------*/        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   if((stepm == 1) && (strcmp(model,".")==0)){      }  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   /* fprintf(ficresprob,"\n");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    fprintf(ficresprobcov,"\n");
     free_matrix(mint,1,maxwav,1,n);    fprintf(ficresprobcor,"\n");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   */
     free_vector(weight,1,n);}   xp=vector(1,npar);
   else{    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     erreur=108;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
     fprintf(ficgp,"\n# Routine varprob");
   /*---------- Health expectancies and variances ------------*/    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   strcpy(filerest,"t");  
   strcat(filerest,fileres);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    file %s<br>\n",optionfilehtmcov);
   }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   strcpy(filerese,"e");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   strcat(filerese,fileres);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   if((ficreseij=fopen(filerese,"w"))==NULL) {  standard deviations wide on each axis. <br>\
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
  strcpy(fileresv,"v");    cov[1]=1;
   strcat(fileresv,fileres);    tj=cptcoveff;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    j1=0;
   }    for(t=1; t<=tj;t++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
   k=0;        if  (cptcovn>0) {
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficresprob, "\n#********** Variable "); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       k=k+1;          fprintf(ficresprob, "**********\n#\n");
       fprintf(ficrest,"\n#****** ");          fprintf(ficresprobcov, "\n#********** Variable "); 
       for(j=1;j<=cptcoveff;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresprobcov, "**********\n#\n");
       fprintf(ficrest,"******\n");          
           fprintf(ficgp, "\n#********** Variable "); 
       fprintf(ficreseij,"\n#****** ");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp, "**********\n#\n");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       fprintf(ficreseij,"******\n");          
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       fprintf(ficresvij,"\n#****** ");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(j=1;j<=cptcoveff;j++)          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       fprintf(ficresvij,"******\n");          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficresprobcor, "**********\n#");    
       oldm=oldms;savm=savms;        }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for (age=bage; age<=fage; age ++){ 
       oldm=oldms;savm=savms;          cov[2]=age;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          for (k=1; k<=cptcovn;k++) {
                cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
            for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          for (k=1; k<=cptcovprod;k++)
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficrest,"\n");          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       epj=vector(1,nlstate+1);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for(age=bage; age <=fage ;age++){          gp=vector(1,(nlstate)*(nlstate+ndeath));
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          gm=vector(1,(nlstate)*(nlstate+ndeath));
         if (popbased==1) {      
           for(i=1; i<=nlstate;i++)          for(theta=1; theta <=npar; theta++){
             prlim[i][i]=probs[(int)age][i][k];            for(i=1; i<=npar; i++)
         }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                    
         fprintf(ficrest," %4.0f",age);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            k=0;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            for(i=1; i<= (nlstate); i++){
           }              for(j=1; j<=(nlstate+ndeath);j++){
           epj[nlstate+1] +=epj[j];                k=k+1;
         }                gp[k]=pmmij[i][j];
         for(i=1, vepp=0.;i <=nlstate;i++)              }
           for(j=1;j <=nlstate;j++)            }
             vepp += vareij[i][j][(int)age];            
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));            for(i=1; i<=npar; i++)
         for(j=1;j <=nlstate;j++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));      
         }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         fprintf(ficrest,"\n");            k=0;
       }            for(i=1; i<=(nlstate); i++){
     }              for(j=1; j<=(nlstate+ndeath);j++){
   }                k=k+1;
                 gm[k]=pmmij[i][j];
   fclose(ficreseij);              }
   fclose(ficresvij);            }
   fclose(ficrest);       
   fclose(ficpar);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   free_vector(epj,1,nlstate+1);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            }
   /*------- Variance limit prevalence------*/    
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   strcpy(fileresvpl,"vpl");            for(theta=1; theta <=npar; theta++)
   strcat(fileresvpl,fileres);              trgradg[j][theta]=gradg[theta][j];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     exit(0);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   k=0;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
       k=k+1;          
       fprintf(ficresvpl,"\n#****** ");          k=0;
       for(j=1;j<=cptcoveff;j++)          for(i=1; i<=(nlstate); i++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficresvpl,"******\n");              k=k+1;
                    mu[k][(int) age]=pmmij[i][j];
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            }
       oldm=oldms;savm=savms;          }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
  }              varpij[i][j][(int)age] = doldm[i][j];
   
   fclose(ficresvpl);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /*---------- End : free ----------------*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              }*/
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
            fprintf(ficresprobcor,"\n%d ",(int)age);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   free_matrix(matcov,1,npar,1,npar);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   free_vector(delti,1,npar);          }
   free_matrix(agev,1,maxwav,1,imx);          i=0;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   if(erreur >0)              i=i++;
     printf("End of Imach with error or warning %d\n",erreur);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   else   printf("End of Imach\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              for (j=1; j<=i;j++){
                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   /*printf("Total time was %d uSec.\n", total_usecs);*/              }
   /*------ End -----------*/            }
           }/* end of loop for state */
         } /* end of loop for age */
  end:  
 #ifdef windows        /* Confidence intervalle of pij  */
   /* chdir(pathcd);*/        /*
 #endif          fprintf(ficgp,"\nset noparametric;unset label");
  /*system("wgnuplot graph.plt");*/          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
  /*system("../gp37mgw/wgnuplot graph.plt");*/          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  /*system("cd ../gp37mgw");*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  strcpy(plotcmd,GNUPLOTPROGRAM);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
  strcat(plotcmd," ");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
  strcat(plotcmd,optionfilegnuplot);        */
  system(plotcmd);  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 #ifdef windows        first1=1;
   while (z[0] != 'q') {        for (k2=1; k2<=(nlstate);k2++){
     /* chdir(path); */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            if(l2==k2) continue;
     scanf("%s",z);            j=(k2-1)*(nlstate+ndeath)+l2;
     if (z[0] == 'c') system("./imach");            for (k1=1; k1<=(nlstate);k1++){
     else if (z[0] == 'e') system(optionfilehtm);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     else if (z[0] == 'g') system(plotcmd);                if(l1==k1) continue;
     else if (z[0] == 'q') exit(0);                i=(k1-1)*(nlstate+ndeath)+l1;
   }                if(i<=j) continue;
 #endif                for (age=bage; age<=fage; age ++){ 
 }                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.124


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>