Diff for /imach/src/imach.c between versions 1.37 and 1.141

version 1.37, 2002/03/29 15:31:59 version 1.141, 2014/01/26 02:42:01
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.141  2014/01/26 02:42:01  brouard
      * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.140  2011/09/02 10:37:54  brouard
   first survey ("cross") where individuals from different ages are    Summary: times.h is ok with mingw32 now.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.139  2010/06/14 07:50:17  brouard
   second wave of interviews ("longitudinal") which measure each change    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   (if any) in individual health status.  Health expectancies are    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.138  2010/04/30 18:19:40  brouard
   Maximum Likelihood of the parameters involved in the model.  The    *** empty log message ***
   simplest model is the multinomial logistic model where pij is the  
   probabibility to be observed in state j at the second wave    Revision 1.137  2010/04/29 18:11:38  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): Checking covariates for more complex models
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    than V1+V2. A lot of change to be done. Unstable.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.136  2010/04/26 20:30:53  brouard
   where the markup *Covariates have to be included here again* invites    (Module): merging some libgsl code. Fixing computation
   you to do it.  More covariates you add, slower the    of likelione (using inter/intrapolation if mle = 0) in order to
   convergence.    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.135  2009/10/29 15:33:14  brouard
   identical for each individual. Also, if a individual missed an    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.133  2009/07/06 10:21:25  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    just nforces
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.132  2009/07/06 08:22:05  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Many tings
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.130  2009/05/26 06:44:34  brouard
      (Module): Max Covariate is now set to 20 instead of 8. A
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    lot of cleaning with variables initialized to 0. Trying to make
            Institut national d'études démographiques, Paris.    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.129  2007/08/31 13:49:27  lievre
   It is copyrighted identically to a GNU software product, ie programme and    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.128  2006/06/30 13:02:05  brouard
   **********************************************************************/    (Module): Clarifications on computing e.j
    
 #include <math.h>    Revision 1.127  2006/04/28 18:11:50  brouard
 #include <stdio.h>    (Module): Yes the sum of survivors was wrong since
 #include <stdlib.h>    imach-114 because nhstepm was no more computed in the age
 #include <unistd.h>    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 #define MAXLINE 256    compute health expectancies (without variances) in a first step
 #define GNUPLOTPROGRAM "wgnuplot"    and then all the health expectancies with variances or standard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    deviation (needs data from the Hessian matrices) which slows the
 #define FILENAMELENGTH 80    computation.
 /*#define DEBUG*/    In the future we should be able to stop the program is only health
 #define windows    expectancies and graph are needed without standard deviations.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    imach-114 because nhstepm was no more computed in the age
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.125  2006/04/04 15:20:31  lievre
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Errors in calculation of health expectancies. Age was not initialized.
 #define NCOVMAX 8 /* Maximum number of covariates */    Forecasting file added.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.124  2006/03/22 17:13:53  lievre
 #define AGESUP 130    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define AGEBASE 40    The log-likelihood is printed in the log file
   
     Revision 1.123  2006/03/20 10:52:43  brouard
 int erreur; /* Error number */    * imach.c (Module): <title> changed, corresponds to .htm file
 int nvar;    name. <head> headers where missing.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    * imach.c (Module): Weights can have a decimal point as for
 int nlstate=2; /* Number of live states */    English (a comma might work with a correct LC_NUMERIC environment,
 int ndeath=1; /* Number of dead states */    otherwise the weight is truncated).
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Modification of warning when the covariates values are not 0 or
 int popbased=0;    1.
     Version 0.98g
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.122  2006/03/20 09:45:41  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Weights can have a decimal point as for
 int mle, weightopt;    English (a comma might work with a correct LC_NUMERIC environment,
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    otherwise the weight is truncated).
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Modification of warning when the covariates values are not 0 or
 double jmean; /* Mean space between 2 waves */    1.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Version 0.98g
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.121  2006/03/16 17:45:01  lievre
 FILE *ficgp,*ficresprob,*ficpop;    * imach.c (Module): Comments concerning covariates added
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    * imach.c (Module): refinements in the computation of lli if
  FILE  *ficresvij;    status=-2 in order to have more reliable computation if stepm is
   char fileresv[FILENAMELENGTH];    not 1 month. Version 0.98f
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 #define NR_END 1    status=-2 in order to have more reliable computation if stepm is
 #define FREE_ARG char*    not 1 month. Version 0.98f
 #define FTOL 1.0e-10  
     Revision 1.119  2006/03/15 17:42:26  brouard
 #define NRANSI    (Module): Bug if status = -2, the loglikelihood was
 #define ITMAX 200    computed as likelihood omitting the logarithm. Version O.98e
   
 #define TOL 2.0e-4    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 #define CGOLD 0.3819660    table of variances if popbased=1 .
 #define ZEPS 1.0e-10    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Function pstamp added
     (Module): Version 0.98d
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.117  2006/03/14 17:16:22  brouard
 #define TINY 1.0e-20    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 static double maxarg1,maxarg2;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Function pstamp added
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Version 0.98d
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.116  2006/03/06 10:29:27  brouard
 #define rint(a) floor(a+0.5)    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.115  2006/02/27 12:17:45  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): One freematrix added in mlikeli! 0.98c
   
 int imx;    Revision 1.114  2006/02/26 12:57:58  brouard
 int stepm;    (Module): Some improvements in processing parameter
 /* Stepm, step in month: minimum step interpolation*/    filename with strsep.
   
 int estepm;    Revision 1.113  2006/02/24 14:20:24  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 int m,nb;    allocation too.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.112  2006/01/30 09:55:26  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double dateintmean=0;  
     Revision 1.111  2006/01/25 20:38:18  brouard
 double *weight;    (Module): Lots of cleaning and bugs added (Gompertz)
 int **s; /* Status */    (Module): Comments can be added in data file. Missing date values
 double *agedc, **covar, idx;    can be a simple dot '.'.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.110  2006/01/25 00:51:50  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Lots of cleaning and bugs added (Gompertz)
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.109  2006/01/24 19:37:15  brouard
 /**************** split *************************/    (Module): Comments (lines starting with a #) are allowed in data.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.108  2006/01/19 18:05:42  lievre
    char *s;                             /* pointer */    Gnuplot problem appeared...
    int  l1, l2;                         /* length counters */    To be fixed
   
    l1 = strlen( path );                 /* length of path */    Revision 1.107  2006/01/19 16:20:37  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Test existence of gnuplot in imach path
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.106  2006/01/19 13:24:36  brouard
 #else    Some cleaning and links added in html output
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.105  2006/01/05 20:23:19  lievre
    if ( s == NULL ) {                   /* no directory, so use current */    *** empty log message ***
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
       if ( getwd( dirc ) == NULL ) {    (Module): If the status is missing at the last wave but we know
 #else    that the person is alive, then we can code his/her status as -2
       extern char       *getcwd( );    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #endif    the healthy state at last known wave). Version is 0.98
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.103  2005/09/30 15:54:49  lievre
       strcpy( name, path );             /* we've got it */    (Module): sump fixed, loop imx fixed, and simplifications.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.102  2004/09/15 17:31:30  brouard
       l2 = strlen( s );                 /* length of filename */    Add the possibility to read data file including tab characters.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.101  2004/09/15 10:38:38  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Fix on curr_time
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.100  2004/07/12 18:29:06  brouard
    l1 = strlen( dirc );                 /* length of directory */    Add version for Mac OS X. Just define UNIX in Makefile
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.99  2004/06/05 08:57:40  brouard
 #else    *** empty log message ***
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.98  2004/05/16 15:05:56  brouard
    s = strrchr( name, '.' );            /* find last / */    New version 0.97 . First attempt to estimate force of mortality
    s++;    directly from the data i.e. without the need of knowing the health
    strcpy(ext,s);                       /* save extension */    state at each age, but using a Gompertz model: log u =a + b*age .
    l1= strlen( name);    This is the basic analysis of mortality and should be done before any
    l2= strlen( s)+1;    other analysis, in order to test if the mortality estimated from the
    strncpy( finame, name, l1-l2);    cross-longitudinal survey is different from the mortality estimated
    finame[l1-l2]= 0;    from other sources like vital statistic data.
    return( 0 );                         /* we're done */  
 }    The same imach parameter file can be used but the option for mle should be -3.
   
     Agnès, who wrote this part of the code, tried to keep most of the
 /******************************************/    former routines in order to include the new code within the former code.
   
 void replace(char *s, char*t)    The output is very simple: only an estimate of the intercept and of
 {    the slope with 95% confident intervals.
   int i;  
   int lg=20;    Current limitations:
   i=0;    A) Even if you enter covariates, i.e. with the
   lg=strlen(t);    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   for(i=0; i<= lg; i++) {    B) There is no computation of Life Expectancy nor Life Table.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.97  2004/02/20 13:25:42  lievre
   }    Version 0.96d. Population forecasting command line is (temporarily)
 }    suppressed.
   
 int nbocc(char *s, char occ)    Revision 1.96  2003/07/15 15:38:55  brouard
 {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   int i,j=0;    rewritten within the same printf. Workaround: many printfs.
   int lg=20;  
   i=0;    Revision 1.95  2003/07/08 07:54:34  brouard
   lg=strlen(s);    * imach.c (Repository):
   for(i=0; i<= lg; i++) {    (Repository): Using imachwizard code to output a more meaningful covariance
   if  (s[i] == occ ) j++;    matrix (cov(a12,c31) instead of numbers.
   }  
   return j;    Revision 1.94  2003/06/27 13:00:02  brouard
 }    Just cleaning
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.93  2003/06/25 16:33:55  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   int i,lg,j,p=0;    exist so I changed back to asctime which exists.
   i=0;    (Module): Version 0.96b
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.92  2003/06/25 16:30:45  brouard
   }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.91  2003/06/25 15:30:29  brouard
     (u[j] = t[j]);    * imach.c (Repository): Duplicated warning errors corrected.
   }    (Repository): Elapsed time after each iteration is now output. It
      u[p]='\0';    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
    for(j=0; j<= lg; j++) {    concerning matrix of covariance. It has extension -cov.htm.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.90  2003/06/24 12:34:15  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /********************** nrerror ********************/    of the covariance matrix to be input.
   
 void nrerror(char error_text[])    Revision 1.89  2003/06/24 12:30:52  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   fprintf(stderr,"ERREUR ...\n");    mle=-1 a template is output in file "or"mypar.txt with the design
   fprintf(stderr,"%s\n",error_text);    of the covariance matrix to be input.
   exit(1);  
 }    Revision 1.88  2003/06/23 17:54:56  brouard
 /*********************** vector *******************/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double *vector(int nl, int nh)  
 {    Revision 1.87  2003/06/18 12:26:01  brouard
   double *v;    Version 0.96
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.86  2003/06/17 20:04:08  brouard
   return v-nl+NR_END;    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
   
 /************************ free vector ******************/    Revision 1.85  2003/06/17 13:12:43  brouard
 void free_vector(double*v, int nl, int nh)    * imach.c (Repository): Check when date of death was earlier that
 {    current date of interview. It may happen when the death was just
   free((FREE_ARG)(v+nl-NR_END));    prior to the death. In this case, dh was negative and likelihood
 }    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 /************************ivector *******************************/    interview.
 int *ivector(long nl,long nh)    (Repository): Because some people have very long ID (first column)
 {    we changed int to long in num[] and we added a new lvector for
   int *v;    memory allocation. But we also truncated to 8 characters (left
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    truncation)
   if (!v) nrerror("allocation failure in ivector");    (Repository): No more line truncation errors.
   return v-nl+NR_END;  
 }    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 /******************free ivector **************************/    place. It differs from routine "prevalence" which may be called
 void free_ivector(int *v, long nl, long nh)    many times. Probs is memory consuming and must be used with
 {    parcimony.
   free((FREE_ARG)(v+nl-NR_END));    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 }  
     Revision 1.83  2003/06/10 13:39:11  lievre
 /******************* imatrix *******************************/    *** empty log message ***
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  */
    /*
   /* allocate pointers to rows */     Interpolated Markov Chain
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Short summary of the programme:
   m += NR_END;    
   m -= nrl;    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      first survey ("cross") where individuals from different ages are
   /* allocate rows and set pointers to them */    interviewed on their health status or degree of disability (in the
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    case of a health survey which is our main interest) -2- at least a
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    second wave of interviews ("longitudinal") which measure each change
   m[nrl] += NR_END;    (if any) in individual health status.  Health expectancies are
   m[nrl] -= ncl;    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Maximum Likelihood of the parameters involved in the model.  The
      simplest model is the multinomial logistic model where pij is the
   /* return pointer to array of pointers to rows */    probability to be observed in state j at the second wave
   return m;    conditional to be observed in state i at the first wave. Therefore
 }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 /****************** free_imatrix *************************/    complex model than "constant and age", you should modify the program
 void free_imatrix(m,nrl,nrh,ncl,nch)    where the markup *Covariates have to be included here again* invites
       int **m;    you to do it.  More covariates you add, slower the
       long nch,ncl,nrh,nrl;    convergence.
      /* free an int matrix allocated by imatrix() */  
 {    The advantage of this computer programme, compared to a simple
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    multinomial logistic model, is clear when the delay between waves is not
   free((FREE_ARG) (m+nrl-NR_END));    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    split into an exact number (nh*stepm) of unobserved intermediate
   double **m;    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    matrix is simply the matrix product of nh*stepm elementary matrices
   if (!m) nrerror("allocation failure 1 in matrix()");    and the contribution of each individual to the likelihood is simply
   m += NR_END;    hPijx.
   m -= nrl;  
     Also this programme outputs the covariance matrix of the parameters but also
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    of the life expectancies. It also computes the period (stable) prevalence. 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m[nrl] -= ncl;             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    from the European Union.
   return m;    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    
   free((FREE_ARG)(m+nrl-NR_END));    **********************************************************************/
 }  /*
     main
 /******************* ma3x *******************************/    read parameterfile
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    read datafile
 {    concatwav
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    freqsummary
   double ***m;    if (mle >= 1)
       mlikeli
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    print results files
   if (!m) nrerror("allocation failure 1 in matrix()");    if mle==1 
   m += NR_END;       computes hessian
   m -= nrl;    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    open gnuplot file
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    open html file
   m[nrl] += NR_END;    period (stable) prevalence
   m[nrl] -= ncl;     for age prevalim()
     h Pij x
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    health expectancies
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Variance-covariance of DFLE
   m[nrl][ncl] += NR_END;    prevalence()
   m[nrl][ncl] -= nll;     movingaverage()
   for (j=ncl+1; j<=nch; j++)    varevsij() 
     m[nrl][j]=m[nrl][j-1]+nlay;    if popbased==1 varevsij(,popbased)
      total life expectancies
   for (i=nrl+1; i<=nrh; i++) {    Variance of period (stable) prevalence
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;   end
     for (j=ncl+1; j<=nch; j++)  */
       m[i][j]=m[i][j-1]+nlay;  
   }  
   return m;  
 }   
   #include <math.h>
 /*************************free ma3x ************************/  #include <stdio.h>
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #include <stdlib.h>
 {  #include <string.h>
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #include <unistd.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  #include <limits.h>
 }  #include <sys/types.h>
   #include <sys/stat.h>
 /***************** f1dim *************************/  #include <errno.h>
 extern int ncom;  extern int errno;
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  #ifdef LINUX
    #include <time.h>
 double f1dim(double x)  #include "timeval.h"
 {  #else
   int j;  #include <sys/time.h>
   double f;  #endif
   double *xt;  
    #ifdef GSL
   xt=vector(1,ncom);  #include <gsl/gsl_errno.h>
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #include <gsl/gsl_multimin.h>
   f=(*nrfunc)(xt);  #endif
   free_vector(xt,1,ncom);  
   return f;  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /*****************brent *************************/  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  #define GNUPLOTPROGRAM "gnuplot"
   int iter;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double a,b,d,etemp;  #define FILENAMELENGTH 132
   double fu,fv,fw,fx;  
   double ftemp;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double e=0.0;  
    #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   a=(ax < cx ? ax : cx);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  #define NINTERVMAX 8
   fw=fv=fx=(*f)(x);  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   for (iter=1;iter<=ITMAX;iter++) {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     xm=0.5*(a+b);  #define NCOVMAX 20 /* Maximum number of covariates */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define MAXN 20000
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define YEARM 12. /* Number of months per year */
     printf(".");fflush(stdout);  #define AGESUP 130
 #ifdef DEBUG  #define AGEBASE 40
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #ifdef UNIX
 #endif  #define DIRSEPARATOR '/'
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define CHARSEPARATOR "/"
       *xmin=x;  #define ODIRSEPARATOR '\\'
       return fx;  #else
     }  #define DIRSEPARATOR '\\'
     ftemp=fu;  #define CHARSEPARATOR "\\"
     if (fabs(e) > tol1) {  #define ODIRSEPARATOR '/'
       r=(x-w)*(fx-fv);  #endif
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  /* $Id$ */
       q=2.0*(q-r);  /* $State$ */
       if (q > 0.0) p = -p;  
       q=fabs(q);  char version[]="Imach version 0.98n, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Sicentific Research 25293121)";
       etemp=e;  char fullversion[]="$Revision$ $Date$"; 
       e=d;  char strstart[80];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       else {  int nvar=0, nforce=0; /* Number of variables, number of forces */
         d=p/q;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
         u=x+d;  int npar=NPARMAX;
         if (u-a < tol2 || b-u < tol2)  int nlstate=2; /* Number of live states */
           d=SIGN(tol1,xm-x);  int ndeath=1; /* Number of dead states */
       }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     } else {  int popbased=0;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  int *wav; /* Number of waves for this individuual 0 is possible */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int maxwav=0; /* Maxim number of waves */
     fu=(*f)(u);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     if (fu <= fx) {  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       if (u >= x) a=x; else b=x;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       SHFT(v,w,x,u)                     to the likelihood and the sum of weights (done by funcone)*/
         SHFT(fv,fw,fx,fu)  int mle=1, weightopt=0;
         } else {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
           if (u < x) a=u; else b=u;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
           if (fu <= fw || w == x) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
             v=w;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
             w=u;  double jmean=1; /* Mean space between 2 waves */
             fv=fw;  double **oldm, **newm, **savm; /* Working pointers to matrices */
             fw=fu;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
           } else if (fu <= fv || v == x || v == w) {  /*FILE *fic ; */ /* Used in readdata only */
             v=u;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
             fv=fu;  FILE *ficlog, *ficrespow;
           }  int globpr=0; /* Global variable for printing or not */
         }  double fretone; /* Only one call to likelihood */
   }  long ipmx=0; /* Number of contributions */
   nrerror("Too many iterations in brent");  double sw; /* Sum of weights */
   *xmin=x;  char filerespow[FILENAMELENGTH];
   return fx;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /****************** mnbrak ***********************/  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  FILE *ficreseij;
             double (*func)(double))  char filerese[FILENAMELENGTH];
 {  FILE *ficresstdeij;
   double ulim,u,r,q, dum;  char fileresstde[FILENAMELENGTH];
   double fu;  FILE *ficrescveij;
    char filerescve[FILENAMELENGTH];
   *fa=(*func)(*ax);  FILE  *ficresvij;
   *fb=(*func)(*bx);  char fileresv[FILENAMELENGTH];
   if (*fb > *fa) {  FILE  *ficresvpl;
     SHFT(dum,*ax,*bx,dum)  char fileresvpl[FILENAMELENGTH];
       SHFT(dum,*fb,*fa,dum)  char title[MAXLINE];
       }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   *cx=(*bx)+GOLD*(*bx-*ax);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   *fc=(*func)(*cx);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   while (*fb > *fc) {  char command[FILENAMELENGTH];
     r=(*bx-*ax)*(*fb-*fc);  int  outcmd=0;
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  char filelog[FILENAMELENGTH]; /* Log file */
     if ((*bx-u)*(u-*cx) > 0.0) {  char filerest[FILENAMELENGTH];
       fu=(*func)(u);  char fileregp[FILENAMELENGTH];
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char popfile[FILENAMELENGTH];
       fu=(*func)(u);  
       if (fu < *fc) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
           }  struct timezone tzp;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  extern int gettimeofday();
       u=ulim;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       fu=(*func)(u);  long time_value;
     } else {  extern long time();
       u=(*cx)+GOLD*(*cx-*bx);  char strcurr[80], strfor[80];
       fu=(*func)(u);  
     }  char *endptr;
     SHFT(*ax,*bx,*cx,u)  long lval;
       SHFT(*fa,*fb,*fc,fu)  double dval;
       }  
 }  #define NR_END 1
   #define FREE_ARG char*
 /*************** linmin ************************/  #define FTOL 1.0e-10
   
 int ncom;  #define NRANSI 
 double *pcom,*xicom;  #define ITMAX 200 
 double (*nrfunc)(double []);  
    #define TOL 2.0e-4 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  #define CGOLD 0.3819660 
   double brent(double ax, double bx, double cx,  #define ZEPS 1.0e-10 
                double (*f)(double), double tol, double *xmin);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define GOLD 1.618034 
               double *fc, double (*func)(double));  #define GLIMIT 100.0 
   int j;  #define TINY 1.0e-20 
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   ncom=n;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   pcom=vector(1,n);    
   xicom=vector(1,n);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   nrfunc=func;  #define rint(a) floor(a+0.5)
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  static double sqrarg;
     xicom[j]=xi[j];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   ax=0.0;  int agegomp= AGEGOMP;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int imx; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int stepm=1;
 #ifdef DEBUG  /* Stepm, step in month: minimum step interpolation*/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  int estepm;
   for (j=1;j<=n;j++) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     xi[j] *= xmin;  
     p[j] += xi[j];  int m,nb;
   }  long *num;
   free_vector(xicom,1,n);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   free_vector(pcom,1,n);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /*************** powell ************************/  double dateintmean=0;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  double *weight;
 {  int **s; /* Status */
   void linmin(double p[], double xi[], int n, double *fret,  double *agedc;
               double (*func)(double []));  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
   int i,ibig,j;                    * covar=matrix(0,NCOVMAX,1,n); 
   double del,t,*pt,*ptt,*xit;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   double fp,fptt;  double  idx; 
   double *xits;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   pt=vector(1,n);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   ptt=vector(1,n);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   xit=vector(1,n);  double *lsurv, *lpop, *tpop;
   xits=vector(1,n);  
   *fret=(*func)(p);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for (j=1;j<=n;j++) pt[j]=p[j];  double ftolhess; /* Tolerance for computing hessian */
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /**************** split *************************/
     ibig=0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     for (i=1;i<=n;i++)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       printf(" %d %.12f",i, p[i]);    */ 
     printf("\n");    char  *ss;                            /* pointer */
     for (i=1;i<=n;i++) {    int   l1, l2;                         /* length counters */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);    l1 = strlen(path );                   /* length of path */
 #ifdef DEBUG    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       printf("fret=%lf \n",*fret);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 #endif    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       printf("%d",i);fflush(stdout);      strcpy( name, path );               /* we got the fullname name because no directory */
       linmin(p,xit,n,fret,func);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       if (fabs(fptt-(*fret)) > del) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         del=fabs(fptt-(*fret));      /* get current working directory */
         ibig=i;      /*    extern  char* getcwd ( char *buf , int len);*/
       }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 #ifdef DEBUG        return( GLOCK_ERROR_GETCWD );
       printf("%d %.12e",i,(*fret));      }
       for (j=1;j<=n;j++) {      /* got dirc from getcwd*/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      printf(" DIRC = %s \n",dirc);
         printf(" x(%d)=%.12e",j,xit[j]);    } else {                              /* strip direcotry from path */
       }      ss++;                               /* after this, the filename */
       for(j=1;j<=n;j++)      l2 = strlen( ss );                  /* length of filename */
         printf(" p=%.12e",p[j]);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       printf("\n");      strcpy( name, ss );         /* save file name */
 #endif      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     }      dirc[l1-l2] = 0;                    /* add zero */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      printf(" DIRC2 = %s \n",dirc);
 #ifdef DEBUG    }
       int k[2],l;    /* We add a separator at the end of dirc if not exists */
       k[0]=1;    l1 = strlen( dirc );                  /* length of directory */
       k[1]=-1;    if( dirc[l1-1] != DIRSEPARATOR ){
       printf("Max: %.12e",(*func)(p));      dirc[l1] =  DIRSEPARATOR;
       for (j=1;j<=n;j++)      dirc[l1+1] = 0; 
         printf(" %.12e",p[j]);      printf(" DIRC3 = %s \n",dirc);
       printf("\n");    }
       for(l=0;l<=1;l++) {    ss = strrchr( name, '.' );            /* find last / */
         for (j=1;j<=n;j++) {    if (ss >0){
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      ss++;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      strcpy(ext,ss);                     /* save extension */
         }      l1= strlen( name);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      l2= strlen(ss)+1;
       }      strncpy( finame, name, l1-l2);
 #endif      finame[l1-l2]= 0;
     }
   
       free_vector(xit,1,n);    return( 0 );                          /* we're done */
       free_vector(xits,1,n);  }
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  
       return;  /******************************************/
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  void replace_back_to_slash(char *s, char*t)
     for (j=1;j<=n;j++) {  {
       ptt[j]=2.0*p[j]-pt[j];    int i;
       xit[j]=p[j]-pt[j];    int lg=0;
       pt[j]=p[j];    i=0;
     }    lg=strlen(t);
     fptt=(*func)(ptt);    for(i=0; i<= lg; i++) {
     if (fptt < fp) {      (s[i] = t[i]);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      if (t[i]== '\\') s[i]='/';
       if (t < 0.0) {    }
         linmin(p,xit,n,fret,func);  }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  char *trimbb(char *out, char *in)
           xi[j][n]=xit[j];  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         }    char *s;
 #ifdef DEBUG    s=out;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    while (*in != '\0'){
         for(j=1;j<=n;j++)      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
           printf(" %.12e",xit[j]);        in++;
         printf("\n");      }
 #endif      *out++ = *in++;
       }    }
     }    *out='\0';
   }    return s;
 }  }
   
 /**** Prevalence limit ****************/  char *cutv(char *blocc, char *alocc, char *in, char occ)
   {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
 {       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit       gives blocc="abcdef2ghi" and alocc="j".
      matrix by transitions matrix until convergence is reached */       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     */
   int i, ii,j,k;    char *s, *t;
   double min, max, maxmin, maxmax,sumnew=0.;    t=in;s=in;
   double **matprod2();    while (*in != '\0'){
   double **out, cov[NCOVMAX], **pmij();      while( *in == occ){
   double **newm;        *blocc++ = *in++;
   double agefin, delaymax=50 ; /* Max number of years to converge */        s=in;
       }
   for (ii=1;ii<=nlstate+ndeath;ii++)      *blocc++ = *in++;
     for (j=1;j<=nlstate+ndeath;j++){    }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    if (s == t) /* occ not found */
     }      *(blocc-(in-s))='\0';
     else
    cov[1]=1.;      *(blocc-(in-s)-1)='\0';
      in=s;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    while ( *in != '\0'){
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      *alocc++ = *in++;
     newm=savm;    }
     /* Covariates have to be included here again */  
      cov[2]=agefin;    *alocc='\0';
      return s;
       for (k=1; k<=cptcovn;k++) {  }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  int nbocc(char *s, char occ)
       }  {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int i,j=0;
       for (k=1; k<=cptcovprod;k++)    int lg=20;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    i=0;
     lg=strlen(s);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    for(i=0; i<= lg; i++) {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    if  (s[i] == occ ) j++;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return j;
   }
     savm=oldm;  
     oldm=newm;  /* void cutv(char *u,char *v, char*t, char occ) */
     maxmax=0.;  /* { */
     for(j=1;j<=nlstate;j++){  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       min=1.;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       max=0.;  /*      gives u="abcdef2ghi" and v="j" *\/ */
       for(i=1; i<=nlstate; i++) {  /*   int i,lg,j,p=0; */
         sumnew=0;  /*   i=0; */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*   lg=strlen(t); */
         prlim[i][j]= newm[i][j]/(1-sumnew);  /*   for(j=0; j<=lg-1; j++) { */
         max=FMAX(max,prlim[i][j]);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
         min=FMIN(min,prlim[i][j]);  /*   } */
       }  
       maxmin=max-min;  /*   for(j=0; j<p; j++) { */
       maxmax=FMAX(maxmax,maxmin);  /*     (u[j] = t[j]); */
     }  /*   } */
     if(maxmax < ftolpl){  /*      u[p]='\0'; */
       return prlim;  
     }  /*    for(j=0; j<= lg; j++) { */
   }  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 }  /*   } */
   /* } */
 /*************** transition probabilities ***************/  
   /********************** nrerror ********************/
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  void nrerror(char error_text[])
   double s1, s2;  {
   /*double t34;*/    fprintf(stderr,"ERREUR ...\n");
   int i,j,j1, nc, ii, jj;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
     for(i=1; i<= nlstate; i++){  }
     for(j=1; j<i;j++){  /*********************** vector *******************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double *vector(int nl, int nh)
         /*s2 += param[i][j][nc]*cov[nc];*/  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double *v;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       }    if (!v) nrerror("allocation failure in vector");
       ps[i][j]=s2;    return v-nl+NR_END;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  }
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /************************ free vector ******************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void free_vector(double*v, int nl, int nh)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    free((FREE_ARG)(v+nl-NR_END));
       }  }
       ps[i][j]=s2;  
     }  /************************ivector *******************************/
   }  int *ivector(long nl,long nh)
     /*ps[3][2]=1;*/  {
     int *v;
   for(i=1; i<= nlstate; i++){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      s1=0;    if (!v) nrerror("allocation failure in ivector");
     for(j=1; j<i; j++)    return v-nl+NR_END;
       s1+=exp(ps[i][j]);  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  /******************free ivector **************************/
     ps[i][i]=1./(s1+1.);  void free_ivector(int *v, long nl, long nh)
     for(j=1; j<i; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free((FREE_ARG)(v+nl-NR_END));
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /************************lvector *******************************/
   } /* end i */  long *lvector(long nl,long nh)
   {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    long *v;
     for(jj=1; jj<= nlstate+ndeath; jj++){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       ps[ii][jj]=0;    if (!v) nrerror("allocation failure in ivector");
       ps[ii][ii]=1;    return v-nl+NR_END;
     }  }
   }  
   /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    free((FREE_ARG)(v+nl-NR_END));
      printf("%lf ",ps[ii][jj]);  }
    }  
     printf("\n ");  /******************* imatrix *******************************/
     }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     printf("\n ");printf("%lf ",cov[2]);*/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 /*  { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   goto end;*/    int **m; 
     return ps;    
 }    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 /**************** Product of 2 matrices ******************/    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    m -= nrl; 
 {    
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    /* allocate rows and set pointers to them */ 
   /* in, b, out are matrice of pointers which should have been initialized    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
      before: only the contents of out is modified. The function returns    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      a pointer to pointers identical to out */    m[nrl] += NR_END; 
   long i, j, k;    m[nrl] -= ncl; 
   for(i=nrl; i<= nrh; i++)    
     for(k=ncolol; k<=ncoloh; k++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    
         out[i][k] +=in[i][j]*b[j][k];    /* return pointer to array of pointers to rows */ 
     return m; 
   return out;  } 
 }  
   /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 /************* Higher Matrix Product ***************/        int **m;
         long nch,ncl,nrh,nrl; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )       /* free an int matrix allocated by imatrix() */ 
 {  { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      duration (i.e. until    free((FREE_ARG) (m+nrl-NR_END)); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /******************* matrix *******************************/
      Model is determined by parameters x and covariates have to be  double **matrix(long nrl, long nrh, long ncl, long nch)
      included manually here.  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
      */    double **m;
   
   int i, j, d, h, k;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double **out, cov[NCOVMAX];    if (!m) nrerror("allocation failure 1 in matrix()");
   double **newm;    m += NR_END;
     m -= nrl;
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       oldm[i][j]=(i==j ? 1.0 : 0.0);    m[nrl] += NR_END;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    m[nrl] -= ncl;
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for(h=1; h <=nhstepm; h++){    return m;
     for(d=1; d <=hstepm; d++){    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       newm=savm;     */
       /* Covariates have to be included here again */  }
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /*************************free matrix ************************/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for (k=1; k<=cptcovprod;k++)    free((FREE_ARG)(m+nrl-NR_END));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
   /******************* ma3x *******************************/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double ***m;
       savm=oldm;  
       oldm=newm;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     for(i=1; i<=nlstate+ndeath; i++)    m += NR_END;
       for(j=1;j<=nlstate+ndeath;j++) {    m -= nrl;
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
          */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
   } /* end h */    m[nrl] -= ncl;
   return po;  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /*************** log-likelihood *************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 double func( double *x)    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   int i, ii, j, k, mi, d, kk;    for (j=ncl+1; j<=nch; j++) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      m[nrl][j]=m[nrl][j-1]+nlay;
   double **out;    
   double sw; /* Sum of weights */    for (i=nrl+1; i<=nrh; i++) {
   double lli; /* Individual log likelihood */      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   long ipmx;      for (j=ncl+1; j<=nch; j++) 
   /*extern weight */        m[i][j]=m[i][j-1]+nlay;
   /* We are differentiating ll according to initial status */    }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    return m; 
   /*for(i=1;i<imx;i++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     printf(" %d\n",s[4][i]);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   */    */
   cov[1]=1.;  }
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*************************free ma3x ************************/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  {
     for(mi=1; mi<= wav[i]-1; mi++){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(m+nrl-NR_END));
       for(d=0; d<dh[mi][i]; d++){  }
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*************** function subdirf ***********/
         for (kk=1; kk<=cptcovage;kk++) {  char *subdirf(char fileres[])
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
         }    /* Caution optionfilefiname is hidden */
            strcpy(tmpout,optionfilefiname);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    strcat(tmpout,"/"); /* Add to the right */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    strcat(tmpout,fileres);
         savm=oldm;    return tmpout;
         oldm=newm;  }
          
          /*************** function subdirf2 ***********/
       } /* end mult */  char *subdirf2(char fileres[], char *preop)
        {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    /* Caution optionfilefiname is hidden */
       ipmx +=1;    strcpy(tmpout,optionfilefiname);
       sw += weight[i];    strcat(tmpout,"/");
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    strcat(tmpout,preop);
     } /* end of wave */    strcat(tmpout,fileres);
   } /* end of individual */    return tmpout;
   }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /*************** function subdirf3 ***********/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  char *subdirf3(char fileres[], char *preop, char *preop2)
   return -l;  {
 }    
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /*********** Maximum Likelihood Estimation ***************/    strcat(tmpout,"/");
     strcat(tmpout,preop);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    strcat(tmpout,preop2);
 {    strcat(tmpout,fileres);
   int i,j, iter;    return tmpout;
   double **xi,*delti;  }
   double fret;  
   xi=matrix(1,npar,1,npar);  /***************** f1dim *************************/
   for (i=1;i<=npar;i++)  extern int ncom; 
     for (j=1;j<=npar;j++)  extern double *pcom,*xicom;
       xi[i][j]=(i==j ? 1.0 : 0.0);  extern double (*nrfunc)(double []); 
   printf("Powell\n");   
   powell(p,xi,npar,ftol,&iter,&fret,func);  double f1dim(double x) 
   { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    int j; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double f;
     double *xt; 
 }   
     xt=vector(1,ncom); 
 /**** Computes Hessian and covariance matrix ***/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    f=(*nrfunc)(xt); 
 {    free_vector(xt,1,ncom); 
   double  **a,**y,*x,pd;    return f; 
   double **hess;  } 
   int i, j,jk;  
   int *indx;  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double hessii(double p[], double delta, int theta, double delti[]);  { 
   double hessij(double p[], double delti[], int i, int j);    int iter; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double a,b,d,etemp;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double fu,fv,fw,fx;
     double ftemp;
   hess=matrix(1,npar,1,npar);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
   printf("\nCalculation of the hessian matrix. Wait...\n");   
   for (i=1;i<=npar;i++){    a=(ax < cx ? ax : cx); 
     printf("%d",i);fflush(stdout);    b=(ax > cx ? ax : cx); 
     hess[i][i]=hessii(p,ftolhess,i,delti);    x=w=v=bx; 
     /*printf(" %f ",p[i]);*/    fw=fv=fx=(*f)(x); 
     /*printf(" %lf ",hess[i][i]);*/    for (iter=1;iter<=ITMAX;iter++) { 
   }      xm=0.5*(a+b); 
        tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for (i=1;i<=npar;i++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for (j=1;j<=npar;j++)  {      printf(".");fflush(stdout);
       if (j>i) {      fprintf(ficlog,".");fflush(ficlog);
         printf(".%d%d",i,j);fflush(stdout);  #ifdef DEBUG
         hess[i][j]=hessij(p,delti,i,j);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         hess[j][i]=hess[i][j];          fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf(" %lf ",hess[i][j]);*/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   }        *xmin=x; 
   printf("\n");        return fx; 
       } 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      ftemp=fu;
        if (fabs(e) > tol1) { 
   a=matrix(1,npar,1,npar);        r=(x-w)*(fx-fv); 
   y=matrix(1,npar,1,npar);        q=(x-v)*(fx-fw); 
   x=vector(1,npar);        p=(x-v)*q-(x-w)*r; 
   indx=ivector(1,npar);        q=2.0*(q-r); 
   for (i=1;i<=npar;i++)        if (q > 0.0) p = -p; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        q=fabs(q); 
   ludcmp(a,npar,indx,&pd);        etemp=e; 
         e=d; 
   for (j=1;j<=npar;j++) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for (i=1;i<=npar;i++) x[i]=0;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     x[j]=1;        else { 
     lubksb(a,npar,indx,x);          d=p/q; 
     for (i=1;i<=npar;i++){          u=x+d; 
       matcov[i][j]=x[i];          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
   }        } 
       } else { 
   printf("\n#Hessian matrix#\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (i=1;i<=npar;i++) {      } 
     for (j=1;j<=npar;j++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       printf("%.3e ",hess[i][j]);      fu=(*f)(u); 
     }      if (fu <= fx) { 
     printf("\n");        if (u >= x) a=x; else b=x; 
   }        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   /* Recompute Inverse */          } else { 
   for (i=1;i<=npar;i++)            if (u < x) a=u; else b=u; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            if (fu <= fw || w == x) { 
   ludcmp(a,npar,indx,&pd);              v=w; 
               w=u; 
   /*  printf("\n#Hessian matrix recomputed#\n");              fv=fw; 
               fw=fu; 
   for (j=1;j<=npar;j++) {            } else if (fu <= fv || v == x || v == w) { 
     for (i=1;i<=npar;i++) x[i]=0;              v=u; 
     x[j]=1;              fv=fu; 
     lubksb(a,npar,indx,x);            } 
     for (i=1;i<=npar;i++){          } 
       y[i][j]=x[i];    } 
       printf("%.3e ",y[i][j]);    nrerror("Too many iterations in brent"); 
     }    *xmin=x; 
     printf("\n");    return fx; 
   }  } 
   */  
   /****************** mnbrak ***********************/
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   free_vector(x,1,npar);              double (*func)(double)) 
   free_ivector(indx,1,npar);  { 
   free_matrix(hess,1,npar,1,npar);    double ulim,u,r,q, dum;
     double fu; 
    
 }    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 /*************** hessian matrix ****************/    if (*fb > *fa) { 
 double hessii( double x[], double delta, int theta, double delti[])      SHFT(dum,*ax,*bx,dum) 
 {        SHFT(dum,*fb,*fa,dum) 
   int i;        } 
   int l=1, lmax=20;    *cx=(*bx)+GOLD*(*bx-*ax); 
   double k1,k2;    *fc=(*func)(*cx); 
   double p2[NPARMAX+1];    while (*fb > *fc) { 
   double res;      r=(*bx-*ax)*(*fb-*fc); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      q=(*bx-*cx)*(*fb-*fa); 
   double fx;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   int k=0,kmax=10;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double l1;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   fx=func(x);        fu=(*func)(u); 
   for (i=1;i<=npar;i++) p2[i]=x[i];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for(l=0 ; l <=lmax; l++){        fu=(*func)(u); 
     l1=pow(10,l);        if (fu < *fc) { 
     delts=delt;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for(k=1 ; k <kmax; k=k+1){            SHFT(*fb,*fc,fu,(*func)(u)) 
       delt = delta*(l1*k);            } 
       p2[theta]=x[theta] +delt;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       k1=func(p2)-fx;        u=ulim; 
       p2[theta]=x[theta]-delt;        fu=(*func)(u); 
       k2=func(p2)-fx;      } else { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        u=(*cx)+GOLD*(*cx-*bx); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        fu=(*func)(u); 
            } 
 #ifdef DEBUG      SHFT(*ax,*bx,*cx,u) 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        SHFT(*fa,*fb,*fc,fu) 
 #endif        } 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  } 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  /*************** linmin ************************/
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  int ncom; 
         k=kmax; l=lmax*10.;  double *pcom,*xicom;
       }  double (*nrfunc)(double []); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){   
         delts=delt;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       }  { 
     }    double brent(double ax, double bx, double cx, 
   }                 double (*f)(double), double tol, double *xmin); 
   delti[theta]=delts;    double f1dim(double x); 
   return res;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                  double *fc, double (*func)(double)); 
 }    int j; 
     double xx,xmin,bx,ax; 
 double hessij( double x[], double delti[], int thetai,int thetaj)    double fx,fb,fa;
 {   
   int i;    ncom=n; 
   int l=1, l1, lmax=20;    pcom=vector(1,n); 
   double k1,k2,k3,k4,res,fx;    xicom=vector(1,n); 
   double p2[NPARMAX+1];    nrfunc=func; 
   int k;    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   fx=func(x);      xicom[j]=xi[j]; 
   for (k=1; k<=2; k++) {    } 
     for (i=1;i<=npar;i++) p2[i]=x[i];    ax=0.0; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    xx=1.0; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     k1=func(p2)-fx;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
    #ifdef DEBUG
     p2[thetai]=x[thetai]+delti[thetai]/k;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     k2=func(p2)-fx;  #endif
      for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;      xi[j] *= xmin; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      p[j] += xi[j]; 
     k3=func(p2)-fx;    } 
      free_vector(xicom,1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;    free_vector(pcom,1,n); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  } 
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  char *asc_diff_time(long time_sec, char ascdiff[])
 #ifdef DEBUG  {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    long sec_left, days, hours, minutes;
 #endif    days = (time_sec) / (60*60*24);
   }    sec_left = (time_sec) % (60*60*24);
   return res;    hours = (sec_left) / (60*60) ;
 }    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 /************** Inverse of matrix **************/    sec_left = (sec_left) % (60);
 void ludcmp(double **a, int n, int *indx, double *d)    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 {    return ascdiff;
   int i,imax,j,k;  }
   double big,dum,sum,temp;  
   double *vv;  /*************** powell ************************/
    void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   vv=vector(1,n);              double (*func)(double [])) 
   *d=1.0;  { 
   for (i=1;i<=n;i++) {    void linmin(double p[], double xi[], int n, double *fret, 
     big=0.0;                double (*func)(double [])); 
     for (j=1;j<=n;j++)    int i,ibig,j; 
       if ((temp=fabs(a[i][j])) > big) big=temp;    double del,t,*pt,*ptt,*xit;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double fp,fptt;
     vv[i]=1.0/big;    double *xits;
   }    int niterf, itmp;
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {    pt=vector(1,n); 
       sum=a[i][j];    ptt=vector(1,n); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    xit=vector(1,n); 
       a[i][j]=sum;    xits=vector(1,n); 
     }    *fret=(*func)(p); 
     big=0.0;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (i=j;i<=n;i++) {    for (*iter=1;;++(*iter)) { 
       sum=a[i][j];      fp=(*fret); 
       for (k=1;k<j;k++)      ibig=0; 
         sum -= a[i][k]*a[k][j];      del=0.0; 
       a[i][j]=sum;      last_time=curr_time;
       if ( (dum=vv[i]*fabs(sum)) >= big) {      (void) gettimeofday(&curr_time,&tzp);
         big=dum;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         imax=i;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     }     for (i=1;i<=n;i++) {
     if (j != imax) {        printf(" %d %.12f",i, p[i]);
       for (k=1;k<=n;k++) {        fprintf(ficlog," %d %.12lf",i, p[i]);
         dum=a[imax][k];        fprintf(ficrespow," %.12lf", p[i]);
         a[imax][k]=a[j][k];      }
         a[j][k]=dum;      printf("\n");
       }      fprintf(ficlog,"\n");
       *d = -(*d);      fprintf(ficrespow,"\n");fflush(ficrespow);
       vv[imax]=vv[j];      if(*iter <=3){
     }        tm = *localtime(&curr_time.tv_sec);
     indx[j]=imax;        strcpy(strcurr,asctime(&tm));
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*       asctime_r(&tm,strcurr); */
     if (j != n) {        forecast_time=curr_time; 
       dum=1.0/(a[j][j]);        itmp = strlen(strcurr);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     }          strcurr[itmp-1]='\0';
   }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   free_vector(vv,1,n);  /* Doesn't work */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 ;        for(niterf=10;niterf<=30;niterf+=10){
 }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
 void lubksb(double **a, int n, int *indx, double b[])  /*      asctime_r(&tmf,strfor); */
 {          strcpy(strfor,asctime(&tmf));
   int i,ii=0,ip,j;          itmp = strlen(strfor);
   double sum;          if(strfor[itmp-1]=='\n')
            strfor[itmp-1]='\0';
   for (i=1;i<=n;i++) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     ip=indx[i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     sum=b[ip];        }
     b[ip]=b[i];      }
     if (ii)      for (i=1;i<=n;i++) { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     else if (sum) ii=i;        fptt=(*fret); 
     b[i]=sum;  #ifdef DEBUG
   }        printf("fret=%lf \n",*fret);
   for (i=n;i>=1;i--) {        fprintf(ficlog,"fret=%lf \n",*fret);
     sum=b[i];  #endif
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        printf("%d",i);fflush(stdout);
     b[i]=sum/a[i][i];        fprintf(ficlog,"%d",i);fflush(ficlog);
   }        linmin(p,xit,n,fret,func); 
 }        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
 /************ Frequencies ********************/          ibig=i; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        } 
 {  /* Some frequencies */  #ifdef DEBUG
          printf("%d %.12e",i,(*fret));
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double ***freq; /* Frequencies */        for (j=1;j<=n;j++) {
   double *pp;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double pos, k2, dateintsum=0,k2cpt=0;          printf(" x(%d)=%.12e",j,xit[j]);
   FILE *ficresp;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   char fileresp[FILENAMELENGTH];        }
          for(j=1;j<=n;j++) {
   pp=vector(1,nlstate);          printf(" p=%.12e",p[j]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficlog," p=%.12e",p[j]);
   strcpy(fileresp,"p");        }
   strcat(fileresp,fileres);        printf("\n");
   if((ficresp=fopen(fileresp,"w"))==NULL) {        fprintf(ficlog,"\n");
     printf("Problem with prevalence resultfile: %s\n", fileresp);  #endif
     exit(0);      } 
   }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  #ifdef DEBUG
   j1=0;        int k[2],l;
          k[0]=1;
   j=cptcoveff;        k[1]=-1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        printf("Max: %.12e",(*func)(p));
          fprintf(ficlog,"Max: %.12e",(*func)(p));
   for(k1=1; k1<=j;k1++){        for (j=1;j<=n;j++) {
     for(i1=1; i1<=ncodemax[k1];i1++){          printf(" %.12e",p[j]);
       j1++;          fprintf(ficlog," %.12e",p[j]);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        }
         scanf("%d", i);*/        printf("\n");
       for (i=-1; i<=nlstate+ndeath; i++)          fprintf(ficlog,"\n");
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(l=0;l<=1;l++) {
           for(m=agemin; m <= agemax+3; m++)          for (j=1;j<=n;j++) {
             freq[i][jk][m]=0;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       dateintsum=0;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       k2cpt=0;          }
       for (i=1; i<=imx; i++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         bool=1;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         if  (cptcovn>0) {        }
           for (z1=1; z1<=cptcoveff; z1++)  #endif
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;  
         }        free_vector(xit,1,n); 
         if (bool==1) {        free_vector(xits,1,n); 
           for(m=firstpass; m<=lastpass; m++){        free_vector(ptt,1,n); 
             k2=anint[m][i]+(mint[m][i]/12.);        free_vector(pt,1,n); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        return; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;      } 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
               if (m<lastpass) {      for (j=1;j<=n;j++) { 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        ptt[j]=2.0*p[j]-pt[j]; 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        xit[j]=p[j]-pt[j]; 
               }        pt[j]=p[j]; 
                    } 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      fptt=(*func)(ptt); 
                 dateintsum=dateintsum+k2;      if (fptt < fp) { 
                 k2cpt++;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
               }        if (t < 0.0) { 
             }          linmin(p,xit,n,fret,func); 
           }          for (j=1;j<=n;j++) { 
         }            xi[j][ibig]=xi[j][n]; 
       }            xi[j][n]=xit[j]; 
                  }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       if  (cptcovn>0) {          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         fprintf(ficresp, "\n#********** Variable ");          for(j=1;j<=n;j++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            printf(" %.12e",xit[j]);
         fprintf(ficresp, "**********\n#");            fprintf(ficlog," %.12e",xit[j]);
       }          }
       for(i=1; i<=nlstate;i++)          printf("\n");
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          fprintf(ficlog,"\n");
       fprintf(ficresp, "\n");  #endif
              }
       for(i=(int)agemin; i <= (int)agemax+3; i++){      } 
         if(i==(int)agemax+3)    } 
           printf("Total");  } 
         else  
           printf("Age %d", i);  /**** Prevalence limit (stable or period prevalence)  ****************/
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
             pp[jk] += freq[jk][m][i];  {
         }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         for(jk=1; jk <=nlstate ; jk++){       matrix by transitions matrix until convergence is reached */
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    int i, ii,j,k;
           if(pp[jk]>=1.e-10)    double min, max, maxmin, maxmax,sumnew=0.;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double **matprod2();
           else    double **out, cov[NCOVMAX+1], **pmij();
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double **newm;
         }    double agefin, delaymax=50 ; /* Max number of years to converge */
   
         for(jk=1; jk <=nlstate ; jk++){    for (ii=1;ii<=nlstate+ndeath;ii++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for (j=1;j<=nlstate+ndeath;j++){
             pp[jk] += freq[jk][m][i];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }      }
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)     cov[1]=1.;
           pos += pp[jk];   
         for(jk=1; jk <=nlstate ; jk++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           if(pos>=1.e-5)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      newm=savm;
           else      /* Covariates have to be included here again */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      cov[2]=agefin;
           if( i <= (int) agemax){      
             if(pos>=1.e-5){      for (k=1; k<=cptcovn;k++) {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               probs[i][jk][j1]= pp[jk]/pos;        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      }
             }      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             else      for (k=1; k<=cptcovprod;k++)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           }      
         }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
              /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         for(jk=-1; jk <=nlstate+ndeath; jk++)      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           for(m=-1; m <=nlstate+ndeath; m++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      
         if(i <= (int) agemax)      savm=oldm;
           fprintf(ficresp,"\n");      oldm=newm;
         printf("\n");      maxmax=0.;
       }      for(j=1;j<=nlstate;j++){
     }        min=1.;
   }        max=0.;
   dateintmean=dateintsum/k2cpt;        for(i=1; i<=nlstate; i++) {
            sumnew=0;
   fclose(ficresp);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          prlim[i][j]= newm[i][j]/(1-sumnew);
   free_vector(pp,1,nlstate);          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
   /* End of Freq */        }
 }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
 /************ Prevalence ********************/      }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      if(maxmax < ftolpl){
 {  /* Some frequencies */        return prlim;
        }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    }
   double ***freq; /* Frequencies */  }
   double *pp;  
   double pos, k2;  /*************** transition probabilities ***************/ 
   
   pp=vector(1,nlstate);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
      /* According to parameters values stored in x and the covariate's values stored in cov,
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       computes the probability to be observed in state j being in state i by appying the
   j1=0;       model to the ncovmodel covariates (including constant and age).
         lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   j=cptcoveff;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       ncth covariate in the global vector x is given by the formula:
         j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
  for(k1=1; k1<=j;k1++){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
     for(i1=1; i1<=ncodemax[k1];i1++){       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
       j1++;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         Outputs ps[i][j] the probability to be observed in j being in j according to
       for (i=-1; i<=nlstate+ndeath; i++)         the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         for (jk=-1; jk<=nlstate+ndeath; jk++)      */
           for(m=agemin; m <= agemax+3; m++)    double s1, lnpijopii;
             freq[i][jk][m]=0;    /*double t34;*/
          int i,j,j1, nc, ii, jj;
       for (i=1; i<=imx; i++) {  
         bool=1;      for(i=1; i<= nlstate; i++){
         if  (cptcovn>0) {        for(j=1; j<i;j++){
           for (z1=1; z1<=cptcoveff; z1++)          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            /*lnpijopii += param[i][j][nc]*cov[nc];*/
               bool=0;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         }  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         if (bool==1) {          }
           for(m=firstpass; m<=lastpass; m++){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             k2=anint[m][i]+(mint[m][i]/12.);  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        }
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(j=i+1; j<=nlstate+ndeath;j++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
             }  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }          }
         }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       }        }
         for(i=(int)agemin; i <= (int)agemax+3; i++){      }
           for(jk=1; jk <=nlstate ; jk++){      
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for(i=1; i<= nlstate; i++){
               pp[jk] += freq[jk][m][i];        s1=0;
           }        for(j=1; j<i; j++){
           for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             for(m=-1, pos=0; m <=0 ; m++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             pos += freq[jk][m][i];        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
                  s1+=exp(ps[i][j]); /* In fact sums pij/pii */
          for(jk=1; jk <=nlstate ; jk++){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
              pp[jk] += freq[jk][m][i];        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
          }        ps[i][i]=1./(s1+1.);
                  /* Computing other pijs */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
          for(jk=1; jk <=nlstate ; jk++){                  for(j=i+1; j<=nlstate+ndeath; j++)
            if( i <= (int) agemax){          ps[i][j]= exp(ps[i][j])*ps[i][i];
              if(pos>=1.e-5){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                probs[i][jk][j1]= pp[jk]/pos;      } /* end i */
              }      
            }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          }        for(jj=1; jj<= nlstate+ndeath; jj++){
                    ps[ii][jj]=0;
         }          ps[ii][ii]=1;
     }        }
   }      }
        
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   free_vector(pp,1,nlstate);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
 }  /* End of Freq */  /*       } */
   /*       printf("\n "); */
 /************* Waves Concatenation ***************/  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)         /*
 {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        goto end;*/
      Death is a valid wave (if date is known).      return ps;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  /**************** Product of 2 matrices ******************/
      */  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   int i, mi, m;  {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      double sum=0., jmean=0.;*/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   int j, k=0,jk, ju, jl;       before: only the contents of out is modified. The function returns
   double sum=0.;       a pointer to pointers identical to out */
   jmin=1e+5;    long i, j, k;
   jmax=-1;    for(i=nrl; i<= nrh; i++)
   jmean=0.;      for(k=ncolol; k<=ncoloh; k++)
   for(i=1; i<=imx; i++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     mi=0;          out[i][k] +=in[i][j]*b[j][k];
     m=firstpass;  
     while(s[m][i] <= nlstate){    return out;
       if(s[m][i]>=1)  }
         mw[++mi][i]=m;  
       if(m >=lastpass)  
         break;  /************* Higher Matrix Product ***************/
       else  
         m++;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }/* end while */  {
     if (s[m][i] > nlstate){    /* Computes the transition matrix starting at age 'age' over 
       mi++;     /* Death is another wave */       'nhstepm*hstepm*stepm' months (i.e. until
       /* if(mi==0)  never been interviewed correctly before death */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
          /* Only death is a correct wave */       nhstepm*hstepm matrices. 
       mw[mi][i]=m;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
        for the memory).
     wav[i]=mi;       Model is determined by parameters x and covariates have to be 
     if(mi==0)       included manually here. 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }       */
   
   for(i=1; i<=imx; i++){    int i, j, d, h, k;
     for(mi=1; mi<wav[i];mi++){    double **out, cov[NCOVMAX+1];
       if (stepm <=0)    double **newm;
         dh[mi][i]=1;  
       else{    /* Hstepm could be zero and should return the unit matrix */
         if (s[mw[mi+1][i]][i] > nlstate) {    for (i=1;i<=nlstate+ndeath;i++)
           if (agedc[i] < 2*AGESUP) {      for (j=1;j<=nlstate+ndeath;j++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        oldm[i][j]=(i==j ? 1.0 : 0.0);
           if(j==0) j=1;  /* Survives at least one month after exam */        po[i][j][0]=(i==j ? 1.0 : 0.0);
           k=k+1;      }
           if (j >= jmax) jmax=j;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           if (j <= jmin) jmin=j;    for(h=1; h <=nhstepm; h++){
           sum=sum+j;      for(d=1; d <=hstepm; d++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        newm=savm;
           }        /* Covariates have to be included here again */
         }        cov[1]=1.;
         else{        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for (k=1; k<=cptcovn;k++) 
           k=k+1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           if (j >= jmax) jmax=j;        for (k=1; k<=cptcovage;k++)
           else if (j <= jmin)jmin=j;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for (k=1; k<=cptcovprod;k++)
           sum=sum+j;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }  
         jk= j/stepm;  
         jl= j -jk*stepm;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         ju= j -(jk+1)*stepm;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         if(jl <= -ju)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           dh[mi][i]=jk;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         else        savm=oldm;
           dh[mi][i]=jk+1;        oldm=newm;
         if(dh[mi][i]==0)      }
           dh[mi][i]=1; /* At least one step */      for(i=1; i<=nlstate+ndeath; i++)
       }        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
   }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   jmean=sum/k;        }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      /*printf("h=%d ",h);*/
  }    } /* end h */
 /*********** Tricode ****************************/  /*     printf("\n H=%d \n",h); */
 void tricode(int *Tvar, int **nbcode, int imx)    return po;
 {  }
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;  
   cptcoveff=0;  /*************** log-likelihood *************/
    double func( double *x)
   for (k=0; k<19; k++) Ndum[k]=0;  {
   for (k=1; k<=7; k++) ncodemax[k]=0;    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double **out;
     for (i=1; i<=imx; i++) {    double sw; /* Sum of weights */
       ij=(int)(covar[Tvar[j]][i]);    double lli; /* Individual log likelihood */
       Ndum[ij]++;    int s1, s2;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double bbh, survp;
       if (ij > cptcode) cptcode=ij;    long ipmx;
     }    /*extern weight */
     /* We are differentiating ll according to initial status */
     for (i=0; i<=cptcode; i++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if(Ndum[i]!=0) ncodemax[j]++;    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     ij=1;    */
     cov[1]=1.;
   
     for (i=1; i<=ncodemax[j]; i++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {    if(mle==1){
           nbcode[Tvar[j]][ij]=k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/        /* Computes the values of the ncovmodel covariates of the model
           ij++;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
         if (ij > ncodemax[j]) break;           to be observed in j being in i according to the model.
       }           */
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }          /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
  for (k=0; k<19; k++) Ndum[k]=0;           has been calculated etc */
         for(mi=1; mi<= wav[i]-1; mi++){
  for (i=1; i<=ncovmodel-2; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       ij=Tvar[i];            for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  ij=1;          for(d=0; d<dh[mi][i]; d++){
  for (i=1; i<=10; i++) {            newm=savm;
    if((Ndum[i]!=0) && (i<=ncovcol)){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Tvaraff[ij]=i;            for (kk=1; kk<=cptcovage;kk++) {
      ij++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
    }            }
  }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     cptcoveff=ij-1;            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /*********** Health Expectancies ****************/        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)          /* But now since version 0.9 we anticipate for bias at large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   /* Health expectancies */           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int i, j, nhstepm, hstepm, h, nstepm;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double age, agelim, hf;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double ***p3mat;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
   fprintf(ficreseij,"# Health expectancies\n");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   fprintf(ficreseij,"# Age");           * -stepm/2 to stepm/2 .
   for(i=1; i<=nlstate;i++)           * For stepm=1 the results are the same as for previous versions of Imach.
     for(j=1; j<=nlstate;j++)           * For stepm > 1 the results are less biased than in previous versions. 
       fprintf(ficreseij," %1d-%1d",i,j);           */
   fprintf(ficreseij,"\n");          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   if(estepm < stepm){          bbh=(double)bh[mi][i]/(double)stepm; 
     printf ("Problem %d lower than %d\n",estepm, stepm);          /* bias bh is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   else  hstepm=estepm;             */
   /* We compute the life expectancy from trapezoids spaced every estepm months          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
    * This is mainly to measure the difference between two models: for example          if( s2 > nlstate){ 
    * if stepm=24 months pijx are given only every 2 years and by summing them            /* i.e. if s2 is a death state and if the date of death is known 
    * we are calculating an estimate of the Life Expectancy assuming a linear               then the contribution to the likelihood is the probability to 
    * progression inbetween and thus overestimating or underestimating according               die between last step unit time and current  step unit time, 
    * to the curvature of the survival function. If, for the same date, we               which is also equal to probability to die before dh 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months               minus probability to die before dh-stepm . 
    * to compare the new estimate of Life expectancy with the same linear               In version up to 0.92 likelihood was computed
    * hypothesis. A more precise result, taking into account a more precise          as if date of death was unknown. Death was treated as any other
    * curvature will be obtained if estepm is as small as stepm. */          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   /* For example we decided to compute the life expectancy with the smallest unit */          to consider that at each interview the state was recorded
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          (healthy, disable or death) and IMaCh was corrected; but when we
      nhstepm is the number of hstepm from age to agelim          introduced the exact date of death then we should have modified
      nstepm is the number of stepm from age to agelin.          the contribution of an exact death to the likelihood. This new
      Look at hpijx to understand the reason of that which relies in memory size          contribution is smaller and very dependent of the step unit
      and note for a fixed period like estepm months */          stepm. It is no more the probability to die between last interview
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          and month of death but the probability to survive from last
      survival function given by stepm (the optimization length). Unfortunately it          interview up to one month before death multiplied by the
      means that if the survival funtion is printed only each two years of age and if          probability to die within a month. Thanks to Chris
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          Jackson for correcting this bug.  Former versions increased
      results. So we changed our mind and took the option of the best precision.          mortality artificially. The bad side is that we add another loop
   */          which slows down the processing. The difference can be up to 10%
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          lower mortality.
             */
   agelim=AGESUP;            lli=log(out[s1][s2] - savm[s1][s2]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          } else if  (s2==-2) {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            for (j=1,survp=0. ; j<=nlstate; j++) 
     /* if (stepm >= YEARM) hstepm=1;*/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            /*survp += out[s1][j]; */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli= log(survp);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            else if  (s2==-4) { 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            for (j=3,survp=0. ; j<=nlstate; j++)  
     for(i=1; i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1; j<=nlstate;j++)            lli= log(survp); 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          } 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          else if  (s2==-5) { 
         }            for (j=1,survp=0. ; j<=2; j++)  
     fprintf(ficreseij,"%3.0f",age );              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(i=1; i<=nlstate;i++)            lli= log(survp); 
       for(j=1; j<=nlstate;j++){          } 
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);          
       }          else{
     fprintf(ficreseij,"\n");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   }          } 
 }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 /************ Variance ******************/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          ipmx +=1;
 {          sw += weight[i];
   /* Variance of health expectancies */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } /* end of wave */
   double **newm;      } /* end of individual */
   double **dnewm,**doldm;    }  else if(mle==2){
   int i, j, nhstepm, hstepm, h, nstepm ;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int k, cptcode;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *xp;        for(mi=1; mi<= wav[i]-1; mi++){
   double **gp, **gm;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***gradg, ***trgradg;            for (j=1;j<=nlstate+ndeath;j++){
   double ***p3mat;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age,agelim, hf;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int theta;            }
           for(d=0; d<=dh[mi][i]; d++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");            newm=savm;
   fprintf(ficresvij,"# Age");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
     for(j=1; j<=nlstate;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            }
   fprintf(ficresvij,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   xp=vector(1,npar);            savm=oldm;
   dnewm=matrix(1,nlstate,1,npar);            oldm=newm;
   doldm=matrix(1,nlstate,1,nlstate);          } /* end mult */
          
   if(estepm < stepm){          s1=s[mw[mi][i]][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   else  hstepm=estepm;            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /* For example we decided to compute the life expectancy with the smallest unit */          ipmx +=1;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          sw += weight[i];
      nhstepm is the number of hstepm from age to agelim          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      nstepm is the number of stepm from age to agelin.        } /* end of wave */
      Look at hpijx to understand the reason of that which relies in memory size      } /* end of individual */
      and note for a fixed period like k years */    }  else if(mle==3){  /* exponential inter-extrapolation */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      survival function given by stepm (the optimization length). Unfortunately it        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      means that if the survival funtion is printed only each two years of age and if        for(mi=1; mi<= wav[i]-1; mi++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for (ii=1;ii<=nlstate+ndeath;ii++)
      results. So we changed our mind and took the option of the best precision.            for (j=1;j<=nlstate+ndeath;j++){
   */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim = AGESUP;            }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(d=0; d<dh[mi][i]; d++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            newm=savm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     gp=matrix(0,nhstepm,1,nlstate);            }
     gm=matrix(0,nhstepm,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(theta=1; theta <=npar; theta++){            savm=oldm;
       for(i=1; i<=npar; i++){ /* Computes gradient */            oldm=newm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          } /* end mult */
       }        
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            s1=s[mw[mi][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
       if (popbased==1) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(i=1; i<=nlstate;i++)          ipmx +=1;
           prlim[i][i]=probs[(int)age][i][ij];          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
       for(j=1; j<= nlstate; j++){      } /* end of individual */
         for(h=0; h<=nhstepm; h++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
       for(i=1; i<=npar; i++) /* Computes gradient */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
       if (popbased==1) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
           prlim[i][i]=probs[(int)age][i][ij];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
           
       for(j=1; j<= nlstate; j++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm; h++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            savm=oldm;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            oldm=newm;
         }          } /* end mult */
       }        
           s1=s[mw[mi][i]][i];
       for(j=1; j<= nlstate; j++)          s2=s[mw[mi+1][i]][i];
         for(h=0; h<=nhstepm; h++){          if( s2 > nlstate){ 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            lli=log(out[s1][s2] - savm[s1][s2]);
         }          }else{
     } /* End theta */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          ipmx +=1;
           sw += weight[i];
     for(h=0; h<=nhstepm; h++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for(theta=1; theta <=npar; theta++)        } /* end of wave */
           trgradg[h][j][theta]=gradg[h][theta][j];      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1;j<=nlstate;j++)        for(mi=1; mi<= wav[i]-1; mi++){
         vareij[i][j][(int)age] =0.;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     for(h=0;h<=nhstepm;h++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(k=0;k<=nhstepm;k++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for(d=0; d<dh[mi][i]; d++){
         for(i=1;i<=nlstate;i++)            newm=savm;
           for(j=1;j<=nlstate;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
           
     fprintf(ficresvij,"%.0f ",age );            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<=nlstate;j++){            savm=oldm;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            oldm=newm;
       }          } /* end mult */
     fprintf(ficresvij,"\n");        
     free_matrix(gp,0,nhstepm,1,nlstate);          s1=s[mw[mi][i]][i];
     free_matrix(gm,0,nhstepm,1,nlstate);          s2=s[mw[mi+1][i]][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          ipmx +=1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          sw += weight[i];
   } /* End age */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   free_vector(xp,1,npar);        } /* end of wave */
   free_matrix(doldm,1,nlstate,1,npar);      } /* end of individual */
   free_matrix(dnewm,1,nlstate,1,nlstate);    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 /************ Variance of prevlim ******************/    return -l;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  }
 {  
   /* Variance of prevalence limit */  /*************** log-likelihood *************/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  double funcone( double *x)
   double **newm;  {
   double **dnewm,**doldm;    /* Same as likeli but slower because of a lot of printf and if */
   int i, j, nhstepm, hstepm;    int i, ii, j, k, mi, d, kk;
   int k, cptcode;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double *xp;    double **out;
   double *gp, *gm;    double lli; /* Individual log likelihood */
   double **gradg, **trgradg;    double llt;
   double age,agelim;    int s1, s2;
   int theta;    double bbh, survp;
        /*extern weight */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    /* We are differentiating ll according to initial status */
   fprintf(ficresvpl,"# Age");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for(i=1; i<=nlstate;i++)    /*for(i=1;i<imx;i++) 
       fprintf(ficresvpl," %1d-%1d",i,i);      printf(" %d\n",s[4][i]);
   fprintf(ficresvpl,"\n");    */
     cov[1]=1.;
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   doldm=matrix(1,nlstate,1,nlstate);  
      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hstepm=1*YEARM; /* Every year of age */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for(mi=1; mi<= wav[i]-1; mi++){
   agelim = AGESUP;        for (ii=1;ii<=nlstate+ndeath;ii++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for (j=1;j<=nlstate+ndeath;j++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (stepm >= YEARM) hstepm=1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     gradg=matrix(1,npar,1,nlstate);        for(d=0; d<dh[mi][i]; d++){
     gp=vector(1,nlstate);          newm=savm;
     gm=vector(1,nlstate);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
     for(theta=1; theta <=npar; theta++){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          savm=oldm;
       for(i=1;i<=nlstate;i++)          oldm=newm;
         gp[i] = prlim[i][i];        } /* end mult */
            
       for(i=1; i<=npar; i++) /* Computes gradient */        s1=s[mw[mi][i]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        s2=s[mw[mi+1][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1;i<=nlstate;i++)        /* bias is positive if real duration
         gm[i] = prlim[i][i];         * is higher than the multiple of stepm and negative otherwise.
          */
       for(i=1;i<=nlstate;i++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          lli=log(out[s1][s2] - savm[s1][s2]);
     } /* End theta */        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
     trgradg =matrix(1,nlstate,1,npar);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
     for(j=1; j<=nlstate;j++)        }else if (mle==1){
       for(theta=1; theta <=npar; theta++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         trgradg[j][theta]=gradg[theta][j];        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(i=1;i<=nlstate;i++)        } else if(mle==3){  /* exponential inter-extrapolation */
       varpl[i][(int)age] =0.;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          lli=log(out[s1][s2]); /* Original formula */
     for(i=1;i<=nlstate;i++)        } else{  /* mle=0 back to 1 */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*lli=log(out[s1][s2]); */ /* Original formula */
     fprintf(ficresvpl,"%.0f ",age );        } /* End of if */
     for(i=1; i<=nlstate;i++)        ipmx +=1;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        sw += weight[i];
     fprintf(ficresvpl,"\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_vector(gp,1,nlstate);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     free_vector(gm,1,nlstate);        if(globpr){
     free_matrix(gradg,1,npar,1,nlstate);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     free_matrix(trgradg,1,nlstate,1,npar);   %11.6f %11.6f %11.6f ", \
   } /* End age */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   free_vector(xp,1,npar);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   free_matrix(doldm,1,nlstate,1,npar);            llt +=ll[k]*gipmx/gsw;
   free_matrix(dnewm,1,nlstate,1,nlstate);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
 }          fprintf(ficresilk," %10.6f\n", -llt);
         }
 /************ Variance of one-step probabilities  ******************/      } /* end of wave */
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    } /* end of individual */
 {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int i, j;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int k=0, cptcode;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double **dnewm,**doldm;    if(globpr==0){ /* First time we count the contributions and weights */
   double *xp;      gipmx=ipmx;
   double *gp, *gm;      gsw=sw;
   double **gradg, **trgradg;    }
   double age,agelim, cov[NCOVMAX];    return -l;
   int theta;  }
   char fileresprob[FILENAMELENGTH];  
   
   strcpy(fileresprob,"prob");  /*************** function likelione ***********/
   strcat(fileresprob,fileres);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  {
     printf("Problem with resultfile: %s\n", fileresprob);    /* This routine should help understanding what is done with 
   }       the selection of individuals/waves and
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);       to check the exact contribution to the likelihood.
         Plotting could be done.
      */
   xp=vector(1,npar);    int k;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    if(*globpri !=0){ /* Just counts and sums, no printings */
        strcpy(fileresilk,"ilk"); 
   cov[1]=1;      strcat(fileresilk,fileres);
   for (age=bage; age<=fage; age ++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     cov[2]=age;        printf("Problem with resultfile: %s\n", fileresilk);
     gradg=matrix(1,npar,1,9);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     trgradg=matrix(1,9,1,npar);      }
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
          /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for(theta=1; theta <=npar; theta++){      for(k=1; k<=nlstate; k++) 
       for(i=1; i<=npar; i++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
          }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  
        *fretone=(*funcone)(p);
       k=0;    if(*globpri !=0){
       for(i=1; i<= (nlstate+ndeath); i++){      fclose(ficresilk);
         for(j=1; j<=(nlstate+ndeath);j++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
            k=k+1;      fflush(fichtm); 
           gp[k]=pmmij[i][j];    } 
         }    return;
       }  }
   
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /*********** Maximum Likelihood Estimation ***************/
      
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  {
       k=0;    int i,j, iter;
       for(i=1; i<=(nlstate+ndeath); i++){    double **xi;
         for(j=1; j<=(nlstate+ndeath);j++){    double fret;
           k=k+1;    double fretone; /* Only one call to likelihood */
           gm[k]=pmmij[i][j];    /*  char filerespow[FILENAMELENGTH];*/
         }    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
            for (j=1;j<=npar;j++)
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     }    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(theta=1; theta <=npar; theta++)      printf("Problem with resultfile: %s\n", filerespow);
       trgradg[j][theta]=gradg[theta][j];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
      pmij(pmmij,cov,ncovmodel,x,nlstate);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
      k=0;  
      for(i=1; i<=(nlstate+ndeath); i++){    powell(p,xi,npar,ftol,&iter,&fret,func);
        for(j=1; j<=(nlstate+ndeath);j++){  
          k=k+1;    free_matrix(xi,1,npar,1,npar);
          gm[k]=pmmij[i][j];    fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
          fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  }
          
   /**** Computes Hessian and covariance matrix ***/
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      }*/  {
     double  **a,**y,*x,pd;
   fprintf(ficresprob,"\n%d ",(int)age);    double **hess;
     int i, j,jk;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    int *indx;
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    void ludcmp(double **a, int npar, int *indx, double *d) ;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    double gompertz(double p[]);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    hess=matrix(1,npar,1,npar);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
 }    printf("\nCalculation of the hessian matrix. Wait...\n");
  free_vector(xp,1,npar);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 fclose(ficresprob);    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
 }      fprintf(ficlog,"%d",i);fflush(ficlog);
      
 /******************* Printing html file ***********/       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      
  int lastpass, int stepm, int weightopt, char model[],\      /*  printf(" %f ",p[i]);
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    }
  char version[], int popforecast, int estepm ){    
   int jj1, k1, i1, cpt;    for (i=1;i<=npar;i++) {
   FILE *fichtm;      for (j=1;j<=npar;j++)  {
   /*char optionfilehtm[FILENAMELENGTH];*/        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   strcpy(optionfilehtm,optionfile);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   strcat(optionfilehtm,".htm");          hess[i][j]=hessij(p,delti,i,j,func,npar);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          
     printf("Problem with %s \n",optionfilehtm), exit(0);          hess[j][i]=hess[i][j];    
   }          /*printf(" %lf ",hess[i][j]);*/
         }
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    }
 \n    printf("\n");
 Total number of observations=%d <br>\n    fprintf(ficlog,"\n");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n  
 <hr  size=\"2\" color=\"#EC5E5E\">    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
  <ul><li>Outputs files<br>\n    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    a=matrix(1,npar,1,npar);
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    y=matrix(1,npar,1,npar);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    x=vector(1,npar);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    indx=ivector(1,npar);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,estepm);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
  fprintf(fichtm,"\n    ludcmp(a,npar,indx,&pd);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    for (j=1;j<=npar;j++) {
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      for (i=1;i<=npar;i++) x[i]=0;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      x[j]=1;
       lubksb(a,npar,indx,x);
  if(popforecast==1) fprintf(fichtm,"\n      for (i=1;i<=npar;i++){ 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        matcov[i][j]=x[i];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      }
         <br>",fileres,fileres,fileres,fileres);    }
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    printf("\n#Hessian matrix#\n");
 fprintf(fichtm," <li>Graphs</li><p>");    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
  m=cptcoveff;      for (j=1;j<=npar;j++) { 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
  jj1=0;      }
  for(k1=1; k1<=m;k1++){      printf("\n");
    for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(ficlog,"\n");
        jj1++;    }
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* Recompute Inverse */
          for (cpt=1; cpt<=cptcoveff;cpt++)    for (i=1;i<=npar;i++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    ludcmp(a,npar,indx,&pd);
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    /*  printf("\n#Hessian matrix recomputed#\n");
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
        for(cpt=1; cpt<nlstate;cpt++){    for (j=1;j<=npar;j++) {
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      for (i=1;i<=npar;i++) x[i]=0;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      x[j]=1;
        }      lubksb(a,npar,indx,x);
     for(cpt=1; cpt<=nlstate;cpt++) {      for (i=1;i<=npar;i++){ 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        y[i][j]=x[i];
 interval) in state (%d): v%s%d%d.gif <br>        printf("%.3e ",y[i][j]);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          fprintf(ficlog,"%.3e ",y[i][j]);
      }      }
      for(cpt=1; cpt<=nlstate;cpt++) {      printf("\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      fprintf(ficlog,"\n");
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    }
      }    */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.gif<br>    free_matrix(a,1,npar,1,npar);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    free_matrix(y,1,npar,1,npar);
 fprintf(fichtm,"\n</body>");    free_vector(x,1,npar);
    }    free_ivector(indx,1,npar);
    }    free_matrix(hess,1,npar,1,npar);
 fclose(fichtm);  
 }  
   }
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  {
     int i;
   strcpy(optionfilegnuplot,optionfilefiname);    int l=1, lmax=20;
   strcat(optionfilegnuplot,".gp.txt");    double k1,k2;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    double p2[MAXPARM+1]; /* identical to x */
     printf("Problem with file %s",optionfilegnuplot);    double res;
   }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
 #ifdef windows    int k=0,kmax=10;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double l1;
 #endif  
 m=pow(2,cptcoveff);    fx=func(x);
      for (i=1;i<=npar;i++) p2[i]=x[i];
  /* 1eme*/    for(l=0 ; l <=lmax; l++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {      l1=pow(10,l);
    for (k1=1; k1<= m ; k1 ++) {      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
 #ifdef windows        delt = delta*(l1*k);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        p2[theta]=x[theta] +delt;
 #endif        k1=func(p2)-fx;
 #ifdef unix        p2[theta]=x[theta]-delt;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        k2=func(p2)-fx;
 #endif        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 for (i=1; i<= nlstate ; i ++) {        
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  #ifdef DEBUGHESS
   else fprintf(ficgp," \%%*lf (\%%*lf)");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  #endif
     for (i=1; i<= nlstate ; i ++) {        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          k=kmax;
 }        }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
      for (i=1; i<= nlstate ; i ++) {          k=kmax; l=lmax*10.;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 }            delts=delt;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        }
 #ifdef unix      }
 fprintf(ficgp,"\nset ter gif small size 400,300");    }
 #endif    delti[theta]=delts;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    return res; 
    }    
   }  }
   /*2 eme*/  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   for (k1=1; k1<= m ; k1 ++) {  {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    int i;
        int l=1, l1, lmax=20;
     for (i=1; i<= nlstate+1 ; i ++) {    double k1,k2,k3,k4,res,fx;
       k=2*i;    double p2[MAXPARM+1];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    int k;
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fx=func(x);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for (k=1; k<=2; k++) {
 }        for (i=1;i<=npar;i++) p2[i]=x[i];
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      p2[thetai]=x[thetai]+delti[thetai]/k;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      k1=func(p2)-fx;
       for (j=1; j<= nlstate+1 ; j ++) {    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      p2[thetai]=x[thetai]+delti[thetai]/k;
         else fprintf(ficgp," \%%*lf (\%%*lf)");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 }        k2=func(p2)-fx;
       fprintf(ficgp,"\" t\"\" w l 0,");    
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      p2[thetai]=x[thetai]-delti[thetai]/k;
       for (j=1; j<= nlstate+1 ; j ++) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      k3=func(p2)-fx;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }        p2[thetai]=x[thetai]-delti[thetai]/k;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       else fprintf(ficgp,"\" t\"\" w l 0,");      k4=func(p2)-fx;
     }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  #ifdef DEBUG
   }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /*3eme*/  #endif
     }
   for (k1=1; k1<= m ; k1 ++) {    return res;
     for (cpt=1; cpt<= nlstate ; cpt ++) {  }
       k=2+nlstate*(cpt-1);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  /************** Inverse of matrix **************/
       for (i=1; i< nlstate ; i ++) {  void ludcmp(double **a, int n, int *indx, double *d) 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  { 
       }    int i,imax,j,k; 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double big,dum,sum,temp; 
     }    double *vv; 
     }   
      vv=vector(1,n); 
   /* CV preval stat */    *d=1.0; 
     for (k1=1; k1<= m ; k1 ++) {    for (i=1;i<=n;i++) { 
     for (cpt=1; cpt<nlstate ; cpt ++) {      big=0.0; 
       k=3;      for (j=1;j<=n;j++) 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for (i=1; i< nlstate ; i ++)      vv[i]=1.0/big; 
         fprintf(ficgp,"+$%d",k+i+1);    } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    for (j=1;j<=n;j++) { 
            for (i=1;i<j;i++) { 
       l=3+(nlstate+ndeath)*cpt;        sum=a[i][j]; 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       for (i=1; i< nlstate ; i ++) {        a[i][j]=sum; 
         l=3+(nlstate+ndeath)*cpt;      } 
         fprintf(ficgp,"+$%d",l+i+1);      big=0.0; 
       }      for (i=j;i<=n;i++) { 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          sum=a[i][j]; 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for (k=1;k<j;k++) 
     }          sum -= a[i][k]*a[k][j]; 
   }          a[i][j]=sum; 
          if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /* proba elementaires */          big=dum; 
    for(i=1,jk=1; i <=nlstate; i++){          imax=i; 
     for(k=1; k <=(nlstate+ndeath); k++){        } 
       if (k != i) {      } 
         for(j=1; j <=ncovmodel; j++){      if (j != imax) { 
                for (k=1;k<=n;k++) { 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          dum=a[imax][k]; 
           jk++;          a[imax][k]=a[j][k]; 
           fprintf(ficgp,"\n");          a[j][k]=dum; 
         }        } 
       }        *d = -(*d); 
     }        vv[imax]=vv[j]; 
     }      } 
       indx[j]=imax; 
     for(jk=1; jk <=m; jk++) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      if (j != n) { 
    i=1;        dum=1.0/(a[j][j]); 
    for(k2=1; k2<=nlstate; k2++) {        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
      k3=i;      } 
      for(k=1; k<=(nlstate+ndeath); k++) {    } 
        if (k != k2){    free_vector(vv,1,n);  /* Doesn't work */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  ;
 ij=1;  } 
         for(j=3; j <=ncovmodel; j++) {  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  void lubksb(double **a, int n, int *indx, double b[]) 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  { 
             ij++;    int i,ii=0,ip,j; 
           }    double sum; 
           else   
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (i=1;i<=n;i++) { 
         }      ip=indx[i]; 
           fprintf(ficgp,")/(1");      sum=b[ip]; 
              b[ip]=b[i]; 
         for(k1=1; k1 <=nlstate; k1++){        if (ii) 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 ij=1;      else if (sum) ii=i; 
           for(j=3; j <=ncovmodel; j++){      b[i]=sum; 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    } 
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (i=n;i>=1;i--) { 
             ij++;      sum=b[i]; 
           }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           else      b[i]=sum/a[i][i]; 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    } 
           }  } 
           fprintf(ficgp,")");  
         }  void pstamp(FILE *fichier)
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  {
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         i=i+ncovmodel;  }
        }  
      }  /************ Frequencies ********************/
    }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  {  /* Some frequencies */
    }    
        int i, m, jk, k1,i1, j1, bool, z1,j;
   fclose(ficgp);    int first;
 }  /* end gnuplot */    double ***freq; /* Frequencies */
     double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
 /*************** Moving average **************/    char fileresp[FILENAMELENGTH];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    
     pp=vector(1,nlstate);
   int i, cpt, cptcod;    prop=matrix(1,nlstate,iagemin,iagemax+3);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    strcpy(fileresp,"p");
       for (i=1; i<=nlstate;i++)    strcat(fileresp,fileres);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
           mobaverage[(int)agedeb][i][cptcod]=0.;      printf("Problem with prevalence resultfile: %s\n", fileresp);
          fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      exit(0);
       for (i=1; i<=nlstate;i++){    }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           for (cpt=0;cpt<=4;cpt++){    j1=0;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    
           }    j=cptcoveff;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         }  
       }    first=1;
     }  
        for(k1=1; k1<=j;k1++){
 }      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 /************** Forecasting ******************/          scanf("%d", i);*/
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        for (i=-5; i<=nlstate+ndeath; i++)  
            for (jk=-5; jk<=nlstate+ndeath; jk++)  
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            for(m=iagemin; m <= iagemax+3; m++)
   int *popage;              freq[i][jk][m]=0;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;      for (i=1; i<=nlstate; i++)  
   double ***p3mat;        for(m=iagemin; m <= iagemax+3; m++)
   char fileresf[FILENAMELENGTH];          prop[i][m]=0;
         
  agelim=AGESUP;        dateintsum=0;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        k2cpt=0;
         for (i=1; i<=imx; i++) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          bool=1;
            if  (cptcovn>0) {
              for (z1=1; z1<=cptcoveff; z1++) 
   strcpy(fileresf,"f");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   strcat(fileresf,fileres);                bool=0;
   if((ficresf=fopen(fileresf,"w"))==NULL) {          }
     printf("Problem with forecast resultfile: %s\n", fileresf);          if (bool==1){
   }            for(m=firstpass; m<=lastpass; m++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   if (mobilav==1) {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if (m<lastpass) {
     movingaverage(agedeb, fage, ageminpar, mobaverage);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
   stepsize=(int) (stepm+YEARM-1)/YEARM;                
   if (stepm<=12) stepsize=1;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                    dateintsum=dateintsum+k2;
   agelim=AGESUP;                  k2cpt++;
                  }
   hstepm=1;                /*}*/
   hstepm=hstepm/stepm;            }
   yp1=modf(dateintmean,&yp);          }
   anprojmean=yp;        }
   yp2=modf((yp1*12),&yp);         
   mprojmean=yp;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   yp1=modf((yp2*30.5),&yp);        pstamp(ficresp);
   jprojmean=yp;        if  (cptcovn>0) {
   if(jprojmean==0) jprojmean=1;          fprintf(ficresp, "\n#********** Variable "); 
   if(mprojmean==0) jprojmean=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        }
          for(i=1; i<=nlstate;i++) 
   for(cptcov=1;cptcov<=i2;cptcov++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficresp, "\n");
       k=k+1;        
       fprintf(ficresf,"\n#******");        for(i=iagemin; i <= iagemax+3; i++){
       for(j=1;j<=cptcoveff;j++) {          if(i==iagemax+3){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficlog,"Total");
       }          }else{
       fprintf(ficresf,"******\n");            if(first==1){
       fprintf(ficresf,"# StartingAge FinalAge");              first=0;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              printf("See log file for details...\n");
                  }
                  fprintf(ficlog,"Age %d", i);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          }
         fprintf(ficresf,"\n");          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(jk=1; jk <=nlstate ; jk++){
           nhstepm = nhstepm/hstepm;            for(m=-1, pos=0; m <=0 ; m++)
                        pos += freq[jk][m][i];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(pp[jk]>=1.e-10){
           oldm=oldms;savm=savms;              if(first==1){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                      }
           for (h=0; h<=nhstepm; h++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             if (h==(int) (calagedate+YEARM*cpt)) {            }else{
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              if(first==1)
             }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             for(j=1; j<=nlstate+ndeath;j++) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                        }
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(jk=1; jk <=nlstate ; jk++){
                 else {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              pp[jk] += freq[jk][m][i];
                 }          }       
                          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               }            pos += pp[jk];
               if (h==(int)(calagedate+12*cpt)){            posprop += prop[jk][i];
                 fprintf(ficresf," %.3f", kk1);          }
                                  for(jk=1; jk <=nlstate ; jk++){
               }            if(pos>=1.e-5){
             }              if(first==1)
           }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }            }else{
       }              if(first==1)
     }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                    }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if( i <= iagemax){
               if(pos>=1.e-5){
   fclose(ficresf);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 }                /*probs[i][jk][j1]= pp[jk]/pos;*/
 /************** Forecasting ******************/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              }
                else
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   int *popage;            }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          }
   double *popeffectif,*popcount;          
   double ***p3mat,***tabpop,***tabpopprev;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   char filerespop[FILENAMELENGTH];            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if(first==1)
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   agelim=AGESUP;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              }
            if(i <= iagemax)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            fprintf(ficresp,"\n");
            if(first==1)
              printf("Others in log...\n");
   strcpy(filerespop,"pop");          fprintf(ficlog,"\n");
   strcat(filerespop,fileres);        }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      }
     printf("Problem with forecast resultfile: %s\n", filerespop);    }
   }    dateintmean=dateintsum/k2cpt; 
   printf("Computing forecasting: result on file '%s' \n", filerespop);   
     fclose(ficresp);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   if (mobilav==1) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* End of Freq */
     movingaverage(agedeb, fage, ageminpar, mobaverage);  }
   }  
   /************ Prevalence ********************/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if (stepm<=12) stepsize=1;  {  
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   agelim=AGESUP;       in each health status at the date of interview (if between dateprev1 and dateprev2).
         We still use firstpass and lastpass as another selection.
   hstepm=1;    */
   hstepm=hstepm/stepm;   
      int i, m, jk, k1, i1, j1, bool, z1,j;
   if (popforecast==1) {    double ***freq; /* Frequencies */
     if((ficpop=fopen(popfile,"r"))==NULL) {    double *pp, **prop;
       printf("Problem with population file : %s\n",popfile);exit(0);    double pos,posprop; 
     }    double  y2; /* in fractional years */
     popage=ivector(0,AGESUP);    int iagemin, iagemax;
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);    iagemin= (int) agemin;
        iagemax= (int) agemax;
     i=1;      /*pp=vector(1,nlstate);*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     imx=i;    j1=0;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    
   }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for(cptcov=1;cptcov<=i2;cptcov++){    
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(k1=1; k1<=j;k1++){
       k=k+1;      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficrespop,"\n#******");        j1++;
       for(j=1;j<=cptcoveff;j++) {        
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (i=1; i<=nlstate; i++)  
       }          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficrespop,"******\n");            prop[i][m]=0.0;
       fprintf(ficrespop,"# Age");       
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        for (i=1; i<=imx; i++) { /* Each individual */
       if (popforecast==1)  fprintf(ficrespop," [Population]");          bool=1;
                if  (cptcovn>0) {
       for (cpt=0; cpt<=0;cpt++) {            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                        bool=0;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          } 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          if (bool==1) { 
           nhstepm = nhstepm/hstepm;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                        y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           oldm=oldms;savm=savms;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
                        if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           for (h=0; h<=nhstepm; h++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
             if (h==(int) (calagedate+YEARM*cpt)) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             }                  prop[s[m][i]][iagemax+3] += weight[i]; 
             for(j=1; j<=nlstate+ndeath;j++) {                } 
               kk1=0.;kk2=0;              }
               for(i=1; i<=nlstate;i++) {                          } /* end selection of waves */
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        }
                 else {        for(i=iagemin; i <= iagemax+3; i++){  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          
                 }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
               }            posprop += prop[jk][i]; 
               if (h==(int)(calagedate+12*cpt)){          } 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);          for(jk=1; jk <=nlstate ; jk++){     
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            if( i <=  iagemax){ 
               }              if(posprop>=1.e-5){ 
             }                probs[i][jk][j1]= prop[jk][i]/posprop;
             for(i=1; i<=nlstate;i++){              } else
               kk1=0.;                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
                 for(j=1; j<=nlstate;j++){            } 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          }/* end jk */ 
                 }        }/* end i */ 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      } /* end i1 */
             }    } /* end k1 */
     
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    /*free_vector(pp,1,nlstate);*/
           }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }  /* End of prevalence */
         }  
       }  /************* Waves Concatenation ***************/
    
   /******/  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         Death is a valid wave (if date is known).
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           nhstepm = nhstepm/hstepm;       and mw[mi+1][i]. dh depends on stepm.
                 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    int i, mi, m;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           for (h=0; h<=nhstepm; h++){       double sum=0., jmean=0.;*/
             if (h==(int) (calagedate+YEARM*cpt)) {    int first;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    int j, k=0,jk, ju, jl;
             }    double sum=0.;
             for(j=1; j<=nlstate+ndeath;j++) {    first=0;
               kk1=0.;kk2=0;    jmin=1e+5;
               for(i=1; i<=nlstate;i++) {                  jmax=-1;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        jmean=0.;
               }    for(i=1; i<=imx; i++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      mi=0;
             }      m=firstpass;
           }      while(s[m][i] <= nlstate){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         }          mw[++mi][i]=m;
       }        if(m >=lastpass)
    }          break;
   }        else
            m++;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }/* end while */
       if (s[m][i] > nlstate){
   if (popforecast==1) {        mi++;     /* Death is another wave */
     free_ivector(popage,0,AGESUP);        /* if(mi==0)  never been interviewed correctly before death */
     free_vector(popeffectif,0,AGESUP);           /* Only death is a correct wave */
     free_vector(popcount,0,AGESUP);        mw[mi][i]=m;
   }      }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      wav[i]=mi;
   fclose(ficrespop);      if(mi==0){
 }        nbwarn++;
         if(first==0){
 /***********************************************/          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 /**************** Main Program *****************/          first=1;
 /***********************************************/        }
         if(first==1){
 int main(int argc, char *argv[])          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 {        }
       } /* end mi==0 */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    } /* End individuals */
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
   double fret;        if (stepm <=0)
   double **xi,tmp,delta;          dh[mi][i]=1;
         else{
   double dum; /* Dummy variable */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   double ***p3mat;            if (agedc[i] < 2*AGESUP) {
   int *indx;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   char line[MAXLINE], linepar[MAXLINE];              if(j==0) j=1;  /* Survives at least one month after exam */
   char title[MAXLINE];              else if(j<0){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];                nberr++;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  j=1; /* Temporary Dangerous patch */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char filerest[FILENAMELENGTH];                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   char fileregp[FILENAMELENGTH];              }
   char popfile[FILENAMELENGTH];              k=k+1;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];              if (j >= jmax){
   int firstobs=1, lastobs=10;                jmax=j;
   int sdeb, sfin; /* Status at beginning and end */                ijmax=i;
   int c,  h , cpt,l;              }
   int ju,jl, mi;              if (j <= jmin){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                jmin=j;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                ijmin=i;
   int mobilav=0,popforecast=0;              }
   int hstepm, nhstepm;              sum=sum+j;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   double bage, fage, age, agelim, agebase;            }
   double ftolpl=FTOL;          }
   double **prlim;          else{
   double *severity;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   double ***param; /* Matrix of parameters */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   double  *p;  
   double **matcov; /* Matrix of covariance */            k=k+1;
   double ***delti3; /* Scale */            if (j >= jmax) {
   double *delti; /* Scale */              jmax=j;
   double ***eij, ***vareij;              ijmax=i;
   double **varpl; /* Variances of prevalence limits by age */            }
   double *epj, vepp;            else if (j <= jmin){
   double kk1, kk2;              jmin=j;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;              ijmin=i;
              }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   char *alph[]={"a","a","b","c","d","e"}, str[4];            if(j<0){
               nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char z[1]="c", occ;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #include <sys/time.h>            }
 #include <time.h>            sum=sum+j;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          }
            jk= j/stepm;
   /* long total_usecs;          jl= j -jk*stepm;
   struct timeval start_time, end_time;          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            if(jl==0){
   getcwd(pathcd, size);              dh[mi][i]=jk;
               bh[mi][i]=0;
   printf("\n%s",version);            }else{ /* We want a negative bias in order to only have interpolation ie
   if(argc <=1){                    * to avoid the price of an extra matrix product in likelihood */
     printf("\nEnter the parameter file name: ");              dh[mi][i]=jk+1;
     scanf("%s",pathtot);              bh[mi][i]=ju;
   }            }
   else{          }else{
     strcpy(pathtot,argv[1]);            if(jl <= -ju){
   }              dh[mi][i]=jk;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/              bh[mi][i]=jl;       /* bias is positive if real duration
   /*cygwin_split_path(pathtot,path,optionfile);                                   * is higher than the multiple of stepm and negative otherwise.
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                                   */
   /* cutv(path,optionfile,pathtot,'\\');*/            }
             else{
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              dh[mi][i]=jk+1;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);              bh[mi][i]=ju;
   chdir(path);            }
   replace(pathc,path);            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
 /*-------- arguments in the command line --------*/              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   strcpy(fileres,"r");            }
   strcat(fileres, optionfilefiname);          } /* end if mle */
   strcat(fileres,".txt");    /* Other files have txt extension */        }
       } /* end wave */
   /*---------arguments file --------*/    }
     jmean=sum/k;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     goto end;   }
   }  
   /*********** Tricode ****************************/
   strcpy(filereso,"o");  void tricode(int *Tvar, int **nbcode, int imx)
   strcat(filereso,fileres);  {
   if((ficparo=fopen(filereso,"w"))==NULL) {    /* Uses cptcovn+2*cptcovprod as the number of covariates */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   }  
     int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   /* Reads comments: lines beginning with '#' */    int modmaxcovj=0; /* Modality max of covariates j */
   while((c=getc(ficpar))=='#' && c!= EOF){    cptcoveff=0; 
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     puts(line);    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
     fputs(line,ficparo);  
   }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
   ungetc(c,ficpar);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                                        modality of the nth covariate of individual i. */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 while((c=getc(ficpar))=='#' && c!= EOF){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     ungetc(c,ficpar);        if (ij > modmaxcovj) modmaxcovj=ij; 
     fgets(line, MAXLINE, ficpar);        /* getting the maximum value of the modality of the covariate
     puts(line);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     fputs(line,ficparo);           female is 1, then modmaxcovj=1.*/
   }      }
   ungetc(c,ficpar);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
        for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
            if( Ndum[i] != 0 )
   covar=matrix(0,NCOVMAX,1,n);          ncodemax[j]++; 
   cptcovn=0;        /* Number of modalities of the j th covariate. In fact
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;           ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons */
   ncovmodel=2+cptcovn;      } /* Ndum[-1] number of undefined modalities */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
        /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   /* Read guess parameters */      ij=1; 
   /* Reads comments: lines beginning with '#' */      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
   while((c=getc(ficpar))=='#' && c!= EOF){        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
     ungetc(c,ficpar);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
     fgets(line, MAXLINE, ficpar);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
     puts(line);                                       k is a modality. If we have model=V1+V1*sex 
     fputs(line,ficparo);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   }            ij++;
   ungetc(c,ficpar);          }
            if (ij > ncodemax[j]) break; 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }  /* end of loop on */
     for(i=1; i <=nlstate; i++)      } /* end of loop on modality */ 
     for(j=1; j <=nlstate+ndeath-1; j++){    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       fprintf(ficparo,"%1d%1d",i1,j1);    for (k=0; k< maxncov; k++) Ndum[k]=0;
       printf("%1d%1d",i,j);    
       for(k=1; k<=ncovmodel;k++){    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
         fscanf(ficpar," %lf",&param[i][j][k]);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         printf(" %lf",param[i][j][k]);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
         fprintf(ficparo," %lf",param[i][j][k]);     Ndum[ij]++;
       }   }
       fscanf(ficpar,"\n");  
       printf("\n");   ij=1;
       fprintf(ficparo,"\n");   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
     }     if((Ndum[i]!=0) && (i<=ncovcol)){
         Tvaraff[ij]=i; /*For printing */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;       ij++;
      }
   p=param[1][1];   }
     ij--;
   /* Reads comments: lines beginning with '#' */   cptcoveff=ij; /*Number of simple covariates*/
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /*********** Health Expectancies ****************/
     puts(line);  
     fputs(line,ficparo);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   }  
   ungetc(c,ficpar);  {
     /* Health expectancies, no variances */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    int nhstepma, nstepma; /* Decreasing with age */
   for(i=1; i <=nlstate; i++){    double age, agelim, hf;
     for(j=1; j <=nlstate+ndeath-1; j++){    double ***p3mat;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double eip;
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);    pstamp(ficreseij);
       for(k=1; k<=ncovmodel;k++){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficreseij,"# Age");
         printf(" %le",delti3[i][j][k]);    for(i=1; i<=nlstate;i++){
         fprintf(ficparo," %le",delti3[i][j][k]);      for(j=1; j<=nlstate;j++){
       }        fprintf(ficreseij," e%1d%1d ",i,j);
       fscanf(ficpar,"\n");      }
       printf("\n");      fprintf(ficreseij," e%1d. ",i);
       fprintf(ficparo,"\n");    }
     }    fprintf(ficreseij,"\n");
   }  
   delti=delti3[1][1];    
      if(estepm < stepm){
   /* Reads comments: lines beginning with '#' */      printf ("Problem %d lower than %d\n",estepm, stepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else  hstepm=estepm;   
     fgets(line, MAXLINE, ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
     puts(line);     * This is mainly to measure the difference between two models: for example
     fputs(line,ficparo);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
   ungetc(c,ficpar);     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   matcov=matrix(1,npar,1,npar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   for(i=1; i <=npar; i++){     * to compare the new estimate of Life expectancy with the same linear 
     fscanf(ficpar,"%s",&str);     * hypothesis. A more precise result, taking into account a more precise
     printf("%s",str);     * curvature will be obtained if estepm is as small as stepm. */
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    /* For example we decided to compute the life expectancy with the smallest unit */
       fscanf(ficpar," %le",&matcov[i][j]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       printf(" %.5le",matcov[i][j]);       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficparo," %.5le",matcov[i][j]);       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
     fscanf(ficpar,"\n");       and note for a fixed period like estepm months */
     printf("\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fprintf(ficparo,"\n");       survival function given by stepm (the optimization length). Unfortunately it
   }       means that if the survival funtion is printed only each two years of age and if
   for(i=1; i <=npar; i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for(j=i+1;j<=npar;j++)       results. So we changed our mind and took the option of the best precision.
       matcov[i][j]=matcov[j][i];    */
        hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   printf("\n");  
     agelim=AGESUP;
     /* If stepm=6 months */
     /*-------- Rewriting paramater file ----------*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
      strcpy(rfileres,"r");    /* "Rparameterfile */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      
      strcat(rfileres,".");    /* */  /* nhstepm age range expressed in number of stepm */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     if((ficres =fopen(rfileres,"w"))==NULL) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    /* if (stepm >= YEARM) hstepm=1;*/
     }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficres,"#%s\n",version);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      
     /*-------- data file ----------*/    for (age=bage; age<=fage; age ++){ 
     if((fic=fopen(datafile,"r"))==NULL)    {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       printf("Problem with datafile: %s\n", datafile);goto end;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     n= lastobs;  
     severity = vector(1,maxwav);      /* If stepm=6 months */
     outcome=imatrix(1,maxwav+1,1,n);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     num=ivector(1,n);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     moisnais=vector(1,n);      
     annais=vector(1,n);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     moisdc=vector(1,n);      
     andc=vector(1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     agedc=vector(1,n);      
     cod=ivector(1,n);      printf("%d|",(int)age);fflush(stdout);
     weight=vector(1,n);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      
     mint=matrix(1,maxwav,1,n);      /* Computing expectancies */
     anint=matrix(1,maxwav,1,n);      for(i=1; i<=nlstate;i++)
     s=imatrix(1,maxwav+1,1,n);        for(j=1; j<=nlstate;j++)
     adl=imatrix(1,maxwav+1,1,n);              for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     tab=ivector(1,NCOVMAX);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     ncodemax=ivector(1,8);            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {          }
       if ((i >= firstobs) && (i <=lastobs)) {  
              fprintf(ficreseij,"%3.0f",age );
         for (j=maxwav;j>=1;j--){      for(i=1; i<=nlstate;i++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        eip=0;
           strcpy(line,stra);        for(j=1; j<=nlstate;j++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          eip +=eij[i][j][(int)age];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }        }
                fprintf(ficreseij,"%9.4f", eip );
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficreseij,"\n");
       
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\n");
         for (j=ncovcol;j>=1;j--){    
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  }
         }  
         num[i]=atol(stra);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  {
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
         i=i+1;    */
       }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     }    int nhstepma, nstepma; /* Decreasing with age */
     /* printf("ii=%d", ij);    double age, agelim, hf;
        scanf("%d",i);*/    double ***p3matp, ***p3matm, ***varhe;
   imx=i-1; /* Number of individuals */    double **dnewm,**doldm;
     double *xp, *xm;
   /* for (i=1; i<=imx; i++){    double **gp, **gm;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    double ***gradg, ***trgradg;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    int theta;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/    double eip, vip;
    
   /* for (i=1; i<=imx; i++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      if (s[4][i]==9)  s[4][i]=-1;    xp=vector(1,npar);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}    xm=vector(1,npar);
   */    dnewm=matrix(1,nlstate*nlstate,1,npar);
      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   /* Calculation of the number of parameter from char model*/    
   Tvar=ivector(1,15);    pstamp(ficresstdeij);
   Tprod=ivector(1,15);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   Tvaraff=ivector(1,15);    fprintf(ficresstdeij,"# Age");
   Tvard=imatrix(1,15,1,2);    for(i=1; i<=nlstate;i++){
   Tage=ivector(1,15);            for(j=1; j<=nlstate;j++)
            fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   if (strlen(model) >1){      fprintf(ficresstdeij," e%1d. ",i);
     j=0, j1=0, k1=1, k2=1;    }
     j=nbocc(model,'+');    fprintf(ficresstdeij,"\n");
     j1=nbocc(model,'*');  
     cptcovn=j+1;    pstamp(ficrescveij);
     cptcovprod=j1;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
        fprintf(ficrescveij,"# Age");
     strcpy(modelsav,model);    for(i=1; i<=nlstate;i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      for(j=1; j<=nlstate;j++){
       printf("Error. Non available option model=%s ",model);        cptj= (j-1)*nlstate+i;
       goto end;        for(i2=1; i2<=nlstate;i2++)
     }          for(j2=1; j2<=nlstate;j2++){
                cptj2= (j2-1)*nlstate+i2;
     for(i=(j+1); i>=1;i--){            if(cptj2 <= cptj)
       cutv(stra,strb,modelsav,'+');              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      }
       /*scanf("%d",i);*/    fprintf(ficrescveij,"\n");
       if (strchr(strb,'*')) {    
         cutv(strd,strc,strb,'*');    if(estepm < stepm){
         if (strcmp(strc,"age")==0) {      printf ("Problem %d lower than %d\n",estepm, stepm);
           cptcovprod--;    }
           cutv(strb,stre,strd,'V');    else  hstepm=estepm;   
           Tvar[i]=atoi(stre);    /* We compute the life expectancy from trapezoids spaced every estepm months
           cptcovage++;     * This is mainly to measure the difference between two models: for example
             Tage[cptcovage]=i;     * if stepm=24 months pijx are given only every 2 years and by summing them
             /*printf("stre=%s ", stre);*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
         }     * progression in between and thus overestimating or underestimating according
         else if (strcmp(strd,"age")==0) {     * to the curvature of the survival function. If, for the same date, we 
           cptcovprod--;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           cutv(strb,stre,strc,'V');     * to compare the new estimate of Life expectancy with the same linear 
           Tvar[i]=atoi(stre);     * hypothesis. A more precise result, taking into account a more precise
           cptcovage++;     * curvature will be obtained if estepm is as small as stepm. */
           Tage[cptcovage]=i;  
         }    /* For example we decided to compute the life expectancy with the smallest unit */
         else {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           cutv(strb,stre,strc,'V');       nhstepm is the number of hstepm from age to agelim 
           Tvar[i]=ncovcol+k1;       nstepm is the number of stepm from age to agelin. 
           cutv(strb,strc,strd,'V');       Look at hpijx to understand the reason of that which relies in memory size
           Tprod[k1]=i;       and note for a fixed period like estepm months */
           Tvard[k1][1]=atoi(strc);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           Tvard[k1][2]=atoi(stre);       survival function given by stepm (the optimization length). Unfortunately it
           Tvar[cptcovn+k2]=Tvard[k1][1];       means that if the survival funtion is printed only each two years of age and if
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           for (k=1; k<=lastobs;k++)       results. So we changed our mind and took the option of the best precision.
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    */
           k1++;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           k2=k2+2;  
         }    /* If stepm=6 months */
       }    /* nhstepm age range expressed in number of stepm */
       else {    agelim=AGESUP;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
        /*  scanf("%d",i);*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       cutv(strd,strc,strb,'V');    /* if (stepm >= YEARM) hstepm=1;*/
       Tvar[i]=atoi(strc);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }    
       strcpy(modelsav,stra);      p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         scanf("%d",i);*/    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
 }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);    for (age=bage; age<=fage; age ++){ 
   scanf("%d ",i);*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     fclose(fic);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
     /*  if(mle==1){*/      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;      /* If stepm=6 months */
     }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     /*-calculation of age at interview from date of interview and age at death -*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     agev=matrix(1,maxwav,1,imx);      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {      /* Computing  Variances of health expectancies */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          anint[m][i]=9999;         decrease memory allocation */
          s[m][i]=-1;      for(theta=1; theta <=npar; theta++){
        }        for(i=1; i<=npar; i++){ 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     }        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     for (i=1; i<=imx; i++)  {        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    
       for(m=1; (m<= maxwav); m++){        for(j=1; j<= nlstate; j++){
         if(s[m][i] >0){          for(i=1; i<=nlstate; i++){
           if (s[m][i] >= nlstate+1) {            for(h=0; h<=nhstepm-1; h++){
             if(agedc[i]>0)              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               if(moisdc[i]!=99 && andc[i]!=9999)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                 agev[m][i]=agedc[i];            }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          }
            else {        }
               if (andc[i]!=9999){       
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        for(ij=1; ij<= nlstate*nlstate; ij++)
               agev[m][i]=-1;          for(h=0; h<=nhstepm-1; h++){
               }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
             }          }
           }      }/* End theta */
           else if(s[m][i] !=9){ /* Should no more exist */      
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      
             if(mint[m][i]==99 || anint[m][i]==9999)      for(h=0; h<=nhstepm-1; h++)
               agev[m][i]=1;        for(j=1; j<=nlstate*nlstate;j++)
             else if(agev[m][i] <agemin){          for(theta=1; theta <=npar; theta++)
               agemin=agev[m][i];            trgradg[h][j][theta]=gradg[h][theta][j];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      
             }  
             else if(agev[m][i] >agemax){       for(ij=1;ij<=nlstate*nlstate;ij++)
               agemax=agev[m][i];        for(ji=1;ji<=nlstate*nlstate;ji++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          varhe[ij][ji][(int)age] =0.;
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/       printf("%d|",(int)age);fflush(stdout);
             /*   agev[m][i] = age[i]+2*m;*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           }       for(h=0;h<=nhstepm-1;h++){
           else { /* =9 */        for(k=0;k<=nhstepm-1;k++){
             agev[m][i]=1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             s[m][i]=-1;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           }          for(ij=1;ij<=nlstate*nlstate;ij++)
         }            for(ji=1;ji<=nlstate*nlstate;ji++)
         else /*= 0 Unknown */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           agev[m][i]=1;        }
       }      }
      
     }      /* Computing expectancies */
     for (i=1; i<=imx; i++)  {      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(m=1; (m<= maxwav); m++){      for(i=1; i<=nlstate;i++)
         if (s[m][i] > (nlstate+ndeath)) {        for(j=1; j<=nlstate;j++)
           printf("Error: Wrong value in nlstate or ndeath\n");            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           goto end;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         }            
       }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
           }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
       fprintf(ficresstdeij,"%3.0f",age );
     free_vector(severity,1,maxwav);      for(i=1; i<=nlstate;i++){
     free_imatrix(outcome,1,maxwav+1,1,n);        eip=0.;
     free_vector(moisnais,1,n);        vip=0.;
     free_vector(annais,1,n);        for(j=1; j<=nlstate;j++){
     /* free_matrix(mint,1,maxwav,1,n);          eip += eij[i][j][(int)age];
        free_matrix(anint,1,maxwav,1,n);*/          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     free_vector(moisdc,1,n);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     free_vector(andc,1,n);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
            fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     wav=ivector(1,imx);      }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      fprintf(ficresstdeij,"\n");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
          fprintf(ficrescveij,"%3.0f",age );
     /* Concatenates waves */      for(i=1; i<=nlstate;i++)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
       Tcode=ivector(1,100);            for(j2=1; j2<=nlstate;j2++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);              cptj2= (j2-1)*nlstate+i2;
       ncodemax[1]=1;              if(cptj2 <= cptj)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                  }
    codtab=imatrix(1,100,1,10);        }
    h=0;      fprintf(ficrescveij,"\n");
    m=pow(2,cptcoveff);     
      }
    for(k=1;k<=cptcoveff; k++){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      for(i=1; i <=(m/pow(2,k));i++){    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        for(j=1; j <= ncodemax[k]; j++){    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
            h++;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    printf("\n");
          }    fprintf(ficlog,"\n");
        }  
      }    free_vector(xm,1,npar);
    }    free_vector(xp,1,npar);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       codtab[1][2]=1;codtab[2][2]=2; */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
    /* for(i=1; i <=m ;i++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       for(k=1; k <=cptcovn; k++){  }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }  /************ Variance ******************/
       printf("\n");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       }  {
       scanf("%d",i);*/    /* Variance of health expectancies */
        /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    /* Calculates basic frequencies. Computes observed prevalence at single age    /* double **newm;*/
        and prints on file fileres'p'. */    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
        int i, j, nhstepm, hstepm, h, nstepm ;
        int k, cptcode;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double *xp;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **gp, **gm;  /* for var eij */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***gradg, ***trgradg; /*for var eij */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **gradgp, **trgradgp; /* for var p point j */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double *gpp, *gmp; /* for var p point j */
          double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     /* For Powell, parameters are in a vector p[] starting at p[1]    double ***p3mat;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double age,agelim, hf;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double ***mobaverage;
     int theta;
     if(mle==1){    char digit[4];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    char digitp[25];
     }  
        char fileresprobmorprev[FILENAMELENGTH];
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    if(popbased==1){
        if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
    jk=1;      else strcpy(digitp,"-populbased-nomobil-");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    else 
    for(i=1,jk=1; i <=nlstate; i++){      strcpy(digitp,"-stablbased-");
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)    if (mobilav!=0) {
          {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            printf("%d%d ",i,k);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
            fprintf(ficres,"%1d%1d ",i,k);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            for(j=1; j <=ncovmodel; j++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
              printf("%f ",p[jk]);      }
              fprintf(ficres,"%f ",p[jk]);    }
              jk++;  
            }    strcpy(fileresprobmorprev,"prmorprev"); 
            printf("\n");    sprintf(digit,"%-d",ij);
            fprintf(ficres,"\n");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
          }    strcat(fileresprobmorprev,digit); /* Tvar to be done */
      }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
    }    strcat(fileresprobmorprev,fileres);
  if(mle==1){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     /* Computing hessian and covariance matrix */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     ftolhess=ftol; /* Usually correct */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     hesscov(matcov, p, npar, delti, ftolhess, func);    }
  }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   
     printf("# Scales (for hessian or gradient estimation)\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      for(i=1,jk=1; i <=nlstate; i++){    pstamp(ficresprobmorprev);
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         if (j!=i) {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           fprintf(ficres,"%1d%1d",i,j);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           printf("%1d%1d",i,j);      fprintf(ficresprobmorprev," p.%-d SE",j);
           for(k=1; k<=ncovmodel;k++){      for(i=1; i<=nlstate;i++)
             printf(" %.5e",delti[jk]);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             fprintf(ficres," %.5e",delti[jk]);    }  
             jk++;    fprintf(ficresprobmorprev,"\n");
           }    fprintf(ficgp,"\n# Routine varevsij");
           printf("\n");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           fprintf(ficres,"\n");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       }  /*   } */
      }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        pstamp(ficresvij);
     k=1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if(popbased==1)
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     for(i=1;i<=npar;i++){    else
       /*  if (k>nlstate) k=1;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       i1=(i-1)/(ncovmodel*nlstate)+1;    fprintf(ficresvij,"# Age");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    for(i=1; i<=nlstate;i++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/      for(j=1; j<=nlstate;j++)
       fprintf(ficres,"%3d",i);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       printf("%3d",i);    fprintf(ficresvij,"\n");
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);    xp=vector(1,npar);
         printf(" %.5e",matcov[i][j]);    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficres,"\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       printf("\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       k++;  
     }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        gpp=vector(nlstate+1,nlstate+ndeath);
     while((c=getc(ficpar))=='#' && c!= EOF){    gmp=vector(nlstate+1,nlstate+ndeath);
       ungetc(c,ficpar);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fgets(line, MAXLINE, ficpar);    
       puts(line);    if(estepm < stepm){
       fputs(line,ficparo);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
     ungetc(c,ficpar);    else  hstepm=estepm;   
     estepm=0;    /* For example we decided to compute the life expectancy with the smallest unit */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     if (estepm==0 || estepm < stepm) estepm=stepm;       nhstepm is the number of hstepm from age to agelim 
     if (fage <= 2) {       nstepm is the number of stepm from age to agelin. 
       bage = ageminpar;       Look at function hpijx to understand why (it is linked to memory size questions) */
       fage = agemaxpar;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
           means that if the survival funtion is printed every two years of age and if
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       results. So we changed our mind and took the option of the best precision.
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     while((c=getc(ficpar))=='#' && c!= EOF){    agelim = AGESUP;
     ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fgets(line, MAXLINE, ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     puts(line);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fputs(line,ficparo);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   ungetc(c,ficpar);      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   while((c=getc(ficpar))=='#' && c!= EOF){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     puts(line);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fputs(line,ficparo);  
   }        if (popbased==1) {
   ungetc(c,ficpar);          if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          }else{ /* mobilav */ 
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   fscanf(ficpar,"pop_based=%d\n",&popbased);          }
   fprintf(ficparo,"pop_based=%d\n",popbased);          }
   fprintf(ficres,"pop_based=%d\n",popbased);      
          for(j=1; j<= nlstate; j++){
   while((c=getc(ficpar))=='#' && c!= EOF){          for(h=0; h<=nhstepm; h++){
     ungetc(c,ficpar);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     puts(line);          }
     fputs(line,ficparo);        }
   }        /* This for computing probability of death (h=1 means
   ungetc(c,ficpar);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
 while((c=getc(ficpar))=='#' && c!= EOF){        /* end probability of death */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     puts(line);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   ungetc(c,ficpar);   
         if (popbased==1) {
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          if(mobilav ==0){
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            for(i=1; i<=nlstate;i++)
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
 /*------------ gnuplot -------------*/          }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        }
    
 /*------------ free_vector  -------------*/        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
  chdir(path);          for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
  free_ivector(wav,1,imx);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          }
  free_ivector(num,1,n);        /* This for computing probability of death (h=1 means
  free_vector(agedc,1,n);           computed over hstepm matrices product = hstepm*stepm months) 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/           as a weighted average of prlim.
  fclose(ficparo);        */
  fclose(ficres);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
 /*--------- index.htm --------*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);        /* end probability of death */
   
          for(j=1; j<= nlstate; j++) /* vareij */
   /*--------------- Prevalence limit --------------*/          for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   strcpy(filerespl,"pl");          }
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   }        }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");      } /* End theta */
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   fprintf(ficrespl,"\n");  
        for(h=0; h<=nhstepm; h++) /* veij */
   prlim=matrix(1,nlstate,1,nlstate);        for(j=1; j<=nlstate;j++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(theta=1; theta <=npar; theta++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            trgradg[h][j][theta]=gradg[h][theta][j];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(theta=1; theta <=npar; theta++)
   k=0;          trgradgp[j][theta]=gradgp[theta][j];
   agebase=ageminpar;    
   agelim=agemaxpar;  
   ftolpl=1.e-10;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   i1=cptcoveff;      for(i=1;i<=nlstate;i++)
   if (cptcovn < 1){i1=1;}        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(h=0;h<=nhstepm;h++){
         k=k+1;        for(k=0;k<=nhstepm;k++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficrespl,"\n#******");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         for(j=1;j<=cptcoveff;j++)          for(i=1;i<=nlstate;i++)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(j=1;j<=nlstate;j++)
         fprintf(ficrespl,"******\n");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                }
         for (age=agebase; age<=agelim; age++){      }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    
           fprintf(ficrespl,"%.0f",age );      /* pptj */
           for(i=1; i<=nlstate;i++)      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           fprintf(ficrespl," %.5f", prlim[i][i]);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           fprintf(ficrespl,"\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       }          varppt[j][i]=doldmp[j][i];
     }      /* end ppptj */
   fclose(ficrespl);      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   /*------------- h Pij x at various ages ------------*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      if (popbased==1) {
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        if(mobilav ==0){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=probs[(int)age][i][ij];
   printf("Computing pij: result on file '%s' \n", filerespij);        }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            prlim[i][i]=mobaverage[(int)age][i][ij];
   /*if (stepm<=24) stepsize=2;*/        }
       }
   agelim=AGESUP;               
   hstepm=stepsize*YEARM; /* Every year of age */      /* This for computing probability of death (h=1 means
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
   k=0;      */
   for(cptcov=1;cptcov<=i1;cptcov++){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       k=k+1;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         fprintf(ficrespij,"\n#****** ");      }    
         for(j=1;j<=cptcoveff;j++)      /* end probability of death */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
              for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for(i=1; i<=nlstate;i++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;      } 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        fprintf(ficresprobmorprev,"\n");
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)      fprintf(ficresvij,"%.0f ",age );
             for(j=1; j<=nlstate+ndeath;j++)      for(i=1; i<=nlstate;i++)
               fprintf(ficrespij," %1d-%1d",i,j);        for(j=1; j<=nlstate;j++){
           fprintf(ficrespij,"\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           for (h=0; h<=nhstepm; h++){        }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      fprintf(ficresvij,"\n");
             for(i=1; i<=nlstate;i++)      free_matrix(gp,0,nhstepm,1,nlstate);
               for(j=1; j<=nlstate+ndeath;j++)      free_matrix(gm,0,nhstepm,1,nlstate);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
             fprintf(ficrespij,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } /* End age */
           fprintf(ficrespij,"\n");    free_vector(gpp,nlstate+1,nlstate+ndeath);
         }    free_vector(gmp,nlstate+1,nlstate+ndeath);
     }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   fclose(ficrespij);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*---------- Forecasting ------------------*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   if((stepm == 1) && (strcmp(model,".")==0)){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     free_matrix(mint,1,maxwav,1,n);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     free_vector(weight,1,n);}  */
   else{  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     erreur=108;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
   /*---------- Health expectancies and variances ------------*/    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   strcpy(filerest,"t");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcat(filerest,fileres);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficrest=fopen(filerest,"w"))==NULL) {    fclose(ficresprobmorprev);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fflush(ficgp);
   }    fflush(fichtm); 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   strcpy(filerese,"e");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   strcat(filerese,fileres);  {
   if((ficreseij=fopen(filerese,"w"))==NULL) {    /* Variance of prevalence limit */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   }    double **newm;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
  strcpy(fileresv,"v");    int k, cptcode;
   strcat(fileresv,fileres);    double *xp;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    double *gp, *gm;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double **gradg, **trgradg;
   }    double age,agelim;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    int theta;
     
   k=0;    pstamp(ficresvpl);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresvpl,"# Age");
       k=k+1;    for(i=1; i<=nlstate;i++)
       fprintf(ficrest,"\n#****** ");        fprintf(ficresvpl," %1d-%1d",i,i);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresvpl,"\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficreseij,"\n#****** ");    doldm=matrix(1,nlstate,1,nlstate);
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    hstepm=1*YEARM; /* Every year of age */
       fprintf(ficreseij,"******\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
       fprintf(ficresvij,"\n#****** ");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(j=1;j<=cptcoveff;j++)      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if (stepm >= YEARM) hstepm=1;
       fprintf(ficresvij,"******\n");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      gp=vector(1,nlstate);
       oldm=oldms;savm=savms;      gm=vector(1,nlstate);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(theta=1; theta <=npar; theta++){
       oldm=oldms;savm=savms;        for(i=1; i<=npar; i++){ /* Computes gradient */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          gp[i] = prlim[i][i];
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      
       fprintf(ficrest,"\n");        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
       epj=vector(1,nlstate+1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(age=bage; age <=fage ;age++){        for(i=1;i<=nlstate;i++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          gm[i] = prlim[i][i];
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][k];          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         }      } /* End theta */
          
         fprintf(ficrest," %4.0f",age);      trgradg =matrix(1,nlstate,1,npar);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      for(j=1; j<=nlstate;j++)
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        for(theta=1; theta <=npar; theta++)
           }          trgradg[j][theta]=gradg[theta][j];
           epj[nlstate+1] +=epj[j];  
         }      for(i=1;i<=nlstate;i++)
         for(i=1, vepp=0.;i <=nlstate;i++)        varpl[i][(int)age] =0.;
           for(j=1;j <=nlstate;j++)      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
             vepp += vareij[i][j][(int)age];      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));      for(i=1;i<=nlstate;i++)
         for(j=1;j <=nlstate;j++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }      fprintf(ficresvpl,"%.0f ",age );
         fprintf(ficrest,"\n");      for(i=1; i<=nlstate;i++)
       }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     }      fprintf(ficresvpl,"\n");
   }      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   fclose(ficreseij);      free_matrix(gradg,1,npar,1,nlstate);
   fclose(ficresvij);      free_matrix(trgradg,1,nlstate,1,npar);
   fclose(ficrest);    } /* End age */
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   /*------- Variance limit prevalence------*/      free_matrix(dnewm,1,nlstate,1,nlstate);
   
   strcpy(fileresvpl,"vpl");  }
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  /************ Variance of one-step probabilities  ******************/
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     exit(0);  {
   }    int i, j=0,  i1, k1, l1, t, tj;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   k=0;    int first=1, first1;
   for(cptcov=1;cptcov<=i1;cptcov++){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double **dnewm,**doldm;
       k=k+1;    double *xp;
       fprintf(ficresvpl,"\n#****** ");    double *gp, *gm;
       for(j=1;j<=cptcoveff;j++)    double **gradg, **trgradg;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **mu;
       fprintf(ficresvpl,"******\n");    double age,agelim, cov[NCOVMAX];
          double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    int theta;
       oldm=oldms;savm=savms;    char fileresprob[FILENAMELENGTH];
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    char fileresprobcov[FILENAMELENGTH];
     }    char fileresprobcor[FILENAMELENGTH];
  }  
     double ***varpij;
   fclose(ficresvpl);  
     strcpy(fileresprob,"prob"); 
   /*---------- End : free ----------------*/    strcat(fileresprob,fileres);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }
      strcpy(fileresprobcov,"probcov"); 
      strcat(fileresprobcov,fileres);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      printf("Problem with resultfile: %s\n", fileresprobcov);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
      strcpy(fileresprobcor,"probcor"); 
   free_matrix(matcov,1,npar,1,npar);    strcat(fileresprobcor,fileres);
   free_vector(delti,1,npar);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   free_matrix(agev,1,maxwav,1,imx);      printf("Problem with resultfile: %s\n", fileresprobcor);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   if(erreur >0)    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("End of Imach with error or warning %d\n",erreur);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   else   printf("End of Imach\n");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    pstamp(ficresprob);
   /*------ End -----------*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
  end:    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 #ifdef windows    fprintf(ficresprobcov,"# Age");
   /* chdir(pathcd);*/    pstamp(ficresprobcor);
 #endif    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  /*system("wgnuplot graph.plt");*/    fprintf(ficresprobcor,"# Age");
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    for(i=1; i<=nlstate;i++)
  strcpy(plotcmd,GNUPLOTPROGRAM);      for(j=1; j<=(nlstate+ndeath);j++){
  strcat(plotcmd," ");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  strcat(plotcmd,optionfilegnuplot);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
  system(plotcmd);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
 #ifdef windows   /* fprintf(ficresprob,"\n");
   while (z[0] != 'q') {    fprintf(ficresprobcov,"\n");
     /* chdir(path); */    fprintf(ficresprobcor,"\n");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");   */
     scanf("%s",z);    xp=vector(1,npar);
     if (z[0] == 'c') system("./imach");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     else if (z[0] == 'e') system(optionfilehtm);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     else if (z[0] == 'g') system(plotcmd);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     else if (z[0] == 'q') exit(0);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   }    first=1;
 #endif    fprintf(ficgp,"\n# Routine varprob");
 }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.37  
changed lines
  Added in v.1.141


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>