Diff for /imach/src/imach.c between versions 1.35 and 1.86

version 1.35, 2002/03/26 17:08:39 version 1.86, 2003/06/17 20:04:08
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.86  2003/06/17 20:04:08  brouard
      (Module): Change position of html and gnuplot routines and added
   This program computes Healthy Life Expectancies from    routine fileappend.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.85  2003/06/17 13:12:43  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Check when date of death was earlier that
   case of a health survey which is our main interest) -2- at least a    current date of interview. It may happen when the death was just
   second wave of interviews ("longitudinal") which measure each change    prior to the death. In this case, dh was negative and likelihood
   (if any) in individual health status.  Health expectancies are    was wrong (infinity). We still send an "Error" but patch by
   computed from the time spent in each health state according to a    assuming that the date of death was just one stepm after the
   model. More health states you consider, more time is necessary to reach the    interview.
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): Because some people have very long ID (first column)
   simplest model is the multinomial logistic model where pij is the    we changed int to long in num[] and we added a new lvector for
   probabibility to be observed in state j at the second wave    memory allocation. But we also truncated to 8 characters (left
   conditional to be observed in state i at the first wave. Therefore    truncation)
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Repository): No more line truncation errors.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.84  2003/06/13 21:44:43  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Replace "freqsummary" at a correct
   you to do it.  More covariates you add, slower the    place. It differs from routine "prevalence" which may be called
   convergence.    many times. Probs is memory consuming and must be used with
     parcimony.
   The advantage of this computer programme, compared to a simple    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.83  2003/06/10 13:39:11  lievre
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.82  2003/06/05 15:57:20  brouard
   hPijx is the probability to be observed in state i at age x+h    Add log in  imach.c and  fullversion number is now printed.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate  */
   states. This elementary transition (by month or quarter trimester,  /*
   semester or year) is model as a multinomial logistic.  The hPx     Interpolated Markov Chain
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Short summary of the programme:
   hPijx.    
     This program computes Healthy Life Expectancies from
   Also this programme outputs the covariance matrix of the parameters but also    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   of the life expectancies. It also computes the prevalence limits.    first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    case of a health survey which is our main interest) -2- at least a
            Institut national d'études démographiques, Paris.    second wave of interviews ("longitudinal") which measure each change
   This software have been partly granted by Euro-REVES, a concerted action    (if any) in individual health status.  Health expectancies are
   from the European Union.    computed from the time spent in each health state according to a
   It is copyrighted identically to a GNU software product, ie programme and    model. More health states you consider, more time is necessary to reach the
   software can be distributed freely for non commercial use. Latest version    Maximum Likelihood of the parameters involved in the model.  The
   can be accessed at http://euroreves.ined.fr/imach .    simplest model is the multinomial logistic model where pij is the
   **********************************************************************/    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
 #include <math.h>    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #include <stdio.h>    'age' is age and 'sex' is a covariate. If you want to have a more
 #include <stdlib.h>    complex model than "constant and age", you should modify the program
 #include <unistd.h>    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 #define MAXLINE 256    convergence.
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    The advantage of this computer programme, compared to a simple
 #define FILENAMELENGTH 80    multinomial logistic model, is clear when the delay between waves is not
 /*#define DEBUG*/    identical for each individual. Also, if a individual missed an
 #define windows    intermediate interview, the information is lost, but taken into
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    account using an interpolation or extrapolation.  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     hPijx is the probability to be observed in state i at age x+h
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    conditional to the observed state i at age x. The delay 'h' can be
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 #define NINTERVMAX 8    semester or year) is modelled as a multinomial logistic.  The hPx
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    matrix is simply the matrix product of nh*stepm elementary matrices
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    and the contribution of each individual to the likelihood is simply
 #define NCOVMAX 8 /* Maximum number of covariates */    hPijx.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Also this programme outputs the covariance matrix of the parameters but also
 #define AGESUP 130    of the life expectancies. It also computes the stable prevalence. 
 #define AGEBASE 40    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 int erreur; /* Error number */    This software have been partly granted by Euro-REVES, a concerted action
 int nvar;    from the European Union.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    It is copyrighted identically to a GNU software product, ie programme and
 int npar=NPARMAX;    software can be distributed freely for non commercial use. Latest version
 int nlstate=2; /* Number of live states */    can be accessed at http://euroreves.ined.fr/imach .
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int popbased=0;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 int *wav; /* Number of waves for this individuual 0 is possible */    **********************************************************************/
 int maxwav; /* Maxim number of waves */  /*
 int jmin, jmax; /* min, max spacing between 2 waves */    main
 int mle, weightopt;    read parameterfile
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    read datafile
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    concatwav
 double jmean; /* Mean space between 2 waves */    freqsummary
 double **oldm, **newm, **savm; /* Working pointers to matrices */    if (mle >= 1)
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */      mlikeli
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    print results files
 FILE *ficgp,*ficresprob,*ficpop;    if mle==1 
 FILE *ficreseij;       computes hessian
   char filerese[FILENAMELENGTH];    read end of parameter file: agemin, agemax, bage, fage, estepm
  FILE  *ficresvij;        begin-prev-date,...
   char fileresv[FILENAMELENGTH];    open gnuplot file
  FILE  *ficresvpl;    open html file
   char fileresvpl[FILENAMELENGTH];    stable prevalence
      for age prevalim()
 #define NR_END 1    h Pij x
 #define FREE_ARG char*    variance of p varprob
 #define FTOL 1.0e-10    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 #define NRANSI    Variance-covariance of DFLE
 #define ITMAX 200    prevalence()
      movingaverage()
 #define TOL 2.0e-4    varevsij() 
     if popbased==1 varevsij(,popbased)
 #define CGOLD 0.3819660    total life expectancies
 #define ZEPS 1.0e-10    Variance of stable prevalence
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   end
   */
 #define GOLD 1.618034  
 #define GLIMIT 100.0  
 #define TINY 1.0e-20  
    
 static double maxarg1,maxarg2;  #include <math.h>
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #include <stdio.h>
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #include <stdlib.h>
    #include <unistd.h>
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)  #include <sys/time.h>
   #include <time.h>
 static double sqrarg;  #include "timeval.h"
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 int imx;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int stepm;  #define FILENAMELENGTH 132
 /* Stepm, step in month: minimum step interpolation*/  /*#define DEBUG*/
   /*#define windows*/
 int m,nb;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double dateintmean=0;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 double *weight;  #define NINTERVMAX 8
 int **s; /* Status */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double *agedc, **covar, idx;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define YEARM 12. /* Number of months per year */
 double ftolhess; /* Tolerance for computing hessian */  #define AGESUP 130
   #define AGEBASE 40
 /**************** split *************************/  #ifdef unix
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define DIRSEPARATOR '/'
 {  #define ODIRSEPARATOR '\\'
    char *s;                             /* pointer */  #else
    int  l1, l2;                         /* length counters */  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
    l1 = strlen( path );                 /* length of path */  #endif
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows  /* $Id$ */
    s = strrchr( path, '\\' );           /* find last / */  /* $State$ */
 #else  
    s = strrchr( path, '/' );            /* find last / */  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 #endif  char fullversion[]="$Revision$ $Date$"; 
    if ( s == NULL ) {                   /* no directory, so use current */  int erreur; /* Error number */
 #if     defined(__bsd__)                /* get current working directory */  int nvar;
       extern char       *getwd( );  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
       if ( getwd( dirc ) == NULL ) {  int nlstate=2; /* Number of live states */
 #else  int ndeath=1; /* Number of dead states */
       extern char       *getcwd( );  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  int *wav; /* Number of waves for this individuual 0 is possible */
          return( GLOCK_ERROR_GETCWD );  int maxwav; /* Maxim number of waves */
       }  int jmin, jmax; /* min, max spacing between 2 waves */
       strcpy( name, path );             /* we've got it */  int mle, weightopt;
    } else {                             /* strip direcotry from path */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       s++;                              /* after this, the filename */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       l2 = strlen( s );                 /* length of filename */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       strcpy( name, s );                /* save file name */  double jmean; /* Mean space between 2 waves */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  double **oldm, **newm, **savm; /* Working pointers to matrices */
       dirc[l1-l2] = 0;                  /* add zero */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    l1 = strlen( dirc );                 /* length of directory */  FILE *ficlog, *ficrespow;
 #ifdef windows  int globpr; /* Global variable for printing or not */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  double fretone; /* Only one call to likelihood */
 #else  long ipmx; /* Number of contributions */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  double sw; /* Sum of weights */
 #endif  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    s = strrchr( name, '.' );            /* find last / */  FILE *ficresilk;
    s++;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    strcpy(ext,s);                       /* save extension */  FILE *ficresprobmorprev;
    l1= strlen( name);  FILE *fichtm; /* Html File */
    l2= strlen( s)+1;  FILE *ficreseij;
    strncpy( finame, name, l1-l2);  char filerese[FILENAMELENGTH];
    finame[l1-l2]= 0;  FILE  *ficresvij;
    return( 0 );                         /* we're done */  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /******************************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 void replace(char *s, char*t)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   int i;  char filelog[FILENAMELENGTH]; /* Log file */
   int lg=20;  char filerest[FILENAMELENGTH];
   i=0;  char fileregp[FILENAMELENGTH];
   lg=strlen(t);  char popfile[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  
   }  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 int nbocc(char *s, char occ)  
 {  #define NRANSI 
   int i,j=0;  #define ITMAX 200 
   int lg=20;  
   i=0;  #define TOL 2.0e-4 
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define CGOLD 0.3819660 
   if  (s[i] == occ ) j++;  #define ZEPS 1.0e-10 
   }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   return j;  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 void cutv(char *u,char *v, char*t, char occ)  #define TINY 1.0e-20 
 {  
   int i,lg,j,p=0;  static double maxarg1,maxarg2;
   i=0;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for(j=0; j<=strlen(t)-1; j++) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    
   }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   lg=strlen(t);  
   for(j=0; j<p; j++) {  static double sqrarg;
     (u[j] = t[j]);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
      u[p]='\0';  
   int imx; 
    for(j=0; j<= lg; j++) {  int stepm;
     if (j>=(p+1))(v[j-p-1] = t[j]);  /* Stepm, step in month: minimum step interpolation*/
   }  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /********************** nrerror ********************/  
   int m,nb;
 void nrerror(char error_text[])  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   fprintf(stderr,"ERREUR ...\n");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   fprintf(stderr,"%s\n",error_text);  double **pmmij, ***probs;
   exit(1);  double dateintmean=0;
 }  
 /*********************** vector *******************/  double *weight;
 double *vector(int nl, int nh)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   double *v;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   return v-nl+NR_END;  double ftolhess; /* Tolerance for computing hessian */
 }  
   /**************** split *************************/
 /************************ free vector ******************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 void free_vector(double*v, int nl, int nh)  {
 {    char  *ss;                            /* pointer */
   free((FREE_ARG)(v+nl-NR_END));    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 /************************ivector *******************************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 int *ivector(long nl,long nh)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so use current */
   int *v;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   if (!v) nrerror("allocation failure in ivector");      /* get current working directory */
   return v-nl+NR_END;      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /******************free ivector **************************/      }
 void free_ivector(int *v, long nl, long nh)      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   free((FREE_ARG)(v+nl-NR_END));      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /******************* imatrix *******************************/      strcpy( name, ss );         /* save file name */
 int **imatrix(long nrl, long nrh, long ncl, long nch)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */      dirc[l1-l2] = 0;                    /* add zero */
 {    }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    l1 = strlen( dirc );                  /* length of directory */
   int **m;    /*#ifdef windows
      if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   /* allocate pointers to rows */  #else
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   if (!m) nrerror("allocation failure 1 in matrix()");  #endif
   m += NR_END;    */
   m -= nrl;    ss = strrchr( name, '.' );            /* find last / */
      ss++;
      strcpy(ext,ss);                       /* save extension */
   /* allocate rows and set pointers to them */    l1= strlen( name);
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    l2= strlen(ss)+1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    strncpy( finame, name, l1-l2);
   m[nrl] += NR_END;    finame[l1-l2]= 0;
   m[nrl] -= ncl;    return( 0 );                          /* we're done */
    }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    
   /* return pointer to array of pointers to rows */  /******************************************/
   return m;  
 }  void replace(char *s, char*t)
   {
 /****************** free_imatrix *************************/    int i;
 void free_imatrix(m,nrl,nrh,ncl,nch)    int lg=20;
       int **m;    i=0;
       long nch,ncl,nrh,nrl;    lg=strlen(t);
      /* free an int matrix allocated by imatrix() */    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      if (t[i]== '\\') s[i]='/';
   free((FREE_ARG) (m+nrl-NR_END));    }
 }  }
   
 /******************* matrix *******************************/  int nbocc(char *s, char occ)
 double **matrix(long nrl, long nrh, long ncl, long nch)  {
 {    int i,j=0;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    int lg=20;
   double **m;    i=0;
     lg=strlen(s);
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(i=0; i<= lg; i++) {
   if (!m) nrerror("allocation failure 1 in matrix()");    if  (s[i] == occ ) j++;
   m += NR_END;    }
   m -= nrl;    return j;
   }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void cutv(char *u,char *v, char*t, char occ)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    /* cuts string t into u and v where u is ended by char occ excluding it
        and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;       gives u="abcedf" and v="ghi2j" */
   return m;    int i,lg,j,p=0;
 }    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /*************************free matrix ************************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    }
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(t);
   free((FREE_ARG)(m+nrl-NR_END));    for(j=0; j<p; j++) {
 }      (u[j] = t[j]);
     }
 /******************* ma3x *******************************/       u[p]='\0';
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {     for(j=0; j<= lg; j++) {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double ***m;    }
   }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /********************** nrerror ********************/
   m += NR_END;  
   m -= nrl;  void nrerror(char error_text[])
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    fprintf(stderr,"ERREUR ...\n");
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    fprintf(stderr,"%s\n",error_text);
   m[nrl] += NR_END;    exit(EXIT_FAILURE);
   m[nrl] -= ncl;  }
   /*********************** vector *******************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double *vector(int nl, int nh)
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    double *v;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m[nrl][ncl] += NR_END;    if (!v) nrerror("allocation failure in vector");
   m[nrl][ncl] -= nll;    return v-nl+NR_END;
   for (j=ncl+1; j<=nch; j++)  }
     m[nrl][j]=m[nrl][j-1]+nlay;  
    /************************ free vector ******************/
   for (i=nrl+1; i<=nrh; i++) {  void free_vector(double*v, int nl, int nh)
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  {
     for (j=ncl+1; j<=nch; j++)    free((FREE_ARG)(v+nl-NR_END));
       m[i][j]=m[i][j-1]+nlay;  }
   }  
   return m;  /************************ivector *******************************/
 }  int *ivector(long nl,long nh)
   {
 /*************************free ma3x ************************/    int *v;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 {    if (!v) nrerror("allocation failure in ivector");
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    return v-nl+NR_END;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 /***************** f1dim *************************/  {
 extern int ncom;    free((FREE_ARG)(v+nl-NR_END));
 extern double *pcom,*xicom;  }
 extern double (*nrfunc)(double []);  
    /************************lvector *******************************/
 double f1dim(double x)  long *lvector(long nl,long nh)
 {  {
   int j;    long *v;
   double f;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double *xt;    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /******************free lvector **************************/
   free_vector(xt,1,ncom);  void free_lvector(long *v, long nl, long nh)
   return f;  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /******************* imatrix *******************************/
 {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   int iter;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double a,b,d,etemp;  { 
   double fu,fv,fw,fx;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double ftemp;    int **m; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    
   double e=0.0;    /* allocate pointers to rows */ 
      m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   a=(ax < cx ? ax : cx);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   b=(ax > cx ? ax : cx);    m += NR_END; 
   x=w=v=bx;    m -= nrl; 
   fw=fv=fx=(*f)(x);    
   for (iter=1;iter<=ITMAX;iter++) {    
     xm=0.5*(a+b);    /* allocate rows and set pointers to them */ 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     printf(".");fflush(stdout);    m[nrl] += NR_END; 
 #ifdef DEBUG    m[nrl] -= ncl; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 #endif    
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    /* return pointer to array of pointers to rows */ 
       *xmin=x;    return m; 
       return fx;  } 
     }  
     ftemp=fu;  /****************** free_imatrix *************************/
     if (fabs(e) > tol1) {  void free_imatrix(m,nrl,nrh,ncl,nch)
       r=(x-w)*(fx-fv);        int **m;
       q=(x-v)*(fx-fw);        long nch,ncl,nrh,nrl; 
       p=(x-v)*q-(x-w)*r;       /* free an int matrix allocated by imatrix() */ 
       q=2.0*(q-r);  { 
       if (q > 0.0) p = -p;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       q=fabs(q);    free((FREE_ARG) (m+nrl-NR_END)); 
       etemp=e;  } 
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /******************* matrix *******************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double **matrix(long nrl, long nrh, long ncl, long nch)
       else {  {
         d=p/q;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         u=x+d;    double **m;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
     } else {    m += NR_END;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m -= nrl;
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fu=(*f)(u);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (fu <= fx) {    m[nrl] += NR_END;
       if (u >= x) a=x; else b=x;    m[nrl] -= ncl;
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         } else {    return m;
           if (u < x) a=u; else b=u;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
           if (fu <= fw || w == x) {     */
             v=w;  }
             w=u;  
             fv=fw;  /*************************free matrix ************************/
             fw=fu;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             fv=fu;    free((FREE_ARG)(m+nrl-NR_END));
           }  }
         }  
   }  /******************* ma3x *******************************/
   nrerror("Too many iterations in brent");  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   *xmin=x;  {
   return fx;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 }    double ***m;
   
 /****************** mnbrak ***********************/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m += NR_END;
             double (*func)(double))    m -= nrl;
 {  
   double ulim,u,r,q, dum;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
   *fa=(*func)(*ax);    m[nrl] -= ncl;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   *cx=(*bx)+GOLD*(*bx-*ax);    m[nrl][ncl] += NR_END;
   *fc=(*func)(*cx);    m[nrl][ncl] -= nll;
   while (*fb > *fc) {    for (j=ncl+1; j<=nch; j++) 
     r=(*bx-*ax)*(*fb-*fc);      m[nrl][j]=m[nrl][j-1]+nlay;
     q=(*bx-*cx)*(*fb-*fa);    
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    for (i=nrl+1; i<=nrh; i++) {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     ulim=(*bx)+GLIMIT*(*cx-*bx);      for (j=ncl+1; j<=nch; j++) 
     if ((*bx-u)*(u-*cx) > 0.0) {        m[i][j]=m[i][j-1]+nlay;
       fu=(*func)(u);    }
     } else if ((*cx-u)*(u-ulim) > 0.0) {    return m; 
       fu=(*func)(u);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       if (fu < *fc) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    */
           SHFT(*fb,*fc,fu,(*func)(u))  }
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /*************************free ma3x ************************/
       u=ulim;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       fu=(*func)(u);  {
     } else {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       u=(*cx)+GOLD*(*cx-*bx);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /***************** f1dim *************************/
       }  extern int ncom; 
 }  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 /*************** linmin ************************/   
   double f1dim(double x) 
 int ncom;  { 
 double *pcom,*xicom;    int j; 
 double (*nrfunc)(double []);    double f;
      double *xt; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   
 {    xt=vector(1,ncom); 
   double brent(double ax, double bx, double cx,    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                double (*f)(double), double tol, double *xmin);    f=(*nrfunc)(xt); 
   double f1dim(double x);    free_vector(xt,1,ncom); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    return f; 
               double *fc, double (*func)(double));  } 
   int j;  
   double xx,xmin,bx,ax;  /*****************brent *************************/
   double fx,fb,fa;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
    { 
   ncom=n;    int iter; 
   pcom=vector(1,n);    double a,b,d,etemp;
   xicom=vector(1,n);    double fu,fv,fw,fx;
   nrfunc=func;    double ftemp;
   for (j=1;j<=n;j++) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     pcom[j]=p[j];    double e=0.0; 
     xicom[j]=xi[j];   
   }    a=(ax < cx ? ax : cx); 
   ax=0.0;    b=(ax > cx ? ax : cx); 
   xx=1.0;    x=w=v=bx; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    fw=fv=fx=(*f)(x); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    for (iter=1;iter<=ITMAX;iter++) { 
 #ifdef DEBUG      xm=0.5*(a+b); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 #endif      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (j=1;j<=n;j++) {      printf(".");fflush(stdout);
     xi[j] *= xmin;      fprintf(ficlog,".");fflush(ficlog);
     p[j] += xi[j];  #ifdef DEBUG
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   free_vector(xicom,1,n);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   free_vector(pcom,1,n);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 }  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 /*************** powell ************************/        *xmin=x; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        return fx; 
             double (*func)(double []))      } 
 {      ftemp=fu;
   void linmin(double p[], double xi[], int n, double *fret,      if (fabs(e) > tol1) { 
               double (*func)(double []));        r=(x-w)*(fx-fv); 
   int i,ibig,j;        q=(x-v)*(fx-fw); 
   double del,t,*pt,*ptt,*xit;        p=(x-v)*q-(x-w)*r; 
   double fp,fptt;        q=2.0*(q-r); 
   double *xits;        if (q > 0.0) p = -p; 
   pt=vector(1,n);        q=fabs(q); 
   ptt=vector(1,n);        etemp=e; 
   xit=vector(1,n);        e=d; 
   xits=vector(1,n);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   *fret=(*func)(p);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (j=1;j<=n;j++) pt[j]=p[j];        else { 
   for (*iter=1;;++(*iter)) {          d=p/q; 
     fp=(*fret);          u=x+d; 
     ibig=0;          if (u-a < tol2 || b-u < tol2) 
     del=0.0;            d=SIGN(tol1,xm-x); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        } 
     for (i=1;i<=n;i++)      } else { 
       printf(" %d %.12f",i, p[i]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf("\n");      } 
     for (i=1;i<=n;i++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      fu=(*f)(u); 
       fptt=(*fret);      if (fu <= fx) { 
 #ifdef DEBUG        if (u >= x) a=x; else b=x; 
       printf("fret=%lf \n",*fret);        SHFT(v,w,x,u) 
 #endif          SHFT(fv,fw,fx,fu) 
       printf("%d",i);fflush(stdout);          } else { 
       linmin(p,xit,n,fret,func);            if (u < x) a=u; else b=u; 
       if (fabs(fptt-(*fret)) > del) {            if (fu <= fw || w == x) { 
         del=fabs(fptt-(*fret));              v=w; 
         ibig=i;              w=u; 
       }              fv=fw; 
 #ifdef DEBUG              fw=fu; 
       printf("%d %.12e",i,(*fret));            } else if (fu <= fv || v == x || v == w) { 
       for (j=1;j<=n;j++) {              v=u; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);              fv=fu; 
         printf(" x(%d)=%.12e",j,xit[j]);            } 
       }          } 
       for(j=1;j<=n;j++)    } 
         printf(" p=%.12e",p[j]);    nrerror("Too many iterations in brent"); 
       printf("\n");    *xmin=x; 
 #endif    return fx; 
     }  } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /****************** mnbrak ***********************/
       int k[2],l;  
       k[0]=1;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       k[1]=-1;              double (*func)(double)) 
       printf("Max: %.12e",(*func)(p));  { 
       for (j=1;j<=n;j++)    double ulim,u,r,q, dum;
         printf(" %.12e",p[j]);    double fu; 
       printf("\n");   
       for(l=0;l<=1;l++) {    *fa=(*func)(*ax); 
         for (j=1;j<=n;j++) {    *fb=(*func)(*bx); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (*fb > *fa) { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      SHFT(dum,*ax,*bx,dum) 
         }        SHFT(dum,*fb,*fa,dum) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        } 
       }    *cx=(*bx)+GOLD*(*bx-*ax); 
 #endif    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
       free_vector(xit,1,n);      q=(*bx-*cx)*(*fb-*fa); 
       free_vector(xits,1,n);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       free_vector(ptt,1,n);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       free_vector(pt,1,n);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       return;      if ((*bx-u)*(u-*cx) > 0.0) { 
     }        fu=(*func)(u); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for (j=1;j<=n;j++) {        fu=(*func)(u); 
       ptt[j]=2.0*p[j]-pt[j];        if (fu < *fc) { 
       xit[j]=p[j]-pt[j];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       pt[j]=p[j];            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
     fptt=(*func)(ptt);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     if (fptt < fp) {        u=ulim; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        fu=(*func)(u); 
       if (t < 0.0) {      } else { 
         linmin(p,xit,n,fret,func);        u=(*cx)+GOLD*(*cx-*bx); 
         for (j=1;j<=n;j++) {        fu=(*func)(u); 
           xi[j][ibig]=xi[j][n];      } 
           xi[j][n]=xit[j];      SHFT(*ax,*bx,*cx,u) 
         }        SHFT(*fa,*fb,*fc,fu) 
 #ifdef DEBUG        } 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  } 
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /*************** linmin ************************/
         printf("\n");  
 #endif  int ncom; 
       }  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
   }   
 }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 /**** Prevalence limit ****************/    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double f1dim(double x); 
 {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit                double *fc, double (*func)(double)); 
      matrix by transitions matrix until convergence is reached */    int j; 
     double xx,xmin,bx,ax; 
   int i, ii,j,k;    double fx,fb,fa;
   double min, max, maxmin, maxmax,sumnew=0.;   
   double **matprod2();    ncom=n; 
   double **out, cov[NCOVMAX], **pmij();    pcom=vector(1,n); 
   double **newm;    xicom=vector(1,n); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   for (ii=1;ii<=nlstate+ndeath;ii++)      pcom[j]=p[j]; 
     for (j=1;j<=nlstate+ndeath;j++){      xicom[j]=xi[j]; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    } 
     }    ax=0.0; 
     xx=1.0; 
    cov[1]=1.;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #ifdef DEBUG
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     newm=savm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     /* Covariates have to be included here again */  #endif
      cov[2]=agefin;    for (j=1;j<=n;j++) { 
        xi[j] *= xmin; 
       for (k=1; k<=cptcovn;k++) {      p[j] += xi[j]; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    } 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    free_vector(xicom,1,n); 
       }    free_vector(pcom,1,n); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  } 
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/              double (*func)(double [])) 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  { 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    void linmin(double p[], double xi[], int n, double *fret, 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);                double (*func)(double [])); 
     int i,ibig,j; 
     savm=oldm;    double del,t,*pt,*ptt,*xit;
     oldm=newm;    double fp,fptt;
     maxmax=0.;    double *xits;
     for(j=1;j<=nlstate;j++){    pt=vector(1,n); 
       min=1.;    ptt=vector(1,n); 
       max=0.;    xit=vector(1,n); 
       for(i=1; i<=nlstate; i++) {    xits=vector(1,n); 
         sumnew=0;    *fret=(*func)(p); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    for (j=1;j<=n;j++) pt[j]=p[j]; 
         prlim[i][j]= newm[i][j]/(1-sumnew);    for (*iter=1;;++(*iter)) { 
         max=FMAX(max,prlim[i][j]);      fp=(*fret); 
         min=FMIN(min,prlim[i][j]);      ibig=0; 
       }      del=0.0; 
       maxmin=max-min;      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       maxmax=FMAX(maxmax,maxmin);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     }      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     if(maxmax < ftolpl){      for (i=1;i<=n;i++) {
       return prlim;        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
   }        fprintf(ficrespow," %.12lf", p[i]);
 }      }
       printf("\n");
 /*************** transition probabilities ***************/      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      for (i=1;i<=n;i++) { 
 {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double s1, s2;        fptt=(*fret); 
   /*double t34;*/  #ifdef DEBUG
   int i,j,j1, nc, ii, jj;        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
     for(i=1; i<= nlstate; i++){  #endif
     for(j=1; j<i;j++){        printf("%d",i);fflush(stdout);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficlog,"%d",i);fflush(ficlog);
         /*s2 += param[i][j][nc]*cov[nc];*/        linmin(p,xit,n,fret,func); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        if (fabs(fptt-(*fret)) > del) { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          del=fabs(fptt-(*fret)); 
       }          ibig=i; 
       ps[i][j]=s2;        } 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  #ifdef DEBUG
     }        printf("%d %.12e",i,(*fret));
     for(j=i+1; j<=nlstate+ndeath;j++){        fprintf(ficlog,"%d %.12e",i,(*fret));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        for (j=1;j<=n;j++) {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          printf(" x(%d)=%.12e",j,xit[j]);
       }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       ps[i][j]=s2;        }
     }        for(j=1;j<=n;j++) {
   }          printf(" p=%.12e",p[j]);
     /*ps[3][2]=1;*/          fprintf(ficlog," p=%.12e",p[j]);
         }
   for(i=1; i<= nlstate; i++){        printf("\n");
      s1=0;        fprintf(ficlog,"\n");
     for(j=1; j<i; j++)  #endif
       s1+=exp(ps[i][j]);      } 
     for(j=i+1; j<=nlstate+ndeath; j++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       s1+=exp(ps[i][j]);  #ifdef DEBUG
     ps[i][i]=1./(s1+1.);        int k[2],l;
     for(j=1; j<i; j++)        k[0]=1;
       ps[i][j]= exp(ps[i][j])*ps[i][i];        k[1]=-1;
     for(j=i+1; j<=nlstate+ndeath; j++)        printf("Max: %.12e",(*func)(p));
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fprintf(ficlog,"Max: %.12e",(*func)(p));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        for (j=1;j<=n;j++) {
   } /* end i */          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        }
     for(jj=1; jj<= nlstate+ndeath; jj++){        printf("\n");
       ps[ii][jj]=0;        fprintf(ficlog,"\n");
       ps[ii][ii]=1;        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          }
     for(jj=1; jj<= nlstate+ndeath; jj++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      printf("%lf ",ps[ii][jj]);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
    }        }
     printf("\n ");  #endif
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*        free_vector(xit,1,n); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        free_vector(xits,1,n); 
   goto end;*/        free_vector(ptt,1,n); 
     return ps;        free_vector(pt,1,n); 
 }        return; 
       } 
 /**************** Product of 2 matrices ******************/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        ptt[j]=2.0*p[j]-pt[j]; 
 {        xit[j]=p[j]-pt[j]; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        pt[j]=p[j]; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      } 
   /* in, b, out are matrice of pointers which should have been initialized      fptt=(*func)(ptt); 
      before: only the contents of out is modified. The function returns      if (fptt < fp) { 
      a pointer to pointers identical to out */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   long i, j, k;        if (t < 0.0) { 
   for(i=nrl; i<= nrh; i++)          linmin(p,xit,n,fret,func); 
     for(k=ncolol; k<=ncoloh; k++)          for (j=1;j<=n;j++) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            xi[j][ibig]=xi[j][n]; 
         out[i][k] +=in[i][j]*b[j][k];            xi[j][n]=xit[j]; 
           }
   return out;  #ifdef DEBUG
 }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 /************* Higher Matrix Product ***************/            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          }
 {          printf("\n");
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          fprintf(ficlog,"\n");
      duration (i.e. until  #endif
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      } 
      (typically every 2 years instead of every month which is too big).    } 
      Model is determined by parameters x and covariates have to be  } 
      included manually here.  
   /**** Prevalence limit (stable prevalence)  ****************/
      */  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int i, j, d, h, k;  {
   double **out, cov[NCOVMAX];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double **newm;       matrix by transitions matrix until convergence is reached */
   
   /* Hstepm could be zero and should return the unit matrix */    int i, ii,j,k;
   for (i=1;i<=nlstate+ndeath;i++)    double min, max, maxmin, maxmax,sumnew=0.;
     for (j=1;j<=nlstate+ndeath;j++){    double **matprod2();
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double **out, cov[NCOVMAX], **pmij();
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double **newm;
     }    double agefin, delaymax=50 ; /* Max number of years to converge */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){    for (ii=1;ii<=nlstate+ndeath;ii++)
     for(d=1; d <=hstepm; d++){      for (j=1;j<=nlstate+ndeath;j++){
       newm=savm;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /* Covariates have to be included here again */      }
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;     cov[1]=1.;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];   
       for (k=1; k<=cptcovage;k++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       for (k=1; k<=cptcovprod;k++)      newm=savm;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      /* Covariates have to be included here again */
        cov[2]=agefin;
     
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for (k=1; k<=cptcovn;k++) {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        }
       savm=oldm;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       oldm=newm;        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         po[i][j][h]=newm[i][j];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
          */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       }  
   } /* end h */      savm=oldm;
   return po;      oldm=newm;
 }      maxmax=0.;
       for(j=1;j<=nlstate;j++){
         min=1.;
 /*************** log-likelihood *************/        max=0.;
 double func( double *x)        for(i=1; i<=nlstate; i++) {
 {          sumnew=0;
   int i, ii, j, k, mi, d, kk;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          prlim[i][j]= newm[i][j]/(1-sumnew);
   double **out;          max=FMAX(max,prlim[i][j]);
   double sw; /* Sum of weights */          min=FMIN(min,prlim[i][j]);
   double lli; /* Individual log likelihood */        }
   long ipmx;        maxmin=max-min;
   /*extern weight */        maxmax=FMAX(maxmax,maxmin);
   /* We are differentiating ll according to initial status */      }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      if(maxmax < ftolpl){
   /*for(i=1;i<imx;i++)        return prlim;
     printf(" %d\n",s[4][i]);      }
   */    }
   cov[1]=1.;  }
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*************** transition probabilities ***************/ 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for(mi=1; mi<= wav[i]-1; mi++){  {
       for (ii=1;ii<=nlstate+ndeath;ii++)    double s1, s2;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /*double t34;*/
       for(d=0; d<dh[mi][i]; d++){    int i,j,j1, nc, ii, jj;
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for(i=1; i<= nlstate; i++){
         for (kk=1; kk<=cptcovage;kk++) {      for(j=1; j<i;j++){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         }          /*s2 += param[i][j][nc]*cov[nc];*/
                  s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
         savm=oldm;        ps[i][j]=s2;
         oldm=newm;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
              }
              for(j=i+1; j<=nlstate+ndeath;j++){
       } /* end mult */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        }
       ipmx +=1;        ps[i][j]=s2;
       sw += weight[i];      }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    }
     } /* end of wave */      /*ps[3][2]=1;*/
   } /* end of individual */  
     for(i=1; i<= nlstate; i++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];       s1=0;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for(j=1; j<i; j++)
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        s1+=exp(ps[i][j]);
   return -l;      for(j=i+1; j<=nlstate+ndeath; j++)
 }        s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
 /*********** Maximum Likelihood Estimation ***************/        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        ps[i][j]= exp(ps[i][j])*ps[i][i];
 {      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   int i,j, iter;    } /* end i */
   double **xi,*delti;  
   double fret;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   xi=matrix(1,npar,1,npar);      for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=npar;i++)        ps[ii][jj]=0;
     for (j=1;j<=npar;j++)        ps[ii][ii]=1;
       xi[i][j]=(i==j ? 1.0 : 0.0);      }
   printf("Powell\n");    }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      for(jj=1; jj<= nlstate+ndeath; jj++){
        printf("%lf ",ps[ii][jj]);
 }     }
       printf("\n ");
 /**** Computes Hessian and covariance matrix ***/      }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      printf("\n ");printf("%lf ",cov[2]);*/
 {  /*
   double  **a,**y,*x,pd;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double **hess;    goto end;*/
   int i, j,jk;      return ps;
   int *indx;  }
   
   double hessii(double p[], double delta, int theta, double delti[]);  /**************** Product of 2 matrices ******************/
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   void ludcmp(double **a, int npar, int *indx, double *d) ;  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   hess=matrix(1,npar,1,npar);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   printf("\nCalculation of the hessian matrix. Wait...\n");       before: only the contents of out is modified. The function returns
   for (i=1;i<=npar;i++){       a pointer to pointers identical to out */
     printf("%d",i);fflush(stdout);    long i, j, k;
     hess[i][i]=hessii(p,ftolhess,i,delti);    for(i=nrl; i<= nrh; i++)
     /*printf(" %f ",p[i]);*/      for(k=ncolol; k<=ncoloh; k++)
     /*printf(" %lf ",hess[i][i]);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   }          out[i][k] +=in[i][j]*b[j][k];
    
   for (i=1;i<=npar;i++) {    return out;
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);  /************* Higher Matrix Product ***************/
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       }  {
     }    /* Computes the transition matrix starting at age 'age' over 
   }       'nhstepm*hstepm*stepm' months (i.e. until
   printf("\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
   a=matrix(1,npar,1,npar);       for the memory).
   y=matrix(1,npar,1,npar);       Model is determined by parameters x and covariates have to be 
   x=vector(1,npar);       included manually here. 
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)       */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
   for (j=1;j<=npar;j++) {    double **newm;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    /* Hstepm could be zero and should return the unit matrix */
     lubksb(a,npar,indx,x);    for (i=1;i<=nlstate+ndeath;i++)
     for (i=1;i<=npar;i++){      for (j=1;j<=nlstate+ndeath;j++){
       matcov[i][j]=x[i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
     }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   printf("\n#Hessian matrix#\n");    for(h=1; h <=nhstepm; h++){
   for (i=1;i<=npar;i++) {      for(d=1; d <=hstepm; d++){
     for (j=1;j<=npar;j++) {        newm=savm;
       printf("%.3e ",hess[i][j]);        /* Covariates have to be included here again */
     }        cov[1]=1.;
     printf("\n");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
   /* Recompute Inverse */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovprod;k++)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   ludcmp(a,npar,indx,&pd);  
   
   /*  printf("\n#Hessian matrix recomputed#\n");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (j=1;j<=npar;j++) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (i=1;i<=npar;i++) x[i]=0;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     x[j]=1;        savm=oldm;
     lubksb(a,npar,indx,x);        oldm=newm;
     for (i=1;i<=npar;i++){      }
       y[i][j]=x[i];      for(i=1; i<=nlstate+ndeath; i++)
       printf("%.3e ",y[i][j]);        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
     printf("\n");          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   }           */
   */        }
     } /* end h */
   free_matrix(a,1,npar,1,npar);    return po;
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  /*************** log-likelihood *************/
   double func( double *x)
   {
 }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
 /*************** hessian matrix ****************/    double **out;
 double hessii( double x[], double delta, int theta, double delti[])    double sw; /* Sum of weights */
 {    double lli; /* Individual log likelihood */
   int i;    int s1, s2;
   int l=1, lmax=20;    double bbh, survp;
   double k1,k2;    long ipmx;
   double p2[NPARMAX+1];    /*extern weight */
   double res;    /* We are differentiating ll according to initial status */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double fx;    /*for(i=1;i<imx;i++) 
   int k=0,kmax=10;      printf(" %d\n",s[4][i]);
   double l1;    */
     cov[1]=1.;
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);    if(mle==1){
     delts=delt;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(k=1 ; k <kmax; k=k+1){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       delt = delta*(l1*k);        for(mi=1; mi<= wav[i]-1; mi++){
       p2[theta]=x[theta] +delt;          for (ii=1;ii<=nlstate+ndeath;ii++)
       k1=func(p2)-fx;            for (j=1;j<=nlstate+ndeath;j++){
       p2[theta]=x[theta]-delt;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       k2=func(p2)-fx;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*res= (k1-2.0*fx+k2)/delt/delt; */            }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
 #ifdef DEBUG            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            for (kk=1; kk<=cptcovage;kk++) {
 #endif              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         k=kmax;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            oldm=newm;
         k=kmax; l=lmax*10.;          } /* end mult */
       }        
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         delts=delt;          /* But now since version 0.9 we anticipate for bias and large stepm.
       }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   delti[theta]=delts;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   return res;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
 }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
 double hessij( double x[], double delti[], int thetai,int thetaj)           * For stepm=1 the results are the same as for previous versions of Imach.
 {           * For stepm > 1 the results are less biased than in previous versions. 
   int i;           */
   int l=1, l1, lmax=20;          s1=s[mw[mi][i]][i];
   double k1,k2,k3,k4,res,fx;          s2=s[mw[mi+1][i]][i];
   double p2[NPARMAX+1];          bbh=(double)bh[mi][i]/(double)stepm; 
   int k;          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   fx=func(x);           */
   for (k=1; k<=2; k++) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for (i=1;i<=npar;i++) p2[i]=x[i];          if( s2 > nlstate){ 
     p2[thetai]=x[thetai]+delti[thetai]/k;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;               to the likelihood is the probability to die between last step unit time and current 
     k1=func(p2)-fx;               step unit time, which is also the differences between probability to die before dh 
                 and probability to die before dh-stepm . 
     p2[thetai]=x[thetai]+delti[thetai]/k;               In version up to 0.92 likelihood was computed
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          as if date of death was unknown. Death was treated as any other
     k2=func(p2)-fx;          health state: the date of the interview describes the actual state
            and not the date of a change in health state. The former idea was
     p2[thetai]=x[thetai]-delti[thetai]/k;          to consider that at each interview the state was recorded
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          (healthy, disable or death) and IMaCh was corrected; but when we
     k3=func(p2)-fx;          introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
     p2[thetai]=x[thetai]-delti[thetai]/k;          contribution is smaller and very dependent of the step unit
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          stepm. It is no more the probability to die between last interview
     k4=func(p2)-fx;          and month of death but the probability to survive from last
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          interview up to one month before death multiplied by the
 #ifdef DEBUG          probability to die within a month. Thanks to Chris
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          Jackson for correcting this bug.  Former versions increased
 #endif          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
   return res;          lower mortality.
 }            */
             lli=log(out[s1][s2] - savm[s1][s2]);
 /************** Inverse of matrix **************/          }else{
 void ludcmp(double **a, int n, int *indx, double *d)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   int i,imax,j,k;          } 
   double big,dum,sum,temp;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double *vv;          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   vv=vector(1,n);          ipmx +=1;
   *d=1.0;          sw += weight[i];
   for (i=1;i<=n;i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     big=0.0;        } /* end of wave */
     for (j=1;j<=n;j++)      } /* end of individual */
       if ((temp=fabs(a[i][j])) > big) big=temp;    }  else if(mle==2){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     vv[i]=1.0/big;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   for (j=1;j<=n;j++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<j;i++) {            for (j=1;j<=nlstate+ndeath;j++){
       sum=a[i][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       a[i][j]=sum;            }
     }          for(d=0; d<=dh[mi][i]; d++){
     big=0.0;            newm=savm;
     for (i=j;i<=n;i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       sum=a[i][j];            for (kk=1; kk<=cptcovage;kk++) {
       for (k=1;k<j;k++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         sum -= a[i][k]*a[k][j];            }
       a[i][j]=sum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if ( (dum=vv[i]*fabs(sum)) >= big) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         big=dum;            savm=oldm;
         imax=i;            oldm=newm;
       }          } /* end mult */
     }        
     if (j != imax) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (k=1;k<=n;k++) {          /* But now since version 0.9 we anticipate for bias and large stepm.
         dum=a[imax][k];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         a[imax][k]=a[j][k];           * (in months) between two waves is not a multiple of stepm, we rounded to 
         a[j][k]=dum;           * the nearest (and in case of equal distance, to the lowest) interval but now
       }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       *d = -(*d);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       vv[imax]=vv[j];           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     indx[j]=imax;           * -stepm/2 to stepm/2 .
     if (a[j][j] == 0.0) a[j][j]=TINY;           * For stepm=1 the results are the same as for previous versions of Imach.
     if (j != n) {           * For stepm > 1 the results are less biased than in previous versions. 
       dum=1.0/(a[j][j]);           */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   free_vector(vv,1,n);  /* Doesn't work */          /* bias is positive if real duration
 ;           * is higher than the multiple of stepm and negative otherwise.
 }           */
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 void lubksb(double **a, int n, int *indx, double b[])          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 {          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   int i,ii=0,ip,j;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double sum;          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (i=1;i<=n;i++) {          ipmx +=1;
     ip=indx[i];          sw += weight[i];
     sum=b[ip];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     b[ip]=b[i];        } /* end of wave */
     if (ii)      } /* end of individual */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    }  else if(mle==3){  /* exponential inter-extrapolation */
     else if (sum) ii=i;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     b[i]=sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   for (i=n;i>=1;i--) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     sum=b[i];            for (j=1;j<=nlstate+ndeath;j++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum/a[i][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /************ Frequencies ********************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            for (kk=1; kk<=cptcovage;kk++) {
 {  /* Some frequencies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***freq; /* Frequencies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *pp;            savm=oldm;
   double pos, k2, dateintsum=0,k2cpt=0;            oldm=newm;
   FILE *ficresp;          } /* end mult */
   char fileresp[FILENAMELENGTH];        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   pp=vector(1,nlstate);          /* But now since version 0.9 we anticipate for bias and large stepm.
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   strcpy(fileresp,"p");           * (in months) between two waves is not a multiple of stepm, we rounded to 
   strcat(fileresp,fileres);           * the nearest (and in case of equal distance, to the lowest) interval but now
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     exit(0);           * probability in order to take into account the bias as a fraction of the way
   }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * -stepm/2 to stepm/2 .
   j1=0;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   j=cptcoveff;           */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   for(k1=1; k1<=j;k1++){          bbh=(double)bh[mi][i]/(double)stepm; 
     for(i1=1; i1<=ncodemax[k1];i1++){          /* bias is positive if real duration
       j1++;           * is higher than the multiple of stepm and negative otherwise.
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           */
         scanf("%d", i);*/          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
       for (i=-1; i<=nlstate+ndeath; i++)            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for (jk=-1; jk<=nlstate+ndeath; jk++)            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(m=agemin; m <= agemax+3; m++)          /*if(lli ==000.0)*/
             freq[i][jk][m]=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                ipmx +=1;
       dateintsum=0;          sw += weight[i];
       k2cpt=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (i=1; i<=imx; i++) {        } /* end of wave */
         bool=1;      } /* end of individual */
         if  (cptcovn>0) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           for (z1=1; z1<=cptcoveff; z1++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               bool=0;        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         if (bool==1) {            for (j=1;j<=nlstate+ndeath;j++){
           for(m=firstpass; m<=lastpass; m++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             k2=anint[m][i]+(mint[m][i]/12.);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            }
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for(d=0; d<dh[mi][i]; d++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;            newm=savm;
               if (m<lastpass) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (kk=1; kk<=cptcovage;kk++) {
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               }            }
                        
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 dateintsum=dateintsum+k2;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 k2cpt++;            savm=oldm;
               }            oldm=newm;
             }          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
                  if( s2 > nlstate){ 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
       if  (cptcovn>0) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         fprintf(ficresp, "\n#********** Variable ");          }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          ipmx +=1;
         fprintf(ficresp, "**********\n#");          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=nlstate;i++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        } /* end of wave */
       fprintf(ficresp, "\n");      } /* end of individual */
          }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for(i=(int)agemin; i <= (int)agemax+3; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if(i==(int)agemax+3)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           printf("Total");        for(mi=1; mi<= wav[i]-1; mi++){
         else          for (ii=1;ii<=nlstate+ndeath;ii++)
           printf("Age %d", i);            for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];            }
         }          for(d=0; d<dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){            newm=savm;
           for(m=-1, pos=0; m <=0 ; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pos += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
           if(pp[jk]>=1.e-10)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            }
           else          
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          } /* end mult */
             pp[jk] += freq[jk][m][i];        
         }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
         for(jk=1,pos=0; jk <=nlstate ; jk++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           pos += pp[jk];          ipmx +=1;
         for(jk=1; jk <=nlstate ; jk++){          sw += weight[i];
           if(pos>=1.e-5)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           else        } /* end of wave */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      } /* end of individual */
           if( i <= (int) agemax){    } /* End of if */
             if(pos>=1.e-5){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               probs[i][jk][j1]= pp[jk]/pos;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    return -l;
             }  }
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*************** log-likelihood *************/
           }  double funcone( double *x)
         }  {
            int i, ii, j, k, mi, d, kk;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           for(m=-1; m <=nlstate+ndeath; m++)    double **out;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double lli; /* Individual log likelihood */
         if(i <= (int) agemax)    int s1, s2;
           fprintf(ficresp,"\n");    double bbh, survp;
         printf("\n");    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   dateintmean=dateintsum/k2cpt;      printf(" %d\n",s[4][i]);
      */
   fclose(ficresp);    cov[1]=1.;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   /* End of Freq */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
 /************ Prevalence ********************/        for (ii=1;ii<=nlstate+ndeath;ii++)
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          for (j=1;j<=nlstate+ndeath;j++){
 {  /* Some frequencies */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          }
   double ***freq; /* Frequencies */        for(d=0; d<dh[mi][i]; d++){
   double *pp;          newm=savm;
   double pos, k2;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
   pp=vector(1,nlstate);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;          savm=oldm;
            oldm=newm;
   j=cptcoveff;        } /* end mult */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        
          s1=s[mw[mi][i]][i];
  for(k1=1; k1<=j;k1++){        s2=s[mw[mi+1][i]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){        bbh=(double)bh[mi][i]/(double)stepm; 
       j1++;        /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
       for (i=-1; i<=nlstate+ndeath; i++)           */
         for (jk=-1; jk<=nlstate+ndeath; jk++)          if( s2 > nlstate && (mle <5) ){  /* Jackson */
           for(m=agemin; m <= agemax+3; m++)          lli=log(out[s1][s2] - savm[s1][s2]);
             freq[i][jk][m]=0;        } else if (mle==1){
                lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for (i=1; i<=imx; i++) {        } else if(mle==2){
         bool=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         if  (cptcovn>0) {        } else if(mle==3){  /* exponential inter-extrapolation */
           for (z1=1; z1<=cptcoveff; z1++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        } else if (mle==4){  /* mle=4 no inter-extrapolation */
               bool=0;          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         if (bool==1) {          lli=log(out[s1][s2]); /* Original formula */
           for(m=firstpass; m<=lastpass; m++){        } /* End of if */
             k2=anint[m][i]+(mint[m][i]/12.);        ipmx +=1;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        sw += weight[i];
               if(agev[m][i]==0) agev[m][i]=agemax+1;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        if(globpr){
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */          fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
             }   %10.6f %10.6f %10.6f ", \
           }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       }          for(k=1,l=0.; k<=nlstate; k++) 
         for(i=(int)agemin; i <= (int)agemax+3; i++){            fprintf(ficresilk," %10.6f",ll[k]);
           for(jk=1; jk <=nlstate ; jk++){          fprintf(ficresilk,"\n");
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        }
               pp[jk] += freq[jk][m][i];      } /* end of wave */
           }    } /* end of individual */
           for(jk=1; jk <=nlstate ; jk++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             for(m=-1, pos=0; m <=0 ; m++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             pos += freq[jk][m][i];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         }    return -l;
          }
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
              pp[jk] += freq[jk][m][i];  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
          }  {
              /* This routine should help understanding what is done with the selection of individuals/waves and
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];       to check the exact contribution to the likelihood.
        Plotting could be done.
          for(jk=1; jk <=nlstate ; jk++){               */
            if( i <= (int) agemax){    int k;
              if(pos>=1.e-5){    if(globpr !=0){ /* Just counts and sums no printings */
                probs[i][jk][j1]= pp[jk]/pos;      strcpy(fileresilk,"ilk"); 
              }      strcat(fileresilk,fileres);
            }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          }        printf("Problem with resultfile: %s\n", fileresilk);
                  fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }      }
     }      fprintf(ficresilk, "#individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state\n");
   }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        fprintf(ficresilk," ll[%d]",k);
   free_vector(pp,1,nlstate);      fprintf(ficresilk,"\n");
      }
 }  /* End of Freq */  
     *fretone=(*funcone)(p);
 /************* Waves Concatenation ***************/    if(globpr !=0){
       fclose(ficresilk);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
 {        printf("Problem with html file: %s\n", optionfilehtm);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
      Death is a valid wave (if date is known).        exit(0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      else{
      and mw[mi+1][i]. dh depends on stepm.        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk);
      */        fclose(fichtm);
       }
   int i, mi, m;    }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    return;
      double sum=0., jmean=0.;*/  }
   
   int j, k=0,jk, ju, jl;  /*********** Maximum Likelihood Estimation ***************/
   double sum=0.;  
   jmin=1e+5;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   jmax=-1;  {
   jmean=0.;    int i,j, iter;
   for(i=1; i<=imx; i++){    double **xi;
     mi=0;    double fret;
     m=firstpass;    double fretone; /* Only one call to likelihood */
     while(s[m][i] <= nlstate){    char filerespow[FILENAMELENGTH];
       if(s[m][i]>=1)    xi=matrix(1,npar,1,npar);
         mw[++mi][i]=m;    for (i=1;i<=npar;i++)
       if(m >=lastpass)      for (j=1;j<=npar;j++)
         break;        xi[i][j]=(i==j ? 1.0 : 0.0);
       else    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         m++;    strcpy(filerespow,"pow"); 
     }/* end while */    strcat(filerespow,fileres);
     if (s[m][i] > nlstate){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       mi++;     /* Death is another wave */      printf("Problem with resultfile: %s\n", filerespow);
       /* if(mi==0)  never been interviewed correctly before death */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
          /* Only death is a correct wave */    }
       mw[mi][i]=m;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     }    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
     wav[i]=mi;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     if(mi==0)    fprintf(ficrespow,"\n");
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }    powell(p,xi,npar,ftol,&iter,&fret,func);
   
   for(i=1; i<=imx; i++){    fclose(ficrespow);
     for(mi=1; mi<wav[i];mi++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       if (stepm <=0)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         dh[mi][i]=1;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {  }
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  /**** Computes Hessian and covariance matrix ***/
           if(j==0) j=1;  /* Survives at least one month after exam */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           k=k+1;  {
           if (j >= jmax) jmax=j;    double  **a,**y,*x,pd;
           if (j <= jmin) jmin=j;    double **hess;
           sum=sum+j;    int i, j,jk;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    int *indx;
           }  
         }    double hessii(double p[], double delta, int theta, double delti[]);
         else{    double hessij(double p[], double delti[], int i, int j);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    void lubksb(double **a, int npar, int *indx, double b[]) ;
           k=k+1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;    hess=matrix(1,npar,1,npar);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  
           sum=sum+j;    printf("\nCalculation of the hessian matrix. Wait...\n");
         }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         jk= j/stepm;    for (i=1;i<=npar;i++){
         jl= j -jk*stepm;      printf("%d",i);fflush(stdout);
         ju= j -(jk+1)*stepm;      fprintf(ficlog,"%d",i);fflush(ficlog);
         if(jl <= -ju)      hess[i][i]=hessii(p,ftolhess,i,delti);
           dh[mi][i]=jk;      /*printf(" %f ",p[i]);*/
         else      /*printf(" %lf ",hess[i][i]);*/
           dh[mi][i]=jk+1;    }
         if(dh[mi][i]==0)    
           dh[mi][i]=1; /* At least one step */    for (i=1;i<=npar;i++) {
       }      for (j=1;j<=npar;j++)  {
     }        if (j>i) { 
   }          printf(".%d%d",i,j);fflush(stdout);
   jmean=sum/k;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          hess[i][j]=hessij(p,delti,i,j);
  }          hess[j][i]=hess[i][j];    
 /*********** Tricode ****************************/          /*printf(" %lf ",hess[i][j]);*/
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {      }
   int Ndum[20],ij=1, k, j, i;    }
   int cptcode=0;    printf("\n");
   cptcoveff=0;    fprintf(ficlog,"\n");
    
   for (k=0; k<19; k++) Ndum[k]=0;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (k=1; k<=7; k++) ncodemax[k]=0;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    a=matrix(1,npar,1,npar);
     for (i=1; i<=imx; i++) {    y=matrix(1,npar,1,npar);
       ij=(int)(covar[Tvar[j]][i]);    x=vector(1,npar);
       Ndum[ij]++;    indx=ivector(1,npar);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    for (i=1;i<=npar;i++)
       if (ij > cptcode) cptcode=ij;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     }    ludcmp(a,npar,indx,&pd);
   
     for (i=0; i<=cptcode; i++) {    for (j=1;j<=npar;j++) {
       if(Ndum[i]!=0) ncodemax[j]++;      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
     ij=1;      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     for (i=1; i<=ncodemax[j]; i++) {      }
       for (k=0; k<=19; k++) {    }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;    printf("\n#Hessian matrix#\n");
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/    fprintf(ficlog,"\n#Hessian matrix#\n");
           ij++;    for (i=1;i<=npar;i++) { 
         }      for (j=1;j<=npar;j++) { 
         if (ij > ncodemax[j]) break;        printf("%.3e ",hess[i][j]);
       }          fprintf(ficlog,"%.3e ",hess[i][j]);
     }      }
   }        printf("\n");
       fprintf(ficlog,"\n");
  for (k=0; k<19; k++) Ndum[k]=0;    }
   
  for (i=1; i<=ncovmodel-2; i++) {    /* Recompute Inverse */
       ij=Tvar[i];    for (i=1;i<=npar;i++)
       Ndum[ij]++;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     }    ludcmp(a,npar,indx,&pd);
   
  ij=1;    /*  printf("\n#Hessian matrix recomputed#\n");
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){    for (j=1;j<=npar;j++) {
      Tvaraff[ij]=i;      for (i=1;i<=npar;i++) x[i]=0;
      ij++;      x[j]=1;
    }      lubksb(a,npar,indx,x);
  }      for (i=1;i<=npar;i++){ 
          y[i][j]=x[i];
     cptcoveff=ij-1;        printf("%.3e ",y[i][j]);
 }        fprintf(ficlog,"%.3e ",y[i][j]);
       }
 /*********** Health Expectancies ****************/      printf("\n");
       fprintf(ficlog,"\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    }
 {    */
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k;    free_matrix(a,1,npar,1,npar);
   double age, agelim, hf;    free_matrix(y,1,npar,1,npar);
   double ***p3mat;    free_vector(x,1,npar);
      free_ivector(indx,1,npar);
   fprintf(ficreseij,"# Health expectancies\n");    free_matrix(hess,1,npar,1,npar);
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficreseij," %1d-%1d",i,j);  
   fprintf(ficreseij,"\n");  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
   k=1;             /* For example stepm=6 months */  {
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */    int i;
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */    int l=1, lmax=20;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double k1,k2;
      nhstepm is the number of hstepm from age to agelim    double p2[NPARMAX+1];
      nstepm is the number of stepm from age to agelin.    double res;
      Look at hpijx to understand the reason of that which relies in memory size    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      and note for a fixed period like k years */    double fx;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int k=0,kmax=10;
      survival function given by stepm (the optimization length). Unfortunately it    double l1;
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    fx=func(x);
      results. So we changed our mind and took the option of the best precision.    for (i=1;i<=npar;i++) p2[i]=x[i];
   */    for(l=0 ; l <=lmax; l++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */      l1=pow(10,l);
       delts=delt;
   agelim=AGESUP;      for(k=1 ; k <kmax; k=k+1){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        delt = delta*(l1*k);
     /* nhstepm age range expressed in number of stepm */        p2[theta]=x[theta] +delt;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        k1=func(p2)-fx;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        p2[theta]=x[theta]-delt;
     /* if (stepm >= YEARM) hstepm=1;*/        k2=func(p2)-fx;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        /*res= (k1-2.0*fx+k2)/delt/delt; */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  #ifdef DEBUG
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1; i<=nlstate;i++)  #endif
       for(j=1; j<=nlstate;j++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          k=kmax;
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        }
         }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     fprintf(ficreseij,"%3.0f",age );          k=kmax; l=lmax*10.;
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);          delts=delt;
       }        }
     fprintf(ficreseij,"\n");      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   }    delti[theta]=delts;
 }    return res; 
     
 /************ Variance ******************/  }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  double hessij( double x[], double delti[], int thetai,int thetaj)
   /* Variance of health expectancies */  {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i;
   double **newm;    int l=1, l1, lmax=20;
   double **dnewm,**doldm;    double k1,k2,k3,k4,res,fx;
   int i, j, nhstepm, hstepm, h, nstepm, kk;    double p2[NPARMAX+1];
   int k, cptcode;    int k;
   double *xp;  
   double **gp, **gm;    fx=func(x);
   double ***gradg, ***trgradg;    for (k=1; k<=2; k++) {
   double ***p3mat;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double age,agelim, hf;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
    fprintf(ficresvij,"# Covariances of life expectancies\n");    
   fprintf(ficresvij,"# Age");      p2[thetai]=x[thetai]+delti[thetai]/k;
   for(i=1; i<=nlstate;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(j=1; j<=nlstate;j++)      k2=func(p2)-fx;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    
   fprintf(ficresvij,"\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   xp=vector(1,npar);      k3=func(p2)-fx;
   dnewm=matrix(1,nlstate,1,npar);    
   doldm=matrix(1,nlstate,1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   kk=1;             /* For example stepm=6 months */      k4=func(p2)-fx;
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */  #ifdef DEBUG
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      nhstepm is the number of hstepm from age to agelim      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      nstepm is the number of stepm from age to agelin.  #endif
      Look at hpijx to understand the reason of that which relies in memory size    }
      and note for a fixed period like k years */    return res;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  }
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  /************** Inverse of matrix **************/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  void ludcmp(double **a, int n, int *indx, double *d) 
      results. So we changed our mind and took the option of the best precision.  { 
   */    int i,imax,j,k; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */    double big,dum,sum,temp; 
   agelim = AGESUP;    double *vv; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */   
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    vv=vector(1,n); 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    *d=1.0; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=n;i++) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      big=0.0; 
     gp=matrix(0,nhstepm,1,nlstate);      for (j=1;j<=n;j++) 
     gm=matrix(0,nhstepm,1,nlstate);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     for(theta=1; theta <=npar; theta++){      vv[i]=1.0/big; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (j=1;j<=n;j++) { 
       }      for (i=1;i<j;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          sum=a[i][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
       if (popbased==1) {      } 
         for(i=1; i<=nlstate;i++)      big=0.0; 
           prlim[i][i]=probs[(int)age][i][ij];      for (i=j;i<=n;i++) { 
       }        sum=a[i][j]; 
          for (k=1;k<j;k++) 
       for(j=1; j<= nlstate; j++){          sum -= a[i][k]*a[k][j]; 
         for(h=0; h<=nhstepm; h++){        a[i][j]=sum; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          big=dum; 
         }          imax=i; 
       }        } 
          } 
       for(i=1; i<=npar; i++) /* Computes gradient */      if (j != imax) { 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (k=1;k<=n;k++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            dum=a[imax][k]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
       if (popbased==1) {        } 
         for(i=1; i<=nlstate;i++)        *d = -(*d); 
           prlim[i][i]=probs[(int)age][i][ij];        vv[imax]=vv[j]; 
       }      } 
       indx[j]=imax; 
       for(j=1; j<= nlstate; j++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
         for(h=0; h<=nhstepm; h++){      if (j != n) { 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        dum=1.0/(a[j][j]); 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         }      } 
       }    } 
     free_vector(vv,1,n);  /* Doesn't work */
       for(j=1; j<= nlstate; j++)  ;
         for(h=0; h<=nhstepm; h++){  } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  void lubksb(double **a, int n, int *indx, double b[]) 
     } /* End theta */  { 
     int i,ii=0,ip,j; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double sum; 
    
     for(h=0; h<=nhstepm; h++)    for (i=1;i<=n;i++) { 
       for(j=1; j<=nlstate;j++)      ip=indx[i]; 
         for(theta=1; theta <=npar; theta++)      sum=b[ip]; 
           trgradg[h][j][theta]=gradg[h][theta][j];      b[ip]=b[i]; 
       if (ii) 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     for(i=1;i<=nlstate;i++)      else if (sum) ii=i; 
       for(j=1;j<=nlstate;j++)      b[i]=sum; 
         vareij[i][j][(int)age] =0.;    } 
     for (i=n;i>=1;i--) { 
     for(h=0;h<=nhstepm;h++){      sum=b[i]; 
       for(k=0;k<=nhstepm;k++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      b[i]=sum/a[i][i]; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    } 
         for(i=1;i<=nlstate;i++)  } 
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  /************ Frequencies ********************/
       }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     }  {  /* Some frequencies */
     
     fprintf(ficresvij,"%.0f ",age );    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     for(i=1; i<=nlstate;i++)    int first;
       for(j=1; j<=nlstate;j++){    double ***freq; /* Frequencies */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    double *pp, **prop;
       }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     fprintf(ficresvij,"\n");    FILE *ficresp;
     free_matrix(gp,0,nhstepm,1,nlstate);    char fileresp[FILENAMELENGTH];
     free_matrix(gm,0,nhstepm,1,nlstate);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    pp=vector(1,nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcpy(fileresp,"p");
   } /* End age */    strcat(fileresp,fileres);
      if((ficresp=fopen(fileresp,"w"))==NULL) {
   free_vector(xp,1,npar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   free_matrix(dnewm,1,nlstate,1,nlstate);      exit(0);
     }
 }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
 /************ Variance of prevlim ******************/    
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    j=cptcoveff;
 {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    first=1;
   double **newm;  
   double **dnewm,**doldm;    for(k1=1; k1<=j;k1++){
   int i, j, nhstepm, hstepm;      for(i1=1; i1<=ncodemax[k1];i1++){
   int k, cptcode;        j1++;
   double *xp;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double *gp, *gm;          scanf("%d", i);*/
   double **gradg, **trgradg;        for (i=-1; i<=nlstate+ndeath; i++)  
   double age,agelim;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   int theta;            for(m=iagemin; m <= iagemax+3; m++)
                  freq[i][jk][m]=0;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");      for (i=1; i<=nlstate; i++)  
   for(i=1; i<=nlstate;i++)        for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficresvpl," %1d-%1d",i,i);          prop[i][m]=0;
   fprintf(ficresvpl,"\n");        
         dateintsum=0;
   xp=vector(1,npar);        k2cpt=0;
   dnewm=matrix(1,nlstate,1,npar);        for (i=1; i<=imx; i++) {
   doldm=matrix(1,nlstate,1,nlstate);          bool=1;
            if  (cptcovn>0) {
   hstepm=1*YEARM; /* Every year of age */            for (z1=1; z1<=cptcoveff; z1++) 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   agelim = AGESUP;                bool=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          if (bool==1){
     if (stepm >= YEARM) hstepm=1;            for(m=firstpass; m<=lastpass; m++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              k2=anint[m][i]+(mint[m][i]/12.);
     gradg=matrix(1,npar,1,nlstate);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     gp=vector(1,nlstate);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     gm=vector(1,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(theta=1; theta <=npar; theta++){                if (m<lastpass) {
       for(i=1; i<=npar; i++){ /* Computes gradient */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       }                }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                
       for(i=1;i<=nlstate;i++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         gp[i] = prlim[i][i];                  dateintsum=dateintsum+k2;
                      k2cpt++;
       for(i=1; i<=npar; i++) /* Computes gradient */                }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                /*}*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(i=1;i<=nlstate;i++)          }
         gm[i] = prlim[i][i];        }
          
       for(i=1;i<=nlstate;i++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
     trgradg =matrix(1,nlstate,1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
     for(j=1; j<=nlstate;j++)        }
       for(theta=1; theta <=npar; theta++)        for(i=1; i<=nlstate;i++) 
         trgradg[j][theta]=gradg[theta][j];          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
     for(i=1;i<=nlstate;i++)        
       varpl[i][(int)age] =0.;        for(i=iagemin; i <= iagemax+3; i++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          if(i==iagemax+3){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            fprintf(ficlog,"Total");
     for(i=1;i<=nlstate;i++)          }else{
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            if(first==1){
               first=0;
     fprintf(ficresvpl,"%.0f ",age );              printf("See log file for details...\n");
     for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            fprintf(ficlog,"Age %d", i);
     fprintf(ficresvpl,"\n");          }
     free_vector(gp,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     free_vector(gm,1,nlstate);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     free_matrix(gradg,1,npar,1,nlstate);              pp[jk] += freq[jk][m][i]; 
     free_matrix(trgradg,1,nlstate,1,npar);          }
   } /* End age */          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   free_vector(xp,1,npar);              pos += freq[jk][m][i];
   free_matrix(doldm,1,nlstate,1,npar);            if(pp[jk]>=1.e-10){
   free_matrix(dnewm,1,nlstate,1,nlstate);              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 }              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 /************ Variance of one-step probabilities  ******************/            }else{
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)              if(first==1)
 {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, j;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int k=0, cptcode;            }
   double **dnewm,**doldm;          }
   double *xp;  
   double *gp, *gm;          for(jk=1; jk <=nlstate ; jk++){
   double **gradg, **trgradg;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double age,agelim, cov[NCOVMAX];              pp[jk] += freq[jk][m][i];
   int theta;          }       
   char fileresprob[FILENAMELENGTH];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
   strcpy(fileresprob,"prob");            posprop += prop[jk][i];
   strcat(fileresprob,fileres);          }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          for(jk=1; jk <=nlstate ; jk++){
     printf("Problem with resultfile: %s\n", fileresprob);            if(pos>=1.e-5){
   }              if(first==1)
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
   xp=vector(1,npar);              if(first==1)
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
              }
   cov[1]=1;            if( i <= iagemax){
   for (age=bage; age<=fage; age ++){              if(pos>=1.e-5){
     cov[2]=age;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     gradg=matrix(1,npar,1,9);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     trgradg=matrix(1,9,1,npar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              }
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              else
                    fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++)          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          
                for(jk=-1; jk <=nlstate+ndeath; jk++)
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            for(m=-1; m <=nlstate+ndeath; m++)
                  if(freq[jk][m][i] !=0 ) {
       k=0;              if(first==1)
       for(i=1; i<= (nlstate+ndeath); i++){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         for(j=1; j<=(nlstate+ndeath);j++){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
            k=k+1;              }
           gp[k]=pmmij[i][j];          if(i <= iagemax)
         }            fprintf(ficresp,"\n");
       }          if(first==1)
             printf("Others in log...\n");
       for(i=1; i<=npar; i++)          fprintf(ficlog,"\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
          }
     }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    dateintmean=dateintsum/k2cpt; 
       k=0;   
       for(i=1; i<=(nlstate+ndeath); i++){    fclose(ficresp);
         for(j=1; j<=(nlstate+ndeath);j++){    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
           k=k+1;    free_vector(pp,1,nlstate);
           gm[k]=pmmij[i][j];    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         }    /* End of Freq */
       }  }
        
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  /************ Prevalence ********************/
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     }  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)       in each health status at the date of interview (if between dateprev1 and dateprev2).
       for(theta=1; theta <=npar; theta++)       We still use firstpass and lastpass as another selection.
       trgradg[j][theta]=gradg[theta][j];    */
     
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    double ***freq; /* Frequencies */
     double *pp, **prop;
      pmij(pmmij,cov,ncovmodel,x,nlstate);    double pos,posprop; 
     double  y2; /* in fractional years */
      k=0;    int iagemin, iagemax;
      for(i=1; i<=(nlstate+ndeath); i++){  
        for(j=1; j<=(nlstate+ndeath);j++){    iagemin= (int) agemin;
          k=k+1;    iagemax= (int) agemax;
          gm[k]=pmmij[i][j];    /*pp=vector(1,nlstate);*/
         }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
          j1=0;
      /*printf("\n%d ",(int)age);    
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    j=cptcoveff;
            if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    for(k1=1; k1<=j;k1++){
      }*/      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   fprintf(ficresprob,"\n%d ",(int)age);        
         for (i=1; i<=nlstate; i++)  
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          for(m=iagemin; m <= iagemax+3; m++)
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            prop[i][m]=0.0;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);       
   }        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          if  (cptcovn>0) {
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            for (z1=1; z1<=cptcoveff; z1++) 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                bool=0;
 }          } 
  free_vector(xp,1,npar);          if (bool==1) { 
 fclose(ficresprob);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
 /******************* Printing html file ***********/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  int lastpass, int stepm, int weightopt, char model[],\                if (s[m][i]>0 && s[m][i]<=nlstate) { 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
  char version[], int popforecast ){                  prop[s[m][i]][iagemax+3] += weight[i]; 
   int jj1, k1, i1, cpt;                } 
   FILE *fichtm;              }
   /*char optionfilehtm[FILENAMELENGTH];*/            } /* end selection of waves */
           }
   strcpy(optionfilehtm,optionfile);        }
   strcat(optionfilehtm,".htm");        for(i=iagemin; i <= iagemax+3; i++){  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          
     printf("Problem with %s \n",optionfilehtm), exit(0);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   }            posprop += prop[jk][i]; 
           } 
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          for(jk=1; jk <=nlstate ; jk++){     
 \n            if( i <=  iagemax){ 
 Total number of observations=%d <br>\n              if(posprop>=1.e-5){ 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                probs[i][jk][j1]= prop[jk][i]/posprop;
 <hr  size=\"2\" color=\"#EC5E5E\">              } 
  <ul><li>Outputs files<br>\n            } 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          }/* end jk */ 
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n        }/* end i */ 
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      } /* end i1 */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    } /* end k1 */
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
  fprintf(fichtm,"\n    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  }  /* End of prevalence */
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  /************* Waves Concatenation ***************/
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  if(popforecast==1) fprintf(fichtm,"\n  {
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n       Death is a valid wave (if date is known).
         <br>",fileres,fileres,fileres,fileres);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  else       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);       and mw[mi+1][i]. dh depends on stepm.
 fprintf(fichtm," <li>Graphs</li><p>");       */
   
  m=cptcoveff;    int i, mi, m;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
  jj1=0;    int first;
  for(k1=1; k1<=m;k1++){    int j, k=0,jk, ju, jl;
    for(i1=1; i1<=ncodemax[k1];i1++){    double sum=0.;
        jj1++;    first=0;
        if (cptcovn > 0) {    jmin=1e+5;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    jmax=-1;
          for (cpt=1; cpt<=cptcoveff;cpt++)    jmean=0.;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    for(i=1; i<=imx; i++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      mi=0;
        }      m=firstpass;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      while(s[m][i] <= nlstate){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            if(s[m][i]>=1)
        for(cpt=1; cpt<nlstate;cpt++){          mw[++mi][i]=m;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        if(m >=lastpass)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          break;
        }        else
     for(cpt=1; cpt<=nlstate;cpt++) {          m++;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      }/* end while */
 interval) in state (%d): v%s%d%d.gif <br>      if (s[m][i] > nlstate){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          mi++;     /* Death is another wave */
      }        /* if(mi==0)  never been interviewed correctly before death */
      for(cpt=1; cpt<=nlstate;cpt++) {           /* Only death is a correct wave */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        mw[mi][i]=m;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      wav[i]=mi;
 health expectancies in states (1) and (2): e%s%d.gif<br>      if(mi==0){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        if(first==0){
 fprintf(fichtm,"\n</body>");          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    }          first=1;
    }        }
 fclose(fichtm);        if(first==1){
 }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
 /******************* Gnuplot file **************/      } /* end mi==0 */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    } /* End individuals */
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
   strcpy(optionfilegnuplot,optionfilefiname);        if (stepm <=0)
   strcat(optionfilegnuplot,".gp.txt");          dh[mi][i]=1;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        else{
     printf("Problem with file %s",optionfilegnuplot);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 #ifdef windows              if(j==0) j=1;  /* Survives at least one month after exam */
     fprintf(ficgp,"cd \"%s\" \n",pathc);              else if(j<0){
 #endif                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 m=pow(2,cptcoveff);                j=1; /* Careful Patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  /* 1eme*/                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for (cpt=1; cpt<= nlstate ; cpt ++) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
    for (k1=1; k1<= m ; k1 ++) {              }
               k=k+1;
 #ifdef windows              if (j >= jmax) jmax=j;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              if (j <= jmin) jmin=j;
 #endif              sum=sum+j;
 #ifdef unix              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 #endif            }
           }
 for (i=1; i<= nlstate ; i ++) {          else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }            k=k+1;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            if (j >= jmax) jmax=j;
     for (i=1; i<= nlstate ; i ++) {            else if (j <= jmin)jmin=j;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 }            if(j<0){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for (i=1; i<= nlstate ; i ++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            sum=sum+j;
 }            }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          jk= j/stepm;
 #ifdef unix          jl= j -jk*stepm;
 fprintf(ficgp,"\nset ter gif small size 400,300");          ju= j -(jk+1)*stepm;
 #endif          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            if(jl==0){
    }              dh[mi][i]=jk;
   }              bh[mi][i]=0;
   /*2 eme*/            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk+1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              bh[mi][i]=ju;
                }
     for (i=1; i<= nlstate+1 ; i ++) {          }else{
       k=2*i;            if(jl <= -ju){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              dh[mi][i]=jk;
       for (j=1; j<= nlstate+1 ; j ++) {              bh[mi][i]=jl;       /* bias is positive if real duration
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                                   * is higher than the multiple of stepm and negative otherwise.
   else fprintf(ficgp," \%%*lf (\%%*lf)");                                   */
 }              }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            else{
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              dh[mi][i]=jk+1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=ju;
       for (j=1; j<= nlstate+1 ; j ++) {            }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            if(dh[mi][i]==0){
         else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=1; /* At least one step */
 }                bh[mi][i]=ju; /* At least one step */
       fprintf(ficgp,"\" t\"\" w l 0,");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          } /* end if mle */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } /* end wave */
 }      }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    jmean=sum/k;
       else fprintf(ficgp,"\" t\"\" w l 0,");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);   }
   }  
    /*********** Tricode ****************************/
   /*3eme*/  void tricode(int *Tvar, int **nbcode, int imx)
   {
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
       k=2+nlstate*(cpt-1);    int cptcode=0;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    cptcoveff=0; 
       for (i=1; i< nlstate ; i ++) {   
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
       }    for (k=1; k<=7; k++) ncodemax[k]=0;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                   modality*/ 
   /* CV preval stat */        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     for (k1=1; k1<= m ; k1 ++) {        Ndum[ij]++; /*store the modality */
     for (cpt=1; cpt<nlstate ; cpt ++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       k=3;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
       for (i=1; i< nlstate ; i ++)      }
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      for (i=0; i<=cptcode; i++) {
              if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       l=3+(nlstate+ndeath)*cpt;      }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {      ij=1; 
         l=3+(nlstate+ndeath)*cpt;      for (i=1; i<=ncodemax[j]; i++) {
         fprintf(ficgp,"+$%d",l+i+1);        for (k=0; k<= maxncov; k++) {
       }          if (Ndum[k] != 0) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              nbcode[Tvar[j]][ij]=k; 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     }            
   }              ij++;
            }
   /* proba elementaires */          if (ij > ncodemax[j]) break; 
    for(i=1,jk=1; i <=nlstate; i++){        }  
     for(k=1; k <=(nlstate+ndeath); k++){      } 
       if (k != i) {    }  
         for(j=1; j <=ncovmodel; j++){  
           for (k=0; k< maxncov; k++) Ndum[k]=0;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;   for (i=1; i<=ncovmodel-2; i++) { 
           fprintf(ficgp,"\n");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         }     ij=Tvar[i];
       }     Ndum[ij]++;
     }   }
     }  
    ij=1;
     for(jk=1; jk <=m; jk++) {   for (i=1; i<= maxncov; i++) {
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);     if((Ndum[i]!=0) && (i<=ncovcol)){
    i=1;       Tvaraff[ij]=i; /*For printing */
    for(k2=1; k2<=nlstate; k2++) {       ij++;
      k3=i;     }
      for(k=1; k<=(nlstate+ndeath); k++) {   }
        if (k != k2){   
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   cptcoveff=ij-1; /*Number of simple covariates*/
 ij=1;  }
         for(j=3; j <=ncovmodel; j++) {  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /*********** Health Expectancies ****************/
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
           }  
           else  {
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* Health expectancies */
         }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
           fprintf(ficgp,")/(1");    double age, agelim, hf;
            double ***p3mat,***varhe;
         for(k1=1; k1 <=nlstate; k1++){      double **dnewm,**doldm;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double *xp;
 ij=1;    double **gp, **gm;
           for(j=3; j <=ncovmodel; j++){    double ***gradg, ***trgradg;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int theta;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           }    xp=vector(1,npar);
           else    dnewm=matrix(1,nlstate*nlstate,1,npar);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           }    
           fprintf(ficgp,")");    fprintf(ficreseij,"# Health expectancies\n");
         }    fprintf(ficreseij,"# Age");
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    for(i=1; i<=nlstate;i++)
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      for(j=1; j<=nlstate;j++)
         i=i+ncovmodel;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
        }    fprintf(ficreseij,"\n");
      }  
    }    if(estepm < stepm){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      printf ("Problem %d lower than %d\n",estepm, stepm);
    }    }
        else  hstepm=estepm;   
   fclose(ficgp);    /* We compute the life expectancy from trapezoids spaced every estepm months
 }  /* end gnuplot */     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
 /*************** Moving average **************/     * progression in between and thus overestimating or underestimating according
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   int i, cpt, cptcod;     * to compare the new estimate of Life expectancy with the same linear 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)     * hypothesis. A more precise result, taking into account a more precise
       for (i=1; i<=nlstate;i++)     * curvature will be obtained if estepm is as small as stepm. */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       nhstepm is the number of hstepm from age to agelim 
       for (i=1; i<=nlstate;i++){       nstepm is the number of stepm from age to agelin. 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       Look at hpijx to understand the reason of that which relies in memory size
           for (cpt=0;cpt<=4;cpt++){       and note for a fixed period like estepm months */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
     }    */
        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 }  
     agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 /************** Forecasting ******************/      /* nhstepm age range expressed in number of stepm */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      /* if (stepm >= YEARM) hstepm=1;*/
   int *popage;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double *popeffectif,*popcount;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   double ***p3mat;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   char fileresf[FILENAMELENGTH];      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
  agelim=AGESUP;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   
    
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);      /* Computing Variances of health expectancies */
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);       for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ 
   printf("Computing forecasting: result on file '%s' \n", fileresf);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
   if (mobilav==1) {        cptj=0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<= nlstate; j++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);          for(i=1; i<=nlstate; i++){
   }            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   if (stepm<=12) stepsize=1;            }
            }
   agelim=AGESUP;        }
         
   hstepm=1;       
   hstepm=hstepm/stepm;        for(i=1; i<=npar; i++) 
   yp1=modf(dateintmean,&yp);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   anprojmean=yp;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   yp2=modf((yp1*12),&yp);        
   mprojmean=yp;        cptj=0;
   yp1=modf((yp2*30.5),&yp);        for(j=1; j<= nlstate; j++){
   jprojmean=yp;          for(i=1;i<=nlstate;i++){
   if(jprojmean==0) jprojmean=1;            cptj=cptj+1;
   if(mprojmean==0) jprojmean=1;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   for(cptcov=1;cptcov<=i2;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;        for(j=1; j<= nlstate*nlstate; j++)
       fprintf(ficresf,"\n#******");          for(h=0; h<=nhstepm-1; h++){
       for(j=1;j<=cptcoveff;j++) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       }       } 
       fprintf(ficresf,"******\n");     
       fprintf(ficresf,"# StartingAge FinalAge");  /* End theta */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
             trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {       for(h=0; h<=nhstepm-1; h++)
         fprintf(ficresf,"\n");        for(j=1; j<=nlstate*nlstate;j++)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;       for(i=1;i<=nlstate*nlstate;i++)
                  for(j=1;j<=nlstate*nlstate;j++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          varhe[i][j][(int)age] =0.;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         printf("%d|",(int)age);fflush(stdout);
               fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for (h=0; h<=nhstepm; h++){       for(h=0;h<=nhstepm-1;h++){
             if (h==(int) (calagedate+YEARM*cpt)) {        for(k=0;k<=nhstepm-1;k++){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             for(j=1; j<=nlstate+ndeath;j++) {          for(i=1;i<=nlstate*nlstate;i++)
               kk1=0.;kk2=0;            for(j=1;j<=nlstate*nlstate;j++)
               for(i=1; i<=nlstate;i++) {                            varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      }
                 else {      /* Computing expectancies */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      for(i=1; i<=nlstate;i++)
                 }        for(j=1; j<=nlstate;j++)
                          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
               if (h==(int)(calagedate+12*cpt)){            
                 fprintf(ficresf," %.3f", kk1);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                          
               }          }
             }  
           }      fprintf(ficreseij,"%3.0f",age );
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      cptj=0;
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++){
     }          cptj++;
   }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficreseij,"\n");
      
   fclose(ficresf);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 /************** Forecasting ******************/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }
   int *popage;    printf("\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficlog,"\n");
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;    free_vector(xp,1,npar);
   char filerespop[FILENAMELENGTH];    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  {
      /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   strcpy(filerespop,"pop");    /* double **newm;*/
   strcat(filerespop,fileres);    double **dnewm,**doldm;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    double **dnewmp,**doldmp;
     printf("Problem with forecast resultfile: %s\n", filerespop);    int i, j, nhstepm, hstepm, h, nstepm ;
   }    int k, cptcode;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    double *xp;
     double **gp, **gm;  /* for var eij */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   if (mobilav==1) {    double *gpp, *gmp; /* for var p point j */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double ***p3mat;
   }    double age,agelim, hf;
     double ***mobaverage;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int theta;
   if (stepm<=12) stepsize=1;    char digit[4];
      char digitp[25];
   agelim=AGESUP;  
      char fileresprobmorprev[FILENAMELENGTH];
   hstepm=1;  
   hstepm=hstepm/stepm;    if(popbased==1){
        if(mobilav!=0)
   if (popforecast==1) {        strcpy(digitp,"-populbased-mobilav-");
     if((ficpop=fopen(popfile,"r"))==NULL) {      else strcpy(digitp,"-populbased-nomobil-");
       printf("Problem with population file : %s\n",popfile);exit(0);    }
     }    else 
     popage=ivector(0,AGESUP);      strcpy(digitp,"-stablbased-");
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);    if (mobilav!=0) {
          mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     i=1;        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            printf(" Error in movingaverage mobilav=%d\n",mobilav);
     imx=i;      }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    }
   }  
     strcpy(fileresprobmorprev,"prmorprev"); 
   for(cptcov=1;cptcov<=i2;cptcov++){    sprintf(digit,"%-d",ij);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       k=k+1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       fprintf(ficrespop,"\n#******");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       for(j=1;j<=cptcoveff;j++) {    strcat(fileresprobmorprev,fileres);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficrespop,"******\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficrespop,"# Age");    }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
          fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
              fprintf(ficresprobmorprev," p.%-d SE",j);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(i=1; i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           nhstepm = nhstepm/hstepm;    }  
              fprintf(ficresprobmorprev,"\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           oldm=oldms;savm=savms;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
              exit(0);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    else{
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      fprintf(ficgp,"\n# Routine varevsij");
             }    }
             for(j=1; j<=nlstate+ndeath;j++) {    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
               kk1=0.;kk2=0;      printf("Problem with html file: %s\n", optionfilehtm);
               for(i=1; i<=nlstate;i++) {                    fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
                 if (mobilav==1)      exit(0);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    }
                 else {    else{
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                 }      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
               }    }
               if (h==(int)(calagedate+12*cpt)){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficresvij,"# Age");
               }    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++)
             for(i=1; i<=nlstate;i++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
               kk1=0.;    fprintf(ficresvij,"\n");
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    xp=vector(1,npar);
                 }    dnewm=matrix(1,nlstate,1,npar);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    doldm=matrix(1,nlstate,1,nlstate);
             }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           }    gpp=vector(nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    gmp=vector(nlstate+1,nlstate+ndeath);
         }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       }    
      if(estepm < stepm){
   /******/      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    else  hstepm=estepm;   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* For example we decided to compute the life expectancy with the smallest unit */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       nhstepm is the number of hstepm from age to agelim 
           nhstepm = nhstepm/hstepm;       nstepm is the number of stepm from age to agelin. 
                 Look at hpijx to understand the reason of that which relies in memory size
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like k years */
           oldm=oldms;savm=savms;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         survival function given by stepm (the optimization length). Unfortunately it
           for (h=0; h<=nhstepm; h++){       means that if the survival funtion is printed every two years of age and if
             if (h==(int) (calagedate+YEARM*cpt)) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       results. So we changed our mind and took the option of the best precision.
             }    */
             for(j=1; j<=nlstate+ndeath;j++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               kk1=0.;kk2=0;    agelim = AGESUP;
               for(i=1; i<=nlstate;i++) {                  for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
               }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           }      gp=matrix(0,nhstepm,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gm=matrix(0,nhstepm,1,nlstate);
         }  
       }  
    }      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (popforecast==1) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);        if (popbased==1) {
     free_vector(popcount,0,AGESUP);          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              prlim[i][i]=probs[(int)age][i][ij];
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }else{ /* mobilav */ 
   fclose(ficrespop);            for(i=1; i<=nlstate;i++)
 }              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
 /***********************************************/        }
 /**************** Main Program *****************/    
 /***********************************************/        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
 int main(int argc, char *argv[])            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        }
   double agedeb, agefin,hf;        /* This for computing probability of death (h=1 means
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   double fret;        */
   double **xi,tmp,delta;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   double dum; /* Dummy variable */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   double ***p3mat;        }    
   int *indx;        /* end probability of death */
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];   
         if (popbased==1) {
   char filerest[FILENAMELENGTH];          if(mobilav ==0){
   char fileregp[FILENAMELENGTH];            for(i=1; i<=nlstate;i++)
   char popfile[FILENAMELENGTH];              prlim[i][i]=probs[(int)age][i][ij];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          }else{ /* mobilav */ 
   int firstobs=1, lastobs=10;            for(i=1; i<=nlstate;i++)
   int sdeb, sfin; /* Status at beginning and end */              prlim[i][i]=mobaverage[(int)age][i][ij];
   int c,  h , cpt,l;          }
   int ju,jl, mi;        }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(j=1; j<= nlstate; j++){
   int mobilav=0,popforecast=0;          for(h=0; h<=nhstepm; h++){
   int hstepm, nhstepm;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;        /* This for computing probability of death (h=1 means
   double **prlim;           computed over hstepm matrices product = hstepm*stepm months) 
   double *severity;           as a weighted average of prlim.
   double ***param; /* Matrix of parameters */        */
   double  *p;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double **matcov; /* Matrix of covariance */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   double ***delti3; /* Scale */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   double *delti; /* Scale */        }    
   double ***eij, ***vareij;        /* end probability of death */
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;        for(j=1; j<= nlstate; j++) /* vareij */
   double kk1, kk2;          for(h=0; h<=nhstepm; h++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
   
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   char *alph[]={"a","a","b","c","d","e"}, str[4];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
   char z[1]="c", occ;      } /* End theta */
 #include <sys/time.h>  
 #include <time.h>      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
        for(h=0; h<=nhstepm; h++) /* veij */
   /* long total_usecs;        for(j=1; j<=nlstate;j++)
   struct timeval start_time, end_time;          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   printf("\n%s",version);          trgradgp[j][theta]=gradgp[theta][j];
   if(argc <=1){    
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
   else{        for(j=1;j<=nlstate;j++)
     strcpy(pathtot,argv[1]);          vareij[i][j][(int)age] =0.;
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      for(h=0;h<=nhstepm;h++){
   /*cygwin_split_path(pathtot,path,optionfile);        for(k=0;k<=nhstepm;k++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   /* cutv(path,optionfile,pathtot,'\\');*/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            for(j=1;j<=nlstate;j++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   chdir(path);        }
   replace(pathc,path);      }
     
 /*-------- arguments in the command line --------*/      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   strcpy(fileres,"r");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   strcat(fileres, optionfilefiname);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   strcat(fileres,".txt");    /* Other files have txt extension */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   /*---------arguments file --------*/      /* end ppptj */
       /*  x centered again */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with optionfile %s\n",optionfile);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     goto end;   
   }      if (popbased==1) {
         if(mobilav ==0){
   strcpy(filereso,"o");          for(i=1; i<=nlstate;i++)
   strcat(filereso,fileres);            prlim[i][i]=probs[(int)age][i][ij];
   if((ficparo=fopen(filereso,"w"))==NULL) {        }else{ /* mobilav */ 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){               
     ungetc(c,ficpar);      /* This for computing probability of death (h=1 means
     fgets(line, MAXLINE, ficpar);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     puts(line);         as a weighted average of prlim.
     fputs(line,ficparo);      */
   }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   ungetc(c,ficpar);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      }    
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      /* end probability of death */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     ungetc(c,ficpar);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     puts(line);        for(i=1; i<=nlstate;i++){
     fputs(line,ficparo);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   }        }
   ungetc(c,ficpar);      } 
        fprintf(ficresprobmorprev,"\n");
      
   covar=matrix(0,NCOVMAX,1,n);      fprintf(ficresvij,"%.0f ",age );
   cptcovn=0;      for(i=1; i<=nlstate;i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
   /* Read guess parameters */      free_matrix(gm,0,nhstepm,1,nlstate);
   /* Reads comments: lines beginning with '#' */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     ungetc(c,ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    } /* End age */
     puts(line);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     for(i=1; i <=nlstate; i++)    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     for(j=1; j <=nlstate+ndeath-1; j++){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficparo,"%1d%1d",i1,j1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       printf("%1d%1d",i,j);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
       for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
         printf(" %lf",param[i][j][k]);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
       }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       fscanf(ficpar,"\n");  */
       printf("\n");    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
       fprintf(ficparo,"\n");  
     }    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   p=param[1][1];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /* Reads comments: lines beginning with '#' */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while((c=getc(ficpar))=='#' && c!= EOF){    fclose(ficresprobmorprev);
     ungetc(c,ficpar);    fclose(ficgp);
     fgets(line, MAXLINE, ficpar);    fclose(fichtm);
     puts(line);  }  /* end varevsij */
     fputs(line,ficparo);  
   }  /************ Variance of prevlim ******************/
   ungetc(c,ficpar);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /* Variance of prevalence limit */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   for(i=1; i <=nlstate; i++){    double **newm;
     for(j=1; j <=nlstate+ndeath-1; j++){    double **dnewm,**doldm;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int i, j, nhstepm, hstepm;
       printf("%1d%1d",i,j);    int k, cptcode;
       fprintf(ficparo,"%1d%1d",i1,j1);    double *xp;
       for(k=1; k<=ncovmodel;k++){    double *gp, *gm;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    double **gradg, **trgradg;
         printf(" %le",delti3[i][j][k]);    double age,agelim;
         fprintf(ficparo," %le",delti3[i][j][k]);    int theta;
       }     
       fscanf(ficpar,"\n");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       printf("\n");    fprintf(ficresvpl,"# Age");
       fprintf(ficparo,"\n");    for(i=1; i<=nlstate;i++)
     }        fprintf(ficresvpl," %1d-%1d",i,i);
   }    fprintf(ficresvpl,"\n");
   delti=delti3[1][1];  
      xp=vector(1,npar);
   /* Reads comments: lines beginning with '#' */    dnewm=matrix(1,nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    doldm=matrix(1,nlstate,1,nlstate);
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    hstepm=1*YEARM; /* Every year of age */
     puts(line);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fputs(line,ficparo);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   ungetc(c,ficpar);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        if (stepm >= YEARM) hstepm=1;
   matcov=matrix(1,npar,1,npar);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   for(i=1; i <=npar; i++){      gradg=matrix(1,npar,1,nlstate);
     fscanf(ficpar,"%s",&str);      gp=vector(1,nlstate);
     printf("%s",str);      gm=vector(1,nlstate);
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){      for(theta=1; theta <=npar; theta++){
       fscanf(ficpar," %le",&matcov[i][j]);        for(i=1; i<=npar; i++){ /* Computes gradient */
       printf(" %.5le",matcov[i][j]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficparo," %.5le",matcov[i][j]);        }
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fscanf(ficpar,"\n");        for(i=1;i<=nlstate;i++)
     printf("\n");          gp[i] = prlim[i][i];
     fprintf(ficparo,"\n");      
   }        for(i=1; i<=npar; i++) /* Computes gradient */
   for(i=1; i <=npar; i++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(j=i+1;j<=npar;j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       matcov[i][j]=matcov[j][i];        for(i=1;i<=nlstate;i++)
              gm[i] = prlim[i][i];
   printf("\n");  
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     /*-------- Rewriting paramater file ----------*/      } /* End theta */
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      trgradg =matrix(1,nlstate,1,npar);
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      for(j=1; j<=nlstate;j++)
     if((ficres =fopen(rfileres,"w"))==NULL) {        for(theta=1; theta <=npar; theta++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          trgradg[j][theta]=gradg[theta][j];
     }  
     fprintf(ficres,"#%s\n",version);      for(i=1;i<=nlstate;i++)
            varpl[i][(int)age] =0.;
     /*-------- data file ----------*/      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     if((fic=fopen(datafile,"r"))==NULL)    {      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       printf("Problem with datafile: %s\n", datafile);goto end;      for(i=1;i<=nlstate;i++)
     }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
     n= lastobs;      fprintf(ficresvpl,"%.0f ",age );
     severity = vector(1,maxwav);      for(i=1; i<=nlstate;i++)
     outcome=imatrix(1,maxwav+1,1,n);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     num=ivector(1,n);      fprintf(ficresvpl,"\n");
     moisnais=vector(1,n);      free_vector(gp,1,nlstate);
     annais=vector(1,n);      free_vector(gm,1,nlstate);
     moisdc=vector(1,n);      free_matrix(gradg,1,npar,1,nlstate);
     andc=vector(1,n);      free_matrix(trgradg,1,nlstate,1,npar);
     agedc=vector(1,n);    } /* End age */
     cod=ivector(1,n);  
     weight=vector(1,n);    free_vector(xp,1,npar);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    free_matrix(doldm,1,nlstate,1,npar);
     mint=matrix(1,maxwav,1,n);    free_matrix(dnewm,1,nlstate,1,nlstate);
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);  }
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);  /************ Variance of one-step probabilities  ******************/
     ncodemax=ivector(1,8);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     i=1;    int i, j=0,  i1, k1, l1, t, tj;
     while (fgets(line, MAXLINE, fic) != NULL)    {    int k2, l2, j1,  z1;
       if ((i >= firstobs) && (i <=lastobs)) {    int k=0,l, cptcode;
            int first=1, first1;
         for (j=maxwav;j>=1;j--){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    double **dnewm,**doldm;
           strcpy(line,stra);    double *xp;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double *gp, *gm;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double **gradg, **trgradg;
         }    double **mu;
            double age,agelim, cov[NCOVMAX];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    int theta;
     char fileresprob[FILENAMELENGTH];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    char fileresprobcov[FILENAMELENGTH];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    char fileresprobcor[FILENAMELENGTH];
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    double ***varpij;
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    strcpy(fileresprob,"prob"); 
         }    strcat(fileresprob,fileres);
         num[i]=atol(stra);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", fileresprob);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    }
     strcpy(fileresprobcov,"probcov"); 
         i=i+1;    strcat(fileresprobcov,fileres);
       }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", fileresprobcov);
     /* printf("ii=%d", ij);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        scanf("%d",i);*/    }
   imx=i-1; /* Number of individuals */    strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
   /* for (i=1; i<=imx; i++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      printf("Problem with resultfile: %s\n", fileresprobcor);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    }
     }*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   /* for (i=1; i<=imx; i++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      if (s[4][i]==9)  s[4][i]=-1;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      
   /* Calculation of the number of parameter from char model*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   Tvar=ivector(1,15);    fprintf(ficresprob,"# Age");
   Tprod=ivector(1,15);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   Tvaraff=ivector(1,15);    fprintf(ficresprobcov,"# Age");
   Tvard=imatrix(1,15,1,2);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   Tage=ivector(1,15);          fprintf(ficresprobcov,"# Age");
      
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;    for(i=1; i<=nlstate;i++)
     j=nbocc(model,'+');      for(j=1; j<=(nlstate+ndeath);j++){
     j1=nbocc(model,'*');        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     cptcovn=j+1;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     cptcovprod=j1;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
          }  
     strcpy(modelsav,model);   /* fprintf(ficresprob,"\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(ficresprobcov,"\n");
       printf("Error. Non available option model=%s ",model);    fprintf(ficresprobcor,"\n");
       goto end;   */
     }   xp=vector(1,npar);
        dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(i=(j+1); i>=1;i--){    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       cutv(stra,strb,modelsav,'+');    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    first=1;
       /*scanf("%d",i);*/    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       if (strchr(strb,'*')) {      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
         cutv(strd,strc,strb,'*');      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         if (strcmp(strc,"age")==0) {      exit(0);
           cptcovprod--;    }
           cutv(strb,stre,strd,'V');    else{
           Tvar[i]=atoi(stre);      fprintf(ficgp,"\n# Routine varprob");
           cptcovage++;    }
             Tage[cptcovage]=i;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
             /*printf("stre=%s ", stre);*/      printf("Problem with html file: %s\n", optionfilehtm);
         }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
         else if (strcmp(strd,"age")==0) {      exit(0);
           cptcovprod--;    }
           cutv(strb,stre,strc,'V');    else{
           Tvar[i]=atoi(stre);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           cptcovage++;      fprintf(fichtm,"\n");
           Tage[cptcovage]=i;  
         }      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
         else {      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           cutv(strb,stre,strc,'V');      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V');    }
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);    cov[1]=1;
           Tvard[k1][2]=atoi(stre);    tj=cptcoveff;
           Tvar[cptcovn+k2]=Tvard[k1][1];    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    j1=0;
           for (k=1; k<=lastobs;k++)    for(t=1; t<=tj;t++){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for(i1=1; i1<=ncodemax[t];i1++){ 
           k1++;        j1++;
           k2=k2+2;        if  (cptcovn>0) {
         }          fprintf(ficresprob, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       else {          fprintf(ficresprob, "**********\n#\n");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          fprintf(ficresprobcov, "\n#********** Variable "); 
        /*  scanf("%d",i);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       cutv(strd,strc,strb,'V');          fprintf(ficresprobcov, "**********\n#\n");
       Tvar[i]=atoi(strc);          
       }          fprintf(ficgp, "\n#********** Variable "); 
       strcpy(modelsav,stra);            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          fprintf(ficgp, "**********\n#\n");
         scanf("%d",i);*/          
     }          
 }          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   printf("cptcovprod=%d ", cptcovprod);          
   scanf("%d ",i);*/          fprintf(ficresprobcor, "\n#********** Variable ");    
     fclose(fic);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
     /*  if(mle==1){*/        }
     if (weightopt != 1) { /* Maximisation without weights*/        
       for(i=1;i<=n;i++) weight[i]=1.0;        for (age=bage; age<=fage; age ++){ 
     }          cov[2]=age;
     /*-calculation of age at interview from date of interview and age at death -*/          for (k=1; k<=cptcovn;k++) {
     agev=matrix(1,maxwav,1,imx);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
     for (i=1; i<=imx; i++) {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(m=2; (m<= maxwav); m++) {          for (k=1; k<=cptcovprod;k++)
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          anint[m][i]=9999;          
          s[m][i]=-1;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
        }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          gp=vector(1,(nlstate)*(nlstate+ndeath));
       }          gm=vector(1,(nlstate)*(nlstate+ndeath));
     }      
           for(theta=1; theta <=npar; theta++){
     for (i=1; i<=imx; i++)  {            for(i=1; i<=npar; i++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       for(m=1; (m<= maxwav); m++){            
         if(s[m][i] >0){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           if (s[m][i] >= nlstate+1) {            
             if(agedc[i]>0)            k=0;
               if(moisdc[i]!=99 && andc[i]!=9999)            for(i=1; i<= (nlstate); i++){
                 agev[m][i]=agedc[i];              for(j=1; j<=(nlstate+ndeath);j++){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                k=k+1;
            else {                gp[k]=pmmij[i][j];
               if (andc[i]!=9999){              }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            }
               agev[m][i]=-1;            
               }            for(i=1; i<=npar; i++)
             }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           }      
           else if(s[m][i] !=9){ /* Should no more exist */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            k=0;
             if(mint[m][i]==99 || anint[m][i]==9999)            for(i=1; i<=(nlstate); i++){
               agev[m][i]=1;              for(j=1; j<=(nlstate+ndeath);j++){
             else if(agev[m][i] <agemin){                k=k+1;
               agemin=agev[m][i];                gm[k]=pmmij[i][j];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              }
             }            }
             else if(agev[m][i] >agemax){       
               agemax=agev[m][i];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
             }          }
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
           }            for(theta=1; theta <=npar; theta++)
           else { /* =9 */              trgradg[j][theta]=gradg[theta][j];
             agev[m][i]=1;          
             s[m][i]=-1;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         else /*= 0 Unknown */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           agev[m][i]=1;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      
     }          pmij(pmmij,cov,ncovmodel,x,nlstate);
     for (i=1; i<=imx; i++)  {          
       for(m=1; (m<= maxwav); m++){          k=0;
         if (s[m][i] > (nlstate+ndeath)) {          for(i=1; i<=(nlstate); i++){
           printf("Error: Wrong value in nlstate or ndeath\n");              for(j=1; j<=(nlstate+ndeath);j++){
           goto end;              k=k+1;
         }              mu[k][(int) age]=pmmij[i][j];
       }            }
     }          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);          /*printf("\n%d ",(int)age);
     free_vector(moisnais,1,n);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     free_vector(annais,1,n);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     /* free_matrix(mint,1,maxwav,1,n);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        free_matrix(anint,1,maxwav,1,n);*/            }*/
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
              fprintf(ficresprobcor,"\n%d ",(int)age);
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     /* Concatenates waves */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
       Tcode=ivector(1,100);          for (k=1; k<=(nlstate);k++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            for (l=1; l<=(nlstate+ndeath);l++){ 
       ncodemax[1]=1;              i=i++;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                    fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
    codtab=imatrix(1,100,1,10);              for (j=1; j<=i;j++){
    h=0;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
    m=pow(2,cptcoveff);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
    for(k=1;k<=cptcoveff; k++){            }
      for(i=1; i <=(m/pow(2,k));i++){          }/* end of loop for state */
        for(j=1; j <= ncodemax[k]; j++){        } /* end of loop for age */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;        /* Confidence intervalle of pij  */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        /*
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          fprintf(ficgp,"\nset noparametric;unset label");
          }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
        }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
    }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       codtab[1][2]=1;codtab[2][2]=2; */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
    /* for(i=1; i <=m ;i++){        */
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       }        first1=1;
       printf("\n");        for (k2=1; k2<=(nlstate);k2++){
       }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       scanf("%d",i);*/            if(l2==k2) continue;
                j=(k2-1)*(nlstate+ndeath)+l2;
    /* Calculates basic frequencies. Computes observed prevalence at single age            for (k1=1; k1<=(nlstate);k1++){
        and prints on file fileres'p'. */              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                    i=(k1-1)*(nlstate+ndeath)+l1;
                    if(i<=j) continue;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                for (age=bage; age<=fage; age ++){ 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  if ((int)age %5==0){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                          mu1=mu[i][(int) age]/stepm*YEARM ;
     /* For Powell, parameters are in a vector p[] starting at p[1]                    mu2=mu[j][(int) age]/stepm*YEARM;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                    c12=cv12/sqrt(v1*v2);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     if(mle==1){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                    /* Eigen vectors */
     }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                        /*v21=sqrt(1.-v11*v11); *//* error */
     /*--------- results files --------------*/                    v21=(lc1-v1)/cv12*v11;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                    v12=-v21;
                      v22=v11;
                     tnalp=v21/v11;
    jk=1;                    if(first1==1){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      first1=0;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
    for(i=1,jk=1; i <=nlstate; i++){                    }
      for(k=1; k <=(nlstate+ndeath); k++){                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
        if (k != i)                    /*printf(fignu*/
          {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
            printf("%d%d ",i,k);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
            fprintf(ficres,"%1d%1d ",i,k);                    if(first==1){
            for(j=1; j <=ncovmodel; j++){                      first=0;
              printf("%f ",p[jk]);                      fprintf(ficgp,"\nset parametric;unset label");
              fprintf(ficres,"%f ",p[jk]);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
              jk++;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
            }                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
            printf("\n");                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
            fprintf(ficres,"\n");                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
          }                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
      }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  if(mle==1){                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     /* Computing hessian and covariance matrix */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     ftolhess=ftol; /* Usually correct */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     hesscov(matcov, p, npar, delti, ftolhess, func);                    }else{
  }                      first=0;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
     printf("# Scales (for hessian or gradient estimation)\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
      for(i=1,jk=1; i <=nlstate; i++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       for(j=1; j <=nlstate+ndeath; j++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         if (j!=i) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           fprintf(ficres,"%1d%1d",i,j);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           printf("%1d%1d",i,j);                    }/* if first */
           for(k=1; k<=ncovmodel;k++){                  } /* age mod 5 */
             printf(" %.5e",delti[jk]);                } /* end loop age */
             fprintf(ficres," %.5e",delti[jk]);                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
             jk++;                first=1;
           }              } /*l12 */
           printf("\n");            } /* k12 */
           fprintf(ficres,"\n");          } /*l1 */
         }        }/* k1 */
       }      } /* loop covariates */
      }    }
        free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     k=1;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    free_vector(xp,1,npar);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fclose(ficresprob);
     for(i=1;i<=npar;i++){    fclose(ficresprobcov);
       /*  if (k>nlstate) k=1;    fclose(ficresprobcor);
       i1=(i-1)/(ncovmodel*nlstate)+1;    fclose(ficgp);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    fclose(fichtm);
       printf("%s%d%d",alph[k],i1,tab[i]);*/  }
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);  
       for(j=1; j<=i;j++){  /******************* Printing html file ***********/
         fprintf(ficres," %.5e",matcov[i][j]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         printf(" %.5e",matcov[i][j]);                    int lastpass, int stepm, int weightopt, char model[],\
       }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       fprintf(ficres,"\n");                    int popforecast, int estepm ,\
       printf("\n");                    double jprev1, double mprev1,double anprev1, \
       k++;                    double jprev2, double mprev2,double anprev2){
     }    int jj1, k1, i1, cpt;
        /*char optionfilehtm[FILENAMELENGTH];*/
     while((c=getc(ficpar))=='#' && c!= EOF){    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       ungetc(c,ficpar);      printf("Problem with %s \n",optionfilehtm), exit(0);
       fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
       puts(line);    }
       fputs(line,ficparo);  
     }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     ungetc(c,ficpar);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
     - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
       - Life expectancies by age and initial health status (estepm=%2d months): \
     if (fage <= 2) {     <a href=\"e%s\">e%s</a> <br>\n</li>", \
       bage = ageminpar;    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
       fage = agemaxpar;  
     }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   m=cptcoveff;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);  
     jj1=0;
     while((c=getc(ficpar))=='#' && c!= EOF){   for(k1=1; k1<=m;k1++){
     ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     fgets(line, MAXLINE, ficpar);       jj1++;
     puts(line);       if (cptcovn > 0) {
     fputs(line,ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       /* Pij */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
        <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
   while((c=getc(ficpar))=='#' && c!= EOF){       /* Quasi-incidences */
     ungetc(c,ficpar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     fgets(line, MAXLINE, ficpar);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
     puts(line);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
     fputs(line,ficparo);         /* Stable prevalence in each health state */
   }         for(cpt=1; cpt<nlstate;cpt++){
   ungetc(c,ficpar);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
    <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       for(cpt=1; cpt<=nlstate;cpt++) {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   fscanf(ficpar,"pop_based=%d\n",&popbased);       }
   fprintf(ficparo,"pop_based=%d\n",popbased);         fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   fprintf(ficres,"pop_based=%d\n",popbased);    health expectancies in states (1) and (2): e%s%d.png<br>\
    <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
   while((c=getc(ficpar))=='#' && c!= EOF){     } /* end i1 */
     ungetc(c,ficpar);   }/* End k1 */
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"</ul>");
     puts(line);  
     fputs(line,ficparo);  
   }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   ungetc(c,ficpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     fgets(line, MAXLINE, ficpar);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     puts(line);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     fputs(line,ficparo);  /*      <br>",fileres,fileres,fileres,fileres); */
   }  /*  else  */
   ungetc(c,ficpar);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   m=cptcoveff;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   jj1=0;
    for(k1=1; k1<=m;k1++){
 /*------------ gnuplot -------------*/     for(i1=1; i1<=ncodemax[k1];i1++){
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);       jj1++;
         if (cptcovn > 0) {
 /*------------ free_vector  -------------*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  chdir(path);         for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  free_ivector(wav,1,imx);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         for(cpt=1; cpt<=nlstate;cpt++) {
  free_ivector(num,1,n);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
  free_vector(agedc,1,n);  interval) in state (%d): v%s%d%d.png <br>\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
  fclose(ficparo);       }
  fclose(ficres);     } /* end i1 */
    }/* End k1 */
 /*--------- index.htm --------*/   fprintf(fichtm,"</ul>");
   fclose(fichtm);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);  }
   
    /******************* Gnuplot file **************/
   /*--------------- Prevalence limit --------------*/  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
   strcpy(filerespl,"pl");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   strcat(filerespl,fileres);    int ng;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      printf("Problem with file %s",optionfilegnuplot);
   }      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    }
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");    /*#ifdef windows */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fprintf(ficgp,"cd \"%s\" \n",pathc);
   fprintf(ficrespl,"\n");      /*#endif */
    m=pow(2,cptcoveff);
   prlim=matrix(1,nlstate,1,nlstate);    
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   /* 1eme*/
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (cpt=1; cpt<= nlstate ; cpt ++) {
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for (k1=1; k1<= m ; k1 ++) {
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   k=0;  
   agebase=ageminpar;       for (i=1; i<= nlstate ; i ++) {
   agelim=agemaxpar;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   ftolpl=1.e-10;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   i1=cptcoveff;       }
   if (cptcovn < 1){i1=1;}       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
         k=k+1;       } 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
         fprintf(ficrespl,"\n#******");       for (i=1; i<= nlstate ; i ++) {
         for(j=1;j<=cptcoveff;j++)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrespl,"******\n");       }  
               fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
         for (age=agebase; age<=agelim; age++){     }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
           fprintf(ficrespl,"%.0f",age );    /*2 eme*/
           for(i=1; i<=nlstate;i++)    
           fprintf(ficrespl," %.5f", prlim[i][i]);    for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficrespl,"\n");      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
         }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       }      
     }      for (i=1; i<= nlstate+1 ; i ++) {
   fclose(ficrespl);        k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
   /*------------- h Pij x at various ages ------------*/        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        }   
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   printf("Computing pij: result on file '%s' \n", filerespij);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /*if (stepm<=24) stepsize=2;*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   agelim=AGESUP;        fprintf(ficgp,"\" t\"\" w l 0,");
   hstepm=stepsize*YEARM; /* Every year of age */        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   k=0;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){        }   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       k=k+1;        else fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficrespij,"\n#****** ");      }
         for(j=1;j<=cptcoveff;j++)    }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
         fprintf(ficrespij,"******\n");    /*3eme*/
            
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    for (k1=1; k1<= m ; k1 ++) { 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (cpt=1; cpt<= nlstate ; cpt ++) {
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        k=2+nlstate*(2*cpt-2);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           oldm=oldms;savm=savms;        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           fprintf(ficrespij,"# Age");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           for(i=1; i<=nlstate;i++)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
               fprintf(ficrespij," %1d-%1d",i,j);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficrespij,"\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           for (h=0; h<=nhstepm; h++){          
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        */
             for(i=1; i<=nlstate;i++)        for (i=1; i< nlstate ; i ++) {
               for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          
             fprintf(ficrespij,"\n");        } 
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           fprintf(ficrespij,"\n");    
         }    /* CV preval stable (period) */
     }    for (k1=1; k1<= m ; k1 ++) { 
   }      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
   fclose(ficrespij);        
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
   /*---------- Forecasting ------------------*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   if((stepm == 1) && (strcmp(model,".")==0)){        
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        l=3+(nlstate+ndeath)*cpt;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
     free_matrix(mint,1,maxwav,1,n);        for (i=1; i< nlstate ; i ++) {
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          l=3+(nlstate+ndeath)*cpt;
     free_vector(weight,1,n);}          fprintf(ficgp,"+$%d",l+i+1);
   else{        }
     erreur=108;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      } 
   }    }  
      
     /* proba elementaires */
   /*---------- Health expectancies and variances ------------*/    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
   strcpy(filerest,"t");        if (k != i) {
   strcat(filerest,fileres);          for(j=1; j <=ncovmodel; j++){
   if((ficrest=fopen(filerest,"w"))==NULL) {            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            jk++; 
   }            fprintf(ficgp,"\n");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          }
         }
       }
   strcpy(filerese,"e");     }
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       for(jk=1; jk <=m; jk++) {
   }         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
  strcpy(fileresv,"v");         else
   strcat(fileresv,fileres);           fprintf(ficgp,"\nset title \"Probability\"\n");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);         i=1;
   }         for(k2=1; k2<=nlstate; k2++) {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
   k=0;             if (k != k2){
   for(cptcov=1;cptcov<=i1;cptcov++){               if(ng==2)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       k=k+1;               else
       fprintf(ficrest,"\n#****** ");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       for(j=1;j<=cptcoveff;j++)               ij=1;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               for(j=3; j <=ncovmodel; j++) {
       fprintf(ficrest,"******\n");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       fprintf(ficreseij,"\n#****** ");                   ij++;
       for(j=1;j<=cptcoveff;j++)                 }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 else
       fprintf(ficreseij,"******\n");                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
       fprintf(ficresvij,"\n#****** ");               fprintf(ficgp,")/(1");
       for(j=1;j<=cptcoveff;j++)               
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               for(k1=1; k1 <=nlstate; k1++){   
       fprintf(ficresvij,"******\n");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                 for(j=3; j <=ncovmodel; j++){
       oldm=oldms;savm=savms;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                       fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                     ij++;
       oldm=oldms;savm=savms;                   }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                   else
                         fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                   fprintf(ficgp,")");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");               }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       fprintf(ficrest,"\n");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
       epj=vector(1,nlstate+1);             }
       for(age=bage; age <=fage ;age++){           } /* end k */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);         } /* end k2 */
         if (popbased==1) {       } /* end jk */
           for(i=1; i<=nlstate;i++)     } /* end ng */
             prlim[i][i]=probs[(int)age][i][k];     fclose(ficgp); 
         }  }  /* end gnuplot */
          
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  /*************** Moving average **************/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
           }    int i, cpt, cptcod;
           epj[nlstate+1] +=epj[j];    int modcovmax =1;
         }    int mobilavrange, mob;
         for(i=1, vepp=0.;i <=nlstate;i++)    double age;
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));                             a covariate has 2 modalities */
         for(j=1;j <=nlstate;j++){    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         fprintf(ficrest,"\n");      if(mobilav==1) mobilavrange=5; /* default */
       }      else mobilavrange=mobilav;
     }      for (age=bage; age<=fage; age++)
   }        for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
   fclose(ficreseij);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   fclose(ficresvij);      /* We keep the original values on the extreme ages bage, fage and for 
   fclose(ficrest);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   fclose(ficpar);         we use a 5 terms etc. until the borders are no more concerned. 
   free_vector(epj,1,nlstate+1);      */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
   /*------- Variance limit prevalence------*/          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
   strcpy(fileresvpl,"vpl");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   strcat(fileresvpl,fileres);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     exit(0);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   }                }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
   k=0;          }
   for(cptcov=1;cptcov<=i1;cptcov++){        }/* end age */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }/* end mob */
       k=k+1;    }else return -1;
       fprintf(ficresvpl,"\n#****** ");    return 0;
       for(j=1;j<=cptcoveff;j++)  }/* End movingaverage */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");  
        /************** Forecasting ******************/
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       oldm=oldms;savm=savms;    /* proj1, year, month, day of starting projection 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       agemin, agemax range of age
     }       dateprev1 dateprev2 range of dates during which prevalence is computed
  }       anproj2 year of en of projection (same day and month as proj1).
     */
   fclose(ficresvpl);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
   /*---------- End : free ----------------*/    double agec; /* generic age */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
      double *popeffectif,*popcount;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double ***p3mat;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double ***mobaverage;
      char fileresf[FILENAMELENGTH];
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    agelim=AGESUP;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    strcpy(fileresf,"f"); 
      strcat(fileresf,fileres);
   free_matrix(matcov,1,npar,1,npar);    if((ficresf=fopen(fileresf,"w"))==NULL) {
   free_vector(delti,1,npar);      printf("Problem with forecast resultfile: %s\n", fileresf);
   free_matrix(agev,1,maxwav,1,imx);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
   if(erreur >0)    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     printf("End of Imach with error or warning %d\n",erreur);  
   else   printf("End of Imach\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
      if (mobilav!=0) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /*------ End -----------*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
  end:    }
 #ifdef windows  
   /* chdir(pathcd);*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
 #endif    if (stepm<=12) stepsize=1;
  /*system("wgnuplot graph.plt");*/    if(estepm < stepm){
  /*system("../gp37mgw/wgnuplot graph.plt");*/      printf ("Problem %d lower than %d\n",estepm, stepm);
  /*system("cd ../gp37mgw");*/    }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    else  hstepm=estepm;   
  strcpy(plotcmd,GNUPLOTPROGRAM);  
  strcat(plotcmd," ");    hstepm=hstepm/stepm; 
  strcat(plotcmd,optionfilegnuplot);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
  system(plotcmd);                                 fractional in yp1 */
     anprojmean=yp;
 #ifdef windows    yp2=modf((yp1*12),&yp);
   while (z[0] != 'q') {    mprojmean=yp;
     /* chdir(path); */    yp1=modf((yp2*30.5),&yp);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    jprojmean=yp;
     scanf("%s",z);    if(jprojmean==0) jprojmean=1;
     if (z[0] == 'c') system("./imach");    if(mprojmean==0) jprojmean=1;
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    i1=cptcoveff;
     else if (z[0] == 'q') exit(0);    if (cptcovn < 1){i1=1;}
   }    
 #endif    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
 }    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfile)
   {
     if((fichier=fopen(optionfile,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfile);
       fprintf(ficlog,"Problem with file: %s\n", optionfile);
       return (1);
     }
   
   }
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a>\n\
    - Date and time at start: %s</ul>\n",\
             version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     fclose(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     if(fileappend(fichtm, optionfilehtm)){
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
       fclose(fichtm);
     }
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     if(fileappend(fichtm,optionfilehtm)){
       fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
       fclose(fichtm);
     }
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.35  
changed lines
  Added in v.1.86


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>