Diff for /imach/src/imach.c between versions 1.35 and 1.96

version 1.35, 2002/03/26 17:08:39 version 1.96, 2003/07/15 15:38:55
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   This program computes Healthy Life Expectancies from    rewritten within the same printf. Workaround: many printfs.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.95  2003/07/08 07:54:34  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository):
   case of a health survey which is our main interest) -2- at least a    (Repository): Using imachwizard code to output a more meaningful covariance
   second wave of interviews ("longitudinal") which measure each change    matrix (cov(a12,c31) instead of numbers.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.94  2003/06/27 13:00:02  brouard
   model. More health states you consider, more time is necessary to reach the    Just cleaning
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.93  2003/06/25 16:33:55  brouard
   probabibility to be observed in state j at the second wave    (Module): On windows (cygwin) function asctime_r doesn't
   conditional to be observed in state i at the first wave. Therefore    exist so I changed back to asctime which exists.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Version 0.96b
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.92  2003/06/25 16:30:45  brouard
   where the markup *Covariates have to be included here again* invites    (Module): On windows (cygwin) function asctime_r doesn't
   you to do it.  More covariates you add, slower the    exist so I changed back to asctime which exists.
   convergence.  
     Revision 1.91  2003/06/25 15:30:29  brouard
   The advantage of this computer programme, compared to a simple    * imach.c (Repository): Duplicated warning errors corrected.
   multinomial logistic model, is clear when the delay between waves is not    (Repository): Elapsed time after each iteration is now output. It
   identical for each individual. Also, if a individual missed an    helps to forecast when convergence will be reached. Elapsed time
   intermediate interview, the information is lost, but taken into    is stamped in powell.  We created a new html file for the graphs
   account using an interpolation or extrapolation.      concerning matrix of covariance. It has extension -cov.htm.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.90  2003/06/24 12:34:15  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Some bugs corrected for windows. Also, when
   split into an exact number (nh*stepm) of unobserved intermediate    mle=-1 a template is output in file "or"mypar.txt with the design
   states. This elementary transition (by month or quarter trimester,    of the covariance matrix to be input.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.89  2003/06/24 12:30:52  brouard
   and the contribution of each individual to the likelihood is simply    (Module): Some bugs corrected for windows. Also, when
   hPijx.    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.88  2003/06/23 17:54:56  brouard
      * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.87  2003/06/18 12:26:01  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Version 0.96
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.86  2003/06/17 20:04:08  brouard
   software can be distributed freely for non commercial use. Latest version    (Module): Change position of html and gnuplot routines and added
   can be accessed at http://euroreves.ined.fr/imach .    routine fileappend.
   **********************************************************************/  
      Revision 1.85  2003/06/17 13:12:43  brouard
 #include <math.h>    * imach.c (Repository): Check when date of death was earlier that
 #include <stdio.h>    current date of interview. It may happen when the death was just
 #include <stdlib.h>    prior to the death. In this case, dh was negative and likelihood
 #include <unistd.h>    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 #define MAXLINE 256    interview.
 #define GNUPLOTPROGRAM "wgnuplot"    (Repository): Because some people have very long ID (first column)
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    we changed int to long in num[] and we added a new lvector for
 #define FILENAMELENGTH 80    memory allocation. But we also truncated to 8 characters (left
 /*#define DEBUG*/    truncation)
 #define windows    (Repository): No more line truncation errors.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    place. It differs from routine "prevalence" which may be called
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    many times. Probs is memory consuming and must be used with
     parcimony.
 #define NINTERVMAX 8    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.83  2003/06/10 13:39:11  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    *** empty log message ***
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define AGESUP 130    Add log in  imach.c and  fullversion number is now printed.
 #define AGEBASE 40  
   */
   /*
 int erreur; /* Error number */     Interpolated Markov Chain
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Short summary of the programme:
 int npar=NPARMAX;    
 int nlstate=2; /* Number of live states */    This program computes Healthy Life Expectancies from
 int ndeath=1; /* Number of dead states */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    first survey ("cross") where individuals from different ages are
 int popbased=0;    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 int *wav; /* Number of waves for this individuual 0 is possible */    second wave of interviews ("longitudinal") which measure each change
 int maxwav; /* Maxim number of waves */    (if any) in individual health status.  Health expectancies are
 int jmin, jmax; /* min, max spacing between 2 waves */    computed from the time spent in each health state according to a
 int mle, weightopt;    model. More health states you consider, more time is necessary to reach the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Maximum Likelihood of the parameters involved in the model.  The
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    simplest model is the multinomial logistic model where pij is the
 double jmean; /* Mean space between 2 waves */    probability to be observed in state j at the second wave
 double **oldm, **newm, **savm; /* Working pointers to matrices */    conditional to be observed in state i at the first wave. Therefore
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    'age' is age and 'sex' is a covariate. If you want to have a more
 FILE *ficgp,*ficresprob,*ficpop;    complex model than "constant and age", you should modify the program
 FILE *ficreseij;    where the markup *Covariates have to be included here again* invites
   char filerese[FILENAMELENGTH];    you to do it.  More covariates you add, slower the
  FILE  *ficresvij;    convergence.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    The advantage of this computer programme, compared to a simple
   char fileresvpl[FILENAMELENGTH];    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 #define NR_END 1    intermediate interview, the information is lost, but taken into
 #define FREE_ARG char*    account using an interpolation or extrapolation.  
 #define FTOL 1.0e-10  
     hPijx is the probability to be observed in state i at age x+h
 #define NRANSI    conditional to the observed state i at age x. The delay 'h' can be
 #define ITMAX 200    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 #define TOL 2.0e-4    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 #define CGOLD 0.3819660    and the contribution of each individual to the likelihood is simply
 #define ZEPS 1.0e-10    hPijx.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Also this programme outputs the covariance matrix of the parameters but also
 #define GOLD 1.618034    of the life expectancies. It also computes the stable prevalence. 
 #define GLIMIT 100.0    
 #define TINY 1.0e-20    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 static double maxarg1,maxarg2;    This software have been partly granted by Euro-REVES, a concerted action
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    from the European Union.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    It is copyrighted identically to a GNU software product, ie programme and
      software can be distributed freely for non commercial use. Latest version
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    can be accessed at http://euroreves.ined.fr/imach .
 #define rint(a) floor(a+0.5)  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 static double sqrarg;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    **********************************************************************/
   /*
 int imx;    main
 int stepm;    read parameterfile
 /* Stepm, step in month: minimum step interpolation*/    read datafile
     concatwav
 int m,nb;    freqsummary
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    if (mle >= 1)
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;      mlikeli
 double **pmmij, ***probs, ***mobaverage;    print results files
 double dateintmean=0;    if mle==1 
        computes hessian
 double *weight;    read end of parameter file: agemin, agemax, bage, fage, estepm
 int **s; /* Status */        begin-prev-date,...
 double *agedc, **covar, idx;    open gnuplot file
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    open html file
     stable prevalence
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */     for age prevalim()
 double ftolhess; /* Tolerance for computing hessian */    h Pij x
     variance of p varprob
 /**************** split *************************/    forecasting if prevfcast==1 prevforecast call prevalence()
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    health expectancies
 {    Variance-covariance of DFLE
    char *s;                             /* pointer */    prevalence()
    int  l1, l2;                         /* length counters */     movingaverage()
     varevsij() 
    l1 = strlen( path );                 /* length of path */    if popbased==1 varevsij(,popbased)
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    total life expectancies
 #ifdef windows    Variance of stable prevalence
    s = strrchr( path, '\\' );           /* find last / */   end
 #else  */
    s = strrchr( path, '/' );            /* find last / */  
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */   
       extern char       *getwd( );  #include <math.h>
   #include <stdio.h>
       if ( getwd( dirc ) == NULL ) {  #include <stdlib.h>
 #else  #include <unistd.h>
       extern char       *getcwd( );  
   #include <sys/time.h>
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #include <time.h>
 #endif  #include "timeval.h"
          return( GLOCK_ERROR_GETCWD );  
       }  /* #include <libintl.h> */
       strcpy( name, path );             /* we've got it */  /* #define _(String) gettext (String) */
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  #define MAXLINE 256
       l2 = strlen( s );                 /* length of filename */  #define GNUPLOTPROGRAM "gnuplot"
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       strcpy( name, s );                /* save file name */  #define FILENAMELENGTH 132
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  /*#define DEBUG*/
       dirc[l1-l2] = 0;                  /* add zero */  /*#define windows*/
    }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    l1 = strlen( dirc );                 /* length of directory */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #else  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif  #define NINTERVMAX 8
    s = strrchr( name, '.' );            /* find last / */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    s++;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    strcpy(ext,s);                       /* save extension */  #define NCOVMAX 8 /* Maximum number of covariates */
    l1= strlen( name);  #define MAXN 20000
    l2= strlen( s)+1;  #define YEARM 12. /* Number of months per year */
    strncpy( finame, name, l1-l2);  #define AGESUP 130
    finame[l1-l2]= 0;  #define AGEBASE 40
    return( 0 );                         /* we're done */  #ifdef unix
 }  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
   #else
 /******************************************/  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 void replace(char *s, char*t)  #endif
 {  
   int i;  /* $Id$ */
   int lg=20;  /* $State$ */
   i=0;  
   lg=strlen(t);  char version[]="Imach version 0.96c, July 2003, INED-EUROREVES ";
   for(i=0; i<= lg; i++) {  char fullversion[]="$Revision$ $Date$"; 
     (s[i] = t[i]);  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     if (t[i]== '\\') s[i]='/';  int nvar;
   }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 int nbocc(char *s, char occ)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int i,j=0;  int popbased=0;
   int lg=20;  
   i=0;  int *wav; /* Number of waves for this individuual 0 is possible */
   lg=strlen(s);  int maxwav; /* Maxim number of waves */
   for(i=0; i<= lg; i++) {  int jmin, jmax; /* min, max spacing between 2 waves */
   if  (s[i] == occ ) j++;  int gipmx, gsw; /* Global variables on the number of contributions 
   }                     to the likelihood and the sum of weights (done by funcone)*/
   return j;  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 void cutv(char *u,char *v, char*t, char occ)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int i,lg,j,p=0;  double jmean; /* Mean space between 2 waves */
   i=0;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   for(j=0; j<=strlen(t)-1; j++) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
   lg=strlen(t);  double fretone; /* Only one call to likelihood */
   for(j=0; j<p; j++) {  long ipmx; /* Number of contributions */
     (u[j] = t[j]);  double sw; /* Sum of weights */
   }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
      u[p]='\0';  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    for(j=0; j<= lg; j++) {  FILE *ficresprobmorprev;
     if (j>=(p+1))(v[j-p-1] = t[j]);  FILE *fichtm, *fichtmcov; /* Html File */
   }  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 /********************** nrerror ********************/  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 void nrerror(char error_text[])  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   fprintf(stderr,"ERREUR ...\n");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   fprintf(stderr,"%s\n",error_text);  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   exit(1);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
 /*********************** vector *******************/  int  outcmd=0;
 double *vector(int nl, int nh)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!v) nrerror("allocation failure in vector");  char filerest[FILENAMELENGTH];
   return v-nl+NR_END;  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /************************ free vector ******************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 void free_vector(double*v, int nl, int nh)  
 {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   free((FREE_ARG)(v+nl-NR_END));  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /************************ivector *******************************/  long time_value;
 int *ivector(long nl,long nh)  extern long time();
 {  char strcurr[80], strfor[80];
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define NR_END 1
   if (!v) nrerror("allocation failure in ivector");  #define FREE_ARG char*
   return v-nl+NR_END;  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /******************free ivector **************************/  #define ITMAX 200 
 void free_ivector(int *v, long nl, long nh)  
 {  #define TOL 2.0e-4 
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /******************* imatrix *******************************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define TINY 1.0e-20 
   int **m;  
    static double maxarg1,maxarg2;
   /* allocate pointers to rows */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m -= nrl;  #define rint(a) floor(a+0.5)
    
    static double sqrarg;
   /* allocate rows and set pointers to them */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int imx; 
   m[nrl] -= ncl;  int stepm;
    /* Stepm, step in month: minimum step interpolation*/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    int estepm;
   /* return pointer to array of pointers to rows */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return m;  
 }  int m,nb;
   long *num;
 /****************** free_imatrix *************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 void free_imatrix(m,nrl,nrh,ncl,nch)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       int **m;  double **pmmij, ***probs;
       long nch,ncl,nrh,nrl;  double dateintmean=0;
      /* free an int matrix allocated by imatrix() */  
 {  double *weight;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int **s; /* Status */
   free((FREE_ARG) (m+nrl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /******************* matrix *******************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double **matrix(long nrl, long nrh, long ncl, long nch)  double ftolhess; /* Tolerance for computing hessian */
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /**************** split *************************/
   double **m;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    char  *ss;                            /* pointer */
   if (!m) nrerror("allocation failure 1 in matrix()");    int   l1, l2;                         /* length counters */
   m += NR_END;  
   m -= nrl;    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if ( ss == NULL ) {                   /* no directory, so use current */
   m[nrl] += NR_END;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m[nrl] -= ncl;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      /*    extern  char* getcwd ( char *buf , int len);*/
   return m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /*************************free matrix ************************/      strcpy( name, path );               /* we've got it */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      l2 = strlen( ss );                  /* length of filename */
   free((FREE_ARG)(m+nrl-NR_END));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /******************* ma3x *******************************/      dirc[l1-l2] = 0;                    /* add zero */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    /*#ifdef windows
   double ***m;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   if (!m) nrerror("allocation failure 1 in matrix()");  #endif
   m += NR_END;    */
   m -= nrl;    ss = strrchr( name, '.' );            /* find last / */
     ss++;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    strcpy(ext,ss);                       /* save extension */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    l1= strlen( name);
   m[nrl] += NR_END;    l2= strlen(ss)+1;
   m[nrl] -= ncl;    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return( 0 );                          /* we're done */
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /******************************************/
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  void replace_back_to_slash(char *s, char*t)
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      int i;
   for (i=nrl+1; i<=nrh; i++) {    int lg=0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    i=0;
     for (j=ncl+1; j<=nch; j++)    lg=strlen(t);
       m[i][j]=m[i][j-1]+nlay;    for(i=0; i<= lg; i++) {
   }      (s[i] = t[i]);
   return m;      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int nbocc(char *s, char occ)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    int i,j=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int lg=20;
   free((FREE_ARG)(m+nrl-NR_END));    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /***************** f1dim *************************/    if  (s[i] == occ ) j++;
 extern int ncom;    }
 extern double *pcom,*xicom;    return j;
 extern double (*nrfunc)(double []);  }
    
 double f1dim(double x)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   int j;    /* cuts string t into u and v where u is ended by char occ excluding it
   double f;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   double *xt;       gives u="abcedf" and v="ghi2j" */
      int i,lg,j,p=0;
   xt=vector(1,ncom);    i=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    for(j=0; j<=strlen(t)-1; j++) {
   f=(*nrfunc)(xt);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   free_vector(xt,1,ncom);    }
   return f;  
 }    lg=strlen(t);
     for(j=0; j<p; j++) {
 /*****************brent *************************/      (u[j] = t[j]);
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    }
 {       u[p]='\0';
   int iter;  
   double a,b,d,etemp;     for(j=0; j<= lg; j++) {
   double fu,fv,fw,fx;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  
    /********************** nrerror ********************/
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  void nrerror(char error_text[])
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    fprintf(stderr,"ERREUR ...\n");
   for (iter=1;iter<=ITMAX;iter++) {    fprintf(stderr,"%s\n",error_text);
     xm=0.5*(a+b);    exit(EXIT_FAILURE);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /*********************** vector *******************/
     printf(".");fflush(stdout);  double *vector(int nl, int nh)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    double *v;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 #endif    if (!v) nrerror("allocation failure in vector");
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    return v-nl+NR_END;
       *xmin=x;  }
       return fx;  
     }  /************************ free vector ******************/
     ftemp=fu;  void free_vector(double*v, int nl, int nh)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    free((FREE_ARG)(v+nl-NR_END));
       q=(x-v)*(fx-fw);  }
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /************************ivector *******************************/
       if (q > 0.0) p = -p;  int *ivector(long nl,long nh)
       q=fabs(q);  {
       etemp=e;    int *v;
       e=d;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if (!v) nrerror("allocation failure in ivector");
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    return v-nl+NR_END;
       else {  }
         d=p/q;  
         u=x+d;  /******************free ivector **************************/
         if (u-a < tol2 || b-u < tol2)  void free_ivector(int *v, long nl, long nh)
           d=SIGN(tol1,xm-x);  {
       }    free((FREE_ARG)(v+nl-NR_END));
     } else {  }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  /************************lvector *******************************/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  long *lvector(long nl,long nh)
     fu=(*f)(u);  {
     if (fu <= fx) {    long *v;
       if (u >= x) a=x; else b=x;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       SHFT(v,w,x,u)    if (!v) nrerror("allocation failure in ivector");
         SHFT(fv,fw,fx,fu)    return v-nl+NR_END;
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /******************free lvector **************************/
             v=w;  void free_lvector(long *v, long nl, long nh)
             w=u;  {
             fv=fw;    free((FREE_ARG)(v+nl-NR_END));
             fw=fu;  }
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  /******************* imatrix *******************************/
             fv=fu;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
           }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         }  { 
   }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   nrerror("Too many iterations in brent");    int **m; 
   *xmin=x;    
   return fx;    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 /****************** mnbrak ***********************/    m += NR_END; 
     m -= nrl; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    
             double (*func)(double))    
 {    /* allocate rows and set pointers to them */ 
   double ulim,u,r,q, dum;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      m[nrl] += NR_END; 
   *fa=(*func)(*ax);    m[nrl] -= ncl; 
   *fb=(*func)(*bx);    
   if (*fb > *fa) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)    /* return pointer to array of pointers to rows */ 
       }    return m; 
   *cx=(*bx)+GOLD*(*bx-*ax);  } 
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /****************** free_imatrix *************************/
     r=(*bx-*ax)*(*fb-*fc);  void free_imatrix(m,nrl,nrh,ncl,nch)
     q=(*bx-*cx)*(*fb-*fa);        int **m;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/        long nch,ncl,nrh,nrl; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));       /* free an int matrix allocated by imatrix() */ 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  { 
     if ((*bx-u)*(u-*cx) > 0.0) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       fu=(*func)(u);    free((FREE_ARG) (m+nrl-NR_END)); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  } 
       fu=(*func)(u);  
       if (fu < *fc) {  /******************* matrix *******************************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double **matrix(long nrl, long nrh, long ncl, long nch)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    double **m;
       u=ulim;  
       fu=(*func)(u);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     } else {    if (!m) nrerror("allocation failure 1 in matrix()");
       u=(*cx)+GOLD*(*cx-*bx);    m += NR_END;
       fu=(*func)(u);    m -= nrl;
     }  
     SHFT(*ax,*bx,*cx,u)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       SHFT(*fa,*fb,*fc,fu)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /*************** linmin ************************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 int ncom;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 double *pcom,*xicom;     */
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /*************************free matrix ************************/
 {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double f1dim(double x);    free((FREE_ARG)(m+nrl-NR_END));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  /******************* ma3x *******************************/
   double xx,xmin,bx,ax;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double fx,fb,fa;  {
      long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   ncom=n;    double ***m;
   pcom=vector(1,n);  
   xicom=vector(1,n);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   nrfunc=func;    if (!m) nrerror("allocation failure 1 in matrix()");
   for (j=1;j<=n;j++) {    m += NR_END;
     pcom[j]=p[j];    m -= nrl;
     xicom[j]=xi[j];  
   }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   ax=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   xx=1.0;    m[nrl] += NR_END;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m[nrl] -= ncl;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     xi[j] *= xmin;    m[nrl][ncl] += NR_END;
     p[j] += xi[j];    m[nrl][ncl] -= nll;
   }    for (j=ncl+1; j<=nch; j++) 
   free_vector(xicom,1,n);      m[nrl][j]=m[nrl][j-1]+nlay;
   free_vector(pcom,1,n);    
 }    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /*************** powell ************************/      for (j=ncl+1; j<=nch; j++) 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        m[i][j]=m[i][j-1]+nlay;
             double (*func)(double []))    }
 {    return m; 
   void linmin(double p[], double xi[], int n, double *fret,    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
               double (*func)(double []));             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   int i,ibig,j;    */
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  /*************************free ma3x ************************/
   pt=vector(1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   ptt=vector(1,n);  {
   xit=vector(1,n);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   xits=vector(1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   *fret=(*func)(p);    free((FREE_ARG)(m+nrl-NR_END));
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /*************** function subdirf ***********/
     ibig=0;  char *subdirf(char fileres[])
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    /* Caution optionfilefiname is hidden */
     for (i=1;i<=n;i++)    strcpy(tmpout,optionfilefiname);
       printf(" %d %.12f",i, p[i]);    strcat(tmpout,"/"); /* Add to the right */
     printf("\n");    strcat(tmpout,fileres);
     for (i=1;i<=n;i++) {    return tmpout;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /*************** function subdirf2 ***********/
       printf("fret=%lf \n",*fret);  char *subdirf2(char fileres[], char *preop)
 #endif  {
       printf("%d",i);fflush(stdout);    
       linmin(p,xit,n,fret,func);    /* Caution optionfilefiname is hidden */
       if (fabs(fptt-(*fret)) > del) {    strcpy(tmpout,optionfilefiname);
         del=fabs(fptt-(*fret));    strcat(tmpout,"/");
         ibig=i;    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
 #ifdef DEBUG    return tmpout;
       printf("%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /*************** function subdirf3 ***********/
         printf(" x(%d)=%.12e",j,xit[j]);  char *subdirf3(char fileres[], char *preop, char *preop2)
       }  {
       for(j=1;j<=n;j++)    
         printf(" p=%.12e",p[j]);    /* Caution optionfilefiname is hidden */
       printf("\n");    strcpy(tmpout,optionfilefiname);
 #endif    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    strcat(tmpout,preop2);
 #ifdef DEBUG    strcat(tmpout,fileres);
       int k[2],l;    return tmpout;
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /***************** f1dim *************************/
       for (j=1;j<=n;j++)  extern int ncom; 
         printf(" %.12e",p[j]);  extern double *pcom,*xicom;
       printf("\n");  extern double (*nrfunc)(double []); 
       for(l=0;l<=1;l++) {   
         for (j=1;j<=n;j++) {  double f1dim(double x) 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    int j; 
         }    double f;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double *xt; 
       }   
 #endif    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
       free_vector(xit,1,n);    free_vector(xt,1,ncom); 
       free_vector(xits,1,n);    return f; 
       free_vector(ptt,1,n);  } 
       free_vector(pt,1,n);  
       return;  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  { 
     for (j=1;j<=n;j++) {    int iter; 
       ptt[j]=2.0*p[j]-pt[j];    double a,b,d,etemp;
       xit[j]=p[j]-pt[j];    double fu,fv,fw,fx;
       pt[j]=p[j];    double ftemp;
     }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     fptt=(*func)(ptt);    double e=0.0; 
     if (fptt < fp) {   
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    a=(ax < cx ? ax : cx); 
       if (t < 0.0) {    b=(ax > cx ? ax : cx); 
         linmin(p,xit,n,fret,func);    x=w=v=bx; 
         for (j=1;j<=n;j++) {    fw=fv=fx=(*f)(x); 
           xi[j][ibig]=xi[j][n];    for (iter=1;iter<=ITMAX;iter++) { 
           xi[j][n]=xit[j];      xm=0.5*(a+b); 
         }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 #ifdef DEBUG      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      printf(".");fflush(stdout);
         for(j=1;j<=n;j++)      fprintf(ficlog,".");fflush(ficlog);
           printf(" %.12e",xit[j]);  #ifdef DEBUG
         printf("\n");      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #endif      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }  #endif
   }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 }        *xmin=x; 
         return fx; 
 /**** Prevalence limit ****************/      } 
       ftemp=fu;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      if (fabs(e) > tol1) { 
 {        r=(x-w)*(fx-fv); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        q=(x-v)*(fx-fw); 
      matrix by transitions matrix until convergence is reached */        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   int i, ii,j,k;        if (q > 0.0) p = -p; 
   double min, max, maxmin, maxmax,sumnew=0.;        q=fabs(q); 
   double **matprod2();        etemp=e; 
   double **out, cov[NCOVMAX], **pmij();        e=d; 
   double **newm;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double agefin, delaymax=50 ; /* Max number of years to converge */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
   for (ii=1;ii<=nlstate+ndeath;ii++)          d=p/q; 
     for (j=1;j<=nlstate+ndeath;j++){          u=x+d; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
         } 
    cov[1]=1.;      } else { 
          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     newm=savm;      fu=(*f)(u); 
     /* Covariates have to be included here again */      if (fu <= fx) { 
      cov[2]=agefin;        if (u >= x) a=x; else b=x; 
          SHFT(v,w,x,u) 
       for (k=1; k<=cptcovn;k++) {          SHFT(fv,fw,fx,fu) 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          } else { 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              v=w; 
       for (k=1; k<=cptcovprod;k++)              w=u; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              fv=fw; 
               fw=fu; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/            } else if (fu <= fv || v == x || v == w) { 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/              v=u; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/              fv=fu; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);            } 
           } 
     savm=oldm;    } 
     oldm=newm;    nrerror("Too many iterations in brent"); 
     maxmax=0.;    *xmin=x; 
     for(j=1;j<=nlstate;j++){    return fx; 
       min=1.;  } 
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /****************** mnbrak ***********************/
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         prlim[i][j]= newm[i][j]/(1-sumnew);              double (*func)(double)) 
         max=FMAX(max,prlim[i][j]);  { 
         min=FMIN(min,prlim[i][j]);    double ulim,u,r,q, dum;
       }    double fu; 
       maxmin=max-min;   
       maxmax=FMAX(maxmax,maxmin);    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
     if(maxmax < ftolpl){    if (*fb > *fa) { 
       return prlim;      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
   }        } 
 }    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
 /*************** transition probabilities ***************/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      q=(*bx-*cx)*(*fb-*fa); 
 {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double s1, s2;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   /*double t34;*/      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   int i,j,j1, nc, ii, jj;      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
     for(i=1; i<= nlstate; i++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(j=1; j<i;j++){        fu=(*func)(u); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        if (fu < *fc) { 
         /*s2 += param[i][j][nc]*cov[nc];*/          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];            SHFT(*fb,*fc,fu,(*func)(u)) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/            } 
       }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       ps[i][j]=s2;        u=ulim; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        fu=(*func)(u); 
     }      } else { 
     for(j=i+1; j<=nlstate+ndeath;j++){        u=(*cx)+GOLD*(*cx-*bx); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fu=(*func)(u); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
       ps[i][j]=s2;        } 
     }  } 
   }  
     /*ps[3][2]=1;*/  /*************** linmin ************************/
   
   for(i=1; i<= nlstate; i++){  int ncom; 
      s1=0;  double *pcom,*xicom;
     for(j=1; j<i; j++)  double (*nrfunc)(double []); 
       s1+=exp(ps[i][j]);   
     for(j=i+1; j<=nlstate+ndeath; j++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       s1+=exp(ps[i][j]);  { 
     ps[i][i]=1./(s1+1.);    double brent(double ax, double bx, double cx, 
     for(j=1; j<i; j++)                 double (*f)(double), double tol, double *xmin); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double f1dim(double x); 
     for(j=i+1; j<=nlstate+ndeath; j++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       ps[i][j]= exp(ps[i][j])*ps[i][i];                double *fc, double (*func)(double)); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    int j; 
   } /* end i */    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){   
     for(jj=1; jj<= nlstate+ndeath; jj++){    ncom=n; 
       ps[ii][jj]=0;    pcom=vector(1,n); 
       ps[ii][ii]=1;    xicom=vector(1,n); 
     }    nrfunc=func; 
   }    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    } 
     for(jj=1; jj<= nlstate+ndeath; jj++){    ax=0.0; 
      printf("%lf ",ps[ii][jj]);    xx=1.0; 
    }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     printf("\n ");    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
     printf("\n ");printf("%lf ",cov[2]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /*    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  #endif
   goto end;*/    for (j=1;j<=n;j++) { 
     return ps;      xi[j] *= xmin; 
 }      p[j] += xi[j]; 
     } 
 /**************** Product of 2 matrices ******************/    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  } 
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  char *asc_diff_time(long time_sec, char ascdiff[])
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  {
   /* in, b, out are matrice of pointers which should have been initialized    long sec_left, days, hours, minutes;
      before: only the contents of out is modified. The function returns    days = (time_sec) / (60*60*24);
      a pointer to pointers identical to out */    sec_left = (time_sec) % (60*60*24);
   long i, j, k;    hours = (sec_left) / (60*60) ;
   for(i=nrl; i<= nrh; i++)    sec_left = (sec_left) %(60*60);
     for(k=ncolol; k<=ncoloh; k++)    minutes = (sec_left) /60;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    sec_left = (sec_left) % (60);
         out[i][k] +=in[i][j]*b[j][k];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   return out;  }
 }  
   /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 /************* Higher Matrix Product ***************/              double (*func)(double [])) 
   { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    void linmin(double p[], double xi[], int n, double *fret, 
 {                double (*func)(double [])); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    int i,ibig,j; 
      duration (i.e. until    double del,t,*pt,*ptt,*xit;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double fp,fptt;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double *xits;
      (typically every 2 years instead of every month which is too big).    int niterf, itmp;
      Model is determined by parameters x and covariates have to be  
      included manually here.    pt=vector(1,n); 
     ptt=vector(1,n); 
      */    xit=vector(1,n); 
     xits=vector(1,n); 
   int i, j, d, h, k;    *fret=(*func)(p); 
   double **out, cov[NCOVMAX];    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double **newm;    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
   /* Hstepm could be zero and should return the unit matrix */      ibig=0; 
   for (i=1;i<=nlstate+ndeath;i++)      del=0.0; 
     for (j=1;j<=nlstate+ndeath;j++){      last_time=curr_time;
       oldm[i][j]=(i==j ? 1.0 : 0.0);      (void) gettimeofday(&curr_time,&tzp);
       po[i][j][0]=(i==j ? 1.0 : 0.0);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   for(h=1; h <=nhstepm; h++){      for (i=1;i<=n;i++) {
     for(d=1; d <=hstepm; d++){        printf(" %d %.12f",i, p[i]);
       newm=savm;        fprintf(ficlog," %d %.12lf",i, p[i]);
       /* Covariates have to be included here again */        fprintf(ficrespow," %.12lf", p[i]);
       cov[1]=1.;      }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      printf("\n");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fprintf(ficlog,"\n");
       for (k=1; k<=cptcovage;k++)      fprintf(ficrespow,"\n");fflush(ficrespow);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if(*iter <=3){
       for (k=1; k<=cptcovprod;k++)        tm = *localtime(&curr_time.tv_sec);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        strcpy(strcurr,asctime(&tmf));
   /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        itmp = strlen(strcurr);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        if(strcurr[itmp-1]=='\n')
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          strcurr[itmp-1]='\0';
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       savm=oldm;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       oldm=newm;        for(niterf=10;niterf<=30;niterf+=10){
     }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for(i=1; i<=nlstate+ndeath; i++)          tmf = *localtime(&forecast_time.tv_sec);
       for(j=1;j<=nlstate+ndeath;j++) {  /*      asctime_r(&tmf,strfor); */
         po[i][j][h]=newm[i][j];          strcpy(strfor,asctime(&tmf));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          itmp = strlen(strfor);
          */          if(strfor[itmp-1]=='\n')
       }          strfor[itmp-1]='\0';
   } /* end h */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   return po;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 }        }
       }
       for (i=1;i<=n;i++) { 
 /*************** log-likelihood *************/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 double func( double *x)        fptt=(*fret); 
 {  #ifdef DEBUG
   int i, ii, j, k, mi, d, kk;        printf("fret=%lf \n",*fret);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        fprintf(ficlog,"fret=%lf \n",*fret);
   double **out;  #endif
   double sw; /* Sum of weights */        printf("%d",i);fflush(stdout);
   double lli; /* Individual log likelihood */        fprintf(ficlog,"%d",i);fflush(ficlog);
   long ipmx;        linmin(p,xit,n,fret,func); 
   /*extern weight */        if (fabs(fptt-(*fret)) > del) { 
   /* We are differentiating ll according to initial status */          del=fabs(fptt-(*fret)); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          ibig=i; 
   /*for(i=1;i<imx;i++)        } 
     printf(" %d\n",s[4][i]);  #ifdef DEBUG
   */        printf("%d %.12e",i,(*fret));
   cov[1]=1.;        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   for(k=1; k<=nlstate; k++) ll[k]=0.;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          printf(" x(%d)=%.12e",j,xit[j]);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for(mi=1; mi<= wav[i]-1; mi++){        }
       for (ii=1;ii<=nlstate+ndeath;ii++)        for(j=1;j<=n;j++) {
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf(" p=%.12e",p[j]);
       for(d=0; d<dh[mi][i]; d++){          fprintf(ficlog," p=%.12e",p[j]);
         newm=savm;        }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        printf("\n");
         for (kk=1; kk<=cptcovage;kk++) {        fprintf(ficlog,"\n");
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #endif
         }      } 
              if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        int k[2],l;
         savm=oldm;        k[0]=1;
         oldm=newm;        k[1]=-1;
                printf("Max: %.12e",(*func)(p));
                fprintf(ficlog,"Max: %.12e",(*func)(p));
       } /* end mult */        for (j=1;j<=n;j++) {
                printf(" %.12e",p[j]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          fprintf(ficlog," %.12e",p[j]);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        }
       ipmx +=1;        printf("\n");
       sw += weight[i];        fprintf(ficlog,"\n");
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        for(l=0;l<=1;l++) {
     } /* end of wave */          for (j=1;j<=n;j++) {
   } /* end of individual */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   return -l;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }        }
   #endif
   
 /*********** Maximum Likelihood Estimation ***************/  
         free_vector(xit,1,n); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   int i,j, iter;        free_vector(pt,1,n); 
   double **xi,*delti;        return; 
   double fret;      } 
   xi=matrix(1,npar,1,npar);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (i=1;i<=npar;i++)      for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++)        ptt[j]=2.0*p[j]-pt[j]; 
       xi[i][j]=(i==j ? 1.0 : 0.0);        xit[j]=p[j]-pt[j]; 
   printf("Powell\n");        pt[j]=p[j]; 
   powell(p,xi,npar,ftol,&iter,&fret,func);      } 
       fptt=(*func)(ptt); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      if (fptt < fp) { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
 }          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
 /**** Computes Hessian and covariance matrix ***/            xi[j][ibig]=xi[j][n]; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            xi[j][n]=xit[j]; 
 {          }
   double  **a,**y,*x,pd;  #ifdef DEBUG
   double **hess;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int i, j,jk;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int *indx;          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   double hessii(double p[], double delta, int theta, double delti[]);            fprintf(ficlog," %.12e",xit[j]);
   double hessij(double p[], double delti[], int i, int j);          }
   void lubksb(double **a, int npar, int *indx, double b[]) ;          printf("\n");
   void ludcmp(double **a, int npar, int *indx, double *d) ;          fprintf(ficlog,"\n");
   #endif
   hess=matrix(1,npar,1,npar);        }
       } 
   printf("\nCalculation of the hessian matrix. Wait...\n");    } 
   for (i=1;i<=npar;i++){  } 
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  /**** Prevalence limit (stable prevalence)  ****************/
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   }  {
      /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (i=1;i<=npar;i++) {       matrix by transitions matrix until convergence is reached */
     for (j=1;j<=npar;j++)  {  
       if (j>i) {    int i, ii,j,k;
         printf(".%d%d",i,j);fflush(stdout);    double min, max, maxmin, maxmax,sumnew=0.;
         hess[i][j]=hessij(p,delti,i,j);    double **matprod2();
         hess[j][i]=hess[i][j];        double **out, cov[NCOVMAX], **pmij();
         /*printf(" %lf ",hess[i][j]);*/    double **newm;
       }    double agefin, delaymax=50 ; /* Max number of years to converge */
     }  
   }    for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("\n");      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      }
    
   a=matrix(1,npar,1,npar);     cov[1]=1.;
   y=matrix(1,npar,1,npar);   
   x=vector(1,npar);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   indx=ivector(1,npar);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for (i=1;i<=npar;i++)      newm=savm;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      /* Covariates have to be included here again */
   ludcmp(a,npar,indx,&pd);       cov[2]=agefin;
     
   for (j=1;j<=npar;j++) {        for (k=1; k<=cptcovn;k++) {
     for (i=1;i<=npar;i++) x[i]=0;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     x[j]=1;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       matcov[i][j]=x[i];        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   printf("\n#Hessian matrix#\n");        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   for (i=1;i<=npar;i++) {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for (j=1;j<=npar;j++) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       printf("%.3e ",hess[i][j]);  
     }      savm=oldm;
     printf("\n");      oldm=newm;
   }      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   /* Recompute Inverse */        min=1.;
   for (i=1;i<=npar;i++)        max=0.;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for(i=1; i<=nlstate; i++) {
   ludcmp(a,npar,indx,&pd);          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   /*  printf("\n#Hessian matrix recomputed#\n");          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   for (j=1;j<=npar;j++) {          min=FMIN(min,prlim[i][j]);
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;        maxmin=max-min;
     lubksb(a,npar,indx,x);        maxmax=FMAX(maxmax,maxmin);
     for (i=1;i<=npar;i++){      }
       y[i][j]=x[i];      if(maxmax < ftolpl){
       printf("%.3e ",y[i][j]);        return prlim;
     }      }
     printf("\n");    }
   }  }
   */  
   /*************** transition probabilities ***************/ 
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   free_vector(x,1,npar);  {
   free_ivector(indx,1,npar);    double s1, s2;
   free_matrix(hess,1,npar,1,npar);    /*double t34;*/
     int i,j,j1, nc, ii, jj;
   
 }      for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){
 /*************** hessian matrix ****************/        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 double hessii( double x[], double delta, int theta, double delti[])          /*s2 += param[i][j][nc]*cov[nc];*/
 {          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int i;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   int l=1, lmax=20;        }
   double k1,k2;        ps[i][j]=s2;
   double p2[NPARMAX+1];        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   double res;      }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for(j=i+1; j<=nlstate+ndeath;j++){
   double fx;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int k=0,kmax=10;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double l1;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
   fx=func(x);        ps[i][j]=s2;
   for (i=1;i<=npar;i++) p2[i]=x[i];      }
   for(l=0 ; l <=lmax; l++){    }
     l1=pow(10,l);      /*ps[3][2]=1;*/
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){    for(i=1; i<= nlstate; i++){
       delt = delta*(l1*k);       s1=0;
       p2[theta]=x[theta] +delt;      for(j=1; j<i; j++)
       k1=func(p2)-fx;        s1+=exp(ps[i][j]);
       p2[theta]=x[theta]-delt;      for(j=i+1; j<=nlstate+ndeath; j++)
       k2=func(p2)-fx;        s1+=exp(ps[i][j]);
       /*res= (k1-2.0*fx+k2)/delt/delt; */      ps[i][i]=1./(s1+1.);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      for(j=1; j<i; j++)
              ps[i][j]= exp(ps[i][j])*ps[i][i];
 #ifdef DEBUG      for(j=i+1; j<=nlstate+ndeath; j++)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        ps[i][j]= exp(ps[i][j])*ps[i][i];
 #endif      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    } /* end i */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }      for(jj=1; jj<= nlstate+ndeath; jj++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        ps[ii][jj]=0;
         k=kmax; l=lmax*10.;        ps[ii][ii]=1;
       }      }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    }
         delts=delt;  
       }  
     }    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   }      for(jj=1; jj<= nlstate+ndeath; jj++){
   delti[theta]=delts;       printf("%lf ",ps[ii][jj]);
   return res;     }
        printf("\n ");
 }      }
       printf("\n ");printf("%lf ",cov[2]);*/
 double hessij( double x[], double delti[], int thetai,int thetaj)  /*
 {    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int i;    goto end;*/
   int l=1, l1, lmax=20;      return ps;
   double k1,k2,k3,k4,res,fx;  }
   double p2[NPARMAX+1];  
   int k;  /**************** Product of 2 matrices ******************/
   
   fx=func(x);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   for (k=1; k<=2; k++) {  {
     for (i=1;i<=npar;i++) p2[i]=x[i];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     p2[thetai]=x[thetai]+delti[thetai]/k;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /* in, b, out are matrice of pointers which should have been initialized 
     k1=func(p2)-fx;       before: only the contents of out is modified. The function returns
         a pointer to pointers identical to out */
     p2[thetai]=x[thetai]+delti[thetai]/k;    long i, j, k;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for(i=nrl; i<= nrh; i++)
     k2=func(p2)-fx;      for(k=ncolol; k<=ncoloh; k++)
          for(j=ncl,out[i][k]=0.; j<=nch; j++)
     p2[thetai]=x[thetai]-delti[thetai]/k;          out[i][k] +=in[i][j]*b[j][k];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;    return out;
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  /************* Higher Matrix Product ***************/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  {
 #endif    /* Computes the transition matrix starting at age 'age' over 
   }       'nhstepm*hstepm*stepm' months (i.e. until
   return res;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 /************** Inverse of matrix **************/       (typically every 2 years instead of every month which is too big 
 void ludcmp(double **a, int n, int *indx, double *d)       for the memory).
 {       Model is determined by parameters x and covariates have to be 
   int i,imax,j,k;       included manually here. 
   double big,dum,sum,temp;  
   double *vv;       */
    
   vv=vector(1,n);    int i, j, d, h, k;
   *d=1.0;    double **out, cov[NCOVMAX];
   for (i=1;i<=n;i++) {    double **newm;
     big=0.0;  
     for (j=1;j<=n;j++)    /* Hstepm could be zero and should return the unit matrix */
       if ((temp=fabs(a[i][j])) > big) big=temp;    for (i=1;i<=nlstate+ndeath;i++)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for (j=1;j<=nlstate+ndeath;j++){
     vv[i]=1.0/big;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   for (j=1;j<=n;j++) {      }
     for (i=1;i<j;i++) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       sum=a[i][j];    for(h=1; h <=nhstepm; h++){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      for(d=1; d <=hstepm; d++){
       a[i][j]=sum;        newm=savm;
     }        /* Covariates have to be included here again */
     big=0.0;        cov[1]=1.;
     for (i=j;i<=n;i++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       sum=a[i][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (k=1;k<j;k++)        for (k=1; k<=cptcovage;k++)
         sum -= a[i][k]*a[k][j];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       a[i][j]=sum;        for (k=1; k<=cptcovprod;k++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         big=dum;  
         imax=i;  
       }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     if (j != imax) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for (k=1;k<=n;k++) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         dum=a[imax][k];        savm=oldm;
         a[imax][k]=a[j][k];        oldm=newm;
         a[j][k]=dum;      }
       }      for(i=1; i<=nlstate+ndeath; i++)
       *d = -(*d);        for(j=1;j<=nlstate+ndeath;j++) {
       vv[imax]=vv[j];          po[i][j][h]=newm[i][j];
     }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     indx[j]=imax;           */
     if (a[j][j] == 0.0) a[j][j]=TINY;        }
     if (j != n) {    } /* end h */
       dum=1.0/(a[j][j]);    return po;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  }
     }  
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /*************** log-likelihood *************/
 ;  double func( double *x)
 }  {
     int i, ii, j, k, mi, d, kk;
 void lubksb(double **a, int n, int *indx, double b[])    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 {    double **out;
   int i,ii=0,ip,j;    double sw; /* Sum of weights */
   double sum;    double lli; /* Individual log likelihood */
      int s1, s2;
   for (i=1;i<=n;i++) {    double bbh, survp;
     ip=indx[i];    long ipmx;
     sum=b[ip];    /*extern weight */
     b[ip]=b[i];    /* We are differentiating ll according to initial status */
     if (ii)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    /*for(i=1;i<imx;i++) 
     else if (sum) ii=i;      printf(" %d\n",s[4][i]);
     b[i]=sum;    */
   }    cov[1]=1.;
   for (i=n;i>=1;i--) {  
     sum=b[i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];    if(mle==1){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************ Frequencies ********************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            for (j=1;j<=nlstate+ndeath;j++){
 {  /* Some frequencies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            }
   double ***freq; /* Frequencies */          for(d=0; d<dh[mi][i]; d++){
   double *pp;            newm=savm;
   double pos, k2, dateintsum=0,k2cpt=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   FILE *ficresp;            for (kk=1; kk<=cptcovage;kk++) {
   char fileresp[FILENAMELENGTH];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   pp=vector(1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcpy(fileresp,"p");            savm=oldm;
   strcat(fileresp,fileres);            oldm=newm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {          } /* end mult */
     printf("Problem with prevalence resultfile: %s\n", fileresp);        
     exit(0);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias and large stepm.
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   j1=0;           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
   j=cptcoveff;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
   for(k1=1; k1<=j;k1++){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     for(i1=1; i1<=ncodemax[k1];i1++){           * -stepm/2 to stepm/2 .
       j1++;           * For stepm=1 the results are the same as for previous versions of Imach.
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * For stepm > 1 the results are less biased than in previous versions. 
         scanf("%d", i);*/           */
       for (i=-1; i<=nlstate+ndeath; i++)            s1=s[mw[mi][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            s2=s[mw[mi+1][i]][i];
           for(m=agemin; m <= agemax+3; m++)          bbh=(double)bh[mi][i]/(double)stepm; 
             freq[i][jk][m]=0;          /* bias is positive if real duration
                 * is higher than the multiple of stepm and negative otherwise.
       dateintsum=0;           */
       k2cpt=0;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (i=1; i<=imx; i++) {          if( s2 > nlstate){ 
         bool=1;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         if  (cptcovn>0) {               to the likelihood is the probability to die between last step unit time and current 
           for (z1=1; z1<=cptcoveff; z1++)               step unit time, which is also the differences between probability to die before dh 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])               and probability to die before dh-stepm . 
               bool=0;               In version up to 0.92 likelihood was computed
         }          as if date of death was unknown. Death was treated as any other
         if (bool==1) {          health state: the date of the interview describes the actual state
           for(m=firstpass; m<=lastpass; m++){          and not the date of a change in health state. The former idea was
             k2=anint[m][i]+(mint[m][i]/12.);          to consider that at each interview the state was recorded
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          (healthy, disable or death) and IMaCh was corrected; but when we
               if(agev[m][i]==0) agev[m][i]=agemax+1;          introduced the exact date of death then we should have modified
               if(agev[m][i]==1) agev[m][i]=agemax+2;          the contribution of an exact death to the likelihood. This new
               if (m<lastpass) {          contribution is smaller and very dependent of the step unit
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          stepm. It is no more the probability to die between last interview
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          and month of death but the probability to survive from last
               }          interview up to one month before death multiplied by the
                        probability to die within a month. Thanks to Chris
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          Jackson for correcting this bug.  Former versions increased
                 dateintsum=dateintsum+k2;          mortality artificially. The bad side is that we add another loop
                 k2cpt++;          which slows down the processing. The difference can be up to 10%
               }          lower mortality.
             }            */
           }            lli=log(out[s1][s2] - savm[s1][s2]);
         }          }else{
       }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                    /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       if  (cptcovn>0) {          /*if(lli ==000.0)*/
         fprintf(ficresp, "\n#********** Variable ");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          ipmx +=1;
         fprintf(ficresp, "**********\n#");          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=nlstate;i++)        } /* end of wave */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      } /* end of individual */
       fprintf(ficresp, "\n");    }  else if(mle==2){
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(i==(int)agemax+3)        for(mi=1; mi<= wav[i]-1; mi++){
           printf("Total");          for (ii=1;ii<=nlstate+ndeath;ii++)
         else            for (j=1;j<=nlstate+ndeath;j++){
           printf("Age %d", i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            }
             pp[jk] += freq[jk][m][i];          for(d=0; d<=dh[mi][i]; d++){
         }            newm=savm;
         for(jk=1; jk <=nlstate ; jk++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(m=-1, pos=0; m <=0 ; m++)            for (kk=1; kk<=cptcovage;kk++) {
             pos += freq[jk][m][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if(pp[jk]>=1.e-10)            }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            savm=oldm;
         }            oldm=newm;
           } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
             pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(jk=1,pos=0; jk <=nlstate ; jk++)          ipmx +=1;
           pos += pp[jk];          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if(pos>=1.e-5)        } /* end of wave */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } /* end of individual */
           else    }  else if(mle==3){  /* exponential inter-extrapolation */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if( i <= (int) agemax){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if(pos>=1.e-5){        for(mi=1; mi<= wav[i]-1; mi++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
               probs[i][jk][j1]= pp[jk]/pos;            for (j=1;j<=nlstate+ndeath;j++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             else            }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
         for(jk=-1; jk <=nlstate+ndeath; jk++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=-1; m <=nlstate+ndeath; m++)            }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if(i <= (int) agemax)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficresp,"\n");            savm=oldm;
         printf("\n");            oldm=newm;
       }          } /* end mult */
     }        
   }          s1=s[mw[mi][i]][i];
   dateintmean=dateintsum/k2cpt;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   fclose(ficresp);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ipmx +=1;
   free_vector(pp,1,nlstate);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* End of Freq */        } /* end of wave */
 }      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 /************ Prevalence ********************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {  /* Some frequencies */        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            for (j=1;j<=nlstate+ndeath;j++){
   double ***freq; /* Frequencies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *pp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2;            }
           for(d=0; d<dh[mi][i]; d++){
   pp=vector(1,nlstate);            newm=savm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j1=0;            }
            
   j=cptcoveff;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
  for(k1=1; k1<=j;k1++){            oldm=newm;
     for(i1=1; i1<=ncodemax[k1];i1++){          } /* end mult */
       j1++;        
            s1=s[mw[mi][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)            s2=s[mw[mi+1][i]][i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            if( s2 > nlstate){ 
           for(m=agemin; m <= agemax+3; m++)            lli=log(out[s1][s2] - savm[s1][s2]);
             freq[i][jk][m]=0;          }else{
                  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for (i=1; i<=imx; i++) {          }
         bool=1;          ipmx +=1;
         if  (cptcovn>0) {          sw += weight[i];
           for (z1=1; z1<=cptcoveff; z1++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
               bool=0;        } /* end of wave */
         }      } /* end of individual */
         if (bool==1) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           for(m=firstpass; m<=lastpass; m++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             k2=anint[m][i]+(mint[m][i]/12.);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(mi=1; mi<= wav[i]-1; mi++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (j=1;j<=nlstate+ndeath;j++){
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }            }
           }          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(i=(int)agemin; i <= (int)agemax+3; i++){            for (kk=1; kk<=cptcovage;kk++) {
           for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            }
               pp[jk] += freq[jk][m][i];          
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             for(m=-1, pos=0; m <=0 ; m++)            savm=oldm;
             pos += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
                
          for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s2=s[mw[mi+1][i]][i];
              pp[jk] += freq[jk][m][i];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
          }          ipmx +=1;
                    sw += weight[i];
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          for(jk=1; jk <=nlstate ; jk++){                  } /* end of wave */
            if( i <= (int) agemax){      } /* end of individual */
              if(pos>=1.e-5){    } /* End of if */
                probs[i][jk][j1]= pp[jk]/pos;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
              }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
            }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
          }    return -l;
            }
         }  
     }  /*************** log-likelihood *************/
   }  double funcone( double *x)
    {
      /* Same as likeli but slower because of a lot of printf and if */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    int i, ii, j, k, mi, d, kk;
   free_vector(pp,1,nlstate);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
 }  /* End of Freq */    double lli; /* Individual log likelihood */
     double llt;
 /************* Waves Concatenation ***************/    int s1, s2;
     double bbh, survp;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    /*extern weight */
 {    /* We are differentiating ll according to initial status */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      Death is a valid wave (if date is known).    /*for(i=1;i<imx;i++) 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      printf(" %d\n",s[4][i]);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    */
      and mw[mi+1][i]. dh depends on stepm.    cov[1]=1.;
      */  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   int i, mi, m;  
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      double sum=0., jmean=0.;*/      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   int j, k=0,jk, ju, jl;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double sum=0.;          for (j=1;j<=nlstate+ndeath;j++){
   jmin=1e+5;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmax=-1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmean=0.;          }
   for(i=1; i<=imx; i++){        for(d=0; d<dh[mi][i]; d++){
     mi=0;          newm=savm;
     m=firstpass;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     while(s[m][i] <= nlstate){          for (kk=1; kk<=cptcovage;kk++) {
       if(s[m][i]>=1)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         mw[++mi][i]=m;          }
       if(m >=lastpass)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         break;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       else          savm=oldm;
         m++;          oldm=newm;
     }/* end while */        } /* end mult */
     if (s[m][i] > nlstate){        
       mi++;     /* Death is another wave */        s1=s[mw[mi][i]][i];
       /* if(mi==0)  never been interviewed correctly before death */        s2=s[mw[mi+1][i]][i];
          /* Only death is a correct wave */        bbh=(double)bh[mi][i]/(double)stepm; 
       mw[mi][i]=m;        /* bias is positive if real duration
     }         * is higher than the multiple of stepm and negative otherwise.
          */
     wav[i]=mi;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     if(mi==0)          lli=log(out[s1][s2] - savm[s1][s2]);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        } else if (mle==1){
   }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
   for(i=1; i<=imx; i++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(mi=1; mi<wav[i];mi++){        } else if(mle==3){  /* exponential inter-extrapolation */
       if (stepm <=0)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         dh[mi][i]=1;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       else{          lli=log(out[s1][s2]); /* Original formula */
         if (s[mw[mi+1][i]][i] > nlstate) {        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           if (agedc[i] < 2*AGESUP) {          lli=log(out[s1][s2]); /* Original formula */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        } /* End of if */
           if(j==0) j=1;  /* Survives at least one month after exam */        ipmx +=1;
           k=k+1;        sw += weight[i];
           if (j >= jmax) jmax=j;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (j <= jmin) jmin=j;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           sum=sum+j;        if(globpr){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
           }   %10.6f %10.6f %10.6f ", \
         }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         else{                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           k=k+1;            llt +=ll[k]*gipmx/gsw;
           if (j >= jmax) jmax=j;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           else if (j <= jmin)jmin=j;          }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          fprintf(ficresilk," %10.6f\n", -llt);
           sum=sum+j;        }
         }      } /* end of wave */
         jk= j/stepm;    } /* end of individual */
         jl= j -jk*stepm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         ju= j -(jk+1)*stepm;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         if(jl <= -ju)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           dh[mi][i]=jk;    if(globpr==0){ /* First time we count the contributions and weights */
         else      gipmx=ipmx;
           dh[mi][i]=jk+1;      gsw=sw;
         if(dh[mi][i]==0)    }
           dh[mi][i]=1; /* At least one step */    return -l;
       }  }
     }  
   }  
   jmean=sum/k;  /*************** function likelione ***********/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
  }  {
 /*********** Tricode ****************************/    /* This routine should help understanding what is done with 
 void tricode(int *Tvar, int **nbcode, int imx)       the selection of individuals/waves and
 {       to check the exact contribution to the likelihood.
   int Ndum[20],ij=1, k, j, i;       Plotting could be done.
   int cptcode=0;     */
   cptcoveff=0;    int k;
    
   for (k=0; k<19; k++) Ndum[k]=0;    if(*globpri !=0){ /* Just counts and sums, no printings */
   for (k=1; k<=7; k++) ncodemax[k]=0;      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     for (i=1; i<=imx; i++) {        printf("Problem with resultfile: %s\n", fileresilk);
       ij=(int)(covar[Tvar[j]][i]);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       Ndum[ij]++;      }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       if (ij > cptcode) cptcode=ij;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
     for (i=0; i<=cptcode; i++) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       if(Ndum[i]!=0) ncodemax[j]++;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }    }
     ij=1;  
     *fretone=(*funcone)(p);
     if(*globpri !=0){
     for (i=1; i<=ncodemax[j]; i++) {      fclose(ficresilk);
       for (k=0; k<=19; k++) {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         if (Ndum[k] != 0) {      fflush(fichtm); 
           nbcode[Tvar[j]][ij]=k;    } 
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/    return;
           ij++;  }
         }  
         if (ij > ncodemax[j]) break;  
       }    /*********** Maximum Likelihood Estimation ***************/
     }  
   }    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
  for (k=0; k<19; k++) Ndum[k]=0;    int i,j, iter;
     double **xi;
  for (i=1; i<=ncovmodel-2; i++) {    double fret;
       ij=Tvar[i];    double fretone; /* Only one call to likelihood */
       Ndum[ij]++;    char filerespow[FILENAMELENGTH];
     }    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
  ij=1;      for (j=1;j<=npar;j++)
  for (i=1; i<=10; i++) {        xi[i][j]=(i==j ? 1.0 : 0.0);
    if((Ndum[i]!=0) && (i<=ncovcol)){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      Tvaraff[ij]=i;    strcpy(filerespow,"pow"); 
      ij++;    strcat(filerespow,fileres);
    }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
  }      printf("Problem with resultfile: %s\n", filerespow);
        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     cptcoveff=ij-1;    }
 }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
 /*********** Health Expectancies ****************/      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    fprintf(ficrespow,"\n");
 {  
   /* Health expectancies */    powell(p,xi,npar,ftol,&iter,&fret,func);
   int i, j, nhstepm, hstepm, h, nstepm, k;  
   double age, agelim, hf;    fclose(ficrespow);
   double ***p3mat;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficreseij,"# Health expectancies\n");    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d",i,j);  /**** Computes Hessian and covariance matrix ***/
   fprintf(ficreseij,"\n");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
   k=1;             /* For example stepm=6 months */    double  **a,**y,*x,pd;
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */    double **hess;
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */    int i, j,jk;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int *indx;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    double hessii(double p[], double delta, int theta, double delti[]);
      Look at hpijx to understand the reason of that which relies in memory size    double hessij(double p[], double delti[], int i, int j);
      and note for a fixed period like k years */    void lubksb(double **a, int npar, int *indx, double b[]) ;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    void ludcmp(double **a, int npar, int *indx, double *d) ;
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    hess=matrix(1,npar,1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    printf("\nCalculation of the hessian matrix. Wait...\n");
   */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   agelim=AGESUP;      fprintf(ficlog,"%d",i);fflush(ficlog);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      hess[i][i]=hessii(p,ftolhess,i,delti);
     /* nhstepm age range expressed in number of stepm */      /*printf(" %f ",p[i]);*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      /*printf(" %lf ",hess[i][i]);*/
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    }
     /* if (stepm >= YEARM) hstepm=1;*/    
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (i=1;i<=npar;i++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++)  {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        if (j>i) { 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          printf(".%d%d",i,j);fflush(stdout);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          hess[i][j]=hessij(p,delti,i,j);
     for(i=1; i<=nlstate;i++)          hess[j][i]=hess[i][j];    
       for(j=1; j<=nlstate;j++)          /*printf(" %lf ",hess[i][j]);*/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      }
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }
         }    printf("\n");
     fprintf(ficreseij,"%3.0f",age );    fprintf(ficlog,"\n");
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    
     fprintf(ficreseij,"\n");    a=matrix(1,npar,1,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    y=matrix(1,npar,1,npar);
   }    x=vector(1,npar);
 }    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
 /************ Variance ******************/      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    ludcmp(a,npar,indx,&pd);
 {  
   /* Variance of health expectancies */    for (j=1;j<=npar;j++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=1;i<=npar;i++) x[i]=0;
   double **newm;      x[j]=1;
   double **dnewm,**doldm;      lubksb(a,npar,indx,x);
   int i, j, nhstepm, hstepm, h, nstepm, kk;      for (i=1;i<=npar;i++){ 
   int k, cptcode;        matcov[i][j]=x[i];
   double *xp;      }
   double **gp, **gm;    }
   double ***gradg, ***trgradg;  
   double ***p3mat;    printf("\n#Hessian matrix#\n");
   double age,agelim, hf;    fprintf(ficlog,"\n#Hessian matrix#\n");
   int theta;    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
    fprintf(ficresvij,"# Covariances of life expectancies\n");        printf("%.3e ",hess[i][j]);
   fprintf(ficresvij,"# Age");        fprintf(ficlog,"%.3e ",hess[i][j]);
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=nlstate;j++)      printf("\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      fprintf(ficlog,"\n");
   fprintf(ficresvij,"\n");    }
   
   xp=vector(1,npar);    /* Recompute Inverse */
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=npar;i++)
   doldm=matrix(1,nlstate,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      ludcmp(a,npar,indx,&pd);
   kk=1;             /* For example stepm=6 months */  
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */    /*  printf("\n#Hessian matrix recomputed#\n");
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (j=1;j<=npar;j++) {
      nhstepm is the number of hstepm from age to agelim      for (i=1;i<=npar;i++) x[i]=0;
      nstepm is the number of stepm from age to agelin.      x[j]=1;
      Look at hpijx to understand the reason of that which relies in memory size      lubksb(a,npar,indx,x);
      and note for a fixed period like k years */      for (i=1;i<=npar;i++){ 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        y[i][j]=x[i];
      survival function given by stepm (the optimization length). Unfortunately it        printf("%.3e ",y[i][j]);
      means that if the survival funtion is printed only each two years of age and if        fprintf(ficlog,"%.3e ",y[i][j]);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      }
      results. So we changed our mind and took the option of the best precision.      printf("\n");
   */      fprintf(ficlog,"\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */    }
   agelim = AGESUP;    */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_matrix(a,1,npar,1,npar);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    free_matrix(y,1,npar,1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(x,1,npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    free_ivector(indx,1,npar);
     gp=matrix(0,nhstepm,1,nlstate);    free_matrix(hess,1,npar,1,npar);
     gm=matrix(0,nhstepm,1,nlstate);  
   
     for(theta=1; theta <=npar; theta++){  }
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /*************** hessian matrix ****************/
       }  double hessii( double x[], double delta, int theta, double delti[])
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i;
     int l=1, lmax=20;
       if (popbased==1) {    double k1,k2;
         for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
           prlim[i][i]=probs[(int)age][i][ij];    double res;
       }    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      double fx;
       for(j=1; j<= nlstate; j++){    int k=0,kmax=10;
         for(h=0; h<=nhstepm; h++){    double l1;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    fx=func(x);
         }    for (i=1;i<=npar;i++) p2[i]=x[i];
       }    for(l=0 ; l <=lmax; l++){
          l1=pow(10,l);
       for(i=1; i<=npar; i++) /* Computes gradient */      delts=delt;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(k=1 ; k <kmax; k=k+1){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          delt = delta*(l1*k);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
       if (popbased==1) {        p2[theta]=x[theta]-delt;
         for(i=1; i<=nlstate;i++)        k2=func(p2)-fx;
           prlim[i][i]=probs[(int)age][i][ij];        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
       for(j=1; j<= nlstate; j++){  #ifdef DEBUG
         for(h=0; h<=nhstepm; h++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  #endif
         }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
       for(j=1; j<= nlstate; j++)        }
         for(h=0; h<=nhstepm; h++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          k=kmax; l=lmax*10.;
         }        }
     } /* End theta */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        }
       }
     for(h=0; h<=nhstepm; h++)    }
       for(j=1; j<=nlstate;j++)    delti[theta]=delts;
         for(theta=1; theta <=npar; theta++)    return res; 
           trgradg[h][j][theta]=gradg[h][theta][j];    
   }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  double hessij( double x[], double delti[], int thetai,int thetaj)
       for(j=1;j<=nlstate;j++)  {
         vareij[i][j][(int)age] =0.;    int i;
     int l=1, l1, lmax=20;
     for(h=0;h<=nhstepm;h++){    double k1,k2,k3,k4,res,fx;
       for(k=0;k<=nhstepm;k++){    double p2[NPARMAX+1];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    int k;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    fx=func(x);
           for(j=1;j<=nlstate;j++)    for (k=1; k<=2; k++) {
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for (i=1;i<=npar;i++) p2[i]=x[i];
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
     fprintf(ficresvij,"%.0f ",age );    
     for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(j=1; j<=nlstate;j++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      k2=func(p2)-fx;
       }    
     fprintf(ficresvij,"\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_matrix(gp,0,nhstepm,1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_matrix(gm,0,nhstepm,1,nlstate);      k3=func(p2)-fx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   } /* End age */      k4=func(p2)-fx;
        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   free_vector(xp,1,npar);  #ifdef DEBUG
   free_matrix(doldm,1,nlstate,1,npar);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   free_matrix(dnewm,1,nlstate,1,nlstate);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
 }    }
     return res;
 /************ Variance of prevlim ******************/  }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {  /************** Inverse of matrix **************/
   /* Variance of prevalence limit */  void ludcmp(double **a, int n, int *indx, double *d) 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  { 
   double **newm;    int i,imax,j,k; 
   double **dnewm,**doldm;    double big,dum,sum,temp; 
   int i, j, nhstepm, hstepm;    double *vv; 
   int k, cptcode;   
   double *xp;    vv=vector(1,n); 
   double *gp, *gm;    *d=1.0; 
   double **gradg, **trgradg;    for (i=1;i<=n;i++) { 
   double age,agelim;      big=0.0; 
   int theta;      for (j=1;j<=n;j++) 
            if ((temp=fabs(a[i][j])) > big) big=temp; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   fprintf(ficresvpl,"# Age");      vv[i]=1.0/big; 
   for(i=1; i<=nlstate;i++)    } 
       fprintf(ficresvpl," %1d-%1d",i,i);    for (j=1;j<=n;j++) { 
   fprintf(ficresvpl,"\n");      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
   xp=vector(1,npar);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   dnewm=matrix(1,nlstate,1,npar);        a[i][j]=sum; 
   doldm=matrix(1,nlstate,1,nlstate);      } 
        big=0.0; 
   hstepm=1*YEARM; /* Every year of age */      for (i=j;i<=n;i++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        sum=a[i][j]; 
   agelim = AGESUP;        for (k=1;k<j;k++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          sum -= a[i][k]*a[k][j]; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        a[i][j]=sum; 
     if (stepm >= YEARM) hstepm=1;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          big=dum; 
     gradg=matrix(1,npar,1,nlstate);          imax=i; 
     gp=vector(1,nlstate);        } 
     gm=vector(1,nlstate);      } 
       if (j != imax) { 
     for(theta=1; theta <=npar; theta++){        for (k=1;k<=n;k++) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */          dum=a[imax][k]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          a[imax][k]=a[j][k]; 
       }          a[j][k]=dum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } 
       for(i=1;i<=nlstate;i++)        *d = -(*d); 
         gp[i] = prlim[i][i];        vv[imax]=vv[j]; 
          } 
       for(i=1; i<=npar; i++) /* Computes gradient */      indx[j]=imax; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      if (j != n) { 
       for(i=1;i<=nlstate;i++)        dum=1.0/(a[j][j]); 
         gm[i] = prlim[i][i];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
       for(i=1;i<=nlstate;i++)    } 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    free_vector(vv,1,n);  /* Doesn't work */
     } /* End theta */  ;
   } 
     trgradg =matrix(1,nlstate,1,npar);  
   void lubksb(double **a, int n, int *indx, double b[]) 
     for(j=1; j<=nlstate;j++)  { 
       for(theta=1; theta <=npar; theta++)    int i,ii=0,ip,j; 
         trgradg[j][theta]=gradg[theta][j];    double sum; 
    
     for(i=1;i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       varpl[i][(int)age] =0.;      ip=indx[i]; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      sum=b[ip]; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      b[ip]=b[i]; 
     for(i=1;i<=nlstate;i++)      if (ii) 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
     fprintf(ficresvpl,"%.0f ",age );      b[i]=sum; 
     for(i=1; i<=nlstate;i++)    } 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for (i=n;i>=1;i--) { 
     fprintf(ficresvpl,"\n");      sum=b[i]; 
     free_vector(gp,1,nlstate);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     free_vector(gm,1,nlstate);      b[i]=sum/a[i][i]; 
     free_matrix(gradg,1,npar,1,nlstate);    } 
     free_matrix(trgradg,1,nlstate,1,npar);  } 
   } /* End age */  
   /************ Frequencies ********************/
   free_vector(xp,1,npar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   free_matrix(doldm,1,nlstate,1,npar);  {  /* Some frequencies */
   free_matrix(dnewm,1,nlstate,1,nlstate);    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 }    int first;
     double ***freq; /* Frequencies */
 /************ Variance of one-step probabilities  ******************/    double *pp, **prop;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
 {    FILE *ficresp;
   int i, j;    char fileresp[FILENAMELENGTH];
   int k=0, cptcode;    
   double **dnewm,**doldm;    pp=vector(1,nlstate);
   double *xp;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double *gp, *gm;    strcpy(fileresp,"p");
   double **gradg, **trgradg;    strcat(fileresp,fileres);
   double age,agelim, cov[NCOVMAX];    if((ficresp=fopen(fileresp,"w"))==NULL) {
   int theta;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   char fileresprob[FILENAMELENGTH];      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
   strcpy(fileresprob,"prob");    }
   strcat(fileresprob,fileres);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    j1=0;
     printf("Problem with resultfile: %s\n", fileresprob);    
   }    j=cptcoveff;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
     first=1;
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for(k1=1; k1<=j;k1++){
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      for(i1=1; i1<=ncodemax[k1];i1++){
          j1++;
   cov[1]=1;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   for (age=bage; age<=fage; age ++){          scanf("%d", i);*/
     cov[2]=age;        for (i=-1; i<=nlstate+ndeath; i++)  
     gradg=matrix(1,npar,1,9);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     trgradg=matrix(1,9,1,npar);            for(m=iagemin; m <= iagemax+3; m++)
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              freq[i][jk][m]=0;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
          for (i=1; i<=nlstate; i++)  
     for(theta=1; theta <=npar; theta++){        for(m=iagemin; m <= iagemax+3; m++)
       for(i=1; i<=npar; i++)          prop[i][m]=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        
              dateintsum=0;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        k2cpt=0;
            for (i=1; i<=imx; i++) {
       k=0;          bool=1;
       for(i=1; i<= (nlstate+ndeath); i++){          if  (cptcovn>0) {
         for(j=1; j<=(nlstate+ndeath);j++){            for (z1=1; z1<=cptcoveff; z1++) 
            k=k+1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           gp[k]=pmmij[i][j];                bool=0;
         }          }
       }          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
       for(i=1; i<=npar; i++)              k2=anint[m][i]+(mint[m][i]/12.);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                    if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       k=0;                if (m<lastpass) {
       for(i=1; i<=(nlstate+ndeath); i++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         for(j=1; j<=(nlstate+ndeath);j++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           k=k+1;                }
           gm[k]=pmmij[i][j];                
         }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       }                  dateintsum=dateintsum+k2;
                        k2cpt++;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)                }
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                  /*}*/
     }            }
           }
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        }
       for(theta=1; theta <=npar; theta++)         
       trgradg[j][theta]=gradg[theta][j];        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
    
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        if  (cptcovn>0) {
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      pmij(pmmij,cov,ncovmodel,x,nlstate);          fprintf(ficresp, "**********\n#");
         }
      k=0;        for(i=1; i<=nlstate;i++) 
      for(i=1; i<=(nlstate+ndeath); i++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
        for(j=1; j<=(nlstate+ndeath);j++){        fprintf(ficresp, "\n");
          k=k+1;        
          gm[k]=pmmij[i][j];        for(i=iagemin; i <= iagemax+3; i++){
         }          if(i==iagemax+3){
      }            fprintf(ficlog,"Total");
                }else{
      /*printf("\n%d ",(int)age);            if(first==1){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              first=0;
                      printf("See log file for details...\n");
             }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            fprintf(ficlog,"Age %d", i);
      }*/          }
           for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresprob,"\n%d ",(int)age);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          }
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          for(jk=1; jk <=nlstate ; jk++){
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            for(m=-1, pos=0; m <=0 ; m++)
   }              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 }            }else{
  free_vector(xp,1,npar);              if(first==1)
 fclose(ficresprob);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }            }
           }
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          for(jk=1; jk <=nlstate ; jk++){
  int lastpass, int stepm, int weightopt, char model[],\            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              pp[jk] += freq[jk][m][i];
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          }       
  char version[], int popforecast ){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   int jj1, k1, i1, cpt;            pos += pp[jk];
   FILE *fichtm;            posprop += prop[jk][i];
   /*char optionfilehtm[FILENAMELENGTH];*/          }
           for(jk=1; jk <=nlstate ; jk++){
   strcpy(optionfilehtm,optionfile);            if(pos>=1.e-5){
   strcat(optionfilehtm,".htm");              if(first==1)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     printf("Problem with %s \n",optionfilehtm), exit(0);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }            }else{
               if(first==1)
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 \n            }
 Total number of observations=%d <br>\n            if( i <= iagemax){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n              if(pos>=1.e-5){
 <hr  size=\"2\" color=\"#EC5E5E\">                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
  <ul><li>Outputs files<br>\n                /*probs[i][jk][j1]= pp[jk]/pos;*/
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n              }
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              else
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n            }
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          }
           
  fprintf(fichtm,"\n          for(jk=-1; jk <=nlstate+ndeath; jk++)
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n            for(m=-1; m <=nlstate+ndeath; m++)
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n              if(freq[jk][m][i] !=0 ) {
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n              if(first==1)
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  if(popforecast==1) fprintf(fichtm,"\n              }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          if(i <= iagemax)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            fprintf(ficresp,"\n");
         <br>",fileres,fileres,fileres,fileres);          if(first==1)
  else            printf("Others in log...\n");
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          fprintf(ficlog,"\n");
 fprintf(fichtm," <li>Graphs</li><p>");        }
       }
  m=cptcoveff;    }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    dateintmean=dateintsum/k2cpt; 
    
  jj1=0;    fclose(ficresp);
  for(k1=1; k1<=m;k1++){    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
    for(i1=1; i1<=ncodemax[k1];i1++){    free_vector(pp,1,nlstate);
        jj1++;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        if (cptcovn > 0) {    /* End of Freq */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  }
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /************ Prevalence ********************/
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
        }  {  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           in each health status at the date of interview (if between dateprev1 and dateprev2).
        for(cpt=1; cpt<nlstate;cpt++){       We still use firstpass and lastpass as another selection.
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);   
        }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     for(cpt=1; cpt<=nlstate;cpt++) {    double ***freq; /* Frequencies */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double *pp, **prop;
 interval) in state (%d): v%s%d%d.gif <br>    double pos,posprop; 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      double  y2; /* in fractional years */
      }    int iagemin, iagemax;
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    iagemin= (int) agemin;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    iagemax= (int) agemax;
      }    /*pp=vector(1,nlstate);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 health expectancies in states (1) and (2): e%s%d.gif<br>    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    j1=0;
 fprintf(fichtm,"\n</body>");    
    }    j=cptcoveff;
    }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 fclose(fichtm);    
 }    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
 /******************* Gnuplot file **************/        j1++;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        
         for (i=1; i<=nlstate; i++)  
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
   strcpy(optionfilegnuplot,optionfilefiname);       
   strcat(optionfilegnuplot,".gp.txt");        for (i=1; i<=imx; i++) { /* Each individual */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          bool=1;
     printf("Problem with file %s",optionfilegnuplot);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 #ifdef windows                bool=0;
     fprintf(ficgp,"cd \"%s\" \n",pathc);          } 
 #endif          if (bool==1) { 
 m=pow(2,cptcoveff);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  /* 1eme*/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   for (cpt=1; cpt<= nlstate ; cpt ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    for (k1=1; k1<= m ; k1 ++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 #ifdef windows                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 #endif                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #ifdef unix                  prop[s[m][i]][iagemax+3] += weight[i]; 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);                } 
 #endif              }
             } /* end selection of waves */
 for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=iagemin; i <= iagemax+3; i++){  
 }          
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     for (i=1; i<= nlstate ; i ++) {            posprop += prop[jk][i]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }          for(jk=1; jk <=nlstate ; jk++){     
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            if( i <=  iagemax){ 
      for (i=1; i<= nlstate ; i ++) {              if(posprop>=1.e-5){ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                probs[i][jk][j1]= prop[jk][i]/posprop;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              } 
 }              } 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          }/* end jk */ 
 #ifdef unix        }/* end i */ 
 fprintf(ficgp,"\nset ter gif small size 400,300");      } /* end i1 */
 #endif    } /* end k1 */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
    }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   }    /*free_vector(pp,1,nlstate);*/
   /*2 eme*/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);  /************* Waves Concatenation ***************/
      
     for (i=1; i<= nlstate+1 ; i ++) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       k=2*i;  {
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       for (j=1; j<= nlstate+1 ; j ++) {       Death is a valid wave (if date is known).
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   else fprintf(ficgp," \%%*lf (\%%*lf)");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 }         and mw[mi+1][i]. dh depends on stepm.
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    int i, mi, m;
       for (j=1; j<= nlstate+1 ; j ++) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       double sum=0., jmean=0.;*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int first;
 }      int j, k=0,jk, ju, jl;
       fprintf(ficgp,"\" t\"\" w l 0,");    double sum=0.;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    first=0;
       for (j=1; j<= nlstate+1 ; j ++) {    jmin=1e+5;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    jmax=-1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    jmean=0.;
 }      for(i=1; i<=imx; i++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      mi=0;
       else fprintf(ficgp,"\" t\"\" w l 0,");      m=firstpass;
     }      while(s[m][i] <= nlstate){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        if(s[m][i]>=1)
   }          mw[++mi][i]=m;
          if(m >=lastpass)
   /*3eme*/          break;
         else
   for (k1=1; k1<= m ; k1 ++) {          m++;
     for (cpt=1; cpt<= nlstate ; cpt ++) {      }/* end while */
       k=2+nlstate*(cpt-1);      if (s[m][i] > nlstate){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        mi++;     /* Death is another wave */
       for (i=1; i< nlstate ; i ++) {        /* if(mi==0)  never been interviewed correctly before death */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);           /* Only death is a correct wave */
       }        mw[mi][i]=m;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      }
     }  
     }      wav[i]=mi;
        if(mi==0){
   /* CV preval stat */        nbwarn++;
     for (k1=1; k1<= m ; k1 ++) {        if(first==0){
     for (cpt=1; cpt<nlstate ; cpt ++) {          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       k=3;          first=1;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }
         if(first==1){
       for (i=1; i< nlstate ; i ++)          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      } /* end mi==0 */
          } /* End individuals */
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    for(i=1; i<=imx; i++){
       for (i=1; i< nlstate ; i ++) {      for(mi=1; mi<wav[i];mi++){
         l=3+(nlstate+ndeath)*cpt;        if (stepm <=0)
         fprintf(ficgp,"+$%d",l+i+1);          dh[mi][i]=1;
       }        else{
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            if (agedc[i] < 2*AGESUP) {
     }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   }                if(j==0) j=1;  /* Survives at least one month after exam */
                else if(j<0){
   /* proba elementaires */                nberr++;
    for(i=1,jk=1; i <=nlstate; i++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(k=1; k <=(nlstate+ndeath); k++){                j=1; /* Temporary Dangerous patch */
       if (k != i) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         for(j=1; j <=ncovmodel; j++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                        fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              }
           jk++;              k=k+1;
           fprintf(ficgp,"\n");              if (j >= jmax) jmax=j;
         }              if (j <= jmin) jmin=j;
       }              sum=sum+j;
     }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
     for(jk=1; jk <=m; jk++) {          }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          else{
    i=1;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    for(k2=1; k2<=nlstate; k2++) {            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      k3=i;            k=k+1;
      for(k=1; k<=(nlstate+ndeath); k++) {            if (j >= jmax) jmax=j;
        if (k != k2){            else if (j <= jmin)jmin=j;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 ij=1;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for(j=3; j <=ncovmodel; j++) {            if(j<0){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              nberr++;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             ij++;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }            }
           else            sum=sum+j;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
         }          jk= j/stepm;
           fprintf(ficgp,")/(1");          jl= j -jk*stepm;
                  ju= j -(jk+1)*stepm;
         for(k1=1; k1 <=nlstate; k1++){            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            if(jl==0){
 ij=1;              dh[mi][i]=jk;
           for(j=3; j <=ncovmodel; j++){              bh[mi][i]=0;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            }else{ /* We want a negative bias in order to only have interpolation ie
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                    * at the price of an extra matrix product in likelihood */
             ij++;              dh[mi][i]=jk+1;
           }              bh[mi][i]=ju;
           else            }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }else{
           }            if(jl <= -ju){
           fprintf(ficgp,")");              dh[mi][i]=jk;
         }              bh[mi][i]=jl;       /* bias is positive if real duration
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);                                   * is higher than the multiple of stepm and negative otherwise.
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                                   */
         i=i+ncovmodel;            }
        }            else{
      }              dh[mi][i]=jk+1;
    }              bh[mi][i]=ju;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            }
    }            if(dh[mi][i]==0){
                  dh[mi][i]=1; /* At least one step */
   fclose(ficgp);              bh[mi][i]=ju; /* At least one step */
 }  /* end gnuplot */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
           } /* end if mle */
 /*************** Moving average **************/        }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      } /* end wave */
     }
   int i, cpt, cptcod;    jmean=sum/k;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       for (i=1; i<=nlstate;i++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)   }
           mobaverage[(int)agedeb][i][cptcod]=0.;  
      /*********** Tricode ****************************/
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  void tricode(int *Tvar, int **nbcode, int imx)
       for (i=1; i<=nlstate;i++){  {
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
           for (cpt=0;cpt<=4;cpt++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    int cptcode=0;
           }    cptcoveff=0; 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;   
         }    for (k=0; k<maxncov; k++) Ndum[k]=0;
       }    for (k=1; k<=7; k++) ncodemax[k]=0;
     }  
        for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 /************** Forecasting ******************/        Ndum[ij]++; /*store the modality */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
          if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                                         Tvar[j]. If V=sex and male is 0 and 
   int *popage;                                         female is 1, then  cptcode=1.*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      }
   double *popeffectif,*popcount;  
   double ***p3mat;      for (i=0; i<=cptcode; i++) {
   char fileresf[FILENAMELENGTH];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
              nbcode[Tvar[j]][ij]=k; 
   strcpy(fileresf,"f");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   strcat(fileresf,fileres);            
   if((ficresf=fopen(fileresf,"w"))==NULL) {            ij++;
     printf("Problem with forecast resultfile: %s\n", fileresf);          }
   }          if (ij > ncodemax[j]) break; 
   printf("Computing forecasting: result on file '%s' \n", fileresf);        }  
       } 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    }  
   
   if (mobilav==1) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);   for (i=1; i<=ncovmodel-2; i++) { 
   }     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
   stepsize=(int) (stepm+YEARM-1)/YEARM;     Ndum[ij]++;
   if (stepm<=12) stepsize=1;   }
    
   agelim=AGESUP;   ij=1;
     for (i=1; i<= maxncov; i++) {
   hstepm=1;     if((Ndum[i]!=0) && (i<=ncovcol)){
   hstepm=hstepm/stepm;       Tvaraff[ij]=i; /*For printing */
   yp1=modf(dateintmean,&yp);       ij++;
   anprojmean=yp;     }
   yp2=modf((yp1*12),&yp);   }
   mprojmean=yp;   
   yp1=modf((yp2*30.5),&yp);   cptcoveff=ij-1; /*Number of simple covariates*/
   jprojmean=yp;  }
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;  /*********** Health Expectancies ****************/
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
    
   for(cptcov=1;cptcov<=i2;cptcov++){  {
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* Health expectancies */
       k=k+1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       fprintf(ficresf,"\n#******");    double age, agelim, hf;
       for(j=1;j<=cptcoveff;j++) {    double ***p3mat,***varhe;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **dnewm,**doldm;
       }    double *xp;
       fprintf(ficresf,"******\n");    double **gp, **gm;
       fprintf(ficresf,"# StartingAge FinalAge");    double ***gradg, ***trgradg;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    int theta;
        
          varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    xp=vector(1,npar);
         fprintf(ficresf,"\n");    dnewm=matrix(1,nlstate*nlstate,1,npar);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficreseij,"# Health expectancies\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficreseij,"# Age");
           nhstepm = nhstepm/hstepm;    for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
           oldm=oldms;savm=savms;    fprintf(ficreseij,"\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            if(estepm < stepm){
           for (h=0; h<=nhstepm; h++){      printf ("Problem %d lower than %d\n",estepm, stepm);
             if (h==(int) (calagedate+YEARM*cpt)) {    }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    else  hstepm=estepm;   
             }    /* We compute the life expectancy from trapezoids spaced every estepm months
             for(j=1; j<=nlstate+ndeath;j++) {     * This is mainly to measure the difference between two models: for example
               kk1=0.;kk2=0;     * if stepm=24 months pijx are given only every 2 years and by summing them
               for(i=1; i<=nlstate;i++) {                   * we are calculating an estimate of the Life Expectancy assuming a linear 
                 if (mobilav==1)     * progression in between and thus overestimating or underestimating according
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     * to the curvature of the survival function. If, for the same date, we 
                 else {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * to compare the new estimate of Life expectancy with the same linear 
                 }     * hypothesis. A more precise result, taking into account a more precise
                     * curvature will be obtained if estepm is as small as stepm. */
               }  
               if (h==(int)(calagedate+12*cpt)){    /* For example we decided to compute the life expectancy with the smallest unit */
                 fprintf(ficresf," %.3f", kk1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                               nhstepm is the number of hstepm from age to agelim 
               }       nstepm is the number of stepm from age to agelin. 
             }       Look at hpijx to understand the reason of that which relies in memory size
           }       and note for a fixed period like estepm months */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
            */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   fclose(ficresf);    agelim=AGESUP;
 }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 /************** Forecasting ******************/      /* nhstepm age range expressed in number of stepm */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      /* if (stepm >= YEARM) hstepm=1;*/
   int *popage;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double *popeffectif,*popcount;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   double ***p3mat,***tabpop,***tabpopprev;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   char filerespop[FILENAMELENGTH];      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   agelim=AGESUP;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;   
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
        /* Computing  Variances of health expectancies */
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);       for(theta=1; theta <=npar; theta++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for(i=1; i<=npar; i++){ 
     printf("Problem with forecast resultfile: %s\n", filerespop);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   printf("Computing forecasting: result on file '%s' \n", filerespop);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        cptj=0;
         for(j=1; j<= nlstate; j++){
   if (mobilav==1) {          for(i=1; i<=nlstate; i++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            cptj=cptj+1;
     movingaverage(agedeb, fage, ageminpar, mobaverage);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   if (stepm<=12) stepsize=1;        }
         
   agelim=AGESUP;       
          for(i=1; i<=npar; i++) 
   hstepm=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   hstepm=hstepm/stepm;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          
   if (popforecast==1) {        cptj=0;
     if((ficpop=fopen(popfile,"r"))==NULL) {        for(j=1; j<= nlstate; j++){
       printf("Problem with population file : %s\n",popfile);exit(0);          for(i=1;i<=nlstate;i++){
     }            cptj=cptj+1;
     popage=ivector(0,AGESUP);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                }
     i=1;            }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        }
            for(j=1; j<= nlstate*nlstate; j++)
     imx=i;          for(h=0; h<=nhstepm-1; h++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
        } 
   for(cptcov=1;cptcov<=i2;cptcov++){     
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  /* End theta */
       k=k+1;  
       fprintf(ficrespop,"\n#******");       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for(h=0; h<=nhstepm-1; h++)
       }        for(j=1; j<=nlstate*nlstate;j++)
       fprintf(ficrespop,"******\n");          for(theta=1; theta <=npar; theta++)
       fprintf(ficrespop,"# Age");            trgradg[h][j][theta]=gradg[h][theta][j];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);       
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
             for(i=1;i<=nlstate*nlstate;i++)
       for (cpt=0; cpt<=0;cpt++) {        for(j=1;j<=nlstate*nlstate;j++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            varhe[i][j][(int)age] =0.;
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       printf("%d|",(int)age);fflush(stdout);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           nhstepm = nhstepm/hstepm;       for(h=0;h<=nhstepm-1;h++){
                  for(k=0;k<=nhstepm-1;k++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           oldm=oldms;savm=savms;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(i=1;i<=nlstate*nlstate;i++)
                    for(j=1;j<=nlstate*nlstate;j++)
           for (h=0; h<=nhstepm; h++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      }
             }      /* Computing expectancies */
             for(j=1; j<=nlstate+ndeath;j++) {      for(i=1; i<=nlstate;i++)
               kk1=0.;kk2=0;        for(j=1; j<=nlstate;j++)
               for(i=1; i<=nlstate;i++) {                        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                 if (mobilav==1)            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            
                 else {  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }          }
               }  
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficreseij,"%3.0f",age );
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      cptj=0;
                   /*fprintf(ficrespop," %.3f", kk1);      for(i=1; i<=nlstate;i++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(j=1; j<=nlstate;j++){
               }          cptj++;
             }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
             for(i=1; i<=nlstate;i++){        }
               kk1=0.;      fprintf(ficreseij,"\n");
                 for(j=1; j<=nlstate;j++){     
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                 }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    printf("\n");
           }    fprintf(ficlog,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    free_vector(xp,1,npar);
       }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /******/    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    /************ Variance ******************/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  {
           nhstepm = nhstepm/hstepm;    /* Variance of health expectancies */
              /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* double **newm;*/
           oldm=oldms;savm=savms;    double **dnewm,**doldm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double **dnewmp,**doldmp;
           for (h=0; h<=nhstepm; h++){    int i, j, nhstepm, hstepm, h, nstepm ;
             if (h==(int) (calagedate+YEARM*cpt)) {    int k, cptcode;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double *xp;
             }    double **gp, **gm;  /* for var eij */
             for(j=1; j<=nlstate+ndeath;j++) {    double ***gradg, ***trgradg; /*for var eij */
               kk1=0.;kk2=0;    double **gradgp, **trgradgp; /* for var p point j */
               for(i=1; i<=nlstate;i++) {                  double *gpp, *gmp; /* for var p point j */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        double **varppt; /* for var p point j nlstate to nlstate+ndeath */
               }    double ***p3mat;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    double age,agelim, hf;
             }    double ***mobaverage;
           }    int theta;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char digit[4];
         }    char digitp[25];
       }  
    }    char fileresprobmorprev[FILENAMELENGTH];
   }  
      if(popbased==1){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   if (popforecast==1) {      else strcpy(digitp,"-populbased-nomobil-");
     free_ivector(popage,0,AGESUP);    }
     free_vector(popeffectif,0,AGESUP);    else 
     free_vector(popcount,0,AGESUP);      strcpy(digitp,"-stablbased-");
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (mobilav!=0) {
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficrespop);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
 /***********************************************/      }
 /**************** Main Program *****************/    }
 /***********************************************/  
     strcpy(fileresprobmorprev,"prmorprev"); 
 int main(int argc, char *argv[])    sprintf(digit,"%-d",ij);
 {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   double agedeb, agefin,hf;    strcat(fileresprobmorprev,fileres);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   double fret;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   double **xi,tmp,delta;    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double dum; /* Dummy variable */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double ***p3mat;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   int *indx;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   char line[MAXLINE], linepar[MAXLINE];    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   char title[MAXLINE];      fprintf(ficresprobmorprev," p.%-d SE",j);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      for(i=1; i<=nlstate;i++)
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
   char filerest[FILENAMELENGTH];    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   char fileregp[FILENAMELENGTH];    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   char popfile[FILENAMELENGTH];  /*   } */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   int c,  h , cpt,l;    fprintf(ficresvij,"# Age");
   int ju,jl, mi;    for(i=1; i<=nlstate;i++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      for(j=1; j<=nlstate;j++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   int mobilav=0,popforecast=0;    fprintf(ficresvij,"\n");
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   double bage, fage, age, agelim, agebase;    doldm=matrix(1,nlstate,1,nlstate);
   double ftolpl=FTOL;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   double **prlim;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double *severity;  
   double ***param; /* Matrix of parameters */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   double  *p;    gpp=vector(nlstate+1,nlstate+ndeath);
   double **matcov; /* Matrix of covariance */    gmp=vector(nlstate+1,nlstate+ndeath);
   double ***delti3; /* Scale */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double *delti; /* Scale */    
   double ***eij, ***vareij;    if(estepm < stepm){
   double **varpl; /* Variances of prevalence limits by age */      printf ("Problem %d lower than %d\n",estepm, stepm);
   double *epj, vepp;    }
   double kk1, kk2;    else  hstepm=estepm;   
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";       nstepm is the number of stepm from age to agelin. 
   char *alph[]={"a","a","b","c","d","e"}, str[4];       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   char z[1]="c", occ;       survival function given by stepm (the optimization length). Unfortunately it
 #include <sys/time.h>       means that if the survival funtion is printed every two years of age and if
 #include <time.h>       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       results. So we changed our mind and took the option of the best precision.
      */
   /* long total_usecs;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   struct timeval start_time, end_time;    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   getcwd(pathcd, size);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("\n%s",version);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   if(argc <=1){      gp=matrix(0,nhstepm,1,nlstate);
     printf("\nEnter the parameter file name: ");      gm=matrix(0,nhstepm,1,nlstate);
     scanf("%s",pathtot);  
   }  
   else{      for(theta=1; theta <=npar; theta++){
     strcpy(pathtot,argv[1]);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        }
   /*cygwin_split_path(pathtot,path,optionfile);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* cutv(path,optionfile,pathtot,'\\');*/  
         if (popbased==1) {
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          if(mobilav ==0){
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            for(i=1; i<=nlstate;i++)
   chdir(path);              prlim[i][i]=probs[(int)age][i][ij];
   replace(pathc,path);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
 /*-------- arguments in the command line --------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   strcpy(fileres,"r");        }
   strcat(fileres, optionfilefiname);    
   strcat(fileres,".txt");    /* Other files have txt extension */        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   /*---------arguments file --------*/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          }
     printf("Problem with optionfile %s\n",optionfile);        }
     goto end;        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   strcpy(filereso,"o");        */
   strcat(filereso,fileres);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if((ficparo=fopen(filereso,"w"))==NULL) {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
         /* end probability of death */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fgets(line, MAXLINE, ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     puts(line);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fputs(line,ficparo);   
   }        if (popbased==1) {
   ungetc(c,ficpar);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              prlim[i][i]=probs[(int)age][i][ij];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          }else{ /* mobilav */ 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            for(i=1; i<=nlstate;i++)
 while((c=getc(ficpar))=='#' && c!= EOF){              prlim[i][i]=mobaverage[(int)age][i][ij];
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);  
     fputs(line,ficparo);        for(j=1; j<= nlstate; j++){
   }          for(h=0; h<=nhstepm; h++){
   ungetc(c,ficpar);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
              }
   covar=matrix(0,NCOVMAX,1,n);        }
   cptcovn=0;        /* This for computing probability of death (h=1 means
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   ncovmodel=2+cptcovn;        */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.; i<= nlstate; i++)
   /* Read guess parameters */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   /* Reads comments: lines beginning with '#' */        }    
   while((c=getc(ficpar))=='#' && c!= EOF){        /* end probability of death */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for(j=1; j<= nlstate; j++) /* vareij */
     puts(line);          for(h=0; h<=nhstepm; h++){
     fputs(line,ficparo);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   ungetc(c,ficpar);  
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     for(i=1; i <=nlstate; i++)        }
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      } /* End theta */
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);      for(h=0; h<=nhstepm; h++) /* veij */
         printf(" %lf",param[i][j][k]);        for(j=1; j<=nlstate;j++)
         fprintf(ficparo," %lf",param[i][j][k]);          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
       fscanf(ficpar,"\n");  
       printf("\n");      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       fprintf(ficparo,"\n");        for(theta=1; theta <=npar; theta++)
     }          trgradgp[j][theta]=gradgp[theta][j];
      
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   p=param[1][1];      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   /* Reads comments: lines beginning with '#' */          vareij[i][j][(int)age] =0.;
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(h=0;h<=nhstepm;h++){
     fgets(line, MAXLINE, ficpar);        for(k=0;k<=nhstepm;k++){
     puts(line);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     fputs(line,ficparo);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   }          for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      }
   for(i=1; i <=nlstate; i++){    
     for(j=1; j <=nlstate+ndeath-1; j++){      /* pptj */
       fscanf(ficpar,"%1d%1d",&i1,&j1);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       printf("%1d%1d",i,j);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       fprintf(ficparo,"%1d%1d",i1,j1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       for(k=1; k<=ncovmodel;k++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         fscanf(ficpar,"%le",&delti3[i][j][k]);          varppt[j][i]=doldmp[j][i];
         printf(" %le",delti3[i][j][k]);      /* end ppptj */
         fprintf(ficparo," %le",delti3[i][j][k]);      /*  x centered again */
       }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fscanf(ficpar,"\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       printf("\n");   
       fprintf(ficparo,"\n");      if (popbased==1) {
     }        if(mobilav ==0){
   }          for(i=1; i<=nlstate;i++)
   delti=delti3[1][1];            prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
   /* Reads comments: lines beginning with '#' */          for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){            prlim[i][i]=mobaverage[(int)age][i][ij];
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      }
     puts(line);               
     fputs(line,ficparo);      /* This for computing probability of death (h=1 means
   }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   ungetc(c,ficpar);         as a weighted average of prlim.
        */
   matcov=matrix(1,npar,1,npar);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for(i=1; i <=npar; i++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     fscanf(ficpar,"%s",&str);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     printf("%s",str);      }    
     fprintf(ficparo,"%s",str);      /* end probability of death */
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       printf(" %.5le",matcov[i][j]);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficparo," %.5le",matcov[i][j]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     }        for(i=1; i<=nlstate;i++){
     fscanf(ficpar,"\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     printf("\n");        }
     fprintf(ficparo,"\n");      } 
   }      fprintf(ficresprobmorprev,"\n");
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)      fprintf(ficresvij,"%.0f ",age );
       matcov[i][j]=matcov[j][i];      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++){
   printf("\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
     /*-------- Rewriting paramater file ----------*/      free_matrix(gp,0,nhstepm,1,nlstate);
      strcpy(rfileres,"r");    /* "Rparameterfile */      free_matrix(gm,0,nhstepm,1,nlstate);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
      strcat(rfileres,".");    /* */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if((ficres =fopen(rfileres,"w"))==NULL) {    } /* End age */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    free_vector(gpp,nlstate+1,nlstate+ndeath);
     }    free_vector(gmp,nlstate+1,nlstate+ndeath);
     fprintf(ficres,"#%s\n",version);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
        free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /*-------- data file ----------*/    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     if((fic=fopen(datafile,"r"))==NULL)    {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       printf("Problem with datafile: %s\n", datafile);goto end;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     n= lastobs;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     severity = vector(1,maxwav);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     outcome=imatrix(1,maxwav+1,1,n);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     num=ivector(1,n);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     moisnais=vector(1,n);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     annais=vector(1,n);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     moisdc=vector(1,n);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     andc=vector(1,n);  */
     agedc=vector(1,n);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     cod=ivector(1,n);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    free_vector(xp,1,npar);
     mint=matrix(1,maxwav,1,n);    free_matrix(doldm,1,nlstate,1,nlstate);
     anint=matrix(1,maxwav,1,n);    free_matrix(dnewm,1,nlstate,1,npar);
     s=imatrix(1,maxwav+1,1,n);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     adl=imatrix(1,maxwav+1,1,n);        free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     tab=ivector(1,NCOVMAX);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ncodemax=ivector(1,8);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     i=1;    fflush(ficgp);
     while (fgets(line, MAXLINE, fic) != NULL)    {    fflush(fichtm); 
       if ((i >= firstobs) && (i <=lastobs)) {  }  /* end varevsij */
          
         for (j=maxwav;j>=1;j--){  /************ Variance of prevlim ******************/
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
           strcpy(line,stra);  {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* Variance of prevalence limit */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         }    double **newm;
            double **dnewm,**doldm;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    int i, j, nhstepm, hstepm;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    int k, cptcode;
     double *xp;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double *gp, *gm;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double **gradg, **trgradg;
     double age,agelim;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    int theta;
         for (j=ncovcol;j>=1;j--){     
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
         }    fprintf(ficresvpl,"# Age");
         num[i]=atol(stra);    for(i=1; i<=nlstate;i++)
                fprintf(ficresvpl," %1d-%1d",i,i);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fprintf(ficresvpl,"\n");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
     xp=vector(1,npar);
         i=i+1;    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
     }    
     /* printf("ii=%d", ij);    hstepm=1*YEARM; /* Every year of age */
        scanf("%d",i);*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   imx=i-1; /* Number of individuals */    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   /* for (i=1; i<=imx; i++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      if (stepm >= YEARM) hstepm=1;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      gradg=matrix(1,npar,1,nlstate);
     }*/      gp=vector(1,nlstate);
        gm=vector(1,nlstate);
   /* for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;      for(theta=1; theta <=npar; theta++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}        for(i=1; i<=npar; i++){ /* Computes gradient */
   */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   /* Calculation of the number of parameter from char model*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   Tvar=ivector(1,15);        for(i=1;i<=nlstate;i++)
   Tprod=ivector(1,15);          gp[i] = prlim[i][i];
   Tvaraff=ivector(1,15);      
   Tvard=imatrix(1,15,1,2);        for(i=1; i<=npar; i++) /* Computes gradient */
   Tage=ivector(1,15);                xp[i] = x[i] - (i==theta ?delti[theta]:0);
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   if (strlen(model) >1){        for(i=1;i<=nlstate;i++)
     j=0, j1=0, k1=1, k2=1;          gm[i] = prlim[i][i];
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');        for(i=1;i<=nlstate;i++)
     cptcovn=j+1;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     cptcovprod=j1;      } /* End theta */
      
     strcpy(modelsav,model);      trgradg =matrix(1,nlstate,1,npar);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);      for(j=1; j<=nlstate;j++)
       goto end;        for(theta=1; theta <=npar; theta++)
     }          trgradg[j][theta]=gradg[theta][j];
      
     for(i=(j+1); i>=1;i--){      for(i=1;i<=nlstate;i++)
       cutv(stra,strb,modelsav,'+');        varpl[i][(int)age] =0.;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       /*scanf("%d",i);*/      for(i=1;i<=nlstate;i++)
       if (strchr(strb,'*')) {        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {      fprintf(ficresvpl,"%.0f ",age );
           cptcovprod--;      for(i=1; i<=nlstate;i++)
           cutv(strb,stre,strd,'V');        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           Tvar[i]=atoi(stre);      fprintf(ficresvpl,"\n");
           cptcovage++;      free_vector(gp,1,nlstate);
             Tage[cptcovage]=i;      free_vector(gm,1,nlstate);
             /*printf("stre=%s ", stre);*/      free_matrix(gradg,1,npar,1,nlstate);
         }      free_matrix(trgradg,1,nlstate,1,npar);
         else if (strcmp(strd,"age")==0) {    } /* End age */
           cptcovprod--;  
           cutv(strb,stre,strc,'V');    free_vector(xp,1,npar);
           Tvar[i]=atoi(stre);    free_matrix(doldm,1,nlstate,1,npar);
           cptcovage++;    free_matrix(dnewm,1,nlstate,1,nlstate);
           Tage[cptcovage]=i;  
         }  }
         else {  
           cutv(strb,stre,strc,'V');  /************ Variance of one-step probabilities  ******************/
           Tvar[i]=ncovcol+k1;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
           cutv(strb,strc,strd,'V');  {
           Tprod[k1]=i;    int i, j=0,  i1, k1, l1, t, tj;
           Tvard[k1][1]=atoi(strc);    int k2, l2, j1,  z1;
           Tvard[k1][2]=atoi(stre);    int k=0,l, cptcode;
           Tvar[cptcovn+k2]=Tvard[k1][1];    int first=1, first1;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           for (k=1; k<=lastobs;k++)    double **dnewm,**doldm;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double *xp;
           k1++;    double *gp, *gm;
           k2=k2+2;    double **gradg, **trgradg;
         }    double **mu;
       }    double age,agelim, cov[NCOVMAX];
       else {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    int theta;
        /*  scanf("%d",i);*/    char fileresprob[FILENAMELENGTH];
       cutv(strd,strc,strb,'V');    char fileresprobcov[FILENAMELENGTH];
       Tvar[i]=atoi(strc);    char fileresprobcor[FILENAMELENGTH];
       }  
       strcpy(modelsav,stra);      double ***varpij;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/    strcpy(fileresprob,"prob"); 
     }    strcat(fileresprob,fileres);
 }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   printf("cptcovprod=%d ", cptcovprod);    }
   scanf("%d ",i);*/    strcpy(fileresprobcov,"probcov"); 
     fclose(fic);    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     /*  if(mle==1){*/      printf("Problem with resultfile: %s\n", fileresprobcov);
     if (weightopt != 1) { /* Maximisation without weights*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       for(i=1;i<=n;i++) weight[i]=1.0;    }
     }    strcpy(fileresprobcor,"probcor"); 
     /*-calculation of age at interview from date of interview and age at death -*/    strcat(fileresprobcor,fileres);
     agev=matrix(1,maxwav,1,imx);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
     for (i=1; i<=imx; i++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       for(m=2; (m<= maxwav); m++) {    }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
          anint[m][i]=9999;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
          s[m][i]=-1;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     }    
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     for (i=1; i<=imx; i++)  {    fprintf(ficresprob,"# Age");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       for(m=1; (m<= maxwav); m++){    fprintf(ficresprobcov,"# Age");
         if(s[m][i] >0){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           if (s[m][i] >= nlstate+1) {    fprintf(ficresprobcov,"# Age");
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];    for(i=1; i<=nlstate;i++)
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      for(j=1; j<=(nlstate+ndeath);j++){
            else {        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
               if (andc[i]!=9999){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
               agev[m][i]=-1;      }  
               }   /* fprintf(ficresprob,"\n");
             }    fprintf(ficresprobcov,"\n");
           }    fprintf(ficresprobcor,"\n");
           else if(s[m][i] !=9){ /* Should no more exist */   */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   xp=vector(1,npar);
             if(mint[m][i]==99 || anint[m][i]==9999)    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               agev[m][i]=1;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             else if(agev[m][i] <agemin){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               agemin=agev[m][i];    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    first=1;
             }    fprintf(ficgp,"\n# Routine varprob");
             else if(agev[m][i] >agemax){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
               agemax=agev[m][i];    fprintf(fichtm,"\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
             /*agev[m][i]=anint[m][i]-annais[i];*/    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
             /*   agev[m][i] = age[i]+2*m;*/    file %s<br>\n",optionfilehtmcov);
           }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           else { /* =9 */  and drawn. It helps understanding how is the covariance between two incidences.\
             agev[m][i]=1;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
             s[m][i]=-1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         else /*= 0 Unknown */  standard deviations wide on each axis. <br>\
           agev[m][i]=1;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     }  
     for (i=1; i<=imx; i++)  {    cov[1]=1;
       for(m=1; (m<= maxwav); m++){    tj=cptcoveff;
         if (s[m][i] > (nlstate+ndeath)) {    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           printf("Error: Wrong value in nlstate or ndeath\n");      j1=0;
           goto end;    for(t=1; t<=tj;t++){
         }      for(i1=1; i1<=ncodemax[t];i1++){ 
       }        j1++;
     }        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
     free_vector(severity,1,maxwav);          fprintf(ficresprobcov, "\n#********** Variable "); 
     free_imatrix(outcome,1,maxwav+1,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_vector(moisnais,1,n);          fprintf(ficresprobcov, "**********\n#\n");
     free_vector(annais,1,n);          
     /* free_matrix(mint,1,maxwav,1,n);          fprintf(ficgp, "\n#********** Variable "); 
        free_matrix(anint,1,maxwav,1,n);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_vector(moisdc,1,n);          fprintf(ficgp, "**********\n#\n");
     free_vector(andc,1,n);          
           
              fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     wav=ivector(1,imx);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          
              fprintf(ficresprobcor, "\n#********** Variable ");    
     /* Concatenates waves */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          fprintf(ficresprobcor, "**********\n#");    
         }
         
       Tcode=ivector(1,100);        for (age=bage; age<=fage; age ++){ 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          cov[2]=age;
       ncodemax[1]=1;          for (k=1; k<=cptcovn;k++) {
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
                }
    codtab=imatrix(1,100,1,10);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    h=0;          for (k=1; k<=cptcovprod;k++)
    m=pow(2,cptcoveff);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            
    for(k=1;k<=cptcoveff; k++){          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
      for(i=1; i <=(m/pow(2,k));i++){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        for(j=1; j <= ncodemax[k]; j++){          gp=vector(1,(nlstate)*(nlstate+ndeath));
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          gm=vector(1,(nlstate)*(nlstate+ndeath));
            h++;      
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          for(theta=1; theta <=npar; theta++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            for(i=1; i<=npar; i++)
          }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
        }            
      }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    }            
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);            k=0;
       codtab[1][2]=1;codtab[2][2]=2; */            for(i=1; i<= (nlstate); i++){
    /* for(i=1; i <=m ;i++){              for(j=1; j<=(nlstate+ndeath);j++){
       for(k=1; k <=cptcovn; k++){                k=k+1;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                gp[k]=pmmij[i][j];
       }              }
       printf("\n");            }
       }            
       scanf("%d",i);*/            for(i=1; i<=npar; i++)
                  xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    /* Calculates basic frequencies. Computes observed prevalence at single age      
        and prints on file fileres'p'. */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
                for(i=1; i<=(nlstate); i++){
                  for(j=1; j<=(nlstate+ndeath);j++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                k=k+1;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                gm[k]=pmmij[i][j];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       
                  for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     /* For Powell, parameters are in a vector p[] starting at p[1]              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     if(mle==1){            for(theta=1; theta <=npar; theta++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              trgradg[j][theta]=gradg[theta][j];
     }          
              matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     /*--------- results files --------------*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    jk=1;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
    for(i=1,jk=1; i <=nlstate; i++){          
      for(k=1; k <=(nlstate+ndeath); k++){          k=0;
        if (k != i)          for(i=1; i<=(nlstate); i++){
          {            for(j=1; j<=(nlstate+ndeath);j++){
            printf("%d%d ",i,k);              k=k+1;
            fprintf(ficres,"%1d%1d ",i,k);              mu[k][(int) age]=pmmij[i][j];
            for(j=1; j <=ncovmodel; j++){            }
              printf("%f ",p[jk]);          }
              fprintf(ficres,"%f ",p[jk]);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
              jk++;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
            }              varpij[i][j][(int)age] = doldm[i][j];
            printf("\n");  
            fprintf(ficres,"\n");          /*printf("\n%d ",(int)age);
          }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
    }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  if(mle==1){            }*/
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */          fprintf(ficresprob,"\n%d ",(int)age);
     hesscov(matcov, p, npar, delti, ftolhess, func);          fprintf(ficresprobcov,"\n%d ",(int)age);
  }          fprintf(ficresprobcor,"\n%d ",(int)age);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
      for(i=1,jk=1; i <=nlstate; i++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       for(j=1; j <=nlstate+ndeath; j++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         if (j!=i) {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           fprintf(ficres,"%1d%1d",i,j);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           printf("%1d%1d",i,j);          }
           for(k=1; k<=ncovmodel;k++){          i=0;
             printf(" %.5e",delti[jk]);          for (k=1; k<=(nlstate);k++){
             fprintf(ficres," %.5e",delti[jk]);            for (l=1; l<=(nlstate+ndeath);l++){ 
             jk++;              i=i++;
           }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           printf("\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           fprintf(ficres,"\n");              for (j=1; j<=i;j++){
         }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
      }              }
                }
     k=1;          }/* end of loop for state */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        } /* end of loop for age */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){        /* Confidence intervalle of pij  */
       /*  if (k>nlstate) k=1;        /*
       i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(ficgp,"\nset noparametric;unset label");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       printf("%s%d%d",alph[k],i1,tab[i]);*/          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       fprintf(ficres,"%3d",i);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       printf("%3d",i);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       for(j=1; j<=i;j++){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         fprintf(ficres," %.5e",matcov[i][j]);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         printf(" %.5e",matcov[i][j]);        */
       }  
       fprintf(ficres,"\n");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       printf("\n");        first1=1;
       k++;        for (k2=1; k2<=(nlstate);k2++){
     }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                if(l2==k2) continue;
     while((c=getc(ficpar))=='#' && c!= EOF){            j=(k2-1)*(nlstate+ndeath)+l2;
       ungetc(c,ficpar);            for (k1=1; k1<=(nlstate);k1++){
       fgets(line, MAXLINE, ficpar);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       puts(line);                if(l1==k1) continue;
       fputs(line,ficparo);                i=(k1-1)*(nlstate+ndeath)+l1;
     }                if(i<=j) continue;
     ungetc(c,ficpar);                for (age=bage; age<=fage; age ++){ 
                    if ((int)age %5==0){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                        v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     if (fage <= 2) {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       bage = ageminpar;                    mu1=mu[i][(int) age]/stepm*YEARM ;
       fage = agemaxpar;                    mu2=mu[j][(int) age]/stepm*YEARM;
     }                    c12=cv12/sqrt(v1*v2);
                        /* Computing eigen value of matrix of covariance */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);                    /* Eigen vectors */
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     while((c=getc(ficpar))=='#' && c!= EOF){                    /*v21=sqrt(1.-v11*v11); *//* error */
     ungetc(c,ficpar);                    v21=(lc1-v1)/cv12*v11;
     fgets(line, MAXLINE, ficpar);                    v12=-v21;
     puts(line);                    v22=v11;
     fputs(line,ficparo);                    tnalp=v21/v11;
   }                    if(first1==1){
   ungetc(c,ficpar);                      first1=0;
                        printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                    }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    /*printf(fignu*/
                          /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   while((c=getc(ficpar))=='#' && c!= EOF){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     ungetc(c,ficpar);                    if(first==1){
     fgets(line, MAXLINE, ficpar);                      first=0;
     puts(line);                      fprintf(ficgp,"\nset parametric;unset label");
     fputs(line,ficparo);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   ungetc(c,ficpar);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fscanf(ficpar,"pop_based=%d\n",&popbased);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   fprintf(ficparo,"pop_based=%d\n",popbased);                        fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fprintf(ficres,"pop_based=%d\n",popbased);                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     ungetc(c,ficpar);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     fgets(line, MAXLINE, ficpar);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     puts(line);                    }else{
     fputs(line,ficparo);                      first=0;
   }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   ungetc(c,ficpar);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
 while((c=getc(ficpar))=='#' && c!= EOF){                } /* end loop age */
     ungetc(c,ficpar);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fgets(line, MAXLINE, ficpar);                first=1;
     puts(line);              } /*l12 */
     fputs(line,ficparo);            } /* k12 */
   }          } /*l1 */
   ungetc(c,ficpar);        }/* k1 */
       } /* loop covariates */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fclose(ficresprob);
     fclose(ficresprobcov);
 /*------------ gnuplot -------------*/    fclose(ficresprobcor);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    fflush(ficgp);
      fflush(fichtmcov);
 /*------------ free_vector  -------------*/  }
  chdir(path);  
    
  free_ivector(wav,1,imx);  /******************* Printing html file ***********/
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                      int lastpass, int stepm, int weightopt, char model[],\
  free_ivector(num,1,n);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
  free_vector(agedc,1,n);                    int popforecast, int estepm ,\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                    double jprev1, double mprev1,double anprev1, \
  fclose(ficparo);                    double jprev2, double mprev2,double anprev2){
  fclose(ficres);    int jj1, k1, i1, cpt;
   
 /*--------- index.htm --------*/     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
     - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   /*--------------- Prevalence limit --------------*/             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       fprintf(fichtm,"\
   strcpy(filerespl,"pl");   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   strcat(filerespl,fileres);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   if((ficrespl=fopen(filerespl,"w"))==NULL) {     fprintf(fichtm,"\
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;   - Life expectancies by age and initial health status (estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   jj1=0;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for(k1=1; k1<=m;k1++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for(i1=1; i1<=ncodemax[k1];i1++){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       jj1++;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       if (cptcovn > 0) {
   k=0;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   agebase=ageminpar;         for (cpt=1; cpt<=cptcoveff;cpt++) 
   agelim=agemaxpar;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   ftolpl=1.e-10;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   i1=cptcoveff;       }
   if (cptcovn < 1){i1=1;}       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   for(cptcov=1;cptcov<=i1;cptcov++){  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       /* Quasi-incidences */
         k=k+1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
         fprintf(ficrespl,"\n#******");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
         for(j=1;j<=cptcoveff;j++)         /* Stable prevalence in each health state */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         for(cpt=1; cpt<nlstate;cpt++){
         fprintf(ficrespl,"******\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
          <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
         for (age=agebase; age<=agelim; age++){         }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(ficrespl,"%.0f",age );          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
           for(i=1; i<=nlstate;i++)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           fprintf(ficrespl," %.5f", prlim[i][i]);       }
           fprintf(ficrespl,"\n");     } /* end i1 */
         }   }/* End k1 */
       }   fprintf(fichtm,"</ul>");
     }  
   fclose(ficrespl);  
    fprintf(fichtm,"\
   /*------------- h Pij x at various ages ------------*/  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   }   fprintf(fichtm,"\
   printf("Computing pij: result on file '%s' \n", filerespij);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   agelim=AGESUP;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   hstepm=stepsize*YEARM; /* Every year of age */   fprintf(fichtm,"\
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
             estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   k=0;   fprintf(fichtm,"\
   for(cptcov=1;cptcov<=i1;cptcov++){   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       k=k+1;   fprintf(fichtm,"\
         fprintf(ficrespij,"\n#****** ");   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
         for(j=1;j<=cptcoveff;j++)           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  /*  if(popforecast==1) fprintf(fichtm,"\n */
          /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*      <br>",fileres,fileres,fileres,fileres); */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /*  else  */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           oldm=oldms;savm=savms;   fflush(fichtm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)   m=cptcoveff;
             for(j=1; j<=nlstate+ndeath;j++)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");   jj1=0;
           for (h=0; h<=nhstepm; h++){   for(k1=1; k1<=m;k1++){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );     for(i1=1; i1<=ncodemax[k1];i1++){
             for(i=1; i<=nlstate;i++)       jj1++;
               for(j=1; j<=nlstate+ndeath;j++)       if (cptcovn > 0) {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             fprintf(ficrespij,"\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
           }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           fprintf(ficrespij,"\n");       }
         }       for(cpt=1; cpt<=nlstate;cpt++) {
     }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   fclose(ficrespij);  health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
   /*---------- Forecasting ------------------*/   }/* End k1 */
   if((stepm == 1) && (strcmp(model,".")==0)){   fprintf(fichtm,"</ul>");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   fflush(fichtm);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  }
     free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  /******************* Gnuplot file **************/
     free_vector(weight,1,n);}  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   else{  
     erreur=108;    char dirfileres[132],optfileres[132];
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }    int ng;
    /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*---------- Health expectancies and variances ------------*/  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   strcpy(filerest,"t");  
   strcat(filerest,fileres);    /*#ifdef windows */
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(ficgp,"cd \"%s\" \n",pathc);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      /*#endif */
   }    m=pow(2,cptcoveff);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   strcpy(filerese,"e");   /* 1eme*/
   strcat(filerese,fileres);    for (cpt=1; cpt<= nlstate ; cpt ++) {
   if((ficreseij=fopen(filerese,"w"))==NULL) {     for (k1=1; k1<= m ; k1 ++) {
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   }       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
  strcpy(fileresv,"v");  set ter png small\n\
   strcat(fileresv,fileres);  set size 0.65,0.65\n\
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }       for (i=1; i<= nlstate ; i ++) {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   k=0;       }
   for(cptcov=1;cptcov<=i1;cptcov++){       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       for (i=1; i<= nlstate ; i ++) {
       k=k+1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficrest,"\n#****** ");         else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(j=1;j<=cptcoveff;j++)       } 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
       fprintf(ficrest,"******\n");       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficreseij,"\n#****** ");         else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(j=1;j<=cptcoveff;j++)       }  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       fprintf(ficreseij,"******\n");     }
     }
       fprintf(ficresvij,"\n#****** ");    /*2 eme*/
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficresvij,"******\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      
       oldm=oldms;savm=savms;      for (i=1; i<= nlstate+1 ; i ++) {
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          k=2*i;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       oldm=oldms;savm=savms;        for (j=1; j<= nlstate+1 ; j ++) {
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
              else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficrest,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       epj=vector(1,nlstate+1);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(age=bage; age <=fage ;age++){        }   
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficgp,"\" t\"\" w l 0,");
         if (popbased==1) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           for(i=1; i<=nlstate;i++)        for (j=1; j<= nlstate+1 ; j ++) {
             prlim[i][i]=probs[(int)age][i][k];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         }          else fprintf(ficgp," \%%*lf (\%%*lf)");
                }   
         fprintf(ficrest," %4.0f",age);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        else fprintf(ficgp,"\" t\"\" w l 0,");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    }
           }    
           epj[nlstate+1] +=epj[j];    /*3eme*/
         }    
         for(i=1, vepp=0.;i <=nlstate;i++)    for (k1=1; k1<= m ; k1 ++) { 
           for(j=1;j <=nlstate;j++)      for (cpt=1; cpt<= nlstate ; cpt ++) {
             vepp += vareij[i][j][(int)age];        k=2+nlstate*(2*cpt-2);
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         for(j=1;j <=nlstate;j++){        fprintf(ficgp,"set ter png small\n\
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));  set size 0.65,0.65\n\
         }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         fprintf(ficrest,"\n");        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fclose(ficreseij);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fclose(ficresvij);          
   fclose(ficrest);        */
   fclose(ficpar);        for (i=1; i< nlstate ; i ++) {
   free_vector(epj,1,nlstate+1);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
            
   /*------- Variance limit prevalence------*/          } 
       }
   strcpy(fileresvpl,"vpl");    }
   strcat(fileresvpl,fileres);    
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    /* CV preval stable (period) */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    for (k1=1; k1<= m ; k1 ++) { 
     exit(0);      for (cpt=1; cpt<=nlstate ; cpt ++) {
   }        k=3;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   k=0;  set ter png small\nset size 0.65,0.65\n\
   for(cptcov=1;cptcov<=i1;cptcov++){  unset log y\n\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       k=k+1;        
       fprintf(ficresvpl,"\n#****** ");        for (i=1; i< nlstate ; i ++)
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       fprintf(ficresvpl,"******\n");        
              l=3+(nlstate+ndeath)*cpt;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
       oldm=oldms;savm=savms;        for (i=1; i< nlstate ; i ++) {
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          l=3+(nlstate+ndeath)*cpt;
     }          fprintf(ficgp,"+$%d",l+i+1);
  }        }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   fclose(ficresvpl);      } 
     }  
   /*---------- End : free ----------------*/    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /* proba elementaires */
      for(i=1,jk=1; i <=nlstate; i++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for(k=1; k <=(nlstate+ndeath); k++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        if (k != i) {
            for(j=1; j <=ncovmodel; j++){
              fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            jk++; 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficgp,"\n");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
        }
   free_matrix(matcov,1,npar,1,npar);     }
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   if(erreur >0)         if (ng==2)
     printf("End of Imach with error or warning %d\n",erreur);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   else   printf("End of Imach\n");         else
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */           fprintf(ficgp,"\nset title \"Probability\"\n");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/         i=1;
   /*printf("Total time was %d uSec.\n", total_usecs);*/         for(k2=1; k2<=nlstate; k2++) {
   /*------ End -----------*/           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
  end:               if(ng==2)
 #ifdef windows                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   /* chdir(pathcd);*/               else
 #endif                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
  /*system("wgnuplot graph.plt");*/               ij=1;
  /*system("../gp37mgw/wgnuplot graph.plt");*/               for(j=3; j <=ncovmodel; j++) {
  /*system("cd ../gp37mgw");*/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  strcpy(plotcmd,GNUPLOTPROGRAM);                   ij++;
  strcat(plotcmd," ");                 }
  strcat(plotcmd,optionfilegnuplot);                 else
  system(plotcmd);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
 #ifdef windows               fprintf(ficgp,")/(1");
   while (z[0] != 'q') {               
     /* chdir(path); */               for(k1=1; k1 <=nlstate; k1++){   
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     scanf("%s",z);                 ij=1;
     if (z[0] == 'c') system("./imach");                 for(j=3; j <=ncovmodel; j++){
     else if (z[0] == 'e') system(optionfilehtm);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     else if (z[0] == 'g') system(plotcmd);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     else if (z[0] == 'q') exit(0);                     ij++;
   }                   }
 #endif                   else
 }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){
             printf("%f ",p[jk]);
             fprintf(ficlog,"%f ",p[jk]);
             fprintf(ficres,"%f ",p[jk]);
             jk++; 
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle>=1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   
   
   /* Just to have a covariance matrix which will be more understandable
      even is we still don't want to manage dictionary of variables
   */
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               if(mle>=1)
                 printf("#%1d%1d%d",i,j,k);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficres,"#%1d%1d%d",i,j,k);
             }else{
               if(mle>=1)
                 printf("%1d%1d%d",i,j,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);
               fprintf(ficres,"%1d%1d%d",i,j,k);
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }else{
                       if(itimes==1){
                         if(mle>=1)
                           printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             if(mle>=1)
               printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
     fflush(ficlog);
     fflush(ficres);
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(i=1;i<=AGESUP;i++)
       for(j=1;j<=NCOVMAX;j++)
         for(k=1;k<=NCOVMAX;k++)
           probs[i][j][k]=0.;
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.35  
changed lines
  Added in v.1.96


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>