Diff for /imach/src/imach.c between versions 1.35 and 1.133

version 1.35, 2002/03/26 17:08:39 version 1.133, 2009/07/06 10:21:25
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.133  2009/07/06 10:21:25  brouard
      just nforces
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.132  2009/07/06 08:22:05  brouard
   first survey ("cross") where individuals from different ages are    Many tings
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.131  2009/06/20 16:22:47  brouard
   second wave of interviews ("longitudinal") which measure each change    Some dimensions resccaled
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.130  2009/05/26 06:44:34  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): Max Covariate is now set to 20 instead of 8. A
   Maximum Likelihood of the parameters involved in the model.  The    lot of cleaning with variables initialized to 0. Trying to make
   simplest model is the multinomial logistic model where pij is the    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.129  2007/08/31 13:49:27  lievre
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.128  2006/06/30 13:02:05  brouard
   where the markup *Covariates have to be included here again* invites    (Module): Clarifications on computing e.j
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
   The advantage of this computer programme, compared to a simple    imach-114 because nhstepm was no more computed in the age
   multinomial logistic model, is clear when the delay between waves is not    loop. Now we define nhstepma in the age loop.
   identical for each individual. Also, if a individual missed an    (Module): In order to speed up (in case of numerous covariates) we
   intermediate interview, the information is lost, but taken into    compute health expectancies (without variances) in a first step
   account using an interpolation or extrapolation.      and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
   hPijx is the probability to be observed in state i at age x+h    computation.
   conditional to the observed state i at age x. The delay 'h' can be    In the future we should be able to stop the program is only health
   split into an exact number (nh*stepm) of unobserved intermediate    expectancies and graph are needed without standard deviations.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.126  2006/04/28 17:23:28  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Yes the sum of survivors was wrong since
   and the contribution of each individual to the likelihood is simply    imach-114 because nhstepm was no more computed in the age
   hPijx.    loop. Now we define nhstepma in the age loop.
     Version 0.98h
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.125  2006/04/04 15:20:31  lievre
      Errors in calculation of health expectancies. Age was not initialized.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Forecasting file added.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.124  2006/03/22 17:13:53  lievre
   from the European Union.    Parameters are printed with %lf instead of %f (more numbers after the comma).
   It is copyrighted identically to a GNU software product, ie programme and    The log-likelihood is printed in the log file
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.123  2006/03/20 10:52:43  brouard
   **********************************************************************/    * imach.c (Module): <title> changed, corresponds to .htm file
      name. <head> headers where missing.
 #include <math.h>  
 #include <stdio.h>    * imach.c (Module): Weights can have a decimal point as for
 #include <stdlib.h>    English (a comma might work with a correct LC_NUMERIC environment,
 #include <unistd.h>    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 #define MAXLINE 256    1.
 #define GNUPLOTPROGRAM "wgnuplot"    Version 0.98g
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.122  2006/03/20 09:45:41  brouard
 /*#define DEBUG*/    (Module): Weights can have a decimal point as for
 #define windows    English (a comma might work with a correct LC_NUMERIC environment,
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    otherwise the weight is truncated).
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Modification of warning when the covariates values are not 0 or
     1.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Version 0.98g
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.121  2006/03/16 17:45:01  lievre
 #define NINTERVMAX 8    * imach.c (Module): Comments concerning covariates added
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Module): refinements in the computation of lli if
 #define NCOVMAX 8 /* Maximum number of covariates */    status=-2 in order to have more reliable computation if stepm is
 #define MAXN 20000    not 1 month. Version 0.98f
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.120  2006/03/16 15:10:38  lievre
 #define AGEBASE 40    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 int erreur; /* Error number */  
 int nvar;    Revision 1.119  2006/03/15 17:42:26  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Bug if status = -2, the loglikelihood was
 int npar=NPARMAX;    computed as likelihood omitting the logarithm. Version O.98e
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.118  2006/03/14 18:20:07  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): varevsij Comments added explaining the second
 int popbased=0;    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Function pstamp added
 int maxwav; /* Maxim number of waves */    (Module): Version 0.98d
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.117  2006/03/14 17:16:22  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): varevsij Comments added explaining the second
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    table of variances if popbased=1 .
 double jmean; /* Mean space between 2 waves */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Function pstamp added
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Version 0.98d
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.116  2006/03/06 10:29:27  brouard
 FILE *ficreseij;    (Module): Variance-covariance wrong links and
   char filerese[FILENAMELENGTH];    varian-covariance of ej. is needed (Saito).
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.115  2006/02/27 12:17:45  brouard
  FILE  *ficresvpl;    (Module): One freematrix added in mlikeli! 0.98c
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.114  2006/02/26 12:57:58  brouard
 #define NR_END 1    (Module): Some improvements in processing parameter
 #define FREE_ARG char*    filename with strsep.
 #define FTOL 1.0e-10  
     Revision 1.113  2006/02/24 14:20:24  brouard
 #define NRANSI    (Module): Memory leaks checks with valgrind and:
 #define ITMAX 200    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 #define TOL 2.0e-4  
     Revision 1.112  2006/01/30 09:55:26  brouard
 #define CGOLD 0.3819660    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define GOLD 1.618034    (Module): Comments can be added in data file. Missing date values
 #define GLIMIT 100.0    can be a simple dot '.'.
 #define TINY 1.0e-20  
     Revision 1.110  2006/01/25 00:51:50  brouard
 static double maxarg1,maxarg2;    (Module): Lots of cleaning and bugs added (Gompertz)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.109  2006/01/24 19:37:15  brouard
      (Module): Comments (lines starting with a #) are allowed in data.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 static double sqrarg;    To be fixed
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 int imx;  
 int stepm;    Revision 1.106  2006/01/19 13:24:36  brouard
 /* Stepm, step in month: minimum step interpolation*/    Some cleaning and links added in html output
   
 int m,nb;    Revision 1.105  2006/01/05 20:23:19  lievre
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    *** empty log message ***
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.104  2005/09/30 16:11:43  lievre
 double dateintmean=0;    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 double *weight;    that the person is alive, then we can code his/her status as -2
 int **s; /* Status */    (instead of missing=-1 in earlier versions) and his/her
 double *agedc, **covar, idx;    contributions to the likelihood is 1 - Prob of dying from last
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.102  2004/09/15 17:31:30  brouard
 {    Add the possibility to read data file including tab characters.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.100  2004/07/12 18:29:06  brouard
 #ifdef windows    Add version for Mac OS X. Just define UNIX in Makefile
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.99  2004/06/05 08:57:40  brouard
    s = strrchr( path, '/' );            /* find last / */    *** empty log message ***
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.98  2004/05/16 15:05:56  brouard
 #if     defined(__bsd__)                /* get current working directory */    New version 0.97 . First attempt to estimate force of mortality
       extern char       *getwd( );    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
       if ( getwd( dirc ) == NULL ) {    This is the basic analysis of mortality and should be done before any
 #else    other analysis, in order to test if the mortality estimated from the
       extern char       *getcwd( );    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    The same imach parameter file can be used but the option for mle should be -3.
          return( GLOCK_ERROR_GETCWD );  
       }    Agnès, who wrote this part of the code, tried to keep most of the
       strcpy( name, path );             /* we've got it */    former routines in order to include the new code within the former code.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    The output is very simple: only an estimate of the intercept and of
       l2 = strlen( s );                 /* length of filename */    the slope with 95% confident intervals.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Current limitations:
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    A) Even if you enter covariates, i.e. with the
       dirc[l1-l2] = 0;                  /* add zero */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    }    B) There is no computation of Life Expectancy nor Life Table.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.97  2004/02/20 13:25:42  lievre
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Version 0.96d. Population forecasting command line is (temporarily)
 #else    suppressed.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.96  2003/07/15 15:38:55  brouard
    s = strrchr( name, '.' );            /* find last / */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
    s++;    rewritten within the same printf. Workaround: many printfs.
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.95  2003/07/08 07:54:34  brouard
    l2= strlen( s)+1;    * imach.c (Repository):
    strncpy( finame, name, l1-l2);    (Repository): Using imachwizard code to output a more meaningful covariance
    finame[l1-l2]= 0;    matrix (cov(a12,c31) instead of numbers.
    return( 0 );                         /* we're done */  
 }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   
 /******************************************/    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 void replace(char *s, char*t)    exist so I changed back to asctime which exists.
 {    (Module): Version 0.96b
   int i;  
   int lg=20;    Revision 1.92  2003/06/25 16:30:45  brouard
   i=0;    (Module): On windows (cygwin) function asctime_r doesn't
   lg=strlen(t);    exist so I changed back to asctime which exists.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.91  2003/06/25 15:30:29  brouard
     if (t[i]== '\\') s[i]='/';    * imach.c (Repository): Duplicated warning errors corrected.
   }    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 int nbocc(char *s, char occ)    concerning matrix of covariance. It has extension -cov.htm.
 {  
   int i,j=0;    Revision 1.90  2003/06/24 12:34:15  brouard
   int lg=20;    (Module): Some bugs corrected for windows. Also, when
   i=0;    mle=-1 a template is output in file "or"mypar.txt with the design
   lg=strlen(s);    of the covariance matrix to be input.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.89  2003/06/24 12:30:52  brouard
   }    (Module): Some bugs corrected for windows. Also, when
   return j;    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   int i,lg,j,p=0;  
   i=0;    Revision 1.87  2003/06/18 12:26:01  brouard
   for(j=0; j<=strlen(t)-1; j++) {    Version 0.96
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
   lg=strlen(t);    routine fileappend.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.85  2003/06/17 13:12:43  brouard
   }    * imach.c (Repository): Check when date of death was earlier that
      u[p]='\0';    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
    for(j=0; j<= lg; j++) {    was wrong (infinity). We still send an "Error" but patch by
     if (j>=(p+1))(v[j-p-1] = t[j]);    assuming that the date of death was just one stepm after the
   }    interview.
 }    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 /********************** nrerror ********************/    memory allocation. But we also truncated to 8 characters (left
     truncation)
 void nrerror(char error_text[])    (Repository): No more line truncation errors.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.84  2003/06/13 21:44:43  brouard
   fprintf(stderr,"%s\n",error_text);    * imach.c (Repository): Replace "freqsummary" at a correct
   exit(1);    place. It differs from routine "prevalence" which may be called
 }    many times. Probs is memory consuming and must be used with
 /*********************** vector *******************/    parcimony.
 double *vector(int nl, int nh)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 {  
   double *v;    Revision 1.83  2003/06/10 13:39:11  lievre
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    *** empty log message ***
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 /************************ free vector ******************/  */
 void free_vector(double*v, int nl, int nh)  /*
 {     Interpolated Markov Chain
   free((FREE_ARG)(v+nl-NR_END));  
 }    Short summary of the programme:
     
 /************************ivector *******************************/    This program computes Healthy Life Expectancies from
 int *ivector(long nl,long nh)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   int *v;    interviewed on their health status or degree of disability (in the
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    case of a health survey which is our main interest) -2- at least a
   if (!v) nrerror("allocation failure in ivector");    second wave of interviews ("longitudinal") which measure each change
   return v-nl+NR_END;    (if any) in individual health status.  Health expectancies are
 }    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 /******************free ivector **************************/    Maximum Likelihood of the parameters involved in the model.  The
 void free_ivector(int *v, long nl, long nh)    simplest model is the multinomial logistic model where pij is the
 {    probability to be observed in state j at the second wave
   free((FREE_ARG)(v+nl-NR_END));    conditional to be observed in state i at the first wave. Therefore
 }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 /******************* imatrix *******************************/    complex model than "constant and age", you should modify the program
 int **imatrix(long nrl, long nrh, long ncl, long nch)    where the markup *Covariates have to be included here again* invites
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    you to do it.  More covariates you add, slower the
 {    convergence.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    The advantage of this computer programme, compared to a simple
      multinomial logistic model, is clear when the delay between waves is not
   /* allocate pointers to rows */    identical for each individual. Also, if a individual missed an
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    intermediate interview, the information is lost, but taken into
   if (!m) nrerror("allocation failure 1 in matrix()");    account using an interpolation or extrapolation.  
   m += NR_END;  
   m -= nrl;    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
      split into an exact number (nh*stepm) of unobserved intermediate
   /* allocate rows and set pointers to them */    states. This elementary transition (by month, quarter,
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    semester or year) is modelled as a multinomial logistic.  The hPx
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    matrix is simply the matrix product of nh*stepm elementary matrices
   m[nrl] += NR_END;    and the contribution of each individual to the likelihood is simply
   m[nrl] -= ncl;    hPijx.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the period (stable) prevalence. 
   /* return pointer to array of pointers to rows */    
   return m;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /****************** free_imatrix *************************/    from the European Union.
 void free_imatrix(m,nrl,nrh,ncl,nch)    It is copyrighted identically to a GNU software product, ie programme and
       int **m;    software can be distributed freely for non commercial use. Latest version
       long nch,ncl,nrh,nrl;    can be accessed at http://euroreves.ined.fr/imach .
      /* free an int matrix allocated by imatrix() */  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   free((FREE_ARG) (m+nrl-NR_END));    
 }    **********************************************************************/
   /*
 /******************* matrix *******************************/    main
 double **matrix(long nrl, long nrh, long ncl, long nch)    read parameterfile
 {    read datafile
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    concatwav
   double **m;    freqsummary
     if (mle >= 1)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      mlikeli
   if (!m) nrerror("allocation failure 1 in matrix()");    print results files
   m += NR_END;    if mle==1 
   m -= nrl;       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));        begin-prev-date,...
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    open gnuplot file
   m[nrl] += NR_END;    open html file
   m[nrl] -= ncl;    period (stable) prevalence
      for age prevalim()
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    h Pij x
   return m;    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /*************************free matrix ************************/    Variance-covariance of DFLE
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    prevalence()
 {     movingaverage()
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    varevsij() 
   free((FREE_ARG)(m+nrl-NR_END));    if popbased==1 varevsij(,popbased)
 }    total life expectancies
     Variance of period (stable) prevalence
 /******************* ma3x *******************************/   end
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  */
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  
    
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <math.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <stdio.h>
   m += NR_END;  #include <stdlib.h>
   m -= nrl;  #include <string.h>
   #include <unistd.h>
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <limits.h>
   m[nrl] += NR_END;  #include <sys/types.h>
   m[nrl] -= ncl;  #include <sys/stat.h>
   #include <errno.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  extern int errno;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /* #include <sys/time.h> */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include <time.h>
   m[nrl][ncl] += NR_END;  #include "timeval.h"
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  /* #include <libintl.h> */
     m[nrl][j]=m[nrl][j-1]+nlay;  /* #define _(String) gettext (String) */
    
   for (i=nrl+1; i<=nrh; i++) {  #define MAXLINE 256
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define GNUPLOTPROGRAM "gnuplot"
       m[i][j]=m[i][j-1]+nlay;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   }  #define FILENAMELENGTH 132
   return m;  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NINTERVMAX 8
   free((FREE_ARG)(m+nrl-NR_END));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 20 /* Maximum number of covariates */
 /***************** f1dim *************************/  #define MAXN 20000
 extern int ncom;  #define YEARM 12. /* Number of months per year */
 extern double *pcom,*xicom;  #define AGESUP 130
 extern double (*nrfunc)(double []);  #define AGEBASE 40
    #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 double f1dim(double x)  #ifdef UNIX
 {  #define DIRSEPARATOR '/'
   int j;  #define CHARSEPARATOR "/"
   double f;  #define ODIRSEPARATOR '\\'
   double *xt;  #else
    #define DIRSEPARATOR '\\'
   xt=vector(1,ncom);  #define CHARSEPARATOR "\\"
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define ODIRSEPARATOR '/'
   f=(*nrfunc)(xt);  #endif
   free_vector(xt,1,ncom);  
   return f;  /* $Id$ */
 }  /* $State$ */
   
 /*****************brent *************************/  char version[]="Imach version 0.98k, June 2009, INED-EUROREVES-Institut de longevite ";
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char fullversion[]="$Revision$ $Date$"; 
 {  char strstart[80];
   int iter;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double a,b,d,etemp;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   double fu,fv,fw,fx;  int nvar=0, nforce=0; /* Number of variables, number of forces */
   double ftemp;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int npar=NPARMAX;
   double e=0.0;  int nlstate=2; /* Number of live states */
    int ndeath=1; /* Number of dead states */
   a=(ax < cx ? ax : cx);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   b=(ax > cx ? ax : cx);  int popbased=0;
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  int *wav; /* Number of waves for this individuual 0 is possible */
   for (iter=1;iter<=ITMAX;iter++) {  int maxwav=0; /* Maxim number of waves */
     xm=0.5*(a+b);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     printf(".");fflush(stdout);                     to the likelihood and the sum of weights (done by funcone)*/
 #ifdef DEBUG  int mle=1, weightopt=0;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #endif  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       *xmin=x;  double jmean=1; /* Mean space between 2 waves */
       return fx;  double **oldm, **newm, **savm; /* Working pointers to matrices */
     }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     ftemp=fu;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     if (fabs(e) > tol1) {  FILE *ficlog, *ficrespow;
       r=(x-w)*(fx-fv);  int globpr=0; /* Global variable for printing or not */
       q=(x-v)*(fx-fw);  double fretone; /* Only one call to likelihood */
       p=(x-v)*q-(x-w)*r;  long ipmx=0; /* Number of contributions */
       q=2.0*(q-r);  double sw; /* Sum of weights */
       if (q > 0.0) p = -p;  char filerespow[FILENAMELENGTH];
       q=fabs(q);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       etemp=e;  FILE *ficresilk;
       e=d;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  FILE *ficresprobmorprev;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE *fichtm, *fichtmcov; /* Html File */
       else {  FILE *ficreseij;
         d=p/q;  char filerese[FILENAMELENGTH];
         u=x+d;  FILE *ficresstdeij;
         if (u-a < tol2 || b-u < tol2)  char fileresstde[FILENAMELENGTH];
           d=SIGN(tol1,xm-x);  FILE *ficrescveij;
       }  char filerescve[FILENAMELENGTH];
     } else {  FILE  *ficresvij;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fileresv[FILENAMELENGTH];
     }  FILE  *ficresvpl;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char fileresvpl[FILENAMELENGTH];
     fu=(*f)(u);  char title[MAXLINE];
     if (fu <= fx) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       SHFT(v,w,x,u)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         SHFT(fv,fw,fx,fu)  char command[FILENAMELENGTH];
         } else {  int  outcmd=0;
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
             v=w;  
             w=u;  char filelog[FILENAMELENGTH]; /* Log file */
             fv=fw;  char filerest[FILENAMELENGTH];
             fw=fu;  char fileregp[FILENAMELENGTH];
           } else if (fu <= fv || v == x || v == w) {  char popfile[FILENAMELENGTH];
             v=u;  
             fv=fu;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
           }  
         }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   }  struct timezone tzp;
   nrerror("Too many iterations in brent");  extern int gettimeofday();
   *xmin=x;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   return fx;  long time_value;
 }  extern long time();
   char strcurr[80], strfor[80];
 /****************** mnbrak ***********************/  
   char *endptr;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  long lval;
             double (*func)(double))  double dval;
 {  
   double ulim,u,r,q, dum;  #define NR_END 1
   double fu;  #define FREE_ARG char*
    #define FTOL 1.0e-10
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  #define NRANSI 
   if (*fb > *fa) {  #define ITMAX 200 
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  #define TOL 2.0e-4 
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  #define CGOLD 0.3819660 
   *fc=(*func)(*cx);  #define ZEPS 1.0e-10 
   while (*fb > *fc) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  #define GOLD 1.618034 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define GLIMIT 100.0 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define TINY 1.0e-20 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  static double maxarg1,maxarg2;
       fu=(*func)(u);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       fu=(*func)(u);    
       if (fu < *fc) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define rint(a) floor(a+0.5)
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  static double sqrarg;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       u=ulim;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       fu=(*func)(u);  int agegomp= AGEGOMP;
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  int imx; 
       fu=(*func)(u);  int stepm=1;
     }  /* Stepm, step in month: minimum step interpolation*/
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  int estepm;
       }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /*************** linmin ************************/  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 int ncom;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double *pcom,*xicom;  double **pmmij, ***probs;
 double (*nrfunc)(double []);  double *ageexmed,*agecens;
    double dateintmean=0;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  double *weight;
   double brent(double ax, double bx, double cx,  int **s; /* Status */
                double (*f)(double), double tol, double *xmin);  double *agedc, **covar, idx;
   double f1dim(double x);  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double *lsurv, *lpop, *tpop;
               double *fc, double (*func)(double));  
   int j;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double xx,xmin,bx,ax;  double ftolhess; /* Tolerance for computing hessian */
   double fx,fb,fa;  
    /**************** split *************************/
   ncom=n;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   pcom=vector(1,n);  {
   xicom=vector(1,n);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   nrfunc=func;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   for (j=1;j<=n;j++) {    */ 
     pcom[j]=p[j];    char  *ss;                            /* pointer */
     xicom[j]=xi[j];    int   l1, l2;                         /* length counters */
   }  
   ax=0.0;    l1 = strlen(path );                   /* length of path */
   xx=1.0;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 #ifdef DEBUG      strcpy( name, path );               /* we got the fullname name because no directory */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 #endif        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for (j=1;j<=n;j++) {      /* get current working directory */
     xi[j] *= xmin;      /*    extern  char* getcwd ( char *buf , int len);*/
     p[j] += xi[j];      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   }        return( GLOCK_ERROR_GETCWD );
   free_vector(xicom,1,n);      }
   free_vector(pcom,1,n);      /* got dirc from getcwd*/
 }      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
 /*************** powell ************************/      ss++;                               /* after this, the filename */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      l2 = strlen( ss );                  /* length of filename */
             double (*func)(double []))      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 {      strcpy( name, ss );         /* save file name */
   void linmin(double p[], double xi[], int n, double *fret,      strncpy( dirc, path, l1 - l2 );     /* now the directory */
               double (*func)(double []));      dirc[l1-l2] = 0;                    /* add zero */
   int i,ibig,j;      printf(" DIRC2 = %s \n",dirc);
   double del,t,*pt,*ptt,*xit;    }
   double fp,fptt;    /* We add a separator at the end of dirc if not exists */
   double *xits;    l1 = strlen( dirc );                  /* length of directory */
   pt=vector(1,n);    if( dirc[l1-1] != DIRSEPARATOR ){
   ptt=vector(1,n);      dirc[l1] =  DIRSEPARATOR;
   xit=vector(1,n);      dirc[l1+1] = 0; 
   xits=vector(1,n);      printf(" DIRC3 = %s \n",dirc);
   *fret=(*func)(p);    }
   for (j=1;j<=n;j++) pt[j]=p[j];    ss = strrchr( name, '.' );            /* find last / */
   for (*iter=1;;++(*iter)) {    if (ss >0){
     fp=(*fret);      ss++;
     ibig=0;      strcpy(ext,ss);                     /* save extension */
     del=0.0;      l1= strlen( name);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      l2= strlen(ss)+1;
     for (i=1;i<=n;i++)      strncpy( finame, name, l1-l2);
       printf(" %d %.12f",i, p[i]);      finame[l1-l2]= 0;
     printf("\n");    }
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    return( 0 );                          /* we're done */
       fptt=(*fret);  }
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  
 #endif  /******************************************/
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  void replace_back_to_slash(char *s, char*t)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    int i;
         ibig=i;    int lg=0;
       }    i=0;
 #ifdef DEBUG    lg=strlen(t);
       printf("%d %.12e",i,(*fret));    for(i=0; i<= lg; i++) {
       for (j=1;j<=n;j++) {      (s[i] = t[i]);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      if (t[i]== '\\') s[i]='/';
         printf(" x(%d)=%.12e",j,xit[j]);    }
       }  }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  char *trimbb(char *out, char *in)
       printf("\n");  { /* Trim multiple blanks in line */
 #endif    char *s;
     }    s=out;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    while (*in != '\0'){
 #ifdef DEBUG      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
       int k[2],l;        in++;
       k[0]=1;      }
       k[1]=-1;      *out++ = *in++;
       printf("Max: %.12e",(*func)(p));    }
       for (j=1;j<=n;j++)    *out='\0';
         printf(" %.12e",p[j]);    return s;
       printf("\n");  }
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  int nbocc(char *s, char occ)
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    int i,j=0;
         }    int lg=20;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    i=0;
       }    lg=strlen(s);
 #endif    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
     }
       free_vector(xit,1,n);    return j;
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  void cutv(char *u,char *v, char*t, char occ)
       return;  {
     }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     for (j=1;j<=n;j++) {       gives u="abcedf" and v="ghi2j" */
       ptt[j]=2.0*p[j]-pt[j];    int i,lg,j,p=0;
       xit[j]=p[j]-pt[j];    i=0;
       pt[j]=p[j];    for(j=0; j<=strlen(t)-1; j++) {
     }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     fptt=(*func)(ptt);    }
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    lg=strlen(t);
       if (t < 0.0) {    for(j=0; j<p; j++) {
         linmin(p,xit,n,fret,func);      (u[j] = t[j]);
         for (j=1;j<=n;j++) {    }
           xi[j][ibig]=xi[j][n];       u[p]='\0';
           xi[j][n]=xit[j];  
         }     for(j=0; j<= lg; j++) {
 #ifdef DEBUG      if (j>=(p+1))(v[j-p-1] = t[j]);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    }
         for(j=1;j<=n;j++)  }
           printf(" %.12e",xit[j]);  
         printf("\n");  /********************** nrerror ********************/
 #endif  
       }  void nrerror(char error_text[])
     }  {
   }    fprintf(stderr,"ERREUR ...\n");
 }    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 /**** Prevalence limit ****************/  }
   /*********************** vector *******************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double *vector(int nl, int nh)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double *v;
      matrix by transitions matrix until convergence is reached */    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   int i, ii,j,k;    return v-nl+NR_END;
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /************************ free vector ******************/
   double **newm;  void free_vector(double*v, int nl, int nh)
   double agefin, delaymax=50 ; /* Max number of years to converge */  {
     free((FREE_ARG)(v+nl-NR_END));
   for (ii=1;ii<=nlstate+ndeath;ii++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
   {
    cov[1]=1.;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (!v) nrerror("allocation failure in ivector");
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    return v-nl+NR_END;
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /******************free ivector **************************/
    void free_ivector(int *v, long nl, long nh)
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG)(v+nl-NR_END));
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  }
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /************************lvector *******************************/
       for (k=1; k<=cptcovprod;k++)  long *lvector(long nl,long nh)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     long *v;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    if (!v) nrerror("allocation failure in ivector");
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    return v-nl+NR_END;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  }
   
     savm=oldm;  /******************free lvector **************************/
     oldm=newm;  void free_lvector(long *v, long nl, long nh)
     maxmax=0.;  {
     for(j=1;j<=nlstate;j++){    free((FREE_ARG)(v+nl-NR_END));
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /******************* imatrix *******************************/
         sumnew=0;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         prlim[i][j]= newm[i][j]/(1-sumnew);  { 
         max=FMAX(max,prlim[i][j]);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         min=FMIN(min,prlim[i][j]);    int **m; 
       }    
       maxmin=max-min;    /* allocate pointers to rows */ 
       maxmax=FMAX(maxmax,maxmin);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     if(maxmax < ftolpl){    m += NR_END; 
       return prlim;    m -= nrl; 
     }    
   }    
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 /*************** transition probabilities ***************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m[nrl] -= ncl; 
 {    
   double s1, s2;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   /*double t34;*/    
   int i,j,j1, nc, ii, jj;    /* return pointer to array of pointers to rows */ 
     return m; 
     for(i=1; i<= nlstate; i++){  } 
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /****************** free_imatrix *************************/
         /*s2 += param[i][j][nc]*cov[nc];*/  void free_imatrix(m,nrl,nrh,ncl,nch)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        int **m;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
       ps[i][j]=s2;  { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     for(j=i+1; j<=nlstate+ndeath;j++){  } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /******************* matrix *******************************/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  double **matrix(long nrl, long nrh, long ncl, long nch)
       }  {
       ps[i][j]=s2;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     }    double **m;
   }  
     /*ps[3][2]=1;*/    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   for(i=1; i<= nlstate; i++){    m += NR_END;
      s1=0;    m -= nrl;
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(j=i+1; j<=nlstate+ndeath; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       s1+=exp(ps[i][j]);    m[nrl] += NR_END;
     ps[i][i]=1./(s1+1.);    m[nrl] -= ncl;
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(j=i+1; j<=nlstate+ndeath; j++)    return m;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */     */
   } /* end i */  }
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /*************************free matrix ************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       ps[ii][jj]=0;  {
       ps[ii][ii]=1;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   
   /******************* ma3x *******************************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
      printf("%lf ",ps[ii][jj]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
    }    double ***m;
     printf("\n ");  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     printf("\n ");printf("%lf ",cov[2]);*/    if (!m) nrerror("allocation failure 1 in matrix()");
 /*    m += NR_END;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    m -= nrl;
   goto end;*/  
     return ps;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /**************** Product of 2 matrices ******************/    m[nrl] -= ncl;
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   /* in, b, out are matrice of pointers which should have been initialized    m[nrl][ncl] += NR_END;
      before: only the contents of out is modified. The function returns    m[nrl][ncl] -= nll;
      a pointer to pointers identical to out */    for (j=ncl+1; j<=nch; j++) 
   long i, j, k;      m[nrl][j]=m[nrl][j-1]+nlay;
   for(i=nrl; i<= nrh; i++)    
     for(k=ncolol; k<=ncoloh; k++)    for (i=nrl+1; i<=nrh; i++) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         out[i][k] +=in[i][j]*b[j][k];      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   return out;    }
 }    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 /************* Higher Matrix Product ***************/    */
   }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /*************************free ma3x ************************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      duration (i.e. until  {
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      (typically every 2 years instead of every month which is too big).    free((FREE_ARG)(m+nrl-NR_END));
      Model is determined by parameters x and covariates have to be  }
      included manually here.  
   /*************** function subdirf ***********/
      */  char *subdirf(char fileres[])
   {
   int i, j, d, h, k;    /* Caution optionfilefiname is hidden */
   double **out, cov[NCOVMAX];    strcpy(tmpout,optionfilefiname);
   double **newm;    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   /* Hstepm could be zero and should return the unit matrix */    return tmpout;
   for (i=1;i<=nlstate+ndeath;i++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*************** function subdirf2 ***********/
       po[i][j][0]=(i==j ? 1.0 : 0.0);  char *subdirf2(char fileres[], char *preop)
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    
   for(h=1; h <=nhstepm; h++){    /* Caution optionfilefiname is hidden */
     for(d=1; d <=hstepm; d++){    strcpy(tmpout,optionfilefiname);
       newm=savm;    strcat(tmpout,"/");
       /* Covariates have to be included here again */    strcat(tmpout,preop);
       cov[1]=1.;    strcat(tmpout,fileres);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    return tmpout;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************** function subdirf3 ***********/
       for (k=1; k<=cptcovprod;k++)  char *subdirf3(char fileres[], char *preop, char *preop2)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     
     /* Caution optionfilefiname is hidden */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    strcpy(tmpout,optionfilefiname);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    strcat(tmpout,"/");
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    strcat(tmpout,preop);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    strcat(tmpout,preop2);
       savm=oldm;    strcat(tmpout,fileres);
       oldm=newm;    return tmpout;
     }  }
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  /***************** f1dim *************************/
         po[i][j][h]=newm[i][j];  extern int ncom; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  extern double *pcom,*xicom;
          */  extern double (*nrfunc)(double []); 
       }   
   } /* end h */  double f1dim(double x) 
   return po;  { 
 }    int j; 
     double f;
     double *xt; 
 /*************** log-likelihood *************/   
 double func( double *x)    xt=vector(1,ncom); 
 {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   int i, ii, j, k, mi, d, kk;    f=(*nrfunc)(xt); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    free_vector(xt,1,ncom); 
   double **out;    return f; 
   double sw; /* Sum of weights */  } 
   double lli; /* Individual log likelihood */  
   long ipmx;  /*****************brent *************************/
   /*extern weight */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /* We are differentiating ll according to initial status */  { 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    int iter; 
   /*for(i=1;i<imx;i++)    double a,b,d,etemp;
     printf(" %d\n",s[4][i]);    double fu,fv,fw,fx;
   */    double ftemp;
   cov[1]=1.;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;   
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    a=(ax < cx ? ax : cx); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    b=(ax > cx ? ax : cx); 
     for(mi=1; mi<= wav[i]-1; mi++){    x=w=v=bx; 
       for (ii=1;ii<=nlstate+ndeath;ii++)    fw=fv=fx=(*f)(x); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (iter=1;iter<=ITMAX;iter++) { 
       for(d=0; d<dh[mi][i]; d++){      xm=0.5*(a+b); 
         newm=savm;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         for (kk=1; kk<=cptcovage;kk++) {      printf(".");fflush(stdout);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      fprintf(ficlog,".");fflush(ficlog);
         }  #ifdef DEBUG
              printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         savm=oldm;  #endif
         oldm=newm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                *xmin=x; 
                return fx; 
       } /* end mult */      } 
            ftemp=fu;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      if (fabs(e) > tol1) { 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        r=(x-w)*(fx-fv); 
       ipmx +=1;        q=(x-v)*(fx-fw); 
       sw += weight[i];        p=(x-v)*q-(x-w)*r; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        q=2.0*(q-r); 
     } /* end of wave */        if (q > 0.0) p = -p; 
   } /* end of individual */        q=fabs(q); 
         etemp=e; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        e=d; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   return -l;        else { 
 }          d=p/q; 
           u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
 /*********** Maximum Likelihood Estimation ***************/            d=SIGN(tol1,xm-x); 
         } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      } else { 
 {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int i,j, iter;      } 
   double **xi,*delti;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double fret;      fu=(*f)(u); 
   xi=matrix(1,npar,1,npar);      if (fu <= fx) { 
   for (i=1;i<=npar;i++)        if (u >= x) a=x; else b=x; 
     for (j=1;j<=npar;j++)        SHFT(v,w,x,u) 
       xi[i][j]=(i==j ? 1.0 : 0.0);          SHFT(fv,fw,fx,fu) 
   printf("Powell\n");          } else { 
   powell(p,xi,npar,ftol,&iter,&fret,func);            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));              v=w; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));              w=u; 
               fv=fw; 
 }              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 /**** Computes Hessian and covariance matrix ***/              v=u; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))              fv=fu; 
 {            } 
   double  **a,**y,*x,pd;          } 
   double **hess;    } 
   int i, j,jk;    nrerror("Too many iterations in brent"); 
   int *indx;    *xmin=x; 
     return fx; 
   double hessii(double p[], double delta, int theta, double delti[]);  } 
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /****************** mnbrak ***********************/
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   hess=matrix(1,npar,1,npar);              double (*func)(double)) 
   { 
   printf("\nCalculation of the hessian matrix. Wait...\n");    double ulim,u,r,q, dum;
   for (i=1;i<=npar;i++){    double fu; 
     printf("%d",i);fflush(stdout);   
     hess[i][i]=hessii(p,ftolhess,i,delti);    *fa=(*func)(*ax); 
     /*printf(" %f ",p[i]);*/    *fb=(*func)(*bx); 
     /*printf(" %lf ",hess[i][i]);*/    if (*fb > *fa) { 
   }      SHFT(dum,*ax,*bx,dum) 
          SHFT(dum,*fb,*fa,dum) 
   for (i=1;i<=npar;i++) {        } 
     for (j=1;j<=npar;j++)  {    *cx=(*bx)+GOLD*(*bx-*ax); 
       if (j>i) {    *fc=(*func)(*cx); 
         printf(".%d%d",i,j);fflush(stdout);    while (*fb > *fc) { 
         hess[i][j]=hessij(p,delti,i,j);      r=(*bx-*ax)*(*fb-*fc); 
         hess[j][i]=hess[i][j];          q=(*bx-*cx)*(*fb-*fa); 
         /*printf(" %lf ",hess[i][j]);*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   }      if ((*bx-u)*(u-*cx) > 0.0) { 
   printf("\n");        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fu=(*func)(u); 
          if (fu < *fc) { 
   a=matrix(1,npar,1,npar);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   y=matrix(1,npar,1,npar);            SHFT(*fb,*fc,fu,(*func)(u)) 
   x=vector(1,npar);            } 
   indx=ivector(1,npar);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for (i=1;i<=npar;i++)        u=ulim; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fu=(*func)(u); 
   ludcmp(a,npar,indx,&pd);      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   for (j=1;j<=npar;j++) {        fu=(*func)(u); 
     for (i=1;i<=npar;i++) x[i]=0;      } 
     x[j]=1;      SHFT(*ax,*bx,*cx,u) 
     lubksb(a,npar,indx,x);        SHFT(*fa,*fb,*fc,fu) 
     for (i=1;i<=npar;i++){        } 
       matcov[i][j]=x[i];  } 
     }  
   }  /*************** linmin ************************/
   
   printf("\n#Hessian matrix#\n");  int ncom; 
   for (i=1;i<=npar;i++) {  double *pcom,*xicom;
     for (j=1;j<=npar;j++) {  double (*nrfunc)(double []); 
       printf("%.3e ",hess[i][j]);   
     }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     printf("\n");  { 
   }    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
   /* Recompute Inverse */    double f1dim(double x); 
   for (i=1;i<=npar;i++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];                double *fc, double (*func)(double)); 
   ludcmp(a,npar,indx,&pd);    int j; 
     double xx,xmin,bx,ax; 
   /*  printf("\n#Hessian matrix recomputed#\n");    double fx,fb,fa;
    
   for (j=1;j<=npar;j++) {    ncom=n; 
     for (i=1;i<=npar;i++) x[i]=0;    pcom=vector(1,n); 
     x[j]=1;    xicom=vector(1,n); 
     lubksb(a,npar,indx,x);    nrfunc=func; 
     for (i=1;i<=npar;i++){    for (j=1;j<=n;j++) { 
       y[i][j]=x[i];      pcom[j]=p[j]; 
       printf("%.3e ",y[i][j]);      xicom[j]=xi[j]; 
     }    } 
     printf("\n");    ax=0.0; 
   }    xx=1.0; 
   */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   free_matrix(a,1,npar,1,npar);  #ifdef DEBUG
   free_matrix(y,1,npar,1,npar);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   free_vector(x,1,npar);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   free_ivector(indx,1,npar);  #endif
   free_matrix(hess,1,npar,1,npar);    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
       p[j] += xi[j]; 
 }    } 
     free_vector(xicom,1,n); 
 /*************** hessian matrix ****************/    free_vector(pcom,1,n); 
 double hessii( double x[], double delta, int theta, double delti[])  } 
 {  
   int i;  char *asc_diff_time(long time_sec, char ascdiff[])
   int l=1, lmax=20;  {
   double k1,k2;    long sec_left, days, hours, minutes;
   double p2[NPARMAX+1];    days = (time_sec) / (60*60*24);
   double res;    sec_left = (time_sec) % (60*60*24);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    hours = (sec_left) / (60*60) ;
   double fx;    sec_left = (sec_left) %(60*60);
   int k=0,kmax=10;    minutes = (sec_left) /60;
   double l1;    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   fx=func(x);    return ascdiff;
   for (i=1;i<=npar;i++) p2[i]=x[i];  }
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  /*************** powell ************************/
     delts=delt;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for(k=1 ; k <kmax; k=k+1){              double (*func)(double [])) 
       delt = delta*(l1*k);  { 
       p2[theta]=x[theta] +delt;    void linmin(double p[], double xi[], int n, double *fret, 
       k1=func(p2)-fx;                double (*func)(double [])); 
       p2[theta]=x[theta]-delt;    int i,ibig,j; 
       k2=func(p2)-fx;    double del,t,*pt,*ptt,*xit;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    double fp,fptt;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double *xits;
          int niterf, itmp;
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    pt=vector(1,n); 
 #endif    ptt=vector(1,n); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    xit=vector(1,n); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    xits=vector(1,n); 
         k=kmax;    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    for (*iter=1;;++(*iter)) { 
         k=kmax; l=lmax*10.;      fp=(*fret); 
       }      ibig=0; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      del=0.0; 
         delts=delt;      last_time=curr_time;
       }      (void) gettimeofday(&curr_time,&tzp);
     }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   delti[theta]=delts;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   return res;     for (i=1;i<=n;i++) {
          printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 double hessij( double x[], double delti[], int thetai,int thetaj)      }
 {      printf("\n");
   int i;      fprintf(ficlog,"\n");
   int l=1, l1, lmax=20;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double k1,k2,k3,k4,res,fx;      if(*iter <=3){
   double p2[NPARMAX+1];        tm = *localtime(&curr_time.tv_sec);
   int k;        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
   fx=func(x);        forecast_time=curr_time; 
   for (k=1; k<=2; k++) {        itmp = strlen(strcurr);
     for (i=1;i<=npar;i++) p2[i]=x[i];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     p2[thetai]=x[thetai]+delti[thetai]/k;          strcurr[itmp-1]='\0';
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     k1=func(p2)-fx;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          for(niterf=10;niterf<=30;niterf+=10){
     p2[thetai]=x[thetai]+delti[thetai]/k;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          tmf = *localtime(&forecast_time.tv_sec);
     k2=func(p2)-fx;  /*      asctime_r(&tmf,strfor); */
            strcpy(strfor,asctime(&tmf));
     p2[thetai]=x[thetai]-delti[thetai]/k;          itmp = strlen(strfor);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          if(strfor[itmp-1]=='\n')
     k3=func(p2)-fx;          strfor[itmp-1]='\0';
            printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     p2[thetai]=x[thetai]-delti[thetai]/k;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        }
     k4=func(p2)-fx;      }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      for (i=1;i<=n;i++) { 
 #ifdef DEBUG        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        fptt=(*fret); 
 #endif  #ifdef DEBUG
   }        printf("fret=%lf \n",*fret);
   return res;        fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
 /************** Inverse of matrix **************/        fprintf(ficlog,"%d",i);fflush(ficlog);
 void ludcmp(double **a, int n, int *indx, double *d)        linmin(p,xit,n,fret,func); 
 {        if (fabs(fptt-(*fret)) > del) { 
   int i,imax,j,k;          del=fabs(fptt-(*fret)); 
   double big,dum,sum,temp;          ibig=i; 
   double *vv;        } 
    #ifdef DEBUG
   vv=vector(1,n);        printf("%d %.12e",i,(*fret));
   *d=1.0;        fprintf(ficlog,"%d %.12e",i,(*fret));
   for (i=1;i<=n;i++) {        for (j=1;j<=n;j++) {
     big=0.0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (j=1;j<=n;j++)          printf(" x(%d)=%.12e",j,xit[j]);
       if ((temp=fabs(a[i][j])) > big) big=temp;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        }
     vv[i]=1.0/big;        for(j=1;j<=n;j++) {
   }          printf(" p=%.12e",p[j]);
   for (j=1;j<=n;j++) {          fprintf(ficlog," p=%.12e",p[j]);
     for (i=1;i<j;i++) {        }
       sum=a[i][j];        printf("\n");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        fprintf(ficlog,"\n");
       a[i][j]=sum;  #endif
     }      } 
     big=0.0;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (i=j;i<=n;i++) {  #ifdef DEBUG
       sum=a[i][j];        int k[2],l;
       for (k=1;k<j;k++)        k[0]=1;
         sum -= a[i][k]*a[k][j];        k[1]=-1;
       a[i][j]=sum;        printf("Max: %.12e",(*func)(p));
       if ( (dum=vv[i]*fabs(sum)) >= big) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
         big=dum;        for (j=1;j<=n;j++) {
         imax=i;          printf(" %.12e",p[j]);
       }          fprintf(ficlog," %.12e",p[j]);
     }        }
     if (j != imax) {        printf("\n");
       for (k=1;k<=n;k++) {        fprintf(ficlog,"\n");
         dum=a[imax][k];        for(l=0;l<=1;l++) {
         a[imax][k]=a[j][k];          for (j=1;j<=n;j++) {
         a[j][k]=dum;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       *d = -(*d);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       vv[imax]=vv[j];          }
     }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     indx[j]=imax;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {  #endif
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  
     }        free_vector(xit,1,n); 
   }        free_vector(xits,1,n); 
   free_vector(vv,1,n);  /* Doesn't work */        free_vector(ptt,1,n); 
 ;        free_vector(pt,1,n); 
 }        return; 
       } 
 void lubksb(double **a, int n, int *indx, double b[])      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 {      for (j=1;j<=n;j++) { 
   int i,ii=0,ip,j;        ptt[j]=2.0*p[j]-pt[j]; 
   double sum;        xit[j]=p[j]-pt[j]; 
          pt[j]=p[j]; 
   for (i=1;i<=n;i++) {      } 
     ip=indx[i];      fptt=(*func)(ptt); 
     sum=b[ip];      if (fptt < fp) { 
     b[ip]=b[i];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     if (ii)        if (t < 0.0) { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          linmin(p,xit,n,fret,func); 
     else if (sum) ii=i;          for (j=1;j<=n;j++) { 
     b[i]=sum;            xi[j][ibig]=xi[j][n]; 
   }            xi[j][n]=xit[j]; 
   for (i=n;i>=1;i--) {          }
     sum=b[i];  #ifdef DEBUG
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     b[i]=sum/a[i][i];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          for(j=1;j<=n;j++){
 }            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
 /************ Frequencies ********************/          }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          printf("\n");
 {  /* Some frequencies */          fprintf(ficlog,"\n");
    #endif
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */      } 
   double *pp;    } 
   double pos, k2, dateintsum=0,k2cpt=0;  } 
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  /**** Prevalence limit (stable or period prevalence)  ****************/
    
   pp=vector(1,nlstate);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
   strcpy(fileresp,"p");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   strcat(fileresp,fileres);       matrix by transitions matrix until convergence is reached */
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    int i, ii,j,k;
     exit(0);    double min, max, maxmin, maxmax,sumnew=0.;
   }    double **matprod2();
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double **out, cov[NCOVMAX+1], **pmij();
   j1=0;    double **newm;
      double agefin, delaymax=50 ; /* Max number of years to converge */
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (ii=1;ii<=nlstate+ndeath;ii++)
        for (j=1;j<=nlstate+ndeath;j++){
   for(k1=1; k1<=j;k1++){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i1=1; i1<=ncodemax[k1];i1++){      }
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);     cov[1]=1.;
         scanf("%d", i);*/   
       for (i=-1; i<=nlstate+ndeath; i++)     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           for(m=agemin; m <= agemax+3; m++)      newm=savm;
             freq[i][jk][m]=0;      /* Covariates have to be included here again */
             cov[2]=agefin;
       dateintsum=0;    
       k2cpt=0;        for (k=1; k<=cptcovn;k++) {
       for (i=1; i<=imx; i++) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         bool=1;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         if  (cptcovn>0) {        }
           for (z1=1; z1<=cptcoveff; z1++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for (k=1; k<=cptcovprod;k++)
               bool=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }  
         if (bool==1) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           for(m=firstpass; m<=lastpass; m++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             k2=anint[m][i]+(mint[m][i]/12.);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;      savm=oldm;
               if (m<lastpass) {      oldm=newm;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      maxmax=0.;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for(j=1;j<=nlstate;j++){
               }        min=1.;
                      max=0.;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for(i=1; i<=nlstate; i++) {
                 dateintsum=dateintsum+k2;          sumnew=0;
                 k2cpt++;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
               }          prlim[i][j]= newm[i][j]/(1-sumnew);
             }          max=FMAX(max,prlim[i][j]);
           }          min=FMIN(min,prlim[i][j]);
         }        }
       }        maxmin=max-min;
                maxmax=FMAX(maxmax,maxmin);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      }
       if(maxmax < ftolpl){
       if  (cptcovn>0) {        return prlim;
         fprintf(ficresp, "\n#********** Variable ");      }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficresp, "**********\n#");  }
       }  
       for(i=1; i<=nlstate;i++)  /*************** transition probabilities ***************/ 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
        {
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double s1, s2;
         if(i==(int)agemax+3)    /*double t34;*/
           printf("Total");    int i,j,j1, nc, ii, jj;
         else  
           printf("Age %d", i);      for(i=1; i<= nlstate; i++){
         for(jk=1; jk <=nlstate ; jk++){        for(j=1; j<i;j++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             pp[jk] += freq[jk][m][i];            /*s2 += param[i][j][nc]*cov[nc];*/
         }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         for(jk=1; jk <=nlstate ; jk++){  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           for(m=-1, pos=0; m <=0 ; m++)          }
             pos += freq[jk][m][i];          ps[i][j]=s2;
           if(pp[jk]>=1.e-10)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
           else        for(j=i+1; j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ps[i][j]=s2;
             pp[jk] += freq[jk][m][i];        }
         }      }
       /*ps[3][2]=1;*/
         for(jk=1,pos=0; jk <=nlstate ; jk++)      
           pos += pp[jk];      for(i=1; i<= nlstate; i++){
         for(jk=1; jk <=nlstate ; jk++){        s1=0;
           if(pos>=1.e-5)        for(j=1; j<i; j++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          s1+=exp(ps[i][j]);
           else          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        }
           if( i <= (int) agemax){        for(j=i+1; j<=nlstate+ndeath; j++){
             if(pos>=1.e-5){          s1+=exp(ps[i][j]);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               probs[i][jk][j1]= pp[jk]/pos;        }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        ps[i][i]=1./(s1+1.);
             }        for(j=1; j<i; j++)
             else          ps[i][j]= exp(ps[i][j])*ps[i][i];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for(j=i+1; j<=nlstate+ndeath; j++)
           }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
              } /* end i */
         for(jk=-1; jk <=nlstate+ndeath; jk++)      
           for(m=-1; m <=nlstate+ndeath; m++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(jj=1; jj<= nlstate+ndeath; jj++){
         if(i <= (int) agemax)          ps[ii][jj]=0;
           fprintf(ficresp,"\n");          ps[ii][ii]=1;
         printf("\n");        }
       }      }
     }      
   }  
   dateintmean=dateintsum/k2cpt;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
    /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   fclose(ficresp);  /*         printf("ddd %lf ",ps[ii][jj]); */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*       } */
   free_vector(pp,1,nlstate);  /*       printf("\n "); */
    /*        } */
   /* End of Freq */  /*        printf("\n ");printf("%lf ",cov[2]); */
 }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 /************ Prevalence ********************/        goto end;*/
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      return ps;
 {  /* Some frequencies */  }
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /**************** Product of 2 matrices ******************/
   double ***freq; /* Frequencies */  
   double *pp;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double pos, k2;  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   pp=vector(1,nlstate);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* in, b, out are matrice of pointers which should have been initialized 
         before: only the contents of out is modified. The function returns
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       a pointer to pointers identical to out */
   j1=0;    long i, j, k;
      for(i=nrl; i<= nrh; i++)
   j=cptcoveff;      for(k=ncolol; k<=ncoloh; k++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            out[i][k] +=in[i][j]*b[j][k];
  for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    return out;
       j1++;  }
    
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    /************* Higher Matrix Product ***************/
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
        {
       for (i=1; i<=imx; i++) {    /* Computes the transition matrix starting at age 'age' over 
         bool=1;       'nhstepm*hstepm*stepm' months (i.e. until
         if  (cptcovn>0) {       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           for (z1=1; z1<=cptcoveff; z1++)       nhstepm*hstepm matrices. 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
               bool=0;       (typically every 2 years instead of every month which is too big 
         }       for the memory).
         if (bool==1) {       Model is determined by parameters x and covariates have to be 
           for(m=firstpass; m<=lastpass; m++){       included manually here. 
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       */
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    int i, j, d, h, k;
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    double **out, cov[NCOVMAX+1];
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */    double **newm;
             }  
           }    /* Hstepm could be zero and should return the unit matrix */
         }    for (i=1;i<=nlstate+ndeath;i++)
       }      for (j=1;j<=nlstate+ndeath;j++){
         for(i=(int)agemin; i <= (int)agemax+3; i++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
           for(jk=1; jk <=nlstate ; jk++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      }
               pp[jk] += freq[jk][m][i];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           }    for(h=1; h <=nhstepm; h++){
           for(jk=1; jk <=nlstate ; jk++){      for(d=1; d <=hstepm; d++){
             for(m=-1, pos=0; m <=0 ; m++)        newm=savm;
             pos += freq[jk][m][i];        /* Covariates have to be included here again */
         }        cov[1]=1.;
                cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
              pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovage;k++)
          }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                  for (k=1; k<=cptcovprod;k++)
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
          for(jk=1; jk <=nlstate ; jk++){            
            if( i <= (int) agemax){        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
              if(pos>=1.e-5){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                probs[i][jk][j1]= pp[jk]/pos;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
              }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
            }        savm=oldm;
          }        oldm=newm;
                }
         }      for(i=1; i<=nlstate+ndeath; i++)
     }        for(j=1;j<=nlstate+ndeath;j++) {
   }          po[i][j][h]=newm[i][j];
            /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
          }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      /*printf("h=%d ",h);*/
   free_vector(pp,1,nlstate);    } /* end h */
    /*     printf("\n H=%d \n",h); */
 }  /* End of Freq */    return po;
   }
 /************* Waves Concatenation ***************/  
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  /*************** log-likelihood *************/
 {  double func( double *x)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  {
      Death is a valid wave (if date is known).    int i, ii, j, k, mi, d, kk;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double **out;
      and mw[mi+1][i]. dh depends on stepm.    double sw; /* Sum of weights */
      */    double lli; /* Individual log likelihood */
     int s1, s2;
   int i, mi, m;    double bbh, survp;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    long ipmx;
      double sum=0., jmean=0.;*/    /*extern weight */
     /* We are differentiating ll according to initial status */
   int j, k=0,jk, ju, jl;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double sum=0.;    /*for(i=1;i<imx;i++) 
   jmin=1e+5;      printf(" %d\n",s[4][i]);
   jmax=-1;    */
   jmean=0.;    cov[1]=1.;
   for(i=1; i<=imx; i++){  
     mi=0;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     m=firstpass;  
     while(s[m][i] <= nlstate){    if(mle==1){
       if(s[m][i]>=1)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         mw[++mi][i]=m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if(m >=lastpass)        for(mi=1; mi<= wav[i]-1; mi++){
         break;          for (ii=1;ii<=nlstate+ndeath;ii++)
       else            for (j=1;j<=nlstate+ndeath;j++){
         m++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }/* end while */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (s[m][i] > nlstate){            }
       mi++;     /* Death is another wave */          for(d=0; d<dh[mi][i]; d++){
       /* if(mi==0)  never been interviewed correctly before death */            newm=savm;
          /* Only death is a correct wave */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       mw[mi][i]=m;            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     wav[i]=mi;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if(mi==0)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            savm=oldm;
   }            oldm=newm;
           } /* end mult */
   for(i=1; i<=imx; i++){        
     for(mi=1; mi<wav[i];mi++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       if (stepm <=0)          /* But now since version 0.9 we anticipate for bias at large stepm.
         dh[mi][i]=1;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       else{           * (in months) between two waves is not a multiple of stepm, we rounded to 
         if (s[mw[mi+1][i]][i] > nlstate) {           * the nearest (and in case of equal distance, to the lowest) interval but now
           if (agedc[i] < 2*AGESUP) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           if(j==0) j=1;  /* Survives at least one month after exam */           * probability in order to take into account the bias as a fraction of the way
           k=k+1;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           if (j >= jmax) jmax=j;           * -stepm/2 to stepm/2 .
           if (j <= jmin) jmin=j;           * For stepm=1 the results are the same as for previous versions of Imach.
           sum=sum+j;           * For stepm > 1 the results are less biased than in previous versions. 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */           */
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         else{          bbh=(double)bh[mi][i]/(double)stepm; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          /* bias bh is positive if real duration
           k=k+1;           * is higher than the multiple of stepm and negative otherwise.
           if (j >= jmax) jmax=j;           */
           else if (j <= jmin)jmin=j;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          if( s2 > nlstate){ 
           sum=sum+j;            /* i.e. if s2 is a death state and if the date of death is known 
         }               then the contribution to the likelihood is the probability to 
         jk= j/stepm;               die between last step unit time and current  step unit time, 
         jl= j -jk*stepm;               which is also equal to probability to die before dh 
         ju= j -(jk+1)*stepm;               minus probability to die before dh-stepm . 
         if(jl <= -ju)               In version up to 0.92 likelihood was computed
           dh[mi][i]=jk;          as if date of death was unknown. Death was treated as any other
         else          health state: the date of the interview describes the actual state
           dh[mi][i]=jk+1;          and not the date of a change in health state. The former idea was
         if(dh[mi][i]==0)          to consider that at each interview the state was recorded
           dh[mi][i]=1; /* At least one step */          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
     }          the contribution of an exact death to the likelihood. This new
   }          contribution is smaller and very dependent of the step unit
   jmean=sum/k;          stepm. It is no more the probability to die between last interview
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          and month of death but the probability to survive from last
  }          interview up to one month before death multiplied by the
 /*********** Tricode ****************************/          probability to die within a month. Thanks to Chris
 void tricode(int *Tvar, int **nbcode, int imx)          Jackson for correcting this bug.  Former versions increased
 {          mortality artificially. The bad side is that we add another loop
   int Ndum[20],ij=1, k, j, i;          which slows down the processing. The difference can be up to 10%
   int cptcode=0;          lower mortality.
   cptcoveff=0;            */
              lli=log(out[s1][s2] - savm[s1][s2]);
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  
           } else if  (s2==-2) {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            for (j=1,survp=0. ; j<=nlstate; j++) 
     for (i=1; i<=imx; i++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       ij=(int)(covar[Tvar[j]][i]);            /*survp += out[s1][j]; */
       Ndum[ij]++;            lli= log(survp);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          }
       if (ij > cptcode) cptcode=ij;          
     }          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
     for (i=0; i<=cptcode; i++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if(Ndum[i]!=0) ncodemax[j]++;            lli= log(survp); 
     }          } 
     ij=1;  
           else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
     for (i=1; i<=ncodemax[j]; i++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for (k=0; k<=19; k++) {            lli= log(survp); 
         if (Ndum[k] != 0) {          } 
           nbcode[Tvar[j]][ij]=k;          
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/          else{
           ij++;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         if (ij > ncodemax[j]) break;          } 
       }            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
   }            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
  for (k=0; k<19; k++) Ndum[k]=0;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  for (i=1; i<=ncovmodel-2; i++) {        } /* end of wave */
       ij=Tvar[i];      } /* end of individual */
       Ndum[ij]++;    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  ij=1;        for(mi=1; mi<= wav[i]-1; mi++){
  for (i=1; i<=10; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
    if((Ndum[i]!=0) && (i<=ncovcol)){            for (j=1;j<=nlstate+ndeath;j++){
      Tvaraff[ij]=i;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      ij++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    }            }
  }          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
     cptcoveff=ij-1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*********** Health Expectancies ****************/            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* Health expectancies */            oldm=newm;
   int i, j, nhstepm, hstepm, h, nstepm, k;          } /* end mult */
   double age, agelim, hf;        
   double ***p3mat;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   fprintf(ficreseij,"# Health expectancies\n");          bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficreseij,"# Age");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for(i=1; i<=nlstate;i++)          ipmx +=1;
     for(j=1; j<=nlstate;j++)          sw += weight[i];
       fprintf(ficreseij," %1d-%1d",i,j);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficreseij,"\n");        } /* end of wave */
       } /* end of individual */
   k=1;             /* For example stepm=6 months */    }  else if(mle==3){  /* exponential inter-extrapolation */
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for(mi=1; mi<= wav[i]-1; mi++){
      nhstepm is the number of hstepm from age to agelim          for (ii=1;ii<=nlstate+ndeath;ii++)
      nstepm is the number of stepm from age to agelin.            for (j=1;j<=nlstate+ndeath;j++){
      Look at hpijx to understand the reason of that which relies in memory size              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and note for a fixed period like k years */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }
      survival function given by stepm (the optimization length). Unfortunately it          for(d=0; d<dh[mi][i]; d++){
      means that if the survival funtion is printed only each two years of age and if            newm=savm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      results. So we changed our mind and took the option of the best precision.            for (kk=1; kk<=cptcovage;kk++) {
   */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   agelim=AGESUP;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            savm=oldm;
     /* nhstepm age range expressed in number of stepm */            oldm=newm;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          } /* end mult */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        
     /* if (stepm >= YEARM) hstepm=1;*/          s1=s[mw[mi][i]][i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          s2=s[mw[mi+1][i]][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          bbh=(double)bh[mi][i]/(double)stepm; 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          ipmx +=1;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            sw += weight[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i=1; i<=nlstate;i++)        } /* end of wave */
       for(j=1; j<=nlstate;j++)      } /* end of individual */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficreseij,"%3.0f",age );          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     fprintf(ficreseij,"\n");          for(d=0; d<dh[mi][i]; d++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Variance ******************/            }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Variance of health expectancies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            savm=oldm;
   double **newm;            oldm=newm;
   double **dnewm,**doldm;          } /* end mult */
   int i, j, nhstepm, hstepm, h, nstepm, kk;        
   int k, cptcode;          s1=s[mw[mi][i]][i];
   double *xp;          s2=s[mw[mi+1][i]][i];
   double **gp, **gm;          if( s2 > nlstate){ 
   double ***gradg, ***trgradg;            lli=log(out[s1][s2] - savm[s1][s2]);
   double ***p3mat;          }else{
   double age,agelim, hf;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int theta;          }
           ipmx +=1;
    fprintf(ficresvij,"# Covariances of life expectancies\n");          sw += weight[i];
   fprintf(ficresvij,"# Age");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=nlstate;i++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(j=1; j<=nlstate;j++)        } /* end of wave */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      } /* end of individual */
   fprintf(ficresvij,"\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   xp=vector(1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   dnewm=matrix(1,nlstate,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   doldm=matrix(1,nlstate,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   kk=1;             /* For example stepm=6 months */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */            }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for(d=0; d<dh[mi][i]; d++){
      nhstepm is the number of hstepm from age to agelim            newm=savm;
      nstepm is the number of stepm from age to agelin.            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Look at hpijx to understand the reason of that which relies in memory size            for (kk=1; kk<=cptcovage;kk++) {
      and note for a fixed period like k years */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }
      survival function given by stepm (the optimization length). Unfortunately it          
      means that if the survival funtion is printed only each two years of age and if            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      results. So we changed our mind and took the option of the best precision.            savm=oldm;
   */            oldm=newm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */          } /* end mult */
   agelim = AGESUP;        
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          s1=s[mw[mi][i]][i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          s2=s[mw[mi+1][i]][i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ipmx +=1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          sw += weight[i];
     gp=matrix(0,nhstepm,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gm=matrix(0,nhstepm,1,nlstate);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
     for(theta=1; theta <=npar; theta++){      } /* end of individual */
       for(i=1; i<=npar; i++){ /* Computes gradient */    } /* End of if */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    return -l;
   }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /*************** log-likelihood *************/
           prlim[i][i]=probs[(int)age][i][ij];  double funcone( double *x)
       }  {
      /* Same as likeli but slower because of a lot of printf and if */
       for(j=1; j<= nlstate; j++){    int i, ii, j, k, mi, d, kk;
         for(h=0; h<=nhstepm; h++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double **out;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double lli; /* Individual log likelihood */
         }    double llt;
       }    int s1, s2;
        double bbh, survp;
       for(i=1; i<=npar; i++) /* Computes gradient */    /*extern weight */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* We are differentiating ll according to initial status */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
       if (popbased==1) {    */
         for(i=1; i<=nlstate;i++)    cov[1]=1.;
           prlim[i][i]=probs[(int)age][i][ij];  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
       for(j=1; j<= nlstate; j++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(h=0; h<=nhstepm; h++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for(mi=1; mi<= wav[i]-1; mi++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        for (ii=1;ii<=nlstate+ndeath;ii++)
         }          for (j=1;j<=nlstate+ndeath;j++){
       }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++)          }
         for(h=0; h<=nhstepm; h++){        for(d=0; d<dh[mi][i]; d++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     } /* End theta */          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(h=0; h<=nhstepm; h++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<=nlstate;j++)          savm=oldm;
         for(theta=1; theta <=npar; theta++)          oldm=newm;
           trgradg[h][j][theta]=gradg[h][theta][j];        } /* end mult */
         
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        s1=s[mw[mi][i]][i];
     for(i=1;i<=nlstate;i++)        s2=s[mw[mi+1][i]][i];
       for(j=1;j<=nlstate;j++)        bbh=(double)bh[mi][i]/(double)stepm; 
         vareij[i][j][(int)age] =0.;        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
     for(h=0;h<=nhstepm;h++){         */
       for(k=0;k<=nhstepm;k++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          lli=log(out[s1][s2] - savm[s1][s2]);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        } else if  (s2==-2) {
         for(i=1;i<=nlstate;i++)          for (j=1,survp=0. ; j<=nlstate; j++) 
           for(j=1;j<=nlstate;j++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          lli= log(survp);
       }        }else if (mle==1){
     }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
     fprintf(ficresvij,"%.0f ",age );          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(i=1; i<=nlstate;i++)        } else if(mle==3){  /* exponential inter-extrapolation */
       for(j=1; j<=nlstate;j++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       }          lli=log(out[s1][s2]); /* Original formula */
     fprintf(ficresvij,"\n");        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     free_matrix(gp,0,nhstepm,1,nlstate);          lli=log(out[s1][s2]); /* Original formula */
     free_matrix(gm,0,nhstepm,1,nlstate);        } /* End of if */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        ipmx +=1;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        sw += weight[i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   } /* End age */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          if(globpr){
   free_vector(xp,1,npar);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   free_matrix(doldm,1,nlstate,1,npar);   %11.6f %11.6f %11.6f ", \
   free_matrix(dnewm,1,nlstate,1,nlstate);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 /************ Variance of prevlim ******************/            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          }
 {          fprintf(ficresilk," %10.6f\n", -llt);
   /* Variance of prevalence limit */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      } /* end of wave */
   double **newm;    } /* end of individual */
   double **dnewm,**doldm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int i, j, nhstepm, hstepm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int k, cptcode;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double *xp;    if(globpr==0){ /* First time we count the contributions and weights */
   double *gp, *gm;      gipmx=ipmx;
   double **gradg, **trgradg;      gsw=sw;
   double age,agelim;    }
   int theta;    return -l;
      }
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)  /*************** function likelione ***********/
       fprintf(ficresvpl," %1d-%1d",i,i);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   fprintf(ficresvpl,"\n");  {
     /* This routine should help understanding what is done with 
   xp=vector(1,npar);       the selection of individuals/waves and
   dnewm=matrix(1,nlstate,1,npar);       to check the exact contribution to the likelihood.
   doldm=matrix(1,nlstate,1,nlstate);       Plotting could be done.
       */
   hstepm=1*YEARM; /* Every year of age */    int k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    if(*globpri !=0){ /* Just counts and sums, no printings */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      strcpy(fileresilk,"ilk"); 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      strcat(fileresilk,fileres);
     if (stepm >= YEARM) hstepm=1;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        printf("Problem with resultfile: %s\n", fileresilk);
     gradg=matrix(1,npar,1,nlstate);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     gp=vector(1,nlstate);      }
     gm=vector(1,nlstate);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(theta=1; theta <=npar; theta++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++){ /* Computes gradient */      for(k=1; k<=nlstate; k++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    *fretone=(*funcone)(p);
        if(*globpri !=0){
       for(i=1; i<=npar; i++) /* Computes gradient */      fclose(ficresilk);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fflush(fichtm); 
       for(i=1;i<=nlstate;i++)    } 
         gm[i] = prlim[i][i];    return;
   }
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */  /*********** Maximum Likelihood Estimation ***************/
   
     trgradg =matrix(1,nlstate,1,npar);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     for(j=1; j<=nlstate;j++)    int i,j, iter;
       for(theta=1; theta <=npar; theta++)    double **xi;
         trgradg[j][theta]=gradg[theta][j];    double fret;
     double fretone; /* Only one call to likelihood */
     for(i=1;i<=nlstate;i++)    /*  char filerespow[FILENAMELENGTH];*/
       varpl[i][(int)age] =0.;    xi=matrix(1,npar,1,npar);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    for (i=1;i<=npar;i++)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      for (j=1;j<=npar;j++)
     for(i=1;i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     fprintf(ficresvpl,"%.0f ",age );    strcat(filerespow,fileres);
     for(i=1; i<=nlstate;i++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      printf("Problem with resultfile: %s\n", filerespow);
     fprintf(ficresvpl,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     free_vector(gp,1,nlstate);    }
     free_vector(gm,1,nlstate);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     free_matrix(gradg,1,npar,1,nlstate);    for (i=1;i<=nlstate;i++)
     free_matrix(trgradg,1,nlstate,1,npar);      for(j=1;j<=nlstate+ndeath;j++)
   } /* End age */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     free_matrix(xi,1,npar,1,npar);
 }    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 /************ Variance of one-step probabilities  ******************/    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 {  
   int i, j;  }
   int k=0, cptcode;  
   double **dnewm,**doldm;  /**** Computes Hessian and covariance matrix ***/
   double *xp;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double *gp, *gm;  {
   double **gradg, **trgradg;    double  **a,**y,*x,pd;
   double age,agelim, cov[NCOVMAX];    double **hess;
   int theta;    int i, j,jk;
   char fileresprob[FILENAMELENGTH];    int *indx;
   
   strcpy(fileresprob,"prob");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   strcat(fileresprob,fileres);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    void lubksb(double **a, int npar, int *indx, double b[]) ;
     printf("Problem with resultfile: %s\n", fileresprob);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   }    double gompertz(double p[]);
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    hess=matrix(1,npar,1,npar);
    
     printf("\nCalculation of the hessian matrix. Wait...\n");
   xp=vector(1,npar);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (i=1;i<=npar;i++){
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      printf("%d",i);fflush(stdout);
        fprintf(ficlog,"%d",i);fflush(ficlog);
   cov[1]=1;     
   for (age=bage; age<=fage; age ++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     cov[2]=age;      
     gradg=matrix(1,npar,1,9);      /*  printf(" %f ",p[i]);
     trgradg=matrix(1,9,1,npar);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    }
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    
        for (i=1;i<=npar;i++) {
     for(theta=1; theta <=npar; theta++){      for (j=1;j<=npar;j++)  {
       for(i=1; i<=npar; i++)        if (j>i) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          printf(".%d%d",i,j);fflush(stdout);
                fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);          hess[i][j]=hessij(p,delti,i,j,func,npar);
              
       k=0;          hess[j][i]=hess[i][j];    
       for(i=1; i<= (nlstate+ndeath); i++){          /*printf(" %lf ",hess[i][j]);*/
         for(j=1; j<=(nlstate+ndeath);j++){        }
            k=k+1;      }
           gp[k]=pmmij[i][j];    }
         }    printf("\n");
       }    fprintf(ficlog,"\n");
   
       for(i=1; i<=npar; i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
        
     a=matrix(1,npar,1,npar);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    y=matrix(1,npar,1,npar);
       k=0;    x=vector(1,npar);
       for(i=1; i<=(nlstate+ndeath); i++){    indx=ivector(1,npar);
         for(j=1; j<=(nlstate+ndeath);j++){    for (i=1;i<=npar;i++)
           k=k+1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           gm[k]=pmmij[i][j];    ludcmp(a,npar,indx,&pd);
         }  
       }    for (j=1;j<=npar;j++) {
            for (i=1;i<=npar;i++) x[i]=0;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      x[j]=1;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      }
       for(theta=1; theta <=npar; theta++)    }
       trgradg[j][theta]=gradg[theta][j];  
      printf("\n#Hessian matrix#\n");
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    fprintf(ficlog,"\n#Hessian matrix#\n");
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
      pmij(pmmij,cov,ncovmodel,x,nlstate);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
      k=0;      }
      for(i=1; i<=(nlstate+ndeath); i++){      printf("\n");
        for(j=1; j<=(nlstate+ndeath);j++){      fprintf(ficlog,"\n");
          k=k+1;    }
          gm[k]=pmmij[i][j];  
         }    /* Recompute Inverse */
      }    for (i=1;i<=npar;i++)
            for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      /*printf("\n%d ",(int)age);    ludcmp(a,npar,indx,&pd);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
            /*  printf("\n#Hessian matrix recomputed#\n");
   
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    for (j=1;j<=npar;j++) {
      }*/      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
   fprintf(ficresprob,"\n%d ",(int)age);      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        y[i][j]=x[i];
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        printf("%.3e ",y[i][j]);
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);        fprintf(ficlog,"%.3e ",y[i][j]);
   }      }
       printf("\n");
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficlog,"\n");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
 }    free_matrix(a,1,npar,1,npar);
  free_vector(xp,1,npar);    free_matrix(y,1,npar,1,npar);
 fclose(ficresprob);    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
 }    free_matrix(hess,1,npar,1,npar);
   
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  }
  int lastpass, int stepm, int weightopt, char model[],\  
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  /*************** hessian matrix ****************/
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
  char version[], int popforecast ){  {
   int jj1, k1, i1, cpt;    int i;
   FILE *fichtm;    int l=1, lmax=20;
   /*char optionfilehtm[FILENAMELENGTH];*/    double k1,k2;
     double p2[MAXPARM+1]; /* identical to x */
   strcpy(optionfilehtm,optionfile);    double res;
   strcat(optionfilehtm,".htm");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    double fx;
     printf("Problem with %s \n",optionfilehtm), exit(0);    int k=0,kmax=10;
   }    double l1;
   
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    fx=func(x);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    for (i=1;i<=npar;i++) p2[i]=x[i];
 \n    for(l=0 ; l <=lmax; l++){
 Total number of observations=%d <br>\n      l1=pow(10,l);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      delts=delt;
 <hr  size=\"2\" color=\"#EC5E5E\">      for(k=1 ; k <kmax; k=k+1){
  <ul><li>Outputs files<br>\n        delt = delta*(l1*k);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        p2[theta]=x[theta] +delt;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n        k1=func(p2)-fx;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        p2[theta]=x[theta]-delt;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n        k2=func(p2)-fx;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        /*res= (k1-2.0*fx+k2)/delt/delt; */
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
  fprintf(fichtm,"\n  #ifdef DEBUGHESS
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  #endif
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
  if(popforecast==1) fprintf(fichtm,"\n          k=kmax;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         <br>",fileres,fileres,fileres,fileres);          k=kmax; l=lmax*10.;
  else        }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 fprintf(fichtm," <li>Graphs</li><p>");          delts=delt;
         }
  m=cptcoveff;      }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    }
     delti[theta]=delts;
  jj1=0;    return res; 
  for(k1=1; k1<=m;k1++){    
    for(i1=1; i1<=ncodemax[k1];i1++){  }
        jj1++;  
        if (cptcovn > 0) {  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  {
          for (cpt=1; cpt<=cptcoveff;cpt++)    int i;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    int l=1, l1, lmax=20;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double k1,k2,k3,k4,res,fx;
        }    double p2[MAXPARM+1];
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    int k;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
        for(cpt=1; cpt<nlstate;cpt++){    fx=func(x);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    for (k=1; k<=2; k++) {
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (i=1;i<=npar;i++) p2[i]=x[i];
        }      p2[thetai]=x[thetai]+delti[thetai]/k;
     for(cpt=1; cpt<=nlstate;cpt++) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      k1=func(p2)-fx;
 interval) in state (%d): v%s%d%d.gif <br>    
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        p2[thetai]=x[thetai]+delti[thetai]/k;
      }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      for(cpt=1; cpt<=nlstate;cpt++) {      k2=func(p2)-fx;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      p2[thetai]=x[thetai]-delti[thetai]/k;
      }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      k3=func(p2)-fx;
 health expectancies in states (1) and (2): e%s%d.gif<br>    
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      p2[thetai]=x[thetai]-delti[thetai]/k;
 fprintf(fichtm,"\n</body>");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    }      k4=func(p2)-fx;
    }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 fclose(fichtm);  #ifdef DEBUG
 }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 /******************* Gnuplot file **************/  #endif
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    }
     return res;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  }
   
   strcpy(optionfilegnuplot,optionfilefiname);  /************** Inverse of matrix **************/
   strcat(optionfilegnuplot,".gp.txt");  void ludcmp(double **a, int n, int *indx, double *d) 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  { 
     printf("Problem with file %s",optionfilegnuplot);    int i,imax,j,k; 
   }    double big,dum,sum,temp; 
     double *vv; 
 #ifdef windows   
     fprintf(ficgp,"cd \"%s\" \n",pathc);    vv=vector(1,n); 
 #endif    *d=1.0; 
 m=pow(2,cptcoveff);    for (i=1;i<=n;i++) { 
        big=0.0; 
  /* 1eme*/      for (j=1;j<=n;j++) 
   for (cpt=1; cpt<= nlstate ; cpt ++) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
    for (k1=1; k1<= m ; k1 ++) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
 #ifdef windows    } 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    for (j=1;j<=n;j++) { 
 #endif      for (i=1;i<j;i++) { 
 #ifdef unix        sum=a[i][j]; 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
 #endif        a[i][j]=sum; 
       } 
 for (i=1; i<= nlstate ; i ++) {      big=0.0; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for (i=j;i<=n;i++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        sum=a[i][j]; 
 }        for (k=1;k<j;k++) 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          sum -= a[i][k]*a[k][j]; 
     for (i=1; i<= nlstate ; i ++) {        a[i][j]=sum; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          big=dum; 
 }          imax=i; 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        } 
      for (i=1; i<= nlstate ; i ++) {      } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      if (j != imax) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for (k=1;k<=n;k++) { 
 }            dum=a[imax][k]; 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          a[imax][k]=a[j][k]; 
 #ifdef unix          a[j][k]=dum; 
 fprintf(ficgp,"\nset ter gif small size 400,300");        } 
 #endif        *d = -(*d); 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        vv[imax]=vv[j]; 
    }      } 
   }      indx[j]=imax; 
   /*2 eme*/      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
   for (k1=1; k1<= m ; k1 ++) {        dum=1.0/(a[j][j]); 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
          } 
     for (i=1; i<= nlstate+1 ; i ++) {    } 
       k=2*i;    free_vector(vv,1,n);  /* Doesn't work */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  ;
       for (j=1; j<= nlstate+1 ; j ++) {  } 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  void lubksb(double **a, int n, int *indx, double b[]) 
 }    { 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int i,ii=0,ip,j; 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double sum; 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   
       for (j=1; j<= nlstate+1 ; j ++) {    for (i=1;i<=n;i++) { 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      ip=indx[i]; 
         else fprintf(ficgp," \%%*lf (\%%*lf)");      sum=b[ip]; 
 }        b[ip]=b[i]; 
       fprintf(ficgp,"\" t\"\" w l 0,");      if (ii) 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       for (j=1; j<= nlstate+1 ; j ++) {      else if (sum) ii=i; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      b[i]=sum; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    } 
 }      for (i=n;i>=1;i--) { 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      sum=b[i]; 
       else fprintf(ficgp,"\" t\"\" w l 0,");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     }      b[i]=sum/a[i][i]; 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    } 
   }  } 
    
   /*3eme*/  void pstamp(FILE *fichier)
   {
   for (k1=1; k1<= m ; k1 ++) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     for (cpt=1; cpt<= nlstate ; cpt ++) {  }
       k=2+nlstate*(cpt-1);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  /************ Frequencies ********************/
       for (i=1; i< nlstate ; i ++) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  {  /* Some frequencies */
       }    
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    int i, m, jk, k1,i1, j1, bool, z1,j;
     }    int first;
     }    double ***freq; /* Frequencies */
      double *pp, **prop;
   /* CV preval stat */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     for (k1=1; k1<= m ; k1 ++) {    char fileresp[FILENAMELENGTH];
     for (cpt=1; cpt<nlstate ; cpt ++) {    
       k=3;    pp=vector(1,nlstate);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
       for (i=1; i< nlstate ; i ++)    strcat(fileresp,fileres);
         fprintf(ficgp,"+$%d",k+i+1);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      printf("Problem with prevalence resultfile: %s\n", fileresp);
            fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       l=3+(nlstate+ndeath)*cpt;      exit(0);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    }
       for (i=1; i< nlstate ; i ++) {    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         l=3+(nlstate+ndeath)*cpt;    j1=0;
         fprintf(ficgp,"+$%d",l+i+1);    
       }    j=cptcoveff;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    first=1;
   }    
      for(k1=1; k1<=j;k1++){
   /* proba elementaires */      for(i1=1; i1<=ncodemax[k1];i1++){
    for(i=1,jk=1; i <=nlstate; i++){        j1++;
     for(k=1; k <=(nlstate+ndeath); k++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       if (k != i) {          scanf("%d", i);*/
         for(j=1; j <=ncovmodel; j++){        for (i=-5; i<=nlstate+ndeath; i++)  
                  for (jk=-5; jk<=nlstate+ndeath; jk++)  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            for(m=iagemin; m <= iagemax+3; m++)
           jk++;              freq[i][jk][m]=0;
           fprintf(ficgp,"\n");  
         }      for (i=1; i<=nlstate; i++)  
       }        for(m=iagemin; m <= iagemax+3; m++)
     }          prop[i][m]=0;
     }        
         dateintsum=0;
     for(jk=1; jk <=m; jk++) {        k2cpt=0;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for (i=1; i<=imx; i++) {
    i=1;          bool=1;
    for(k2=1; k2<=nlstate; k2++) {          if  (cptcovn>0) {
      k3=i;            for (z1=1; z1<=cptcoveff; z1++) 
      for(k=1; k<=(nlstate+ndeath); k++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
        if (k != k2){                bool=0;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }
 ij=1;          if (bool==1){
         for(j=3; j <=ncovmodel; j++) {            for(m=firstpass; m<=lastpass; m++){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              k2=anint[m][i]+(mint[m][i]/12.);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             ij++;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           else                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                if (m<lastpass) {
         }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           fprintf(ficgp,")/(1");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                        }
         for(k1=1; k1 <=nlstate; k1++){                  
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 ij=1;                  dateintsum=dateintsum+k2;
           for(j=3; j <=ncovmodel; j++){                  k2cpt++;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                }
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                /*}*/
             ij++;            }
           }          }
           else        }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);         
           }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           fprintf(ficgp,")");        pstamp(ficresp);
         }        if  (cptcovn>0) {
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          fprintf(ficresp, "\n#********** Variable "); 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         i=i+ncovmodel;          fprintf(ficresp, "**********\n#");
        }        }
      }        for(i=1; i<=nlstate;i++) 
    }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        fprintf(ficresp, "\n");
    }        
            for(i=iagemin; i <= iagemax+3; i++){
   fclose(ficgp);          if(i==iagemax+3){
 }  /* end gnuplot */            fprintf(ficlog,"Total");
           }else{
             if(first==1){
 /*************** Moving average **************/              first=0;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              printf("See log file for details...\n");
             }
   int i, cpt, cptcod;            fprintf(ficlog,"Age %d", i);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          }
       for (i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           mobaverage[(int)agedeb][i][cptcod]=0.;              pp[jk] += freq[jk][m][i]; 
              }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          for(jk=1; jk <=nlstate ; jk++){
       for (i=1; i<=nlstate;i++){            for(m=-1, pos=0; m <=0 ; m++)
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              pos += freq[jk][m][i];
           for (cpt=0;cpt<=4;cpt++){            if(pp[jk]>=1.e-10){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              if(first==1){
           }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              }
         }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }            }else{
     }              if(first==1)
                    printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
           }
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          for(jk=1; jk <=nlstate ; jk++){
              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              pp[jk] += freq[jk][m][i];
   int *popage;          }       
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double *popeffectif,*popcount;            pos += pp[jk];
   double ***p3mat;            posprop += prop[jk][i];
   char fileresf[FILENAMELENGTH];          }
           for(jk=1; jk <=nlstate ; jk++){
  agelim=AGESUP;            if(pos>=1.e-5){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              }else{
                if(first==1)
   strcpy(fileresf,"f");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(fileresf,fileres);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if((ficresf=fopen(fileresf,"w"))==NULL) {            }
     printf("Problem with forecast resultfile: %s\n", fileresf);            if( i <= iagemax){
   }              if(pos>=1.e-5){
   printf("Computing forecasting: result on file '%s' \n", fileresf);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
   if (mobilav==1) {              else
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     movingaverage(agedeb, fage, ageminpar, mobaverage);            }
   }          }
           
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   if (stepm<=12) stepsize=1;            for(m=-1; m <=nlstate+ndeath; m++)
                if(freq[jk][m][i] !=0 ) {
   agelim=AGESUP;              if(first==1)
                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   hstepm=1;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   hstepm=hstepm/stepm;              }
   yp1=modf(dateintmean,&yp);          if(i <= iagemax)
   anprojmean=yp;            fprintf(ficresp,"\n");
   yp2=modf((yp1*12),&yp);          if(first==1)
   mprojmean=yp;            printf("Others in log...\n");
   yp1=modf((yp2*30.5),&yp);          fprintf(ficlog,"\n");
   jprojmean=yp;        }
   if(jprojmean==0) jprojmean=1;      }
   if(mprojmean==0) jprojmean=1;    }
      dateintmean=dateintsum/k2cpt; 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);   
      fclose(ficresp);
   for(cptcov=1;cptcov<=i2;cptcov++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_vector(pp,1,nlstate);
       k=k+1;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficresf,"\n#******");    /* End of Freq */
       for(j=1;j<=cptcoveff;j++) {  }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }  /************ Prevalence ********************/
       fprintf(ficresf,"******\n");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       fprintf(ficresf,"# StartingAge FinalAge");  {  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             in each health status at the date of interview (if between dateprev1 and dateprev2).
             We still use firstpass and lastpass as another selection.
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    */
         fprintf(ficresf,"\n");   
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      int i, m, jk, k1, i1, j1, bool, z1,j;
     double ***freq; /* Frequencies */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double *pp, **prop;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double pos,posprop; 
           nhstepm = nhstepm/hstepm;    double  y2; /* in fractional years */
              int iagemin, iagemax;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    iagemin= (int) agemin;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      iagemax= (int) agemax;
            /*pp=vector(1,nlstate);*/
           for (h=0; h<=nhstepm; h++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             if (h==(int) (calagedate+YEARM*cpt)) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    j1=0;
             }    
             for(j=1; j<=nlstate+ndeath;j++) {    j=cptcoveff;
               kk1=0.;kk2=0;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
               for(i=1; i<=nlstate;i++) {                  
                 if (mobilav==1)    for(k1=1; k1<=j;k1++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(i1=1; i1<=ncodemax[k1];i1++){
                 else {        j1++;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        
                 }        for (i=1; i<=nlstate; i++)  
                          for(m=iagemin; m <= iagemax+3; m++)
               }            prop[i][m]=0.0;
               if (h==(int)(calagedate+12*cpt)){       
                 fprintf(ficresf," %.3f", kk1);        for (i=1; i<=imx; i++) { /* Each individual */
                                  bool=1;
               }          if  (cptcovn>0) {
             }            for (z1=1; z1<=cptcoveff; z1++) 
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                bool=0;
         }          } 
       }          if (bool==1) { 
     }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                      if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fclose(ficresf);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 /************** Forecasting ******************/                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    prop[s[m][i]][iagemax+3] += weight[i]; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                } 
   int *popage;              }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            } /* end selection of waves */
   double *popeffectif,*popcount;          }
   double ***p3mat,***tabpop,***tabpopprev;        }
   char filerespop[FILENAMELENGTH];        for(i=iagemin; i <= iagemax+3; i++){  
           
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            posprop += prop[jk][i]; 
   agelim=AGESUP;          } 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
            for(jk=1; jk <=nlstate ; jk++){     
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
                  probs[i][jk][j1]= prop[jk][i]/posprop;
   strcpy(filerespop,"pop");              } else
   strcat(filerespop,fileres);                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            } 
     printf("Problem with forecast resultfile: %s\n", filerespop);          }/* end jk */ 
   }        }/* end i */ 
   printf("Computing forecasting: result on file '%s' \n", filerespop);      } /* end i1 */
     } /* end k1 */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   if (mobilav==1) {    /*free_vector(pp,1,nlstate);*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     movingaverage(agedeb, fage, ageminpar, mobaverage);  }  /* End of prevalence */
   }  
   /************* Waves Concatenation ***************/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
   agelim=AGESUP;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
   hstepm=1;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   hstepm=hstepm/stepm;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         and mw[mi+1][i]. dh depends on stepm.
   if (popforecast==1) {       */
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);    int i, mi, m;
     }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     popage=ivector(0,AGESUP);       double sum=0., jmean=0.;*/
     popeffectif=vector(0,AGESUP);    int first;
     popcount=vector(0,AGESUP);    int j, k=0,jk, ju, jl;
        double sum=0.;
     i=1;      first=0;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    jmin=1e+5;
        jmax=-1;
     imx=i;    jmean=0.;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    for(i=1; i<=imx; i++){
   }      mi=0;
       m=firstpass;
   for(cptcov=1;cptcov<=i2;cptcov++){      while(s[m][i] <= nlstate){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       k=k+1;          mw[++mi][i]=m;
       fprintf(ficrespop,"\n#******");        if(m >=lastpass)
       for(j=1;j<=cptcoveff;j++) {          break;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        else
       }          m++;
       fprintf(ficrespop,"******\n");      }/* end while */
       fprintf(ficrespop,"# Age");      if (s[m][i] > nlstate){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        mi++;     /* Death is another wave */
       if (popforecast==1)  fprintf(ficrespop," [Population]");        /* if(mi==0)  never been interviewed correctly before death */
                 /* Only death is a correct wave */
       for (cpt=0; cpt<=0;cpt++) {        mw[mi][i]=m;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        }
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      wav[i]=mi;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      if(mi==0){
           nhstepm = nhstepm/hstepm;        nbwarn++;
                  if(first==0){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           oldm=oldms;savm=savms;          first=1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
                if(first==1){
           for (h=0; h<=nhstepm; h++){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      } /* end mi==0 */
             }    } /* End individuals */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    for(i=1; i<=imx; i++){
               for(i=1; i<=nlstate;i++) {                    for(mi=1; mi<wav[i];mi++){
                 if (mobilav==1)        if (stepm <=0)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          dh[mi][i]=1;
                 else {        else{
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                 }            if (agedc[i] < 2*AGESUP) {
               }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if (h==(int)(calagedate+12*cpt)){              if(j==0) j=1;  /* Survives at least one month after exam */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              else if(j<0){
                   /*fprintf(ficrespop," %.3f", kk1);                nberr++;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               }                j=1; /* Temporary Dangerous patch */
             }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             for(i=1; i<=nlstate;i++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               kk1=0.;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 for(j=1; j<=nlstate;j++){              }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              k=k+1;
                 }              if (j >= jmax){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                jmax=j;
             }                ijmax=i;
               }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)              if (j <= jmin){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                jmin=j;
           }                ijmin=i;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
         }              sum=sum+j;
       }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   /******/            }
           }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          else{
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;            k=k+1;
                      if (j >= jmax) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              jmax=j;
           oldm=oldms;savm=savms;              ijmax=i;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              }
           for (h=0; h<=nhstepm; h++){            else if (j <= jmin){
             if (h==(int) (calagedate+YEARM*cpt)) {              jmin=j;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              ijmin=i;
             }            }
             for(j=1; j<=nlstate+ndeath;j++) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
               kk1=0.;kk2=0;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
               for(i=1; i<=nlstate;i++) {                          if(j<0){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  nberr++;
               }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }            }
           }            sum=sum+j;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
         }          jk= j/stepm;
       }          jl= j -jk*stepm;
    }          ju= j -(jk+1)*stepm;
   }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              dh[mi][i]=jk;
               bh[mi][i]=0;
   if (popforecast==1) {            }else{ /* We want a negative bias in order to only have interpolation ie
     free_ivector(popage,0,AGESUP);                    * at the price of an extra matrix product in likelihood */
     free_vector(popeffectif,0,AGESUP);              dh[mi][i]=jk+1;
     free_vector(popcount,0,AGESUP);              bh[mi][i]=ju;
   }            }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }else{
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(jl <= -ju){
   fclose(ficrespop);              dh[mi][i]=jk;
 }              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
 /***********************************************/                                   */
 /**************** Main Program *****************/            }
 /***********************************************/            else{
               dh[mi][i]=jk+1;
 int main(int argc, char *argv[])              bh[mi][i]=ju;
 {            }
             if(dh[mi][i]==0){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;              dh[mi][i]=1; /* At least one step */
   double agedeb, agefin,hf;              bh[mi][i]=ju; /* At least one step */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   double fret;          } /* end if mle */
   double **xi,tmp,delta;        }
       } /* end wave */
   double dum; /* Dummy variable */    }
   double ***p3mat;    jmean=sum/k;
   int *indx;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   char title[MAXLINE];   }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  {
     
   char filerest[FILENAMELENGTH];    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    int cptcode=0;
   int firstobs=1, lastobs=10;    cptcoveff=0; 
   int sdeb, sfin; /* Status at beginning and end */   
   int c,  h , cpt,l;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   int ju,jl, mi;    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
   int mobilav=0,popforecast=0;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   int hstepm, nhstepm;                                 modality*/ 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
         Ndum[ij]++; /*counts the occurence of this modality */
   double bage, fage, age, agelim, agebase;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   double ftolpl=FTOL;        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
   double **prlim;                                         Tvar[j]. If V=sex and male is 0 and 
   double *severity;                                         female is 1, then  cptcode=1.*/
   double ***param; /* Matrix of parameters */      }
   double  *p;  
   double **matcov; /* Matrix of covariance */      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
   double ***delti3; /* Scale */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
   double *delti; /* Scale */                                         th covariate. In fact
   double ***eij, ***vareij;                                         ncodemax[j]=2
   double **varpl; /* Variances of prevalence limits by age */                                         (dichotom. variables only) but
   double *epj, vepp;                                         it can be more */
   double kk1, kk2;      } /* Ndum[-1] number of undefined modalities */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
        ij=1; 
       for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
   char *alph[]={"a","a","b","c","d","e"}, str[4];          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
   char z[1]="c", occ;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 #include <sys/time.h>            ij++;
 #include <time.h>          }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          if (ij > ncodemax[j]) break; 
          }  
   /* long total_usecs;      } 
   struct timeval start_time, end_time;    }  
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */   for (k=0; k< maxncov; k++) Ndum[k]=0;
   getcwd(pathcd, size);  
    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   printf("\n%s",version);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   if(argc <=1){     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
     printf("\nEnter the parameter file name: ");     Ndum[ij]++;
     scanf("%s",pathtot);   }
   }  
   else{   ij=1;
     strcpy(pathtot,argv[1]);   for (i=1; i<= maxncov; i++) {
   }     if((Ndum[i]!=0) && (i<=ncovcol)){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       Tvaraff[ij]=i; /*For printing */
   /*cygwin_split_path(pathtot,path,optionfile);       ij++;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/     }
   /* cutv(path,optionfile,pathtot,'\\');*/   }
    ij--;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);   cptcoveff=ij; /*Number of simple covariates*/
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  }
   chdir(path);  
   replace(pathc,path);  /*********** Health Expectancies ****************/
   
 /*-------- arguments in the command line --------*/  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   strcpy(fileres,"r");  {
   strcat(fileres, optionfilefiname);    /* Health expectancies, no variances */
   strcat(fileres,".txt");    /* Other files have txt extension */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
   /*---------arguments file --------*/    double age, agelim, hf;
     double ***p3mat;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    double eip;
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;    pstamp(ficreseij);
   }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   strcpy(filereso,"o");    for(i=1; i<=nlstate;i++){
   strcat(filereso,fileres);      for(j=1; j<=nlstate;j++){
   if((ficparo=fopen(filereso,"w"))==NULL) {        fprintf(ficreseij," e%1d%1d ",i,j);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      }
   }      fprintf(ficreseij," e%1d. ",i);
     }
   /* Reads comments: lines beginning with '#' */    fprintf(ficreseij,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    if(estepm < stepm){
     puts(line);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fputs(line,ficparo);    }
   }    else  hstepm=estepm;   
   ungetc(c,ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);     * if stepm=24 months pijx are given only every 2 years and by summing them
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);     * progression in between and thus overestimating or underestimating according
 while((c=getc(ficpar))=='#' && c!= EOF){     * to the curvature of the survival function. If, for the same date, we 
     ungetc(c,ficpar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fgets(line, MAXLINE, ficpar);     * to compare the new estimate of Life expectancy with the same linear 
     puts(line);     * hypothesis. A more precise result, taking into account a more precise
     fputs(line,ficparo);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   ungetc(c,ficpar);    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
   covar=matrix(0,NCOVMAX,1,n);       nstepm is the number of stepm from age to agelin. 
   cptcovn=0;       Look at hpijx to understand the reason of that which relies in memory size
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   ncovmodel=2+cptcovn;       survival function given by stepm (the optimization length). Unfortunately it
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* Read guess parameters */       results. So we changed our mind and took the option of the best precision.
   /* Reads comments: lines beginning with '#' */    */
   while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    agelim=AGESUP;
     puts(line);    /* If stepm=6 months */
     fputs(line,ficparo);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   ungetc(c,ficpar);      
    /* nhstepm age range expressed in number of stepm */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     for(i=1; i <=nlstate; i++)    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     for(j=1; j <=nlstate+ndeath-1; j++){    /* if (stepm >= YEARM) hstepm=1;*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficparo,"%1d%1d",i1,j1);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){    for (age=bage; age<=fage; age ++){ 
         fscanf(ficpar," %lf",&param[i][j][k]);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         printf(" %lf",param[i][j][k]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficparo," %lf",param[i][j][k]);      /* if (stepm >= YEARM) hstepm=1;*/
       }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       fscanf(ficpar,"\n");  
       printf("\n");      /* If stepm=6 months */
       fprintf(ficparo,"\n");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
   p=param[1][1];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        
   /* Reads comments: lines beginning with '#' */      printf("%d|",(int)age);fflush(stdout);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      /* Computing expectancies */
     puts(line);      for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);        for(j=1; j<=nlstate;j++)
   }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   ungetc(c,ficpar);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){          }
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficreseij,"%3.0f",age );
       printf("%1d%1d",i,j);      for(i=1; i<=nlstate;i++){
       fprintf(ficparo,"%1d%1d",i1,j1);        eip=0;
       for(k=1; k<=ncovmodel;k++){        for(j=1; j<=nlstate;j++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);          eip +=eij[i][j][(int)age];
         printf(" %le",delti3[i][j][k]);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         fprintf(ficparo," %le",delti3[i][j][k]);        }
       }        fprintf(ficreseij,"%9.4f", eip );
       fscanf(ficpar,"\n");      }
       printf("\n");      fprintf(ficreseij,"\n");
       fprintf(ficparo,"\n");      
     }    }
   }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   delti=delti3[1][1];    printf("\n");
      fprintf(ficlog,"\n");
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     puts(line);  
     fputs(line,ficparo);  {
   }    /* Covariances of health expectancies eij and of total life expectancies according
   ungetc(c,ficpar);     to initial status i, ei. .
      */
   matcov=matrix(1,npar,1,npar);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   for(i=1; i <=npar; i++){    int nhstepma, nstepma; /* Decreasing with age */
     fscanf(ficpar,"%s",&str);    double age, agelim, hf;
     printf("%s",str);    double ***p3matp, ***p3matm, ***varhe;
     fprintf(ficparo,"%s",str);    double **dnewm,**doldm;
     for(j=1; j <=i; j++){    double *xp, *xm;
       fscanf(ficpar," %le",&matcov[i][j]);    double **gp, **gm;
       printf(" %.5le",matcov[i][j]);    double ***gradg, ***trgradg;
       fprintf(ficparo," %.5le",matcov[i][j]);    int theta;
     }  
     fscanf(ficpar,"\n");    double eip, vip;
     printf("\n");  
     fprintf(ficparo,"\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
   for(i=1; i <=npar; i++)    xm=vector(1,npar);
     for(j=i+1;j<=npar;j++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
       matcov[i][j]=matcov[j][i];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        
   printf("\n");    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     /*-------- Rewriting paramater file ----------*/    for(i=1; i<=nlstate;i++){
      strcpy(rfileres,"r");    /* "Rparameterfile */      for(j=1; j<=nlstate;j++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
      strcat(rfileres,".");    /* */      fprintf(ficresstdeij," e%1d. ",i);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    }
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficresstdeij,"\n");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }    pstamp(ficrescveij);
     fprintf(ficres,"#%s\n",version);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
        fprintf(ficrescveij,"# Age");
     /*-------- data file ----------*/    for(i=1; i<=nlstate;i++)
     if((fic=fopen(datafile,"r"))==NULL)    {      for(j=1; j<=nlstate;j++){
       printf("Problem with datafile: %s\n", datafile);goto end;        cptj= (j-1)*nlstate+i;
     }        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
     n= lastobs;            cptj2= (j2-1)*nlstate+i2;
     severity = vector(1,maxwav);            if(cptj2 <= cptj)
     outcome=imatrix(1,maxwav+1,1,n);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     num=ivector(1,n);          }
     moisnais=vector(1,n);      }
     annais=vector(1,n);    fprintf(ficrescveij,"\n");
     moisdc=vector(1,n);    
     andc=vector(1,n);    if(estepm < stepm){
     agedc=vector(1,n);      printf ("Problem %d lower than %d\n",estepm, stepm);
     cod=ivector(1,n);    }
     weight=vector(1,n);    else  hstepm=estepm;   
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /* We compute the life expectancy from trapezoids spaced every estepm months
     mint=matrix(1,maxwav,1,n);     * This is mainly to measure the difference between two models: for example
     anint=matrix(1,maxwav,1,n);     * if stepm=24 months pijx are given only every 2 years and by summing them
     s=imatrix(1,maxwav+1,1,n);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     adl=imatrix(1,maxwav+1,1,n);         * progression in between and thus overestimating or underestimating according
     tab=ivector(1,NCOVMAX);     * to the curvature of the survival function. If, for the same date, we 
     ncodemax=ivector(1,8);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
     i=1;     * hypothesis. A more precise result, taking into account a more precise
     while (fgets(line, MAXLINE, fic) != NULL)    {     * curvature will be obtained if estepm is as small as stepm. */
       if ((i >= firstobs) && (i <=lastobs)) {  
            /* For example we decided to compute the life expectancy with the smallest unit */
         for (j=maxwav;j>=1;j--){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);       nhstepm is the number of hstepm from age to agelim 
           strcpy(line,stra);       nstepm is the number of stepm from age to agelin. 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       Look at hpijx to understand the reason of that which relies in memory size
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       and note for a fixed period like estepm months */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               survival function given by stepm (the optimization length). Unfortunately it
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);       means that if the survival funtion is printed only each two years of age and if
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /* If stepm=6 months */
         for (j=ncovcol;j>=1;j--){    /* nhstepm age range expressed in number of stepm */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    agelim=AGESUP;
         }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
         num[i]=atol(stra);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            /* if (stepm >= YEARM) hstepm=1;*/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         i=i+1;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     /* printf("ii=%d", ij);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
        scanf("%d",i);*/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   imx=i-1; /* Number of individuals */  
     for (age=bage; age<=fage; age ++){ 
   /* for (i=1; i<=imx; i++){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      /* if (stepm >= YEARM) hstepm=1;*/
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     }*/  
        /* If stepm=6 months */
   /* for (i=1; i<=imx; i++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
      if (s[4][i]==9)  s[4][i]=-1;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}      
   */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
   /* Calculation of the number of parameter from char model*/      /* Computing  Variances of health expectancies */
   Tvar=ivector(1,15);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   Tprod=ivector(1,15);         decrease memory allocation */
   Tvaraff=ivector(1,15);      for(theta=1; theta <=npar; theta++){
   Tvard=imatrix(1,15,1,2);        for(i=1; i<=npar; i++){ 
   Tage=ivector(1,15);                xp[i] = x[i] + (i==theta ?delti[theta]:0);
              xm[i] = x[i] - (i==theta ?delti[theta]:0);
   if (strlen(model) >1){        }
     j=0, j1=0, k1=1, k2=1;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     j=nbocc(model,'+');        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     j1=nbocc(model,'*');    
     cptcovn=j+1;        for(j=1; j<= nlstate; j++){
     cptcovprod=j1;          for(i=1; i<=nlstate; i++){
                for(h=0; h<=nhstepm-1; h++){
     strcpy(modelsav,model);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       printf("Error. Non available option model=%s ",model);            }
       goto end;          }
     }        }
           
     for(i=(j+1); i>=1;i--){        for(ij=1; ij<= nlstate*nlstate; ij++)
       cutv(stra,strb,modelsav,'+');          for(h=0; h<=nhstepm-1; h++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          }
       /*scanf("%d",i);*/      }/* End theta */
       if (strchr(strb,'*')) {      
         cutv(strd,strc,strb,'*');      
         if (strcmp(strc,"age")==0) {      for(h=0; h<=nhstepm-1; h++)
           cptcovprod--;        for(j=1; j<=nlstate*nlstate;j++)
           cutv(strb,stre,strd,'V');          for(theta=1; theta <=npar; theta++)
           Tvar[i]=atoi(stre);            trgradg[h][j][theta]=gradg[h][theta][j];
           cptcovage++;      
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/       for(ij=1;ij<=nlstate*nlstate;ij++)
         }        for(ji=1;ji<=nlstate*nlstate;ji++)
         else if (strcmp(strd,"age")==0) {          varhe[ij][ji][(int)age] =0.;
           cptcovprod--;  
           cutv(strb,stre,strc,'V');       printf("%d|",(int)age);fflush(stdout);
           Tvar[i]=atoi(stre);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           cptcovage++;       for(h=0;h<=nhstepm-1;h++){
           Tage[cptcovage]=i;        for(k=0;k<=nhstepm-1;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         else {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           cutv(strb,stre,strc,'V');          for(ij=1;ij<=nlstate*nlstate;ij++)
           Tvar[i]=ncovcol+k1;            for(ji=1;ji<=nlstate*nlstate;ji++)
           cutv(strb,strc,strd,'V');              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);      }
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];      /* Computing expectancies */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           for (k=1; k<=lastobs;k++)      for(i=1; i<=nlstate;i++)
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(j=1; j<=nlstate;j++)
           k1++;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           k2=k2+2;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         }            
       }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          }
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');      fprintf(ficresstdeij,"%3.0f",age );
       Tvar[i]=atoi(strc);      for(i=1; i<=nlstate;i++){
       }        eip=0.;
       strcpy(modelsav,stra);          vip=0.;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for(j=1; j<=nlstate;j++){
         scanf("%d",i);*/          eip += eij[i][j][(int)age];
     }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        }
   printf("cptcovprod=%d ", cptcovprod);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   scanf("%d ",i);*/      }
     fclose(fic);      fprintf(ficresstdeij,"\n");
   
     /*  if(mle==1){*/      fprintf(ficrescveij,"%3.0f",age );
     if (weightopt != 1) { /* Maximisation without weights*/      for(i=1; i<=nlstate;i++)
       for(i=1;i<=n;i++) weight[i]=1.0;        for(j=1; j<=nlstate;j++){
     }          cptj= (j-1)*nlstate+i;
     /*-calculation of age at interview from date of interview and age at death -*/          for(i2=1; i2<=nlstate;i2++)
     agev=matrix(1,maxwav,1,imx);            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
     for (i=1; i<=imx; i++) {              if(cptj2 <= cptj)
       for(m=2; (m<= maxwav); m++) {                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            }
          anint[m][i]=9999;        }
          s[m][i]=-1;      fprintf(ficrescveij,"\n");
        }     
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    }
       }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     for (i=1; i<=imx; i++)  {    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(m=1; (m<= maxwav); m++){    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         if(s[m][i] >0){    printf("\n");
           if (s[m][i] >= nlstate+1) {    fprintf(ficlog,"\n");
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)    free_vector(xm,1,npar);
                 agev[m][i]=agedc[i];    free_vector(xp,1,npar);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
            else {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               if (andc[i]!=9999){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  }
               agev[m][i]=-1;  
               }  /************ Variance ******************/
             }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           }  {
           else if(s[m][i] !=9){ /* Should no more exist */    /* Variance of health expectancies */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
             if(mint[m][i]==99 || anint[m][i]==9999)    /* double **newm;*/
               agev[m][i]=1;    double **dnewm,**doldm;
             else if(agev[m][i] <agemin){    double **dnewmp,**doldmp;
               agemin=agev[m][i];    int i, j, nhstepm, hstepm, h, nstepm ;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int k, cptcode;
             }    double *xp;
             else if(agev[m][i] >agemax){    double **gp, **gm;  /* for var eij */
               agemax=agev[m][i];    double ***gradg, ***trgradg; /*for var eij */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double **gradgp, **trgradgp; /* for var p point j */
             }    double *gpp, *gmp; /* for var p point j */
             /*agev[m][i]=anint[m][i]-annais[i];*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             /*   agev[m][i] = age[i]+2*m;*/    double ***p3mat;
           }    double age,agelim, hf;
           else { /* =9 */    double ***mobaverage;
             agev[m][i]=1;    int theta;
             s[m][i]=-1;    char digit[4];
           }    char digitp[25];
         }  
         else /*= 0 Unknown */    char fileresprobmorprev[FILENAMELENGTH];
           agev[m][i]=1;  
       }    if(popbased==1){
          if(mobilav!=0)
     }        strcpy(digitp,"-populbased-mobilav-");
     for (i=1; i<=imx; i++)  {      else strcpy(digitp,"-populbased-nomobil-");
       for(m=1; (m<= maxwav); m++){    }
         if (s[m][i] > (nlstate+ndeath)) {    else 
           printf("Error: Wrong value in nlstate or ndeath\n");        strcpy(digitp,"-stablbased-");
           goto end;  
         }    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     free_vector(severity,1,maxwav);    }
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    strcpy(fileresprobmorprev,"prmorprev"); 
     free_vector(annais,1,n);    sprintf(digit,"%-d",ij);
     /* free_matrix(mint,1,maxwav,1,n);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
        free_matrix(anint,1,maxwav,1,n);*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     free_vector(moisdc,1,n);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     free_vector(andc,1,n);    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobmorprev);
     wav=ivector(1,imx);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       
     /* Concatenates waves */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       Tcode=ivector(1,100);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      fprintf(ficresprobmorprev," p.%-d SE",j);
       ncodemax[1]=1;      for(i=1; i<=nlstate;i++)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
          }  
    codtab=imatrix(1,100,1,10);    fprintf(ficresprobmorprev,"\n");
    h=0;    fprintf(ficgp,"\n# Routine varevsij");
    m=pow(2,cptcoveff);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
    for(k=1;k<=cptcoveff; k++){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      for(i=1; i <=(m/pow(2,k));i++){  /*   } */
        for(j=1; j <= ncodemax[k]; j++){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    pstamp(ficresvij);
            h++;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    if(popbased==1)
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
          }    else
        }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      }    fprintf(ficresvij,"# Age");
    }    for(i=1; i<=nlstate;i++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      for(j=1; j<=nlstate;j++)
       codtab[1][2]=1;codtab[2][2]=2; */        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
    /* for(i=1; i <=m ;i++){    fprintf(ficresvij,"\n");
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
       printf("\n");    doldm=matrix(1,nlstate,1,nlstate);
       }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       scanf("%d",i);*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        and prints on file fileres'p'. */    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
        trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(estepm < stepm){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf ("Problem %d lower than %d\n",estepm, stepm);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    else  hstepm=estepm;   
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /* For example we decided to compute the life expectancy with the smallest unit */
          /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     /* For Powell, parameters are in a vector p[] starting at p[1]       nhstepm is the number of hstepm from age to agelim 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       nstepm is the number of stepm from age to agelin. 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     if(mle==1){       survival function given by stepm (the optimization length). Unfortunately it
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       means that if the survival funtion is printed every two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
     /*--------- results files --------------*/    */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    jk=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(i=1,jk=1; i <=nlstate; i++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      for(k=1; k <=(nlstate+ndeath); k++){      gp=matrix(0,nhstepm,1,nlstate);
        if (k != i)      gm=matrix(0,nhstepm,1,nlstate);
          {  
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);      for(theta=1; theta <=npar; theta++){
            for(j=1; j <=ncovmodel; j++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
              printf("%f ",p[jk]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
              fprintf(ficres,"%f ",p[jk]);        }
              jk++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            printf("\n");  
            fprintf(ficres,"\n");        if (popbased==1) {
          }          if(mobilav ==0){
      }            for(i=1; i<=nlstate;i++)
    }              prlim[i][i]=probs[(int)age][i][ij];
  if(mle==1){          }else{ /* mobilav */ 
     /* Computing hessian and covariance matrix */            for(i=1; i<=nlstate;i++)
     ftolhess=ftol; /* Usually correct */              prlim[i][i]=mobaverage[(int)age][i][ij];
     hesscov(matcov, p, npar, delti, ftolhess, func);          }
  }        }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    
     printf("# Scales (for hessian or gradient estimation)\n");        for(j=1; j<= nlstate; j++){
      for(i=1,jk=1; i <=nlstate; i++){          for(h=0; h<=nhstepm; h++){
       for(j=1; j <=nlstate+ndeath; j++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         if (j!=i) {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           fprintf(ficres,"%1d%1d",i,j);          }
           printf("%1d%1d",i,j);        }
           for(k=1; k<=ncovmodel;k++){        /* This for computing probability of death (h=1 means
             printf(" %.5e",delti[jk]);           computed over hstepm matrices product = hstepm*stepm months) 
             fprintf(ficres," %.5e",delti[jk]);           as a weighted average of prlim.
             jk++;        */
           }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           printf("\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           fprintf(ficres,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }        }    
       }        /* end probability of death */
      }  
            for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     k=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(i=1;i<=npar;i++){   
       /*  if (k>nlstate) k=1;        if (popbased==1) {
       i1=(i-1)/(ncovmodel*nlstate)+1;          if(mobilav ==0){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            for(i=1; i<=nlstate;i++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/              prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficres,"%3d",i);          }else{ /* mobilav */ 
       printf("%3d",i);            for(i=1; i<=nlstate;i++)
       for(j=1; j<=i;j++){              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficres," %.5e",matcov[i][j]);          }
         printf(" %.5e",matcov[i][j]);        }
       }  
       fprintf(ficres,"\n");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       printf("\n");          for(h=0; h<=nhstepm; h++){
       k++;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
              }
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);        /* This for computing probability of death (h=1 means
       fgets(line, MAXLINE, ficpar);           computed over hstepm matrices product = hstepm*stepm months) 
       puts(line);           as a weighted average of prlim.
       fputs(line,ficparo);        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     ungetc(c,ficpar);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             gmp[j] += prlim[i][i]*p3mat[i][j][1];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);        }    
            /* end probability of death */
     if (fage <= 2) {  
       bage = ageminpar;        for(j=1; j<= nlstate; j++) /* vareij */
       fage = agemaxpar;          for(h=0; h<=nhstepm; h++){
     }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
              }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      } /* End theta */
     fgets(line, MAXLINE, ficpar);  
     puts(line);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     fputs(line,ficparo);  
   }      for(h=0; h<=nhstepm; h++) /* veij */
   ungetc(c,ficpar);        for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            trgradg[h][j][theta]=gradg[h][theta][j];
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
              for(theta=1; theta <=npar; theta++)
   while((c=getc(ficpar))=='#' && c!= EOF){          trgradgp[j][theta]=gradgp[theta][j];
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);  
     puts(line);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fputs(line,ficparo);      for(i=1;i<=nlstate;i++)
   }        for(j=1;j<=nlstate;j++)
   ungetc(c,ficpar);          vareij[i][j][(int)age] =0.;
    
       for(h=0;h<=nhstepm;h++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        for(k=0;k<=nhstepm;k++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          for(i=1;i<=nlstate;i++)
   fprintf(ficparo,"pop_based=%d\n",popbased);              for(j=1;j<=nlstate;j++)
   fprintf(ficres,"pop_based=%d\n",popbased);                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);      /* pptj */
     puts(line);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     fputs(line,ficparo);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   ungetc(c,ficpar);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      /* end ppptj */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      /*  x centered again */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
 while((c=getc(ficpar))=='#' && c!= EOF){      if (popbased==1) {
     ungetc(c,ficpar);        if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);          for(i=1; i<=nlstate;i++)
     puts(line);            prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);        }else{ /* mobilav */ 
   }          for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);               
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         as a weighted average of prlim.
       */
 /*------------ gnuplot -------------*/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 /*------------ free_vector  -------------*/      }    
  chdir(path);      /* end probability of death */
    
  free_ivector(wav,1,imx);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
  free_ivector(num,1,n);        for(i=1; i<=nlstate;i++){
  free_vector(agedc,1,n);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        }
  fclose(ficparo);      } 
  fclose(ficres);      fprintf(ficresprobmorprev,"\n");
   
 /*--------- index.htm --------*/      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
   /*--------------- Prevalence limit --------------*/      fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
   strcpy(filerespl,"pl");      free_matrix(gm,0,nhstepm,1,nlstate);
   strcat(filerespl,fileres);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    } /* End age */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   fprintf(ficrespl,"#Prevalence limit\n");    free_vector(gmp,nlstate+1,nlstate+ndeath);
   fprintf(ficrespl,"#Age ");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   fprintf(ficrespl,"\n");    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   k=0;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   agebase=ageminpar;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   agelim=agemaxpar;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   ftolpl=1.e-10;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   i1=cptcoveff;  */
   if (cptcovn < 1){i1=1;}  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_vector(xp,1,npar);
         k=k+1;    free_matrix(doldm,1,nlstate,1,nlstate);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    free_matrix(dnewm,1,nlstate,1,npar);
         fprintf(ficrespl,"\n#******");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for(j=1;j<=cptcoveff;j++)    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrespl,"******\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            fclose(ficresprobmorprev);
         for (age=agebase; age<=agelim; age++){    fflush(ficgp);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fflush(fichtm); 
           fprintf(ficrespl,"%.0f",age );  }  /* end varevsij */
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);  /************ Variance of prevlim ******************/
           fprintf(ficrespl,"\n");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         }  {
       }    /* Variance of prevalence limit */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   fclose(ficrespl);    double **newm;
     double **dnewm,**doldm;
   /*------------- h Pij x at various ages ------------*/    int i, j, nhstepm, hstepm;
      int k, cptcode;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double *xp;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double *gp, *gm;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double **gradg, **trgradg;
   }    double age,agelim;
   printf("Computing pij: result on file '%s' \n", filerespij);    int theta;
      
   stepsize=(int) (stepm+YEARM-1)/YEARM;    pstamp(ficresvpl);
   /*if (stepm<=24) stepsize=2;*/    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
   agelim=AGESUP;    for(i=1; i<=nlstate;i++)
   hstepm=stepsize*YEARM; /* Every year of age */        fprintf(ficresvpl," %1d-%1d",i,i);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fprintf(ficresvpl,"\n");
    
   k=0;    xp=vector(1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    dnewm=matrix(1,nlstate,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    doldm=matrix(1,nlstate,1,nlstate);
       k=k+1;    
         fprintf(ficrespij,"\n#****** ");    hstepm=1*YEARM; /* Every year of age */
         for(j=1;j<=cptcoveff;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim = AGESUP;
         fprintf(ficrespij,"******\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      if (stepm >= YEARM) hstepm=1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      gradg=matrix(1,npar,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gp=vector(1,nlstate);
           oldm=oldms;savm=savms;      gm=vector(1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");      for(theta=1; theta <=npar; theta++){
           for(i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++){ /* Computes gradient */
             for(j=1; j<=nlstate+ndeath;j++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               fprintf(ficrespij," %1d-%1d",i,j);        }
           fprintf(ficrespij,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           for (h=0; h<=nhstepm; h++){        for(i=1;i<=nlstate;i++)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          gp[i] = prlim[i][i];
             for(i=1; i<=nlstate;i++)      
               for(j=1; j<=nlstate+ndeath;j++)        for(i=1; i<=npar; i++) /* Computes gradient */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             fprintf(ficrespij,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           }        for(i=1;i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gm[i] = prlim[i][i];
           fprintf(ficrespij,"\n");  
         }        for(i=1;i<=nlstate;i++)
     }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/      trgradg =matrix(1,nlstate,1,npar);
   
   fclose(ficrespij);      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){      for(i=1;i<=nlstate;i++)
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        varpl[i][(int)age] =0.;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     free_matrix(mint,1,maxwav,1,n);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      for(i=1;i<=nlstate;i++)
     free_vector(weight,1,n);}        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   else{  
     erreur=108;      fprintf(ficresvpl,"%.0f ",age );
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      for(i=1; i<=nlstate;i++)
   }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   /*---------- Health expectancies and variances ------------*/      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   strcpy(filerest,"t");      free_matrix(trgradg,1,nlstate,1,npar);
   strcat(filerest,fileres);    } /* End age */
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   strcpy(filerese,"e");  
   strcat(filerese,fileres);  /************ Variance of one-step probabilities  ******************/
   if((ficreseij=fopen(filerese,"w"))==NULL) {  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  {
   }    int i, j=0,  i1, k1, l1, t, tj;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
  strcpy(fileresv,"v");    int first=1, first1;
   strcat(fileresv,fileres);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double *xp;
   }    double *gp, *gm;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double **gradg, **trgradg;
     double **mu;
   k=0;    double age,agelim, cov[NCOVMAX];
   for(cptcov=1;cptcov<=i1;cptcov++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int theta;
       k=k+1;    char fileresprob[FILENAMELENGTH];
       fprintf(ficrest,"\n#****** ");    char fileresprobcov[FILENAMELENGTH];
       for(j=1;j<=cptcoveff;j++)    char fileresprobcor[FILENAMELENGTH];
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    double ***varpij;
   
       fprintf(ficreseij,"\n#****** ");    strcpy(fileresprob,"prob"); 
       for(j=1;j<=cptcoveff;j++)    strcat(fileresprob,fileres);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       fprintf(ficreseij,"******\n");      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       fprintf(ficresvij,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    strcpy(fileresprobcov,"probcov"); 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(fileresprobcov,fileres);
       fprintf(ficresvij,"******\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       oldm=oldms;savm=savms;    }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      strcpy(fileresprobcor,"probcor"); 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    strcat(fileresprobcor,fileres);
       oldm=oldms;savm=savms;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      printf("Problem with resultfile: %s\n", fileresprobcor);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficrest,"\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       epj=vector(1,nlstate+1);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(age=bage; age <=fage ;age++){    pstamp(ficresprob);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         if (popbased==1) {    fprintf(ficresprob,"# Age");
           for(i=1; i<=nlstate;i++)    pstamp(ficresprobcov);
             prlim[i][i]=probs[(int)age][i][k];    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         }    fprintf(ficresprobcov,"# Age");
            pstamp(ficresprobcor);
         fprintf(ficrest," %4.0f",age);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(ficresprobcor,"# Age");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
           }    for(i=1; i<=nlstate;i++)
           epj[nlstate+1] +=epj[j];      for(j=1; j<=(nlstate+ndeath);j++){
         }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         for(i=1, vepp=0.;i <=nlstate;i++)        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           for(j=1;j <=nlstate;j++)        fprintf(ficresprobcor," p%1d-%1d ",i,j);
             vepp += vareij[i][j][(int)age];      }  
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));   /* fprintf(ficresprob,"\n");
         for(j=1;j <=nlstate;j++){    fprintf(ficresprobcov,"\n");
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));    fprintf(ficresprobcor,"\n");
         }   */
         fprintf(ficrest,"\n");    xp=vector(1,npar);
       }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   fclose(ficreseij);    first=1;
   fclose(ficresvij);    fprintf(ficgp,"\n# Routine varprob");
   fclose(ficrest);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   fclose(ficpar);    fprintf(fichtm,"\n");
   free_vector(epj,1,nlstate+1);  
      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   /*------- Variance limit prevalence------*/      fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
   strcpy(fileresvpl,"vpl");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   strcat(fileresvpl,fileres);  and drawn. It helps understanding how is the covariance between two incidences.\
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     exit(0);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   k=0;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   for(cptcov=1;cptcov<=i1;cptcov++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    cov[1]=1;
       fprintf(ficresvpl,"\n#****** ");    tj=cptcoveff;
       for(j=1;j<=cptcoveff;j++)    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    j1=0;
       fprintf(ficresvpl,"******\n");    for(t=1; t<=tj;t++){
            for(i1=1; i1<=ncodemax[t];i1++){ 
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        j1++;
       oldm=oldms;savm=savms;        if  (cptcovn>0) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          fprintf(ficresprob, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  }          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
   fclose(ficresvpl);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
   /*---------- End : free ----------------*/          
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          fprintf(ficgp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          fprintf(ficgp, "**********\n#\n");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          
            
            fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficresprobcor, "\n#********** Variable ");    
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   free_matrix(matcov,1,npar,1,npar);          fprintf(ficresprobcor, "**********\n#");    
   free_vector(delti,1,npar);        }
   free_matrix(agev,1,maxwav,1,imx);        
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
   if(erreur >0)          for (k=1; k<=cptcovn;k++) {
     printf("End of Imach with error or warning %d\n",erreur);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   else   printf("End of Imach\n");          }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            for (k=1; k<=cptcovprod;k++)
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /*printf("Total time was %d uSec.\n", total_usecs);*/          
   /*------ End -----------*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
  end:          gm=vector(1,(nlstate)*(nlstate+ndeath));
 #ifdef windows      
   /* chdir(pathcd);*/          for(theta=1; theta <=npar; theta++){
 #endif            for(i=1; i<=npar; i++)
  /*system("wgnuplot graph.plt");*/              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
  /*system("../gp37mgw/wgnuplot graph.plt");*/            
  /*system("cd ../gp37mgw");*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            
  strcpy(plotcmd,GNUPLOTPROGRAM);            k=0;
  strcat(plotcmd," ");            for(i=1; i<= (nlstate); i++){
  strcat(plotcmd,optionfilegnuplot);              for(j=1; j<=(nlstate+ndeath);j++){
  system(plotcmd);                k=k+1;
                 gp[k]=pmmij[i][j];
 #ifdef windows              }
   while (z[0] != 'q') {            }
     /* chdir(path); */            
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            for(i=1; i<=npar; i++)
     scanf("%s",z);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     if (z[0] == 'c') system("./imach");      
     else if (z[0] == 'e') system(optionfilehtm);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     else if (z[0] == 'g') system(plotcmd);            k=0;
     else if (z[0] == 'q') exit(0);            for(i=1; i<=(nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
 #endif                k=k+1;
 }                gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
           goto end;
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.133


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>