Diff for /imach/src/imach.c between versions 1.38 and 1.124

version 1.38, 2002/04/03 12:19:36 version 1.124, 2006/03/22 17:13:53
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.124  2006/03/22 17:13:53  lievre
      Parameters are printed with %lf instead of %f (more numbers after the comma).
   This program computes Healthy Life Expectancies from    The log-likelihood is printed in the log file
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.123  2006/03/20 10:52:43  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Module): <title> changed, corresponds to .htm file
   case of a health survey which is our main interest) -2- at least a    name. <head> headers where missing.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    * imach.c (Module): Weights can have a decimal point as for
   computed from the time spent in each health state according to a    English (a comma might work with a correct LC_NUMERIC environment,
   model. More health states you consider, more time is necessary to reach the    otherwise the weight is truncated).
   Maximum Likelihood of the parameters involved in the model.  The    Modification of warning when the covariates values are not 0 or
   simplest model is the multinomial logistic model where pij is the    1.
   probabibility to be observed in state j at the second wave    Version 0.98g
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.122  2006/03/20 09:45:41  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Weights can have a decimal point as for
   complex model than "constant and age", you should modify the program    English (a comma might work with a correct LC_NUMERIC environment,
   where the markup *Covariates have to be included here again* invites    otherwise the weight is truncated).
   you to do it.  More covariates you add, slower the    Modification of warning when the covariates values are not 0 or
   convergence.    1.
     Version 0.98g
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.121  2006/03/16 17:45:01  lievre
   identical for each individual. Also, if a individual missed an    * imach.c (Module): Comments concerning covariates added
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   hPijx is the probability to be observed in state i at age x+h    not 1 month. Version 0.98f
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.120  2006/03/16 15:10:38  lievre
   states. This elementary transition (by month or quarter trimester,    (Module): refinements in the computation of lli if
   semester or year) is model as a multinomial logistic.  The hPx    status=-2 in order to have more reliable computation if stepm is
   matrix is simply the matrix product of nh*stepm elementary matrices    not 1 month. Version 0.98f
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Also this programme outputs the covariance matrix of the parameters but also    computed as likelihood omitting the logarithm. Version O.98e
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.118  2006/03/14 18:20:07  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): varevsij Comments added explaining the second
            Institut national d'études démographiques, Paris.    table of variances if popbased=1 .
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   from the European Union.    (Module): Function pstamp added
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.98d
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.117  2006/03/14 17:16:22  brouard
   **********************************************************************/    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
 #include <math.h>    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #include <stdio.h>    (Module): Function pstamp added
 #include <stdlib.h>    (Module): Version 0.98d
 #include <unistd.h>  
     Revision 1.116  2006/03/06 10:29:27  brouard
 #define MAXLINE 256    (Module): Variance-covariance wrong links and
 #define GNUPLOTPROGRAM "wgnuplot"    varian-covariance of ej. is needed (Saito).
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.115  2006/02/27 12:17:45  brouard
 /*#define DEBUG*/    (Module): One freematrix added in mlikeli! 0.98c
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.114  2006/02/26 12:57:58  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Some improvements in processing parameter
     filename with strsep.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define NINTERVMAX 8    datafile was not closed, some imatrix were not freed and on matrix
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    allocation too.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.112  2006/01/30 09:55:26  brouard
 #define MAXN 20000    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.111  2006/01/25 20:38:18  brouard
 #define AGEBASE 40    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 int erreur; /* Error number */  
 int nvar;    Revision 1.110  2006/01/25 00:51:50  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Lots of cleaning and bugs added (Gompertz)
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.109  2006/01/24 19:37:15  brouard
 int ndeath=1; /* Number of dead states */    (Module): Comments (lines starting with a #) are allowed in data.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 int *wav; /* Number of waves for this individuual 0 is possible */    To be fixed
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.107  2006/01/19 16:20:37  brouard
 int mle, weightopt;    Test existence of gnuplot in imach path
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.106  2006/01/19 13:24:36  brouard
 double jmean; /* Mean space between 2 waves */    Some cleaning and links added in html output
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.105  2006/01/05 20:23:19  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.104  2005/09/30 16:11:43  lievre
   char filerese[FILENAMELENGTH];    (Module): sump fixed, loop imx fixed, and simplifications.
  FILE  *ficresvij;    (Module): If the status is missing at the last wave but we know
   char fileresv[FILENAMELENGTH];    that the person is alive, then we can code his/her status as -2
  FILE  *ficresvpl;    (instead of missing=-1 in earlier versions) and his/her
   char fileresvpl[FILENAMELENGTH];    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define NR_END 1    the healthy state at last known wave). Version is 0.98
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define NRANSI  
 #define ITMAX 200    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 #define TOL 2.0e-4  
     Revision 1.101  2004/09/15 10:38:38  brouard
 #define CGOLD 0.3819660    Fix on curr_time
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.99  2004/06/05 08:57:40  brouard
 #define TINY 1.0e-20    *** empty log message ***
   
 static double maxarg1,maxarg2;    Revision 1.98  2004/05/16 15:05:56  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    New version 0.97 . First attempt to estimate force of mortality
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    directly from the data i.e. without the need of knowing the health
      state at each age, but using a Gompertz model: log u =a + b*age .
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    This is the basic analysis of mortality and should be done before any
 #define rint(a) floor(a+0.5)    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 static double sqrarg;    from other sources like vital statistic data.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    The same imach parameter file can be used but the option for mle should be -3.
   
 int imx;    Agnès, who wrote this part of the code, tried to keep most of the
 int stepm;    former routines in order to include the new code within the former code.
 /* Stepm, step in month: minimum step interpolation*/  
     The output is very simple: only an estimate of the intercept and of
 int estepm;    the slope with 95% confident intervals.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Current limitations:
 int m,nb;    A) Even if you enter covariates, i.e. with the
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    B) There is no computation of Life Expectancy nor Life Table.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 double *weight;    suppressed.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.96  2003/07/15 15:38:55  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 /**************** split *************************/    (Repository): Using imachwizard code to output a more meaningful covariance
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    matrix (cov(a12,c31) instead of numbers.
 {  
    char *s;                             /* pointer */    Revision 1.94  2003/06/27 13:00:02  brouard
    int  l1, l2;                         /* length counters */    Just cleaning
   
    l1 = strlen( path );                 /* length of path */    Revision 1.93  2003/06/25 16:33:55  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): On windows (cygwin) function asctime_r doesn't
 #ifdef windows    exist so I changed back to asctime which exists.
    s = strrchr( path, '\\' );           /* find last / */    (Module): Version 0.96b
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.92  2003/06/25 16:30:45  brouard
 #endif    (Module): On windows (cygwin) function asctime_r doesn't
    if ( s == NULL ) {                   /* no directory, so use current */    exist so I changed back to asctime which exists.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
       if ( getwd( dirc ) == NULL ) {    (Repository): Elapsed time after each iteration is now output. It
 #else    helps to forecast when convergence will be reached. Elapsed time
       extern char       *getcwd( );    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.90  2003/06/24 12:34:15  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): Some bugs corrected for windows. Also, when
       }    mle=-1 a template is output in file "or"mypar.txt with the design
       strcpy( name, path );             /* we've got it */    of the covariance matrix to be input.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.89  2003/06/24 12:30:52  brouard
       l2 = strlen( s );                 /* length of filename */    (Module): Some bugs corrected for windows. Also, when
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    mle=-1 a template is output in file "or"mypar.txt with the design
       strcpy( name, s );                /* save file name */    of the covariance matrix to be input.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.88  2003/06/23 17:54:56  brouard
    }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.87  2003/06/18 12:26:01  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Version 0.96
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.86  2003/06/17 20:04:08  brouard
 #endif    (Module): Change position of html and gnuplot routines and added
    s = strrchr( name, '.' );            /* find last / */    routine fileappend.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.85  2003/06/17 13:12:43  brouard
    l1= strlen( name);    * imach.c (Repository): Check when date of death was earlier that
    l2= strlen( s)+1;    current date of interview. It may happen when the death was just
    strncpy( finame, name, l1-l2);    prior to the death. In this case, dh was negative and likelihood
    finame[l1-l2]= 0;    was wrong (infinity). We still send an "Error" but patch by
    return( 0 );                         /* we're done */    assuming that the date of death was just one stepm after the
 }    interview.
     (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 /******************************************/    memory allocation. But we also truncated to 8 characters (left
     truncation)
 void replace(char *s, char*t)    (Repository): No more line truncation errors.
 {  
   int i;    Revision 1.84  2003/06/13 21:44:43  brouard
   int lg=20;    * imach.c (Repository): Replace "freqsummary" at a correct
   i=0;    place. It differs from routine "prevalence" which may be called
   lg=strlen(t);    many times. Probs is memory consuming and must be used with
   for(i=0; i<= lg; i++) {    parcimony.
     (s[i] = t[i]);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.83  2003/06/10 13:39:11  lievre
 }    *** empty log message ***
   
 int nbocc(char *s, char occ)    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   int i,j=0;  
   int lg=20;  */
   i=0;  /*
   lg=strlen(s);     Interpolated Markov Chain
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Short summary of the programme:
   }    
   return j;    This program computes Healthy Life Expectancies from
 }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 void cutv(char *u,char *v, char*t, char occ)    interviewed on their health status or degree of disability (in the
 {    case of a health survey which is our main interest) -2- at least a
   int i,lg,j,p=0;    second wave of interviews ("longitudinal") which measure each change
   i=0;    (if any) in individual health status.  Health expectancies are
   for(j=0; j<=strlen(t)-1; j++) {    computed from the time spent in each health state according to a
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    model. More health states you consider, more time is necessary to reach the
   }    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
   lg=strlen(t);    probability to be observed in state j at the second wave
   for(j=0; j<p; j++) {    conditional to be observed in state i at the first wave. Therefore
     (u[j] = t[j]);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   }    'age' is age and 'sex' is a covariate. If you want to have a more
      u[p]='\0';    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
    for(j=0; j<= lg; j++) {    you to do it.  More covariates you add, slower the
     if (j>=(p+1))(v[j-p-1] = t[j]);    convergence.
   }  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /********************** nrerror ********************/    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 void nrerror(char error_text[])    account using an interpolation or extrapolation.  
 {  
   fprintf(stderr,"ERREUR ...\n");    hPijx is the probability to be observed in state i at age x+h
   fprintf(stderr,"%s\n",error_text);    conditional to the observed state i at age x. The delay 'h' can be
   exit(1);    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
 /*********************** vector *******************/    semester or year) is modelled as a multinomial logistic.  The hPx
 double *vector(int nl, int nh)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   double *v;    hPijx.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Also this programme outputs the covariance matrix of the parameters but also
   return v-nl+NR_END;    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /************************ free vector ******************/             Institut national d'études démographiques, Paris.
 void free_vector(double*v, int nl, int nh)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   free((FREE_ARG)(v+nl-NR_END));    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   int *v;    
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    **********************************************************************/
   if (!v) nrerror("allocation failure in ivector");  /*
   return v-nl+NR_END;    main
 }    read parameterfile
     read datafile
 /******************free ivector **************************/    concatwav
 void free_ivector(int *v, long nl, long nh)    freqsummary
 {    if (mle >= 1)
   free((FREE_ARG)(v+nl-NR_END));      mlikeli
 }    print results files
     if mle==1 
 /******************* imatrix *******************************/       computes hessian
 int **imatrix(long nrl, long nrh, long ncl, long nch)    read end of parameter file: agemin, agemax, bage, fage, estepm
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */        begin-prev-date,...
 {    open gnuplot file
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    open html file
   int **m;    period (stable) prevalence
       for age prevalim()
   /* allocate pointers to rows */    h Pij x
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    variance of p varprob
   if (!m) nrerror("allocation failure 1 in matrix()");    forecasting if prevfcast==1 prevforecast call prevalence()
   m += NR_END;    health expectancies
   m -= nrl;    Variance-covariance of DFLE
      prevalence()
       movingaverage()
   /* allocate rows and set pointers to them */    varevsij() 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    if popbased==1 varevsij(,popbased)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    total life expectancies
   m[nrl] += NR_END;    Variance of period (stable) prevalence
   m[nrl] -= ncl;   end
    */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    
   /* return pointer to array of pointers to rows */  
   return m;   
 }  #include <math.h>
   #include <stdio.h>
 /****************** free_imatrix *************************/  #include <stdlib.h>
 void free_imatrix(m,nrl,nrh,ncl,nch)  #include <string.h>
       int **m;  #include <unistd.h>
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  #include <limits.h>
 {  #include <sys/types.h>
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #include <sys/stat.h>
   free((FREE_ARG) (m+nrl-NR_END));  #include <errno.h>
 }  extern int errno;
   
 /******************* matrix *******************************/  /* #include <sys/time.h> */
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include <time.h>
 {  #include "timeval.h"
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define MAXLINE 256
   m += NR_END;  
   m -= nrl;  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define FILENAMELENGTH 132
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m[nrl] -= ncl;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   return m;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 /*************************free matrix ************************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define MAXN 20000
   free((FREE_ARG)(m+nrl-NR_END));  #define YEARM 12. /* Number of months per year */
 }  #define AGESUP 130
   #define AGEBASE 40
 /******************* ma3x *******************************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #ifdef UNIX
 {  #define DIRSEPARATOR '/'
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define CHARSEPARATOR "/"
   double ***m;  #define ODIRSEPARATOR '\\'
   #else
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define DIRSEPARATOR '\\'
   if (!m) nrerror("allocation failure 1 in matrix()");  #define CHARSEPARATOR "\\"
   m += NR_END;  #define ODIRSEPARATOR '/'
   m -= nrl;  #endif
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* $Id$ */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* $State$ */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$"; 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int nvar;
   m[nrl][ncl] += NR_END;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m[nrl][ncl] -= nll;  int npar=NPARMAX;
   for (j=ncl+1; j<=nch; j++)  int nlstate=2; /* Number of live states */
     m[nrl][j]=m[nrl][j-1]+nlay;  int ndeath=1; /* Number of dead states */
    int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   for (i=nrl+1; i<=nrh; i++) {  int popbased=0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  int *wav; /* Number of waves for this individuual 0 is possible */
       m[i][j]=m[i][j-1]+nlay;  int maxwav; /* Maxim number of waves */
   }  int jmin, jmax; /* min, max spacing between 2 waves */
   return m;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 }  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 /*************************free ma3x ************************/  int mle, weightopt;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   free((FREE_ARG)(m[nrl]+ncl-NR_END));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   free((FREE_ARG)(m+nrl-NR_END));  double jmean; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /***************** f1dim *************************/  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 extern int ncom;  FILE *ficlog, *ficrespow;
 extern double *pcom,*xicom;  int globpr; /* Global variable for printing or not */
 extern double (*nrfunc)(double []);  double fretone; /* Only one call to likelihood */
    long ipmx; /* Number of contributions */
 double f1dim(double x)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   int j;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double f;  FILE *ficresilk;
   double *xt;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    FILE *ficresprobmorprev;
   xt=vector(1,ncom);  FILE *fichtm, *fichtmcov; /* Html File */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  FILE *ficreseij;
   f=(*nrfunc)(xt);  char filerese[FILENAMELENGTH];
   free_vector(xt,1,ncom);  FILE *ficresstdeij;
   return f;  char fileresstde[FILENAMELENGTH];
 }  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 /*****************brent *************************/  FILE  *ficresvij;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   int iter;  char fileresvpl[FILENAMELENGTH];
   double a,b,d,etemp;  char title[MAXLINE];
   double fu,fv,fw,fx;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double ftemp;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double e=0.0;  char command[FILENAMELENGTH];
    int  outcmd=0;
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  char filelog[FILENAMELENGTH]; /* Log file */
   for (iter=1;iter<=ITMAX;iter++) {  char filerest[FILENAMELENGTH];
     xm=0.5*(a+b);  char fileregp[FILENAMELENGTH];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char popfile[FILENAMELENGTH];
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  struct timezone tzp;
 #endif  extern int gettimeofday();
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       *xmin=x;  long time_value;
       return fx;  extern long time();
     }  char strcurr[80], strfor[80];
     ftemp=fu;  
     if (fabs(e) > tol1) {  char *endptr;
       r=(x-w)*(fx-fv);  long lval;
       q=(x-v)*(fx-fw);  double dval;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  #define NR_END 1
       if (q > 0.0) p = -p;  #define FREE_ARG char*
       q=fabs(q);  #define FTOL 1.0e-10
       etemp=e;  
       e=d;  #define NRANSI 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define ITMAX 200 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  #define TOL 2.0e-4 
         d=p/q;  
         u=x+d;  #define CGOLD 0.3819660 
         if (u-a < tol2 || b-u < tol2)  #define ZEPS 1.0e-10 
           d=SIGN(tol1,xm-x);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       }  
     } else {  #define GOLD 1.618034 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define GLIMIT 100.0 
     }  #define TINY 1.0e-20 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  static double maxarg1,maxarg2;
     if (fu <= fx) {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       if (u >= x) a=x; else b=x;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       SHFT(v,w,x,u)    
         SHFT(fv,fw,fx,fu)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         } else {  #define rint(a) floor(a+0.5)
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  static double sqrarg;
             v=w;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
             w=u;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
             fv=fw;  int agegomp= AGEGOMP;
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  int imx; 
             v=u;  int stepm=1;
             fv=fu;  /* Stepm, step in month: minimum step interpolation*/
           }  
         }  int estepm;
   }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   nrerror("Too many iterations in brent");  
   *xmin=x;  int m,nb;
   return fx;  long *num;
 }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /****************** mnbrak ***********************/  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double dateintmean=0;
             double (*func)(double))  
 {  double *weight;
   double ulim,u,r,q, dum;  int **s; /* Status */
   double fu;  double *agedc, **covar, idx;
    int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   *fa=(*func)(*ax);  double *lsurv, *lpop, *tpop;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     SHFT(dum,*ax,*bx,dum)  double ftolhess; /* Tolerance for computing hessian */
       SHFT(dum,*fb,*fa,dum)  
       }  /**************** split *************************/
   *cx=(*bx)+GOLD*(*bx-*ax);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   *fc=(*func)(*cx);  {
   while (*fb > *fc) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     r=(*bx-*ax)*(*fb-*fc);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     q=(*bx-*cx)*(*fb-*fa);    */ 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    char  *ss;                            /* pointer */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    int   l1, l2;                         /* length counters */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    l1 = strlen(path );                   /* length of path */
       fu=(*func)(u);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     } else if ((*cx-u)*(u-ulim) > 0.0) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       fu=(*func)(u);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       if (fu < *fc) {      strcpy( name, path );               /* we got the fullname name because no directory */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
           SHFT(*fb,*fc,fu,(*func)(u))        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
           }      /* get current working directory */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      /*    extern  char* getcwd ( char *buf , int len);*/
       u=ulim;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       fu=(*func)(u);        return( GLOCK_ERROR_GETCWD );
     } else {      }
       u=(*cx)+GOLD*(*cx-*bx);      /* got dirc from getcwd*/
       fu=(*func)(u);      printf(" DIRC = %s \n",dirc);
     }    } else {                              /* strip direcotry from path */
     SHFT(*ax,*bx,*cx,u)      ss++;                               /* after this, the filename */
       SHFT(*fa,*fb,*fc,fu)      l2 = strlen( ss );                  /* length of filename */
       }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /*************** linmin ************************/      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 int ncom;    }
 double *pcom,*xicom;    /* We add a separator at the end of dirc if not exists */
 double (*nrfunc)(double []);    l1 = strlen( dirc );                  /* length of directory */
      if( dirc[l1-1] != DIRSEPARATOR ){
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      dirc[l1] =  DIRSEPARATOR;
 {      dirc[l1+1] = 0; 
   double brent(double ax, double bx, double cx,      printf(" DIRC3 = %s \n",dirc);
                double (*f)(double), double tol, double *xmin);    }
   double f1dim(double x);    ss = strrchr( name, '.' );            /* find last / */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    if (ss >0){
               double *fc, double (*func)(double));      ss++;
   int j;      strcpy(ext,ss);                     /* save extension */
   double xx,xmin,bx,ax;      l1= strlen( name);
   double fx,fb,fa;      l2= strlen(ss)+1;
        strncpy( finame, name, l1-l2);
   ncom=n;      finame[l1-l2]= 0;
   pcom=vector(1,n);    }
   xicom=vector(1,n);  
   nrfunc=func;    return( 0 );                          /* we're done */
   for (j=1;j<=n;j++) {  }
     pcom[j]=p[j];  
     xicom[j]=xi[j];  
   }  /******************************************/
   ax=0.0;  
   xx=1.0;  void replace_back_to_slash(char *s, char*t)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    int i;
 #ifdef DEBUG    int lg=0;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    i=0;
 #endif    lg=strlen(t);
   for (j=1;j<=n;j++) {    for(i=0; i<= lg; i++) {
     xi[j] *= xmin;      (s[i] = t[i]);
     p[j] += xi[j];      if (t[i]== '\\') s[i]='/';
   }    }
   free_vector(xicom,1,n);  }
   free_vector(pcom,1,n);  
 }  int nbocc(char *s, char occ)
   {
 /*************** powell ************************/    int i,j=0;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int lg=20;
             double (*func)(double []))    i=0;
 {    lg=strlen(s);
   void linmin(double p[], double xi[], int n, double *fret,    for(i=0; i<= lg; i++) {
               double (*func)(double []));    if  (s[i] == occ ) j++;
   int i,ibig,j;    }
   double del,t,*pt,*ptt,*xit;    return j;
   double fp,fptt;  }
   double *xits;  
   pt=vector(1,n);  void cutv(char *u,char *v, char*t, char occ)
   ptt=vector(1,n);  {
   xit=vector(1,n);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   xits=vector(1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   *fret=(*func)(p);       gives u="abcedf" and v="ghi2j" */
   for (j=1;j<=n;j++) pt[j]=p[j];    int i,lg,j,p=0;
   for (*iter=1;;++(*iter)) {    i=0;
     fp=(*fret);    for(j=0; j<=strlen(t)-1; j++) {
     ibig=0;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     del=0.0;    }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)    lg=strlen(t);
       printf(" %d %.12f",i, p[i]);    for(j=0; j<p; j++) {
     printf("\n");      (u[j] = t[j]);
     for (i=1;i<=n;i++) {    }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];       u[p]='\0';
       fptt=(*fret);  
 #ifdef DEBUG     for(j=0; j<= lg; j++) {
       printf("fret=%lf \n",*fret);      if (j>=(p+1))(v[j-p-1] = t[j]);
 #endif    }
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /********************** nrerror ********************/
         del=fabs(fptt-(*fret));  
         ibig=i;  void nrerror(char error_text[])
       }  {
 #ifdef DEBUG    fprintf(stderr,"ERREUR ...\n");
       printf("%d %.12e",i,(*fret));    fprintf(stderr,"%s\n",error_text);
       for (j=1;j<=n;j++) {    exit(EXIT_FAILURE);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
       for(j=1;j<=n;j++)  {
         printf(" p=%.12e",p[j]);    double *v;
       printf("\n");    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 #endif    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  /************************ free vector ******************/
       k[0]=1;  void free_vector(double*v, int nl, int nh)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    free((FREE_ARG)(v+nl-NR_END));
       for (j=1;j<=n;j++)  }
         printf(" %.12e",p[j]);  
       printf("\n");  /************************ivector *******************************/
       for(l=0;l<=1;l++) {  int *ivector(long nl,long nh)
         for (j=1;j<=n;j++) {  {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int *v;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         }    if (!v) nrerror("allocation failure in ivector");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    return v-nl+NR_END;
       }  }
 #endif  
   /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    free((FREE_ARG)(v+nl-NR_END));
       free_vector(ptt,1,n);  }
       free_vector(pt,1,n);  
       return;  /************************lvector *******************************/
     }  long *lvector(long nl,long nh)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    long *v;
       ptt[j]=2.0*p[j]-pt[j];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       xit[j]=p[j]-pt[j];    if (!v) nrerror("allocation failure in ivector");
       pt[j]=p[j];    return v-nl+NR_END;
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /******************free lvector **************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void free_lvector(long *v, long nl, long nh)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    free((FREE_ARG)(v+nl-NR_END));
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /******************* imatrix *******************************/
         }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 #ifdef DEBUG       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  { 
         for(j=1;j<=n;j++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           printf(" %.12e",xit[j]);    int **m; 
         printf("\n");    
 #endif    /* allocate pointers to rows */ 
       }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
 }    m -= nrl; 
     
 /**** Prevalence limit ****************/    
     /* allocate rows and set pointers to them */ 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m[nrl] += NR_END; 
      matrix by transitions matrix until convergence is reached */    m[nrl] -= ncl; 
     
   int i, ii,j,k;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double min, max, maxmin, maxmax,sumnew=0.;    
   double **matprod2();    /* return pointer to array of pointers to rows */ 
   double **out, cov[NCOVMAX], **pmij();    return m; 
   double **newm;  } 
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /****************** free_imatrix *************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  void free_imatrix(m,nrl,nrh,ncl,nch)
     for (j=1;j<=nlstate+ndeath;j++){        int **m;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        long nch,ncl,nrh,nrl; 
     }       /* free an int matrix allocated by imatrix() */ 
   { 
    cov[1]=1.;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      free((FREE_ARG) (m+nrl-NR_END)); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /******************* matrix *******************************/
     /* Covariates have to be included here again */  double **matrix(long nrl, long nrh, long ncl, long nch)
      cov[2]=agefin;  {
      long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       for (k=1; k<=cptcovn;k++) {    double **m;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m += NR_END;
       for (k=1; k<=cptcovprod;k++)    m -= nrl;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    m[nrl] += NR_END;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    m[nrl] -= ncl;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     savm=oldm;    return m;
     oldm=newm;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     maxmax=0.;     */
     for(j=1;j<=nlstate;j++){  }
       min=1.;  
       max=0.;  /*************************free matrix ************************/
       for(i=1; i<=nlstate; i++) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         sumnew=0;  {
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         prlim[i][j]= newm[i][j]/(1-sumnew);    free((FREE_ARG)(m+nrl-NR_END));
         max=FMAX(max,prlim[i][j]);  }
         min=FMIN(min,prlim[i][j]);  
       }  /******************* ma3x *******************************/
       maxmin=max-min;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       maxmax=FMAX(maxmax,maxmin);  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     if(maxmax < ftolpl){    double ***m;
       return prlim;  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /*************** transition probabilities ***************/  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   double s1, s2;    m[nrl] -= ncl;
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
     for(i=1; i<= nlstate; i++){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for(j=1; j<i;j++){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl][ncl] += NR_END;
         /*s2 += param[i][j][nc]*cov[nc];*/    m[nrl][ncl] -= nll;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (j=ncl+1; j<=nch; j++) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      m[nrl][j]=m[nrl][j-1]+nlay;
       }    
       ps[i][j]=s2;    for (i=nrl+1; i<=nrh; i++) {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
     for(j=i+1; j<=nlstate+ndeath;j++){        m[i][j]=m[i][j-1]+nlay;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return m; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       ps[i][j]=s2;    */
     }  }
   }  
     /*ps[3][2]=1;*/  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for(i=1; i<= nlstate; i++){  {
      s1=0;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for(j=1; j<i; j++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       s1+=exp(ps[i][j]);    free((FREE_ARG)(m+nrl-NR_END));
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /*************** function subdirf ***********/
     for(j=1; j<i; j++)  char *subdirf(char fileres[])
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     for(j=i+1; j<=nlstate+ndeath; j++)    /* Caution optionfilefiname is hidden */
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcpy(tmpout,optionfilefiname);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    strcat(tmpout,"/"); /* Add to the right */
   } /* end i */    strcat(tmpout,fileres);
     return tmpout;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  /*************** function subdirf2 ***********/
       ps[ii][ii]=1;  char *subdirf2(char fileres[], char *preop)
     }  {
   }    
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    strcat(tmpout,"/");
     for(jj=1; jj<= nlstate+ndeath; jj++){    strcat(tmpout,preop);
      printf("%lf ",ps[ii][jj]);    strcat(tmpout,fileres);
    }    return tmpout;
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /*************** function subdirf3 ***********/
 /*  char *subdirf3(char fileres[], char *preop, char *preop2)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    
     return ps;    /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /**************** Product of 2 matrices ******************/    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    strcat(tmpout,fileres);
 {    return tmpout;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /***************** f1dim *************************/
      before: only the contents of out is modified. The function returns  extern int ncom; 
      a pointer to pointers identical to out */  extern double *pcom,*xicom;
   long i, j, k;  extern double (*nrfunc)(double []); 
   for(i=nrl; i<= nrh; i++)   
     for(k=ncolol; k<=ncoloh; k++)  double f1dim(double x) 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  { 
         out[i][k] +=in[i][j]*b[j][k];    int j; 
     double f;
   return out;    double *xt; 
 }   
     xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 /************* Higher Matrix Product ***************/    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    return f; 
 {  } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  /*****************brent *************************/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  { 
      (typically every 2 years instead of every month which is too big).    int iter; 
      Model is determined by parameters x and covariates have to be    double a,b,d,etemp;
      included manually here.    double fu,fv,fw,fx;
     double ftemp;
      */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
   int i, j, d, h, k;   
   double **out, cov[NCOVMAX];    a=(ax < cx ? ax : cx); 
   double **newm;    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
   /* Hstepm could be zero and should return the unit matrix */    fw=fv=fx=(*f)(x); 
   for (i=1;i<=nlstate+ndeath;i++)    for (iter=1;iter<=ITMAX;iter++) { 
     for (j=1;j<=nlstate+ndeath;j++){      xm=0.5*(a+b); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,".");fflush(ficlog);
   for(h=1; h <=nhstepm; h++){  #ifdef DEBUG
     for(d=1; d <=hstepm; d++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       newm=savm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /* Covariates have to be included here again */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       cov[1]=1.;  #endif
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        *xmin=x; 
       for (k=1; k<=cptcovage;k++)        return fx; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } 
       for (k=1; k<=cptcovprod;k++)      ftemp=fu;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        p=(x-v)*q-(x-w)*r; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        q=2.0*(q-r); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        if (q > 0.0) p = -p; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        q=fabs(q); 
       savm=oldm;        etemp=e; 
       oldm=newm;        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(i=1; i<=nlstate+ndeath; i++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(j=1;j<=nlstate+ndeath;j++) {        else { 
         po[i][j][h]=newm[i][j];          d=p/q; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          u=x+d; 
          */          if (u-a < tol2 || b-u < tol2) 
       }            d=SIGN(tol1,xm-x); 
   } /* end h */        } 
   return po;      } else { 
 }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 /*************** log-likelihood *************/      fu=(*f)(u); 
 double func( double *x)      if (fu <= fx) { 
 {        if (u >= x) a=x; else b=x; 
   int i, ii, j, k, mi, d, kk;        SHFT(v,w,x,u) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          SHFT(fv,fw,fx,fu) 
   double **out;          } else { 
   double sw; /* Sum of weights */            if (u < x) a=u; else b=u; 
   double lli; /* Individual log likelihood */            if (fu <= fw || w == x) { 
   long ipmx;              v=w; 
   /*extern weight */              w=u; 
   /* We are differentiating ll according to initial status */              fv=fw; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/              fw=fu; 
   /*for(i=1;i<imx;i++)            } else if (fu <= fv || v == x || v == w) { 
     printf(" %d\n",s[4][i]);              v=u; 
   */              fv=fu; 
   cov[1]=1.;            } 
           } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    nrerror("Too many iterations in brent"); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    *xmin=x; 
     for(mi=1; mi<= wav[i]-1; mi++){    return fx; 
       for (ii=1;ii<=nlstate+ndeath;ii++)  } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  /****************** mnbrak ***********************/
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         for (kk=1; kk<=cptcovage;kk++) {              double (*func)(double)) 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  { 
         }    double ulim,u,r,q, dum;
            double fu; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,   
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    *fa=(*func)(*ax); 
         savm=oldm;    *fb=(*func)(*bx); 
         oldm=newm;    if (*fb > *fa) { 
              SHFT(dum,*ax,*bx,dum) 
                SHFT(dum,*fb,*fa,dum) 
       } /* end mult */        } 
          *cx=(*bx)+GOLD*(*bx-*ax); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    *fc=(*func)(*cx); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    while (*fb > *fc) { 
       ipmx +=1;      r=(*bx-*ax)*(*fb-*fc); 
       sw += weight[i];      q=(*bx-*cx)*(*fb-*fa); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     } /* end of wave */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   } /* end of individual */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fu=(*func)(u); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        fu=(*func)(u); 
   return -l;        if (fu < *fc) { 
 }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
 /*********** Maximum Likelihood Estimation ***************/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fu=(*func)(u); 
 {      } else { 
   int i,j, iter;        u=(*cx)+GOLD*(*cx-*bx); 
   double **xi,*delti;        fu=(*func)(u); 
   double fret;      } 
   xi=matrix(1,npar,1,npar);      SHFT(*ax,*bx,*cx,u) 
   for (i=1;i<=npar;i++)        SHFT(*fa,*fb,*fc,fu) 
     for (j=1;j<=npar;j++)        } 
       xi[i][j]=(i==j ? 1.0 : 0.0);  } 
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*************** linmin ************************/
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  int ncom; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  double *pcom,*xicom;
   double (*nrfunc)(double []); 
 }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 /**** Computes Hessian and covariance matrix ***/  { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double brent(double ax, double bx, double cx, 
 {                 double (*f)(double), double tol, double *xmin); 
   double  **a,**y,*x,pd;    double f1dim(double x); 
   double **hess;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   int i, j,jk;                double *fc, double (*func)(double)); 
   int *indx;    int j; 
     double xx,xmin,bx,ax; 
   double hessii(double p[], double delta, int theta, double delti[]);    double fx,fb,fa;
   double hessij(double p[], double delti[], int i, int j);   
   void lubksb(double **a, int npar, int *indx, double b[]) ;    ncom=n; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    pcom=vector(1,n); 
     xicom=vector(1,n); 
   hess=matrix(1,npar,1,npar);    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   printf("\nCalculation of the hessian matrix. Wait...\n");      pcom[j]=p[j]; 
   for (i=1;i<=npar;i++){      xicom[j]=xi[j]; 
     printf("%d",i);fflush(stdout);    } 
     hess[i][i]=hessii(p,ftolhess,i,delti);    ax=0.0; 
     /*printf(" %f ",p[i]);*/    xx=1.0; 
     /*printf(" %lf ",hess[i][i]);*/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
    #ifdef DEBUG
   for (i=1;i<=npar;i++) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=npar;j++)  {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       if (j>i) {  #endif
         printf(".%d%d",i,j);fflush(stdout);    for (j=1;j<=n;j++) { 
         hess[i][j]=hessij(p,delti,i,j);      xi[j] *= xmin; 
         hess[j][i]=hess[i][j];          p[j] += xi[j]; 
         /*printf(" %lf ",hess[i][j]);*/    } 
       }    free_vector(xicom,1,n); 
     }    free_vector(pcom,1,n); 
   }  } 
   printf("\n");  
   char *asc_diff_time(long time_sec, char ascdiff[])
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  {
      long sec_left, days, hours, minutes;
   a=matrix(1,npar,1,npar);    days = (time_sec) / (60*60*24);
   y=matrix(1,npar,1,npar);    sec_left = (time_sec) % (60*60*24);
   x=vector(1,npar);    hours = (sec_left) / (60*60) ;
   indx=ivector(1,npar);    sec_left = (sec_left) %(60*60);
   for (i=1;i<=npar;i++)    minutes = (sec_left) /60;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    sec_left = (sec_left) % (60);
   ludcmp(a,npar,indx,&pd);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** powell ************************/
     lubksb(a,npar,indx,x);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (i=1;i<=npar;i++){              double (*func)(double [])) 
       matcov[i][j]=x[i];  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
   }                double (*func)(double [])); 
     int i,ibig,j; 
   printf("\n#Hessian matrix#\n");    double del,t,*pt,*ptt,*xit;
   for (i=1;i<=npar;i++) {    double fp,fptt;
     for (j=1;j<=npar;j++) {    double *xits;
       printf("%.3e ",hess[i][j]);    int niterf, itmp;
     }  
     printf("\n");    pt=vector(1,n); 
   }    ptt=vector(1,n); 
     xit=vector(1,n); 
   /* Recompute Inverse */    xits=vector(1,n); 
   for (i=1;i<=npar;i++)    *fret=(*func)(p); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
   ludcmp(a,npar,indx,&pd);    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
   /*  printf("\n#Hessian matrix recomputed#\n");      ibig=0; 
       del=0.0; 
   for (j=1;j<=npar;j++) {      last_time=curr_time;
     for (i=1;i<=npar;i++) x[i]=0;      (void) gettimeofday(&curr_time,&tzp);
     x[j]=1;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     lubksb(a,npar,indx,x);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     for (i=1;i<=npar;i++){  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       y[i][j]=x[i];     for (i=1;i<=n;i++) {
       printf("%.3e ",y[i][j]);        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
     printf("\n");        fprintf(ficrespow," %.12lf", p[i]);
   }      }
   */      printf("\n");
       fprintf(ficlog,"\n");
   free_matrix(a,1,npar,1,npar);      fprintf(ficrespow,"\n");fflush(ficrespow);
   free_matrix(y,1,npar,1,npar);      if(*iter <=3){
   free_vector(x,1,npar);        tm = *localtime(&curr_time.tv_sec);
   free_ivector(indx,1,npar);        strcpy(strcurr,asctime(&tm));
   free_matrix(hess,1,npar,1,npar);  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
         itmp = strlen(strcurr);
 }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
 /*************** hessian matrix ****************/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 double hessii( double x[], double delta, int theta, double delti[])        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        for(niterf=10;niterf<=30;niterf+=10){
   int i;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   int l=1, lmax=20;          tmf = *localtime(&forecast_time.tv_sec);
   double k1,k2;  /*      asctime_r(&tmf,strfor); */
   double p2[NPARMAX+1];          strcpy(strfor,asctime(&tmf));
   double res;          itmp = strlen(strfor);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          if(strfor[itmp-1]=='\n')
   double fx;          strfor[itmp-1]='\0';
   int k=0,kmax=10;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double l1;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   fx=func(x);      }
   for (i=1;i<=npar;i++) p2[i]=x[i];      for (i=1;i<=n;i++) { 
   for(l=0 ; l <=lmax; l++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     l1=pow(10,l);        fptt=(*fret); 
     delts=delt;  #ifdef DEBUG
     for(k=1 ; k <kmax; k=k+1){        printf("fret=%lf \n",*fret);
       delt = delta*(l1*k);        fprintf(ficlog,"fret=%lf \n",*fret);
       p2[theta]=x[theta] +delt;  #endif
       k1=func(p2)-fx;        printf("%d",i);fflush(stdout);
       p2[theta]=x[theta]-delt;        fprintf(ficlog,"%d",i);fflush(ficlog);
       k2=func(p2)-fx;        linmin(p,xit,n,fret,func); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        if (fabs(fptt-(*fret)) > del) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          del=fabs(fptt-(*fret)); 
                ibig=i; 
 #ifdef DEBUG        } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  #ifdef DEBUG
 #endif        printf("%d %.12e",i,(*fret));
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fprintf(ficlog,"%d %.12e",i,(*fret));
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        for (j=1;j<=n;j++) {
         k=kmax;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       }          printf(" x(%d)=%.12e",j,xit[j]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         k=kmax; l=lmax*10.;        }
       }        for(j=1;j<=n;j++) {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          printf(" p=%.12e",p[j]);
         delts=delt;          fprintf(ficlog," p=%.12e",p[j]);
       }        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
   delti[theta]=delts;  #endif
   return res;      } 
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 }  #ifdef DEBUG
         int k[2],l;
 double hessij( double x[], double delti[], int thetai,int thetaj)        k[0]=1;
 {        k[1]=-1;
   int i;        printf("Max: %.12e",(*func)(p));
   int l=1, l1, lmax=20;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double k1,k2,k3,k4,res,fx;        for (j=1;j<=n;j++) {
   double p2[NPARMAX+1];          printf(" %.12e",p[j]);
   int k;          fprintf(ficlog," %.12e",p[j]);
         }
   fx=func(x);        printf("\n");
   for (k=1; k<=2; k++) {        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++) p2[i]=x[i];        for(l=0;l<=1;l++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;          for (j=1;j<=n;j++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     k1=func(p2)-fx;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
              fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     k2=func(p2)-fx;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;  #endif
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  
          free_vector(xit,1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        free_vector(xits,1,n); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        free_vector(ptt,1,n); 
     k4=func(p2)-fx;        free_vector(pt,1,n); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        return; 
 #ifdef DEBUG      } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 #endif      for (j=1;j<=n;j++) { 
   }        ptt[j]=2.0*p[j]-pt[j]; 
   return res;        xit[j]=p[j]-pt[j]; 
 }        pt[j]=p[j]; 
       } 
 /************** Inverse of matrix **************/      fptt=(*func)(ptt); 
 void ludcmp(double **a, int n, int *indx, double *d)      if (fptt < fp) { 
 {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   int i,imax,j,k;        if (t < 0.0) { 
   double big,dum,sum,temp;          linmin(p,xit,n,fret,func); 
   double *vv;          for (j=1;j<=n;j++) { 
              xi[j][ibig]=xi[j][n]; 
   vv=vector(1,n);            xi[j][n]=xit[j]; 
   *d=1.0;          }
   for (i=1;i<=n;i++) {  #ifdef DEBUG
     big=0.0;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (j=1;j<=n;j++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       if ((temp=fabs(a[i][j])) > big) big=temp;          for(j=1;j<=n;j++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            printf(" %.12e",xit[j]);
     vv[i]=1.0/big;            fprintf(ficlog," %.12e",xit[j]);
   }          }
   for (j=1;j<=n;j++) {          printf("\n");
     for (i=1;i<j;i++) {          fprintf(ficlog,"\n");
       sum=a[i][j];  #endif
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;      } 
     }    } 
     big=0.0;  } 
     for (i=j;i<=n;i++) {  
       sum=a[i][j];  /**** Prevalence limit (stable or period prevalence)  ****************/
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       a[i][j]=sum;  {
       if ( (dum=vv[i]*fabs(sum)) >= big) {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         big=dum;       matrix by transitions matrix until convergence is reached */
         imax=i;  
       }    int i, ii,j,k;
     }    double min, max, maxmin, maxmax,sumnew=0.;
     if (j != imax) {    double **matprod2();
       for (k=1;k<=n;k++) {    double **out, cov[NCOVMAX], **pmij();
         dum=a[imax][k];    double **newm;
         a[imax][k]=a[j][k];    double agefin, delaymax=50 ; /* Max number of years to converge */
         a[j][k]=dum;  
       }    for (ii=1;ii<=nlstate+ndeath;ii++)
       *d = -(*d);      for (j=1;j<=nlstate+ndeath;j++){
       vv[imax]=vv[j];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;     cov[1]=1.;
     if (j != n) {   
       dum=1.0/(a[j][j]);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
   }      /* Covariates have to be included here again */
   free_vector(vv,1,n);  /* Doesn't work */       cov[2]=agefin;
 ;    
 }        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 void lubksb(double **a, int n, int *indx, double b[])          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 {        }
   int i,ii=0,ip,j;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double sum;        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (i=1;i<=n;i++) {  
     ip=indx[i];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     sum=b[ip];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     b[ip]=b[i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     if (ii)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;      savm=oldm;
     b[i]=sum;      oldm=newm;
   }      maxmax=0.;
   for (i=n;i>=1;i--) {      for(j=1;j<=nlstate;j++){
     sum=b[i];        min=1.;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        max=0.;
     b[i]=sum/a[i][i];        for(i=1; i<=nlstate; i++) {
   }          sumnew=0;
 }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
 /************ Frequencies ********************/          max=FMAX(max,prlim[i][j]);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          min=FMIN(min,prlim[i][j]);
 {  /* Some frequencies */        }
          maxmin=max-min;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        maxmax=FMAX(maxmax,maxmin);
   double ***freq; /* Frequencies */      }
   double *pp;      if(maxmax < ftolpl){
   double pos, k2, dateintsum=0,k2cpt=0;        return prlim;
   FILE *ficresp;      }
   char fileresp[FILENAMELENGTH];    }
    }
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*************** transition probabilities ***************/ 
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double s1, s2;
     exit(0);    /*double t34;*/
   }    int i,j,j1, nc, ii, jj;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
   j=cptcoveff;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            /*s2 += param[i][j][nc]*cov[nc];*/
              s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for(k1=1; k1<=j;k1++){  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     for(i1=1; i1<=ncodemax[k1];i1++){          }
       j1++;          ps[i][j]=s2;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         scanf("%d", i);*/        }
       for (i=-1; i<=nlstate+ndeath; i++)          for(j=i+1; j<=nlstate+ndeath;j++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           for(m=agemin; m <= agemax+3; m++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
             freq[i][jk][m]=0;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
                }
       dateintsum=0;          ps[i][j]=s2;
       k2cpt=0;        }
       for (i=1; i<=imx; i++) {      }
         bool=1;      /*ps[3][2]=1;*/
         if  (cptcovn>0) {      
           for (z1=1; z1<=cptcoveff; z1++)      for(i=1; i<= nlstate; i++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        s1=0;
               bool=0;        for(j=1; j<i; j++)
         }          s1+=exp(ps[i][j]);
         if (bool==1) {        for(j=i+1; j<=nlstate+ndeath; j++)
           for(m=firstpass; m<=lastpass; m++){          s1+=exp(ps[i][j]);
             k2=anint[m][i]+(mint[m][i]/12.);        ps[i][i]=1./(s1+1.);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(j=1; j<i; j++)
               if(agev[m][i]==0) agev[m][i]=agemax+1;          ps[i][j]= exp(ps[i][j])*ps[i][i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for(j=i+1; j<=nlstate+ndeath; j++)
               if (m<lastpass) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      } /* end i */
               }      
                    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for(jj=1; jj<= nlstate+ndeath; jj++){
                 dateintsum=dateintsum+k2;          ps[ii][jj]=0;
                 k2cpt++;          ps[ii][ii]=1;
               }        }
             }      }
           }      
         }  
       }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
          /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*         printf("ddd %lf ",ps[ii][jj]); */
   /*       } */
       if  (cptcovn>0) {  /*       printf("\n "); */
         fprintf(ficresp, "\n#********** Variable ");  /*        } */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*        printf("\n ");printf("%lf ",cov[2]); */
         fprintf(ficresp, "**********\n#");         /*
       }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       for(i=1; i<=nlstate;i++)        goto end;*/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      return ps;
       fprintf(ficresp, "\n");  }
        
       for(i=(int)agemin; i <= (int)agemax+3; i++){  /**************** Product of 2 matrices ******************/
         if(i==(int)agemax+3)  
           printf("Total");  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         else  {
           printf("Age %d", i);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         for(jk=1; jk <=nlstate ; jk++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /* in, b, out are matrice of pointers which should have been initialized 
             pp[jk] += freq[jk][m][i];       before: only the contents of out is modified. The function returns
         }       a pointer to pointers identical to out */
         for(jk=1; jk <=nlstate ; jk++){    long i, j, k;
           for(m=-1, pos=0; m <=0 ; m++)    for(i=nrl; i<= nrh; i++)
             pos += freq[jk][m][i];      for(k=ncolol; k<=ncoloh; k++)
           if(pp[jk]>=1.e-10)        for(j=ncl,out[i][k]=0.; j<=nch; j++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          out[i][k] +=in[i][j]*b[j][k];
           else  
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    return out;
         }  }
   
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /************* Higher Matrix Product ***************/
             pp[jk] += freq[jk][m][i];  
         }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
         for(jk=1,pos=0; jk <=nlstate ; jk++)    /* Computes the transition matrix starting at age 'age' over 
           pos += pp[jk];       'nhstepm*hstepm*stepm' months (i.e. until
         for(jk=1; jk <=nlstate ; jk++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           if(pos>=1.e-5)       nhstepm*hstepm matrices. 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           else       (typically every 2 years instead of every month which is too big 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       for the memory).
           if( i <= (int) agemax){       Model is determined by parameters x and covariates have to be 
             if(pos>=1.e-5){       included manually here. 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;       */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }    int i, j, d, h, k;
             else    double **out, cov[NCOVMAX];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    double **newm;
           }  
         }    /* Hstepm could be zero and should return the unit matrix */
            for (i=1;i<=nlstate+ndeath;i++)
         for(jk=-1; jk <=nlstate+ndeath; jk++)      for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1; m <=nlstate+ndeath; m++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        po[i][j][0]=(i==j ? 1.0 : 0.0);
         if(i <= (int) agemax)      }
           fprintf(ficresp,"\n");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         printf("\n");    for(h=1; h <=nhstepm; h++){
       }      for(d=1; d <=hstepm; d++){
     }        newm=savm;
   }        /* Covariates have to be included here again */
   dateintmean=dateintsum/k2cpt;        cov[1]=1.;
          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   fclose(ficresp);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for (k=1; k<=cptcovage;k++)
   free_vector(pp,1,nlstate);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
   /* End of Freq */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }  
   
 /************ Prevalence ********************/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 {  /* Some frequencies */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                       pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        savm=oldm;
   double ***freq; /* Frequencies */        oldm=newm;
   double *pp;      }
   double pos, k2;      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   pp=vector(1,nlstate);          po[i][j][h]=newm[i][j];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        }
   j1=0;    } /* end h */
      return po;
   j=cptcoveff;  }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    
  for(k1=1; k1<=j;k1++){  /*************** log-likelihood *************/
     for(i1=1; i1<=ncodemax[k1];i1++){  double func( double *x)
       j1++;  {
      int i, ii, j, k, mi, d, kk;
       for (i=-1; i<=nlstate+ndeath; i++)      double l, ll[NLSTATEMAX], cov[NCOVMAX];
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double **out;
           for(m=agemin; m <= agemax+3; m++)    double sw; /* Sum of weights */
             freq[i][jk][m]=0;    double lli; /* Individual log likelihood */
          int s1, s2;
       for (i=1; i<=imx; i++) {    double bbh, survp;
         bool=1;    long ipmx;
         if  (cptcovn>0) {    /*extern weight */
           for (z1=1; z1<=cptcoveff; z1++)    /* We are differentiating ll according to initial status */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               bool=0;    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
         if (bool==1) {    */
           for(m=firstpass; m<=lastpass; m++){    cov[1]=1.;
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    if(mle==1){
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             }        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=(int)agemin; i <= (int)agemax+3; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(jk=1; jk <=nlstate ; jk++){            }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for(d=0; d<dh[mi][i]; d++){
               pp[jk] += freq[jk][m][i];            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
             for(m=-1, pos=0; m <=0 ; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             pos += freq[jk][m][i];            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            oldm=newm;
              pp[jk] += freq[jk][m][i];          } /* end mult */
          }        
                    /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
          for(jk=1; jk <=nlstate ; jk++){                     * (in months) between two waves is not a multiple of stepm, we rounded to 
            if( i <= (int) agemax){           * the nearest (and in case of equal distance, to the lowest) interval but now
              if(pos>=1.e-5){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                probs[i][jk][j1]= pp[jk]/pos;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
              }           * probability in order to take into account the bias as a fraction of the way
            }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
          }           * -stepm/2 to stepm/2 .
                     * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
   }          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          /* bias bh is positive if real duration
   free_vector(pp,1,nlstate);           * is higher than the multiple of stepm and negative otherwise.
             */
 }  /* End of Freq */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
 /************* Waves Concatenation ***************/            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)               die between last step unit time and current  step unit time, 
 {               which is also equal to probability to die before dh 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.               minus probability to die before dh-stepm . 
      Death is a valid wave (if date is known).               In version up to 0.92 likelihood was computed
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          as if date of death was unknown. Death was treated as any other
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          health state: the date of the interview describes the actual state
      and mw[mi+1][i]. dh depends on stepm.          and not the date of a change in health state. The former idea was
      */          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   int i, mi, m;          introduced the exact date of death then we should have modified
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          the contribution of an exact death to the likelihood. This new
      double sum=0., jmean=0.;*/          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
   int j, k=0,jk, ju, jl;          and month of death but the probability to survive from last
   double sum=0.;          interview up to one month before death multiplied by the
   jmin=1e+5;          probability to die within a month. Thanks to Chris
   jmax=-1;          Jackson for correcting this bug.  Former versions increased
   jmean=0.;          mortality artificially. The bad side is that we add another loop
   for(i=1; i<=imx; i++){          which slows down the processing. The difference can be up to 10%
     mi=0;          lower mortality.
     m=firstpass;            */
     while(s[m][i] <= nlstate){            lli=log(out[s1][s2] - savm[s1][s2]);
       if(s[m][i]>=1)  
         mw[++mi][i]=m;  
       if(m >=lastpass)          } else if  (s2==-2) {
         break;            for (j=1,survp=0. ; j<=nlstate; j++) 
       else              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         m++;            /*survp += out[s1][j]; */
     }/* end while */            lli= log(survp);
     if (s[m][i] > nlstate){          }
       mi++;     /* Death is another wave */          
       /* if(mi==0)  never been interviewed correctly before death */          else if  (s2==-4) { 
          /* Only death is a correct wave */            for (j=3,survp=0. ; j<=nlstate; j++)  
       mw[mi][i]=m;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     }            lli= log(survp); 
           } 
     wav[i]=mi;  
     if(mi==0)          else if  (s2==-5) { 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            for (j=1,survp=0. ; j<=2; j++)  
   }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   for(i=1; i<=imx; i++){          } 
     for(mi=1; mi<wav[i];mi++){          
       if (stepm <=0)          else{
         dh[mi][i]=1;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       else{            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         if (s[mw[mi+1][i]][i] > nlstate) {          } 
           if (agedc[i] < 2*AGESUP) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          /*if(lli ==000.0)*/
           if(j==0) j=1;  /* Survives at least one month after exam */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           k=k+1;          ipmx +=1;
           if (j >= jmax) jmax=j;          sw += weight[i];
           if (j <= jmin) jmin=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           sum=sum+j;        } /* end of wave */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      } /* end of individual */
           }    }  else if(mle==2){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         else{        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for(mi=1; mi<= wav[i]-1; mi++){
           k=k+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
           if (j >= jmax) jmax=j;            for (j=1;j<=nlstate+ndeath;j++){
           else if (j <= jmin)jmin=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;            }
         }          for(d=0; d<=dh[mi][i]; d++){
         jk= j/stepm;            newm=savm;
         jl= j -jk*stepm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         ju= j -(jk+1)*stepm;            for (kk=1; kk<=cptcovage;kk++) {
         if(jl <= -ju)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           dh[mi][i]=jk;            }
         else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=jk+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(dh[mi][i]==0)            savm=oldm;
           dh[mi][i]=1; /* At least one step */            oldm=newm;
       }          } /* end mult */
     }        
   }          s1=s[mw[mi][i]][i];
   jmean=sum/k;          s2=s[mw[mi+1][i]][i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          bbh=(double)bh[mi][i]/(double)stepm; 
  }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 /*********** Tricode ****************************/          ipmx +=1;
 void tricode(int *Tvar, int **nbcode, int imx)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int Ndum[20],ij=1, k, j, i;        } /* end of wave */
   int cptcode=0;      } /* end of individual */
   cptcoveff=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (k=0; k<19; k++) Ndum[k]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (k=1; k<=7; k++) ncodemax[k]=0;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            for (j=1;j<=nlstate+ndeath;j++){
     for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       ij=(int)(covar[Tvar[j]][i]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       Ndum[ij]++;            }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          for(d=0; d<dh[mi][i]; d++){
       if (ij > cptcode) cptcode=ij;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     for (i=0; i<=cptcode; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(Ndum[i]!=0) ncodemax[j]++;            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     ij=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
     for (i=1; i<=ncodemax[j]; i++) {          } /* end mult */
       for (k=0; k<=19; k++) {        
         if (Ndum[k] != 0) {          s1=s[mw[mi][i]][i];
           nbcode[Tvar[j]][ij]=k;          s2=s[mw[mi+1][i]][i];
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/          bbh=(double)bh[mi][i]/(double)stepm; 
           ij++;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }          ipmx +=1;
         if (ij > ncodemax[j]) break;          sw += weight[i];
       }            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
   }        } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
  for (k=0; k<19; k++) Ndum[k]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  for (i=1; i<=ncovmodel-2; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       ij=Tvar[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
       Ndum[ij]++;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
  ij=1;            }
  for (i=1; i<=10; i++) {          for(d=0; d<dh[mi][i]; d++){
    if((Ndum[i]!=0) && (i<=ncovcol)){            newm=savm;
      Tvaraff[ij]=i;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      ij++;            for (kk=1; kk<=cptcovage;kk++) {
    }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  }            }
            
     cptcoveff=ij-1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /*********** Health Expectancies ****************/            oldm=newm;
           } /* end mult */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)        
 {          s1=s[mw[mi][i]][i];
   /* Health expectancies */          s2=s[mw[mi+1][i]][i];
   int i, j, nhstepm, hstepm, h, nstepm;          if( s2 > nlstate){ 
   double age, agelim, hf;            lli=log(out[s1][s2] - savm[s1][s2]);
   double ***p3mat;          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficreseij,"# Health expectancies\n");          }
   fprintf(ficreseij,"# Age");          ipmx +=1;
   for(i=1; i<=nlstate;i++)          sw += weight[i];
     for(j=1; j<=nlstate;j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficreseij," %1d-%1d",i,j);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficreseij,"\n");        } /* end of wave */
       } /* end of individual */
   if(estepm < stepm){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     printf ("Problem %d lower than %d\n",estepm, stepm);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   else  hstepm=estepm;          for(mi=1; mi<= wav[i]-1; mi++){
   /* We compute the life expectancy from trapezoids spaced every estepm months          for (ii=1;ii<=nlstate+ndeath;ii++)
    * This is mainly to measure the difference between two models: for example            for (j=1;j<=nlstate+ndeath;j++){
    * if stepm=24 months pijx are given only every 2 years and by summing them              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * we are calculating an estimate of the Life Expectancy assuming a linear              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * progression inbetween and thus overestimating or underestimating according            }
    * to the curvature of the survival function. If, for the same date, we          for(d=0; d<dh[mi][i]; d++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            newm=savm;
    * to compare the new estimate of Life expectancy with the same linear            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * hypothesis. A more precise result, taking into account a more precise            for (kk=1; kk<=cptcovage;kk++) {
    * curvature will be obtained if estepm is as small as stepm. */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   /* For example we decided to compute the life expectancy with the smallest unit */          
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      nhstepm is the number of hstepm from age to agelim                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      nstepm is the number of stepm from age to agelin.            savm=oldm;
      Look at hpijx to understand the reason of that which relies in memory size            oldm=newm;
      and note for a fixed period like estepm months */          } /* end mult */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        
      survival function given by stepm (the optimization length). Unfortunately it          s1=s[mw[mi][i]][i];
      means that if the survival funtion is printed only each two years of age and if          s2=s[mw[mi+1][i]][i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      results. So we changed our mind and took the option of the best precision.          ipmx +=1;
   */          sw += weight[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   agelim=AGESUP;        } /* end of wave */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } /* end of individual */
     /* nhstepm age range expressed in number of stepm */    } /* End of if */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     /* if (stepm >= YEARM) hstepm=1;*/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    return -l;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  /*************** log-likelihood *************/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    double funcone( double *x)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  {
     for(i=1; i<=nlstate;i++)    /* Same as likeli but slower because of a lot of printf and if */
       for(j=1; j<=nlstate;j++)    int i, ii, j, k, mi, d, kk;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double **out;
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double lli; /* Individual log likelihood */
         }    double llt;
     fprintf(ficreseij,"%3.0f",age );    int s1, s2;
     for(i=1; i<=nlstate;i++)    double bbh, survp;
       for(j=1; j<=nlstate;j++){    /*extern weight */
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);    /* We are differentiating ll according to initial status */
       }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     fprintf(ficreseij,"\n");    /*for(i=1;i<imx;i++) 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf(" %d\n",s[4][i]);
   }    */
 }    cov[1]=1.;
   
 /************ Variance ******************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  
 {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Variance of health expectancies */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(mi=1; mi<= wav[i]-1; mi++){
   double **newm;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double **dnewm,**doldm;          for (j=1;j<=nlstate+ndeath;j++){
   int i, j, nhstepm, hstepm, h, nstepm ;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k, cptcode;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;          }
   double **gp, **gm;        for(d=0; d<dh[mi][i]; d++){
   double ***gradg, ***trgradg;          newm=savm;
   double ***p3mat;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double age,agelim, hf;          for (kk=1; kk<=cptcovage;kk++) {
   int theta;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
    fprintf(ficresvij,"# Covariances of life expectancies\n");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresvij,"# Age");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=nlstate;i++)          savm=oldm;
     for(j=1; j<=nlstate;j++)          oldm=newm;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        } /* end mult */
   fprintf(ficresvij,"\n");        
         s1=s[mw[mi][i]][i];
   xp=vector(1,npar);        s2=s[mw[mi+1][i]][i];
   dnewm=matrix(1,nlstate,1,npar);        bbh=(double)bh[mi][i]/(double)stepm; 
   doldm=matrix(1,nlstate,1,nlstate);        /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
   if(estepm < stepm){         */
     printf ("Problem %d lower than %d\n",estepm, stepm);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }          lli=log(out[s1][s2] - savm[s1][s2]);
   else  hstepm=estepm;          } else if  (s2==-2) {
   /* For example we decided to compute the life expectancy with the smallest unit */          for (j=1,survp=0. ; j<=nlstate; j++) 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      nhstepm is the number of hstepm from age to agelim          lli= log(survp);
      nstepm is the number of stepm from age to agelin.        }else if (mle==1){
      Look at hpijx to understand the reason of that which relies in memory size          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      and note for a fixed period like k years */        } else if(mle==2){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      survival function given by stepm (the optimization length). Unfortunately it        } else if(mle==3){  /* exponential inter-extrapolation */
      means that if the survival funtion is printed only each two years of age and if          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        } else if (mle==4){  /* mle=4 no inter-extrapolation */
      results. So we changed our mind and took the option of the best precision.          lli=log(out[s1][s2]); /* Original formula */
   */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          lli=log(out[s1][s2]); /* Original formula */
   agelim = AGESUP;        } /* End of if */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        ipmx +=1;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        sw += weight[i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        if(globpr){
     gp=matrix(0,nhstepm,1,nlstate);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     gm=matrix(0,nhstepm,1,nlstate);   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     for(theta=1; theta <=npar; theta++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(i=1; i<=npar; i++){ /* Computes gradient */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficresilk," %10.6f\n", -llt);
         }
       if (popbased==1) {      } /* end of wave */
         for(i=1; i<=nlstate;i++)    } /* end of individual */
           prlim[i][i]=probs[(int)age][i][ij];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(j=1; j<= nlstate; j++){    if(globpr==0){ /* First time we count the contributions and weights */
         for(h=0; h<=nhstepm; h++){      gipmx=ipmx;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      gsw=sw;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    }
         }    return -l;
       }  }
      
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /*************** function likelione ***********/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
      /* This routine should help understanding what is done with 
       if (popbased==1) {       the selection of individuals/waves and
         for(i=1; i<=nlstate;i++)       to check the exact contribution to the likelihood.
           prlim[i][i]=probs[(int)age][i][ij];       Plotting could be done.
       }     */
     int k;
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    if(*globpri !=0){ /* Just counts and sums, no printings */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      strcpy(fileresilk,"ilk"); 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      strcat(fileresilk,fileres);
         }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       }        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for(j=1; j<= nlstate; j++)      }
         for(h=0; h<=nhstepm; h++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     } /* End theta */      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    *fretone=(*funcone)(p);
         for(theta=1; theta <=npar; theta++)    if(*globpri !=0){
           trgradg[h][j][theta]=gradg[h][theta][j];      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      fflush(fichtm); 
     for(i=1;i<=nlstate;i++)    } 
       for(j=1;j<=nlstate;j++)    return;
         vareij[i][j][(int)age] =0.;  }
   
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){  /*********** Maximum Likelihood Estimation ***************/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         for(i=1;i<=nlstate;i++)  {
           for(j=1;j<=nlstate;j++)    int i,j, iter;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double **xi;
       }    double fret;
     }    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
     fprintf(ficresvij,"%.0f ",age );    xi=matrix(1,npar,1,npar);
     for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++){      for (j=1;j<=npar;j++)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     fprintf(ficresvij,"\n");    strcpy(filerespow,"pow"); 
     free_matrix(gp,0,nhstepm,1,nlstate);    strcat(filerespow,fileres);
     free_matrix(gm,0,nhstepm,1,nlstate);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      printf("Problem with resultfile: %s\n", filerespow);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   } /* End age */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for (i=1;i<=nlstate;i++)
   free_vector(xp,1,npar);      for(j=1;j<=nlstate+ndeath;j++)
   free_matrix(doldm,1,nlstate,1,npar);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   free_matrix(dnewm,1,nlstate,1,nlstate);    fprintf(ficrespow,"\n");
   
 }    powell(p,xi,npar,ftol,&iter,&fret,func);
   
 /************ Variance of prevlim ******************/    free_matrix(xi,1,npar,1,npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    fclose(ficrespow);
 {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* Variance of prevalence limit */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double **newm;  
   double **dnewm,**doldm;  }
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  /**** Computes Hessian and covariance matrix ***/
   double *xp;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double *gp, *gm;  {
   double **gradg, **trgradg;    double  **a,**y,*x,pd;
   double age,agelim;    double **hess;
   int theta;    int i, j,jk;
        int *indx;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   for(i=1; i<=nlstate;i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       fprintf(ficresvpl," %1d-%1d",i,i);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   fprintf(ficresvpl,"\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
   xp=vector(1,npar);    hess=matrix(1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    printf("\nCalculation of the hessian matrix. Wait...\n");
      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   hstepm=1*YEARM; /* Every year of age */    for (i=1;i<=npar;i++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      printf("%d",i);fflush(stdout);
   agelim = AGESUP;      fprintf(ficlog,"%d",i);fflush(ficlog);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     if (stepm >= YEARM) hstepm=1;      
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      /*  printf(" %f ",p[i]);
     gradg=matrix(1,npar,1,nlstate);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     gp=vector(1,nlstate);    }
     gm=vector(1,nlstate);    
     for (i=1;i<=npar;i++) {
     for(theta=1; theta <=npar; theta++){      for (j=1;j<=npar;j++)  {
       for(i=1; i<=npar; i++){ /* Computes gradient */        if (j>i) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          printf(".%d%d",i,j);fflush(stdout);
       }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          hess[i][j]=hessij(p,delti,i,j,func,npar);
       for(i=1;i<=nlstate;i++)          
         gp[i] = prlim[i][i];          hess[j][i]=hess[i][j];    
              /*printf(" %lf ",hess[i][j]);*/
       for(i=1; i<=npar; i++) /* Computes gradient */        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)    printf("\n");
         gm[i] = prlim[i][i];    fprintf(ficlog,"\n");
   
       for(i=1;i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     } /* End theta */    
     a=matrix(1,npar,1,npar);
     trgradg =matrix(1,nlstate,1,npar);    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     for(j=1; j<=nlstate;j++)    indx=ivector(1,npar);
       for(theta=1; theta <=npar; theta++)    for (i=1;i<=npar;i++)
         trgradg[j][theta]=gradg[theta][j];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;    for (j=1;j<=npar;j++) {
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for (i=1;i<=npar;i++) x[i]=0;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      x[j]=1;
     for(i=1;i<=nlstate;i++)      lubksb(a,npar,indx,x);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     fprintf(ficresvpl,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)    }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    printf("\n#Hessian matrix#\n");
     free_vector(gp,1,nlstate);    fprintf(ficlog,"\n#Hessian matrix#\n");
     free_vector(gm,1,nlstate);    for (i=1;i<=npar;i++) { 
     free_matrix(gradg,1,npar,1,nlstate);      for (j=1;j<=npar;j++) { 
     free_matrix(trgradg,1,nlstate,1,npar);        printf("%.3e ",hess[i][j]);
   } /* End age */        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   free_vector(xp,1,npar);      printf("\n");
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficlog,"\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
   
 }    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
 /************ Variance of one-step probabilities  ******************/      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)    ludcmp(a,npar,indx,&pd);
 {  
   int i, j;    /*  printf("\n#Hessian matrix recomputed#\n");
   int k=0, cptcode;  
   double **dnewm,**doldm;    for (j=1;j<=npar;j++) {
   double *xp;      for (i=1;i<=npar;i++) x[i]=0;
   double *gp, *gm;      x[j]=1;
   double **gradg, **trgradg;      lubksb(a,npar,indx,x);
   double age,agelim, cov[NCOVMAX];      for (i=1;i<=npar;i++){ 
   int theta;        y[i][j]=x[i];
   char fileresprob[FILENAMELENGTH];        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   strcpy(fileresprob,"prob");      }
   strcat(fileresprob,fileres);      printf("\n");
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      fprintf(ficlog,"\n");
     printf("Problem with resultfile: %s\n", fileresprob);    }
   }    */
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  
      free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   xp=vector(1,npar);    free_vector(x,1,npar);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_ivector(indx,1,npar);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    free_matrix(hess,1,npar,1,npar);
    
   cov[1]=1;  
   for (age=bage; age<=fage; age ++){  }
     cov[2]=age;  
     gradg=matrix(1,npar,1,9);  /*************** hessian matrix ****************/
     trgradg=matrix(1,9,1,npar);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  {
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    int i;
        int l=1, lmax=20;
     for(theta=1; theta <=npar; theta++){    double k1,k2;
       for(i=1; i<=npar; i++)    double p2[NPARMAX+1];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double res;
          double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    double fx;
        int k=0,kmax=10;
       k=0;    double l1;
       for(i=1; i<= (nlstate+ndeath); i++){  
         for(j=1; j<=(nlstate+ndeath);j++){    fx=func(x);
            k=k+1;    for (i=1;i<=npar;i++) p2[i]=x[i];
           gp[k]=pmmij[i][j];    for(l=0 ; l <=lmax; l++){
         }      l1=pow(10,l);
       }      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
       for(i=1; i<=npar; i++)        delt = delta*(l1*k);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        p2[theta]=x[theta] +delt;
            k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        k2=func(p2)-fx;
       k=0;        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(i=1; i<=(nlstate+ndeath); i++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         for(j=1; j<=(nlstate+ndeath);j++){        
           k=k+1;  #ifdef DEBUG
           gm[k]=pmmij[i][j];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
              /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            k=kmax;
     }        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          k=kmax; l=lmax*10.;
       for(theta=1; theta <=npar; theta++)        }
       trgradg[j][theta]=gradg[theta][j];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        }
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);      }
     }
      pmij(pmmij,cov,ncovmodel,x,nlstate);    delti[theta]=delts;
     return res; 
      k=0;    
      for(i=1; i<=(nlstate+ndeath); i++){  }
        for(j=1; j<=(nlstate+ndeath);j++){  
          k=k+1;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
          gm[k]=pmmij[i][j];  {
         }    int i;
      }    int l=1, l1, lmax=20;
          double k1,k2,k3,k4,res,fx;
      /*printf("\n%d ",(int)age);    double p2[NPARMAX+1];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    int k;
          
     fx=func(x);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    for (k=1; k<=2; k++) {
      }*/      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   fprintf(ficresprob,"\n%d ",(int)age);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      p2[thetai]=x[thetai]+delti[thetai]/k;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k2=func(p2)-fx;
     
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetai]=x[thetai]-delti[thetai]/k;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      k3=func(p2)-fx;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
 }      p2[thetai]=x[thetai]-delti[thetai]/k;
  free_vector(xp,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 fclose(ficresprob);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 }  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 /******************* Printing html file ***********/      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  #endif
  int lastpass, int stepm, int weightopt, char model[],\    }
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    return res;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  }
  char version[], int popforecast, int estepm ){  
   int jj1, k1, i1, cpt;  /************** Inverse of matrix **************/
   FILE *fichtm;  void ludcmp(double **a, int n, int *indx, double *d) 
   /*char optionfilehtm[FILENAMELENGTH];*/  { 
     int i,imax,j,k; 
   strcpy(optionfilehtm,optionfile);    double big,dum,sum,temp; 
   strcat(optionfilehtm,".htm");    double *vv; 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {   
     printf("Problem with %s \n",optionfilehtm), exit(0);    vv=vector(1,n); 
   }    *d=1.0; 
     for (i=1;i<=n;i++) { 
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      big=0.0; 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      for (j=1;j<=n;j++) 
 \n        if ((temp=fabs(a[i][j])) > big) big=temp; 
 Total number of observations=%d <br>\n      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      vv[i]=1.0/big; 
 <hr  size=\"2\" color=\"#EC5E5E\">    } 
  <ul><li>Outputs files<br>\n    for (j=1;j<=n;j++) { 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      for (i=1;i<j;i++) { 
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n        sum=a[i][j]; 
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n        a[i][j]=sum; 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      } 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      big=0.0; 
       for (i=j;i<=n;i++) { 
  fprintf(fichtm,"\n        sum=a[i][j]; 
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        for (k=1;k<j;k++) 
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          sum -= a[i][k]*a[k][j]; 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n        a[i][j]=sum; 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
  if(popforecast==1) fprintf(fichtm,"\n          imax=i; 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        } 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      } 
         <br>",fileres,fileres,fileres,fileres);      if (j != imax) { 
  else        for (k=1;k<=n;k++) { 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          dum=a[imax][k]; 
 fprintf(fichtm," <li>Graphs</li><p>");          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
  m=cptcoveff;        } 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        *d = -(*d); 
         vv[imax]=vv[j]; 
  jj1=0;      } 
  for(k1=1; k1<=m;k1++){      indx[j]=imax; 
    for(i1=1; i1<=ncodemax[k1];i1++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
        jj1++;      if (j != n) { 
        if (cptcovn > 0) {        dum=1.0/(a[j][j]); 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
          for (cpt=1; cpt<=cptcoveff;cpt++)      } 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    } 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_vector(vv,1,n);  /* Doesn't work */
        }  ;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  } 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
        for(cpt=1; cpt<nlstate;cpt++){  void lubksb(double **a, int n, int *indx, double b[]) 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  { 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    int i,ii=0,ip,j; 
        }    double sum; 
     for(cpt=1; cpt<=nlstate;cpt++) {   
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    for (i=1;i<=n;i++) { 
 interval) in state (%d): v%s%d%d.gif <br>      ip=indx[i]; 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        sum=b[ip]; 
      }      b[ip]=b[i]; 
      for(cpt=1; cpt<=nlstate;cpt++) {      if (ii) 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      else if (sum) ii=i; 
      }      b[i]=sum; 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    } 
 health expectancies in states (1) and (2): e%s%d.gif<br>    for (i=n;i>=1;i--) { 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      sum=b[i]; 
 fprintf(fichtm,"\n</body>");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
    }      b[i]=sum/a[i][i]; 
    }    } 
 fclose(fichtm);  } 
 }  
   void pstamp(FILE *fichier)
 /******************* Gnuplot file **************/  {
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   /************ Frequencies ********************/
   strcpy(optionfilegnuplot,optionfilefiname);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   strcat(optionfilegnuplot,".gp.txt");  {  /* Some frequencies */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    
     printf("Problem with file %s",optionfilegnuplot);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   }    int first;
     double ***freq; /* Frequencies */
 #ifdef windows    double *pp, **prop;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
 #endif    char fileresp[FILENAMELENGTH];
 m=pow(2,cptcoveff);    
      pp=vector(1,nlstate);
  /* 1eme*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    strcpy(fileresp,"p");
    for (k1=1; k1<= m ; k1 ++) {    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
 #ifdef windows      printf("Problem with prevalence resultfile: %s\n", fileresp);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 #endif      exit(0);
 #ifdef unix    }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 #endif    j1=0;
     
 for (i=1; i<= nlstate ; i ++) {    j=cptcoveff;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    first=1;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {    for(k1=1; k1<=j;k1++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(i1=1; i1<=ncodemax[k1];i1++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        j1++;
 }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          scanf("%d", i);*/
      for (i=1; i<= nlstate ; i ++) {        for (i=-5; i<=nlstate+ndeath; i++)  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(m=iagemin; m <= iagemax+3; m++)
 }                freq[i][jk][m]=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix      for (i=1; i<=nlstate; i++)  
 fprintf(ficgp,"\nset ter gif small size 400,300");        for(m=iagemin; m <= iagemax+3; m++)
 #endif          prop[i][m]=0;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        
    }        dateintsum=0;
   }        k2cpt=0;
   /*2 eme*/        for (i=1; i<=imx; i++) {
           bool=1;
   for (k1=1; k1<= m ; k1 ++) {          if  (cptcovn>0) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);            for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for (i=1; i<= nlstate+1 ; i ++) {                bool=0;
       k=2*i;          }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          if (bool==1){
       for (j=1; j<= nlstate+1 ; j ++) {            for(m=firstpass; m<=lastpass; m++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              k2=anint[m][i]+(mint[m][i]/12.);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 }                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                if (m<lastpass) {
       for (j=1; j<= nlstate+1 ; j ++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         else fprintf(ficgp," \%%*lf (\%%*lf)");                }
 }                  
       fprintf(ficgp,"\" t\"\" w l 0,");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                  dateintsum=dateintsum+k2;
       for (j=1; j<= nlstate+1 ; j ++) {                  k2cpt++;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                }
   else fprintf(ficgp," \%%*lf (\%%*lf)");                /*}*/
 }              }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }
       else fprintf(ficgp,"\" t\"\" w l 0,");        }
     }         
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   }        pstamp(ficresp);
          if  (cptcovn>0) {
   /*3eme*/          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for (k1=1; k1<= m ; k1 ++) {          fprintf(ficresp, "**********\n#");
     for (cpt=1; cpt<= nlstate ; cpt ++) {        }
       k=2+nlstate*(cpt-1);        for(i=1; i<=nlstate;i++) 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for (i=1; i< nlstate ; i ++) {        fprintf(ficresp, "\n");
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        
       }        for(i=iagemin; i <= iagemax+3; i++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if(i==iagemax+3){
     }            fprintf(ficlog,"Total");
     }            fprintf(fichtm,"<br>Total<br>");
            }else{
   /* CV preval stat */            if(first==1){
     for (k1=1; k1<= m ; k1 ++) {              first=0;
     for (cpt=1; cpt<nlstate ; cpt ++) {              printf("See log file for details...\n");
       k=3;            }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            fprintf(ficlog,"Age %d", i);
           }
       for (i=1; i< nlstate ; i ++)          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficgp,"+$%d",k+i+1);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              pp[jk] += freq[jk][m][i]; 
                }
       l=3+(nlstate+ndeath)*cpt;          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            for(m=-1, pos=0; m <=0 ; m++)
       for (i=1; i< nlstate ; i ++) {              pos += freq[jk][m][i];
         l=3+(nlstate+ndeath)*cpt;            if(pp[jk]>=1.e-10){
         fprintf(ficgp,"+$%d",l+i+1);              if(first==1){
       }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }            }else{
   }                if(first==1)
                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /* proba elementaires */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    for(i=1,jk=1; i <=nlstate; i++){            }
     for(k=1; k <=(nlstate+ndeath); k++){          }
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){          for(jk=1; jk <=nlstate ; jk++){
                    for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              pp[jk] += freq[jk][m][i];
           jk++;          }       
           fprintf(ficgp,"\n");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         }            pos += pp[jk];
       }            posprop += prop[jk][i];
     }          }
     }          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
     for(jk=1; jk <=m; jk++) {              if(first==1)
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    i=1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    for(k2=1; k2<=nlstate; k2++) {            }else{
      k3=i;              if(first==1)
      for(k=1; k<=(nlstate+ndeath); k++) {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        if (k != k2){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            }
 ij=1;            if( i <= iagemax){
         for(j=3; j <=ncovmodel; j++) {              if(pos>=1.e-5){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                /*probs[i][jk][j1]= pp[jk]/pos;*/
             ij++;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           }              }
           else              else
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         }            }
           fprintf(ficgp,")/(1");          }
                  
         for(k1=1; k1 <=nlstate; k1++){            for(jk=-1; jk <=nlstate+ndeath; jk++)
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            for(m=-1; m <=nlstate+ndeath; m++)
 ij=1;              if(freq[jk][m][i] !=0 ) {
           for(j=3; j <=ncovmodel; j++){              if(first==1)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
             ij++;              }
           }          if(i <= iagemax)
           else            fprintf(ficresp,"\n");
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          if(first==1)
           }            printf("Others in log...\n");
           fprintf(ficgp,")");          fprintf(ficlog,"\n");
         }        }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    }
         i=i+ncovmodel;    dateintmean=dateintsum/k2cpt; 
        }   
      }    fclose(ficresp);
    }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    free_vector(pp,1,nlstate);
    }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        /* End of Freq */
   fclose(ficgp);  }
 }  /* end gnuplot */  
   /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 /*************** Moving average **************/  {  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   int i, cpt, cptcod;       We still use firstpass and lastpass as another selection.
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    */
       for (i=1; i<=nlstate;i++)   
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           mobaverage[(int)agedeb][i][cptcod]=0.;    double ***freq; /* Frequencies */
        double *pp, **prop;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    double pos,posprop; 
       for (i=1; i<=nlstate;i++){    double  y2; /* in fractional years */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int iagemin, iagemax;
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    iagemin= (int) agemin;
           }    iagemax= (int) agemax;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    /*pp=vector(1,nlstate);*/
         }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     }    j1=0;
        
 }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
 /************** Forecasting ******************/    for(k1=1; k1<=j;k1++){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      for(i1=1; i1<=ncodemax[k1];i1++){
          j1++;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        
   int *popage;        for (i=1; i<=nlstate; i++)  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          for(m=iagemin; m <= iagemax+3; m++)
   double *popeffectif,*popcount;            prop[i][m]=0.0;
   double ***p3mat;       
   char fileresf[FILENAMELENGTH];        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
  agelim=AGESUP;          if  (cptcovn>0) {
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                bool=0;
            } 
            if (bool==1) { 
   strcpy(fileresf,"f");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   strcat(fileresf,fileres);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   if((ficresf=fopen(fileresf,"w"))==NULL) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     printf("Problem with forecast resultfile: %s\n", fileresf);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   printf("Computing forecasting: result on file '%s' \n", fileresf);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if (mobilav==1) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                } 
     movingaverage(agedeb, fage, ageminpar, mobaverage);              }
   }            } /* end selection of waves */
           }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   if (stepm<=12) stepsize=1;        for(i=iagemin; i <= iagemax+3; i++){  
            
   agelim=AGESUP;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
              posprop += prop[jk][i]; 
   hstepm=1;          } 
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);          for(jk=1; jk <=nlstate ; jk++){     
   anprojmean=yp;            if( i <=  iagemax){ 
   yp2=modf((yp1*12),&yp);              if(posprop>=1.e-5){ 
   mprojmean=yp;                probs[i][jk][j1]= prop[jk][i]/posprop;
   yp1=modf((yp2*30.5),&yp);              } 
   jprojmean=yp;            } 
   if(jprojmean==0) jprojmean=1;          }/* end jk */ 
   if(mprojmean==0) jprojmean=1;        }/* end i */ 
        } /* end i1 */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    } /* end k1 */
      
   for(cptcov=1;cptcov<=i2;cptcov++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /*free_vector(pp,1,nlstate);*/
       k=k+1;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(ficresf,"\n#******");  }  /* End of prevalence */
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /************* Waves Concatenation ***************/
       }  
       fprintf(ficresf,"******\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       fprintf(ficresf,"# StartingAge FinalAge");  {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             Death is a valid wave (if date is known).
             mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         fprintf(ficresf,"\n");       and mw[mi+1][i]. dh depends on stepm.
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         */
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int i, mi, m;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           nhstepm = nhstepm/hstepm;       double sum=0., jmean=0.;*/
              int first;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int j, k=0,jk, ju, jl;
           oldm=oldms;savm=savms;    double sum=0.;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      first=0;
            jmin=1e+5;
           for (h=0; h<=nhstepm; h++){    jmax=-1;
             if (h==(int) (calagedate+YEARM*cpt)) {    jmean=0.;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    for(i=1; i<=imx; i++){
             }      mi=0;
             for(j=1; j<=nlstate+ndeath;j++) {      m=firstpass;
               kk1=0.;kk2=0;      while(s[m][i] <= nlstate){
               for(i=1; i<=nlstate;i++) {                      if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                 if (mobilav==1)          mw[++mi][i]=m;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        if(m >=lastpass)
                 else {          break;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        else
                 }          m++;
                      }/* end while */
               }      if (s[m][i] > nlstate){
               if (h==(int)(calagedate+12*cpt)){        mi++;     /* Death is another wave */
                 fprintf(ficresf," %.3f", kk1);        /* if(mi==0)  never been interviewed correctly before death */
                                   /* Only death is a correct wave */
               }        mw[mi][i]=m;
             }      }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      wav[i]=mi;
         }      if(mi==0){
       }        nbwarn++;
     }        if(first==0){
   }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                  first=1;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
         if(first==1){
   fclose(ficresf);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 }        }
 /************** Forecasting ******************/      } /* end mi==0 */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    } /* End individuals */
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    for(i=1; i<=imx; i++){
   int *popage;      for(mi=1; mi<wav[i];mi++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        if (stepm <=0)
   double *popeffectif,*popcount;          dh[mi][i]=1;
   double ***p3mat,***tabpop,***tabpopprev;        else{
   char filerespop[FILENAMELENGTH];          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if(j==0) j=1;  /* Survives at least one month after exam */
   agelim=AGESUP;              else if(j<0){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;                nberr++;
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                j=1; /* Temporary Dangerous patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                  fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcpy(filerespop,"pop");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   strcat(filerespop,fileres);              }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {              k=k+1;
     printf("Problem with forecast resultfile: %s\n", filerespop);              if (j >= jmax){
   }                jmax=j;
   printf("Computing forecasting: result on file '%s' \n", filerespop);                ijmax=i;
               }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              if (j <= jmin){
                 jmin=j;
   if (mobilav==1) {                ijmin=i;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }
     movingaverage(agedeb, fage, ageminpar, mobaverage);              sum=sum+j;
   }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;          }
            else{
   agelim=AGESUP;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   hstepm=1;  
   hstepm=hstepm/stepm;            k=k+1;
              if (j >= jmax) {
   if (popforecast==1) {              jmax=j;
     if((ficpop=fopen(popfile,"r"))==NULL) {              ijmax=i;
       printf("Problem with population file : %s\n",popfile);exit(0);            }
     }            else if (j <= jmin){
     popage=ivector(0,AGESUP);              jmin=j;
     popeffectif=vector(0,AGESUP);              ijmin=i;
     popcount=vector(0,AGESUP);            }
                /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     i=1;              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            if(j<0){
                  nberr++;
     imx=i;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }            }
             sum=sum+j;
   for(cptcov=1;cptcov<=i2;cptcov++){          }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          jk= j/stepm;
       k=k+1;          jl= j -jk*stepm;
       fprintf(ficrespop,"\n#******");          ju= j -(jk+1)*stepm;
       for(j=1;j<=cptcoveff;j++) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(jl==0){
       }              dh[mi][i]=jk;
       fprintf(ficrespop,"******\n");              bh[mi][i]=0;
       fprintf(ficrespop,"# Age");            }else{ /* We want a negative bias in order to only have interpolation ie
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                    * at the price of an extra matrix product in likelihood */
       if (popforecast==1)  fprintf(ficrespop," [Population]");              dh[mi][i]=jk+1;
                    bh[mi][i]=ju;
       for (cpt=0; cpt<=0;cpt++) {            }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }else{
                    if(jl <= -ju){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              dh[mi][i]=jk;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              bh[mi][i]=jl;       /* bias is positive if real duration
           nhstepm = nhstepm/hstepm;                                   * is higher than the multiple of stepm and negative otherwise.
                                             */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;            else{
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                dh[mi][i]=jk+1;
                      bh[mi][i]=ju;
           for (h=0; h<=nhstepm; h++){            }
             if (h==(int) (calagedate+YEARM*cpt)) {            if(dh[mi][i]==0){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              dh[mi][i]=1; /* At least one step */
             }              bh[mi][i]=ju; /* At least one step */
             for(j=1; j<=nlstate+ndeath;j++) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                        } /* end if mle */
                 if (mobilav==1)        }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      } /* end wave */
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    jmean=sum/k;
                 }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
               }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
               if (h==(int)(calagedate+12*cpt)){   }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);  /*********** Tricode ****************************/
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  void tricode(int *Tvar, int **nbcode, int imx)
               }  {
             }    
             for(i=1; i<=nlstate;i++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
               kk1=0.;    int cptcode=0;
                 for(j=1; j<=nlstate;j++){    cptcoveff=0; 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   
                 }    for (k=0; k<maxncov; k++) Ndum[k]=0;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    for (k=1; k<=7; k++) ncodemax[k]=0;
             }  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                                 modality*/ 
           }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        Ndum[ij]++; /*store the modality */
         }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                           Tvar[j]. If V=sex and male is 0 and 
   /******/                                         female is 1, then  cptcode=1.*/
       }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for (i=0; i<=cptcode; i++) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      }
           nhstepm = nhstepm/hstepm;  
                ij=1; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1; i<=ncodemax[j]; i++) {
           oldm=oldms;savm=savms;        for (k=0; k<= maxncov; k++) {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            if (Ndum[k] != 0) {
           for (h=0; h<=nhstepm; h++){            nbcode[Tvar[j]][ij]=k; 
             if (h==(int) (calagedate+YEARM*cpt)) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            
             }            ij++;
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;          if (ij > ncodemax[j]) break; 
               for(i=1; i<=nlstate;i++) {                      }  
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          } 
               }    }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }   for (k=0; k< maxncov; k++) Ndum[k]=0;
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   for (i=1; i<=ncovmodel-2; i++) { 
         }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       }     ij=Tvar[i];
    }     Ndum[ij]++;
   }   }
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   ij=1;
    for (i=1; i<= maxncov; i++) {
   if (popforecast==1) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     free_ivector(popage,0,AGESUP);       Tvaraff[ij]=i; /*For printing */
     free_vector(popeffectif,0,AGESUP);       ij++;
     free_vector(popcount,0,AGESUP);     }
   }   }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   cptcoveff=ij-1; /*Number of simple covariates*/
   fclose(ficrespop);  }
 }  
   /*********** Health Expectancies ****************/
 /***********************************************/  
 /**************** Main Program *****************/  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 /***********************************************/  
   {
 int main(int argc, char *argv[])    /* Health expectancies, no variances */
 {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     double age, agelim, hf;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double ***p3mat;
   double agedeb, agefin,hf;    double eip;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
     pstamp(ficreseij);
   double fret;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   double **xi,tmp,delta;    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
   double dum; /* Dummy variable */      for(j=1; j<=nlstate;j++){
   double ***p3mat;        fprintf(ficreseij," e%1d%1d ",i,j);
   int *indx;      }
   char line[MAXLINE], linepar[MAXLINE];      fprintf(ficreseij," e%1d. ",i);
   char title[MAXLINE];    }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    fprintf(ficreseij,"\n");
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
      
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   char filerest[FILENAMELENGTH];    }
   char fileregp[FILENAMELENGTH];    else  hstepm=estepm;   
   char popfile[FILENAMELENGTH];    /* We compute the life expectancy from trapezoids spaced every estepm months
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];     * This is mainly to measure the difference between two models: for example
   int firstobs=1, lastobs=10;     * if stepm=24 months pijx are given only every 2 years and by summing them
   int sdeb, sfin; /* Status at beginning and end */     * we are calculating an estimate of the Life Expectancy assuming a linear 
   int c,  h , cpt,l;     * progression in between and thus overestimating or underestimating according
   int ju,jl, mi;     * to the curvature of the survival function. If, for the same date, we 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;     * to compare the new estimate of Life expectancy with the same linear 
   int mobilav=0,popforecast=0;     * hypothesis. A more precise result, taking into account a more precise
   int hstepm, nhstepm;     * curvature will be obtained if estepm is as small as stepm. */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;  
     /* For example we decided to compute the life expectancy with the smallest unit */
   double bage, fage, age, agelim, agebase;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double ftolpl=FTOL;       nhstepm is the number of hstepm from age to agelim 
   double **prlim;       nstepm is the number of stepm from age to agelin. 
   double *severity;       Look at hpijx to understand the reason of that which relies in memory size
   double ***param; /* Matrix of parameters */       and note for a fixed period like estepm months */
   double  *p;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double **matcov; /* Matrix of covariance */       survival function given by stepm (the optimization length). Unfortunately it
   double ***delti3; /* Scale */       means that if the survival funtion is printed only each two years of age and if
   double *delti; /* Scale */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double ***eij, ***vareij;       results. So we changed our mind and took the option of the best precision.
   double **varpl; /* Variances of prevalence limits by age */    */
   double *epj, vepp;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    agelim=AGESUP;
      /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char z[1]="c", occ;  
 #include <sys/time.h>    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 #include <time.h>      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        
   /* long total_usecs;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   struct timeval start_time, end_time;      
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      
   getcwd(pathcd, size);      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   printf("\n%s",version);      
   if(argc <=1){      /* Computing expectancies */
     printf("\nEnter the parameter file name: ");      for(i=1; i<=nlstate;i++)
     scanf("%s",pathtot);        for(j=1; j<=nlstate;j++)
   }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   else{            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     strcpy(pathtot,argv[1]);            
   }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);          }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        eip=0;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        for(j=1; j<=nlstate;j++){
   chdir(path);          eip +=eij[i][j][(int)age];
   replace(pathc,path);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
 /*-------- arguments in the command line --------*/        fprintf(ficreseij,"%9.4f", eip );
       }
   strcpy(fileres,"r");      fprintf(ficreseij,"\n");
   strcat(fileres, optionfilefiname);      
   strcat(fileres,".txt");    /* Other files have txt extension */    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------arguments file --------*/    printf("\n");
     fprintf(ficlog,"\n");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    
     printf("Problem with optionfile %s\n",optionfile);  }
     goto end;  
   }  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   strcpy(filereso,"o");  {
   strcat(filereso,fileres);    /* Covariances of health expectancies eij and of total life expectancies according
   if((ficparo=fopen(filereso,"w"))==NULL) {     to initial status i, ei. .
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     double age, agelim, hf;
   /* Reads comments: lines beginning with '#' */    double ***p3matp, ***p3matm, ***varhe;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double *xp, *xm;
     fgets(line, MAXLINE, ficpar);    double **gp, **gm;
     puts(line);    double ***gradg, ***trgradg;
     fputs(line,ficparo);    int theta;
   }  
   ungetc(c,ficpar);    double eip, vip;
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    xp=vector(1,npar);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    xm=vector(1,npar);
 while((c=getc(ficpar))=='#' && c!= EOF){    dnewm=matrix(1,nlstate*nlstate,1,npar);
     ungetc(c,ficpar);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fgets(line, MAXLINE, ficpar);    
     puts(line);    pstamp(ficresstdeij);
     fputs(line,ficparo);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   }    fprintf(ficresstdeij,"# Age");
   ungetc(c,ficpar);    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++)
            fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   covar=matrix(0,NCOVMAX,1,n);      fprintf(ficresstdeij," e%1d. ",i);
   cptcovn=0;    }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficresstdeij,"\n");
   
   ncovmodel=2+cptcovn;    pstamp(ficrescveij);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficrescveij,"# Age");
   /* Read guess parameters */    for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */      for(j=1; j<=nlstate;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){        cptj= (j-1)*nlstate+i;
     ungetc(c,ficpar);        for(i2=1; i2<=nlstate;i2++)
     fgets(line, MAXLINE, ficpar);          for(j2=1; j2<=nlstate;j2++){
     puts(line);            cptj2= (j2-1)*nlstate+i2;
     fputs(line,ficparo);            if(cptj2 <= cptj)
   }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   ungetc(c,ficpar);          }
        }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficrescveij,"\n");
     for(i=1; i <=nlstate; i++)    
     for(j=1; j <=nlstate+ndeath-1; j++){    if(estepm < stepm){
       fscanf(ficpar,"%1d%1d",&i1,&j1);      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficparo,"%1d%1d",i1,j1);    }
       printf("%1d%1d",i,j);    else  hstepm=estepm;   
       for(k=1; k<=ncovmodel;k++){    /* We compute the life expectancy from trapezoids spaced every estepm months
         fscanf(ficpar," %lf",&param[i][j][k]);     * This is mainly to measure the difference between two models: for example
         printf(" %lf",param[i][j][k]);     * if stepm=24 months pijx are given only every 2 years and by summing them
         fprintf(ficparo," %lf",param[i][j][k]);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
       fscanf(ficpar,"\n");     * to the curvature of the survival function. If, for the same date, we 
       printf("\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficparo,"\n");     * to compare the new estimate of Life expectancy with the same linear 
     }     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
     /* For example we decided to compute the life expectancy with the smallest unit */
   p=param[1][1];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   /* Reads comments: lines beginning with '#' */       nstepm is the number of stepm from age to agelin. 
   while((c=getc(ficpar))=='#' && c!= EOF){       Look at hpijx to understand the reason of that which relies in memory size
     ungetc(c,ficpar);       and note for a fixed period like estepm months */
     fgets(line, MAXLINE, ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     puts(line);       survival function given by stepm (the optimization length). Unfortunately it
     fputs(line,ficparo);       means that if the survival funtion is printed only each two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   ungetc(c,ficpar);       results. So we changed our mind and took the option of the best precision.
     */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    /* If stepm=6 months */
     for(j=1; j <=nlstate+ndeath-1; j++){    /* nhstepm age range expressed in number of stepm */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    agelim=AGESUP;
       printf("%1d%1d",i,j);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       fprintf(ficparo,"%1d%1d",i1,j1);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for(k=1; k<=ncovmodel;k++){    /* if (stepm >= YEARM) hstepm=1;*/
         fscanf(ficpar,"%le",&delti3[i][j][k]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         printf(" %le",delti3[i][j][k]);    
         fprintf(ficparo," %le",delti3[i][j][k]);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fscanf(ficpar,"\n");    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       printf("\n");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fprintf(ficparo,"\n");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   }  
   delti=delti3[1][1];    for (age=bage; age<=fage; age ++){ 
    
   /* Reads comments: lines beginning with '#' */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   while((c=getc(ficpar))=='#' && c!= EOF){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     puts(line);  
     fputs(line,ficparo);      /* Computing  Variances of health expectancies */
   }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   ungetc(c,ficpar);         decrease memory allocation */
        for(theta=1; theta <=npar; theta++){
   matcov=matrix(1,npar,1,npar);        for(i=1; i<=npar; i++){ 
   for(i=1; i <=npar; i++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fscanf(ficpar,"%s",&str);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("%s",str);        }
     fprintf(ficparo,"%s",str);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     for(j=1; j <=i; j++){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       fscanf(ficpar," %le",&matcov[i][j]);    
       printf(" %.5le",matcov[i][j]);        for(j=1; j<= nlstate; j++){
       fprintf(ficparo," %.5le",matcov[i][j]);          for(i=1; i<=nlstate; i++){
     }            for(h=0; h<=nhstepm-1; h++){
     fscanf(ficpar,"\n");              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     printf("\n");              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     fprintf(ficparo,"\n");            }
   }          }
   for(i=1; i <=npar; i++)        }
     for(j=i+1;j<=npar;j++)       
       matcov[i][j]=matcov[j][i];        for(ij=1; ij<= nlstate*nlstate; ij++)
              for(h=0; h<=nhstepm-1; h++){
   printf("\n");            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
     /*-------- Rewriting paramater file ----------*/      
      strcpy(rfileres,"r");    /* "Rparameterfile */      
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      for(h=0; h<=nhstepm-1; h++)
      strcat(rfileres,".");    /* */        for(j=1; j<=nlstate*nlstate;j++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          for(theta=1; theta <=npar; theta++)
     if((ficres =fopen(rfileres,"w"))==NULL) {            trgradg[h][j][theta]=gradg[h][theta][j];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      
     }  
     fprintf(ficres,"#%s\n",version);       for(ij=1;ij<=nlstate*nlstate;ij++)
            for(ji=1;ji<=nlstate*nlstate;ji++)
     /*-------- data file ----------*/          varhe[ij][ji][(int)age] =0.;
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;       printf("%d|",(int)age);fflush(stdout);
     }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
     n= lastobs;        for(k=0;k<=nhstepm-1;k++){
     severity = vector(1,maxwav);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     outcome=imatrix(1,maxwav+1,1,n);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     num=ivector(1,n);          for(ij=1;ij<=nlstate*nlstate;ij++)
     moisnais=vector(1,n);            for(ji=1;ji<=nlstate*nlstate;ji++)
     annais=vector(1,n);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     moisdc=vector(1,n);        }
     andc=vector(1,n);      }
     agedc=vector(1,n);      /* Computing expectancies */
     cod=ivector(1,n);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     weight=vector(1,n);      for(i=1; i<=nlstate;i++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for(j=1; j<=nlstate;j++)
     mint=matrix(1,maxwav,1,n);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     anint=matrix(1,maxwav,1,n);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     s=imatrix(1,maxwav+1,1,n);            
     adl=imatrix(1,maxwav+1,1,n);                /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);          }
   
     i=1;      fprintf(ficresstdeij,"%3.0f",age );
     while (fgets(line, MAXLINE, fic) != NULL)    {      for(i=1; i<=nlstate;i++){
       if ((i >= firstobs) && (i <=lastobs)) {        eip=0.;
                vip=0.;
         for (j=maxwav;j>=1;j--){        for(j=1; j<=nlstate;j++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          eip += eij[i][j][(int)age];
           strcpy(line,stra);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }        }
                fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresstdeij,"\n");
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficrescveij,"%3.0f",age );
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          cptj= (j-1)*nlstate+i;
         for (j=ncovcol;j>=1;j--){          for(i2=1; i2<=nlstate;i2++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for(j2=1; j2<=nlstate;j2++){
         }              cptj2= (j2-1)*nlstate+i2;
         num[i]=atol(stra);              if(cptj2 <= cptj)
                        fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        }
       fprintf(ficrescveij,"\n");
         i=i+1;     
       }    }
     }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     /* printf("ii=%d", ij);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        scanf("%d",i);*/    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   imx=i-1; /* Number of individuals */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* for (i=1; i<=imx; i++){    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    printf("\n");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fprintf(ficlog,"\n");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/    free_vector(xm,1,npar);
      free_vector(xp,1,npar);
   /* for (i=1; i<=imx; i++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      if (s[4][i]==9)  s[4][i]=-1;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   */  }
    
   /* Calculation of the number of parameter from char model*/  /************ Variance ******************/
   Tvar=ivector(1,15);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   Tprod=ivector(1,15);  {
   Tvaraff=ivector(1,15);    /* Variance of health expectancies */
   Tvard=imatrix(1,15,1,2);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   Tage=ivector(1,15);          /* double **newm;*/
        double **dnewm,**doldm;
   if (strlen(model) >1){    double **dnewmp,**doldmp;
     j=0, j1=0, k1=1, k2=1;    int i, j, nhstepm, hstepm, h, nstepm ;
     j=nbocc(model,'+');    int k, cptcode;
     j1=nbocc(model,'*');    double *xp;
     cptcovn=j+1;    double **gp, **gm;  /* for var eij */
     cptcovprod=j1;    double ***gradg, ***trgradg; /*for var eij */
        double **gradgp, **trgradgp; /* for var p point j */
     strcpy(modelsav,model);    double *gpp, *gmp; /* for var p point j */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       printf("Error. Non available option model=%s ",model);    double ***p3mat;
       goto end;    double age,agelim, hf;
     }    double ***mobaverage;
        int theta;
     for(i=(j+1); i>=1;i--){    char digit[4];
       cutv(stra,strb,modelsav,'+');    char digitp[25];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    char fileresprobmorprev[FILENAMELENGTH];
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {    if(popbased==1){
         cutv(strd,strc,strb,'*');      if(mobilav!=0)
         if (strcmp(strc,"age")==0) {        strcpy(digitp,"-populbased-mobilav-");
           cptcovprod--;      else strcpy(digitp,"-populbased-nomobil-");
           cutv(strb,stre,strd,'V');    }
           Tvar[i]=atoi(stre);    else 
           cptcovage++;      strcpy(digitp,"-stablbased-");
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    if (mobilav!=0) {
         }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         else if (strcmp(strd,"age")==0) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           cptcovprod--;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           cutv(strb,stre,strc,'V');        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           Tvar[i]=atoi(stre);      }
           cptcovage++;    }
           Tage[cptcovage]=i;  
         }    strcpy(fileresprobmorprev,"prmorprev"); 
         else {    sprintf(digit,"%-d",ij);
           cutv(strb,stre,strc,'V');    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           Tvar[i]=ncovcol+k1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           cutv(strb,strc,strd,'V');    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           Tprod[k1]=i;    strcat(fileresprobmorprev,fileres);
           Tvard[k1][1]=atoi(strc);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           Tvard[k1][2]=atoi(stre);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           Tvar[cptcovn+k2]=Tvard[k1][1];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    }
           for (k=1; k<=lastobs;k++)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   
           k1++;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           k2=k2+2;    pstamp(ficresprobmorprev);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       else {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      fprintf(ficresprobmorprev," p.%-d SE",j);
        /*  scanf("%d",i);*/      for(i=1; i<=nlstate;i++)
       cutv(strd,strc,strb,'V');        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       Tvar[i]=atoi(strc);    }  
       }    fprintf(ficresprobmorprev,"\n");
       strcpy(modelsav,stra);      fprintf(ficgp,"\n# Routine varevsij");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         scanf("%d",i);*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 }  /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    pstamp(ficresvij);
   printf("cptcovprod=%d ", cptcovprod);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   scanf("%d ",i);*/    if(popbased==1)
     fclose(fic);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
     /*  if(mle==1){*/      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(ficresvij,"# Age");
       for(i=1;i<=n;i++) weight[i]=1.0;    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++)
     /*-calculation of age at interview from date of interview and age at death -*/        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     agev=matrix(1,maxwav,1,imx);    fprintf(ficresvij,"\n");
   
     for (i=1; i<=imx; i++) {    xp=vector(1,npar);
       for(m=2; (m<= maxwav); m++) {    dnewm=matrix(1,nlstate,1,npar);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    doldm=matrix(1,nlstate,1,nlstate);
          anint[m][i]=9999;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
          s[m][i]=-1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       }    gpp=vector(nlstate+1,nlstate+ndeath);
     }    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for (i=1; i<=imx; i++)  {    
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    if(estepm < stepm){
       for(m=1; (m<= maxwav); m++){      printf ("Problem %d lower than %d\n",estepm, stepm);
         if(s[m][i] >0){    }
           if (s[m][i] >= nlstate+1) {    else  hstepm=estepm;   
             if(agedc[i]>0)    /* For example we decided to compute the life expectancy with the smallest unit */
               if(moisdc[i]!=99 && andc[i]!=9999)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 agev[m][i]=agedc[i];       nhstepm is the number of hstepm from age to agelim 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/       nstepm is the number of stepm from age to agelin. 
            else {       Look at hpijx to understand the reason of that which relies in memory size
               if (andc[i]!=9999){       and note for a fixed period like k years */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               agev[m][i]=-1;       survival function given by stepm (the optimization length). Unfortunately it
               }       means that if the survival funtion is printed every two years of age and if
             }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           }       results. So we changed our mind and took the option of the best precision.
           else if(s[m][i] !=9){ /* Should no more exist */    */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             if(mint[m][i]==99 || anint[m][i]==9999)    agelim = AGESUP;
               agev[m][i]=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             else if(agev[m][i] <agemin){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
               agemin=agev[m][i];      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
             else if(agev[m][i] >agemax){      gp=matrix(0,nhstepm,1,nlstate);
               agemax=agev[m][i];      gm=matrix(0,nhstepm,1,nlstate);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/      for(theta=1; theta <=npar; theta++){
             /*   agev[m][i] = age[i]+2*m;*/        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           else { /* =9 */        }
             agev[m][i]=1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             s[m][i]=-1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           }  
         }        if (popbased==1) {
         else /*= 0 Unknown */          if(mobilav ==0){
           agev[m][i]=1;            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
     for (i=1; i<=imx; i++)  {              prlim[i][i]=mobaverage[(int)age][i][ij];
       for(m=1; (m<= maxwav); m++){          }
         if (s[m][i] > (nlstate+ndeath)) {        }
           printf("Error: Wrong value in nlstate or ndeath\n");      
           goto end;        for(j=1; j<= nlstate; j++){
         }          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        }
         /* This for computing probability of death (h=1 means
     free_vector(severity,1,maxwav);           computed over hstepm matrices product = hstepm*stepm months) 
     free_imatrix(outcome,1,maxwav+1,1,n);           as a weighted average of prlim.
     free_vector(moisnais,1,n);        */
     free_vector(annais,1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /* free_matrix(mint,1,maxwav,1,n);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
        free_matrix(anint,1,maxwav,1,n);*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     free_vector(moisdc,1,n);        }    
     free_vector(andc,1,n);        /* end probability of death */
   
            for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     wav=ivector(1,imx);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       
     /* Concatenates waves */        if (popbased==1) {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
       Tcode=ivector(1,100);          }else{ /* mobilav */ 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            for(i=1; i<=nlstate;i++)
       ncodemax[1]=1;              prlim[i][i]=mobaverage[(int)age][i][ij];
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          }
              }
    codtab=imatrix(1,100,1,10);  
    h=0;        for(j=1; j<= nlstate; j++){
    m=pow(2,cptcoveff);          for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
    for(k=1;k<=cptcoveff; k++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
      for(i=1; i <=(m/pow(2,k));i++){          }
        for(j=1; j <= ncodemax[k]; j++){        }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        /* This for computing probability of death (h=1 means
            h++;           computed over hstepm matrices product = hstepm*stepm months) 
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;           as a weighted average of prlim.
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        */
          }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
        }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
      }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
    }        }    
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        /* end probability of death */
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){        for(j=1; j<= nlstate; j++) /* vareij */
       for(k=1; k <=cptcovn; k++){          for(h=0; h<=nhstepm; h++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       }          }
       printf("\n");  
       }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       scanf("%d",i);*/          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
            }
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */      } /* End theta */
   
          trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(h=0; h<=nhstepm; h++) /* veij */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate;j++)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(theta=1; theta <=npar; theta++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            trgradg[h][j][theta]=gradg[h][theta][j];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
            for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     /* For Powell, parameters are in a vector p[] starting at p[1]        for(theta=1; theta <=npar; theta++)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          trgradgp[j][theta]=gradgp[theta][j];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    
   
     if(mle==1){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      for(i=1;i<=nlstate;i++)
     }        for(j=1;j<=nlstate;j++)
              vareij[i][j][(int)age] =0.;
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
    jk=1;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for(i=1;i<=nlstate;i++)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for(j=1;j<=nlstate;j++)
    for(i=1,jk=1; i <=nlstate; i++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
      for(k=1; k <=(nlstate+ndeath); k++){        }
        if (k != i)      }
          {    
            printf("%d%d ",i,k);      /* pptj */
            fprintf(ficres,"%1d%1d ",i,k);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
            for(j=1; j <=ncovmodel; j++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
              printf("%f ",p[jk]);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
              fprintf(ficres,"%f ",p[jk]);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
              jk++;          varppt[j][i]=doldmp[j][i];
            }      /* end ppptj */
            printf("\n");      /*  x centered again */
            fprintf(ficres,"\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
          }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
      }   
    }      if (popbased==1) {
  if(mle==1){        if(mobilav ==0){
     /* Computing hessian and covariance matrix */          for(i=1; i<=nlstate;i++)
     ftolhess=ftol; /* Usually correct */            prlim[i][i]=probs[(int)age][i][ij];
     hesscov(matcov, p, npar, delti, ftolhess, func);        }else{ /* mobilav */ 
  }          for(i=1; i<=nlstate;i++)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
     printf("# Scales (for hessian or gradient estimation)\n");        }
      for(i=1,jk=1; i <=nlstate; i++){      }
       for(j=1; j <=nlstate+ndeath; j++){               
         if (j!=i) {      /* This for computing probability of death (h=1 means
           fprintf(ficres,"%1d%1d",i,j);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           printf("%1d%1d",i,j);         as a weighted average of prlim.
           for(k=1; k<=ncovmodel;k++){      */
             printf(" %.5e",delti[jk]);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
             fprintf(ficres," %.5e",delti[jk]);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             jk++;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           }      }    
           printf("\n");      /* end probability of death */
           fprintf(ficres,"\n");  
         }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
            for(i=1; i<=nlstate;i++){
     k=1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      } 
     for(i=1;i<=npar;i++){      fprintf(ficresprobmorprev,"\n");
       /*  if (k>nlstate) k=1;  
       i1=(i-1)/(ncovmodel*nlstate)+1;      fprintf(ficresvij,"%.0f ",age );
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      for(i=1; i<=nlstate;i++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/        for(j=1; j<=nlstate;j++){
       fprintf(ficres,"%3d",i);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       printf("%3d",i);        }
       for(j=1; j<=i;j++){      fprintf(ficresvij,"\n");
         fprintf(ficres," %.5e",matcov[i][j]);      free_matrix(gp,0,nhstepm,1,nlstate);
         printf(" %.5e",matcov[i][j]);      free_matrix(gm,0,nhstepm,1,nlstate);
       }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       fprintf(ficres,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       printf("\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k++;    } /* End age */
     }    free_vector(gpp,nlstate+1,nlstate+ndeath);
        free_vector(gmp,nlstate+1,nlstate+ndeath);
     while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       ungetc(c,ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       puts(line);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       fputs(line,ficparo);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     ungetc(c,ficpar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     estepm=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     if (estepm==0 || estepm < stepm) estepm=stepm;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     if (fage <= 2) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       bage = ageminpar;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       fage = agemaxpar;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
      free_vector(xp,1,npar);
     while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(doldm,1,nlstate,1,nlstate);
     ungetc(c,ficpar);    free_matrix(dnewm,1,nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     puts(line);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     fputs(line,ficparo);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);    fclose(ficresprobmorprev);
      fflush(ficgp);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    fflush(fichtm); 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  }  /* end varevsij */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
        /************ Variance of prevlim ******************/
   while((c=getc(ficpar))=='#' && c!= EOF){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    /* Variance of prevalence limit */
     puts(line);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     fputs(line,ficparo);    double **newm;
   }    double **dnewm,**doldm;
   ungetc(c,ficpar);    int i, j, nhstepm, hstepm;
      int k, cptcode;
     double *xp;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    double *gp, *gm;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    double **gradg, **trgradg;
     double age,agelim;
   fscanf(ficpar,"pop_based=%d\n",&popbased);    int theta;
   fprintf(ficparo,"pop_based=%d\n",popbased);      
   fprintf(ficres,"pop_based=%d\n",popbased);      pstamp(ficresvpl);
      fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvpl,"# Age");
     ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
     puts(line);    fprintf(ficresvpl,"\n");
     fputs(line,ficparo);  
   }    xp=vector(1,npar);
   ungetc(c,ficpar);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    hstepm=1*YEARM; /* Every year of age */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 while((c=getc(ficpar))=='#' && c!= EOF){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     ungetc(c,ficpar);      if (stepm >= YEARM) hstepm=1;
     fgets(line, MAXLINE, ficpar);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     puts(line);      gradg=matrix(1,npar,1,nlstate);
     fputs(line,ficparo);      gp=vector(1,nlstate);
   }      gm=vector(1,nlstate);
   ungetc(c,ficpar);  
       for(theta=1; theta <=npar; theta++){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        for(i=1; i<=npar; i++){ /* Computes gradient */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
 /*------------ gnuplot -------------*/      
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        for(i=1; i<=npar; i++) /* Computes gradient */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
 /*------------ free_vector  -------------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  chdir(path);        for(i=1;i<=nlstate;i++)
            gm[i] = prlim[i][i];
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        for(i=1;i<=nlstate;i++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
  free_ivector(num,1,n);      } /* End theta */
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      trgradg =matrix(1,nlstate,1,npar);
  fclose(ficparo);  
  fclose(ficres);      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
 /*--------- index.htm --------*/          trgradg[j][theta]=gradg[theta][j];
   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
        matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   /*--------------- Prevalence limit --------------*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
        for(i=1;i<=nlstate;i++)
   strcpy(filerespl,"pl");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      fprintf(ficresvpl,"%.0f ",age );
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      for(i=1; i<=nlstate;i++)
   }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      fprintf(ficresvpl,"\n");
   fprintf(ficrespl,"#Prevalence limit\n");      free_vector(gp,1,nlstate);
   fprintf(ficrespl,"#Age ");      free_vector(gm,1,nlstate);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      free_matrix(gradg,1,npar,1,nlstate);
   fprintf(ficrespl,"\n");      free_matrix(trgradg,1,nlstate,1,npar);
      } /* End age */
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(xp,1,npar);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(doldm,1,nlstate,1,npar);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(dnewm,1,nlstate,1,nlstate);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  }
   k=0;  
   agebase=ageminpar;  /************ Variance of one-step probabilities  ******************/
   agelim=agemaxpar;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   ftolpl=1.e-10;  {
   i1=cptcoveff;    int i, j=0,  i1, k1, l1, t, tj;
   if (cptcovn < 1){i1=1;}    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
   for(cptcov=1;cptcov<=i1;cptcov++){    int first=1, first1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         k=k+1;    double **dnewm,**doldm;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    double *xp;
         fprintf(ficrespl,"\n#******");    double *gp, *gm;
         for(j=1;j<=cptcoveff;j++)    double **gradg, **trgradg;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **mu;
         fprintf(ficrespl,"******\n");    double age,agelim, cov[NCOVMAX];
            double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         for (age=agebase; age<=agelim; age++){    int theta;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    char fileresprob[FILENAMELENGTH];
           fprintf(ficrespl,"%.0f",age );    char fileresprobcov[FILENAMELENGTH];
           for(i=1; i<=nlstate;i++)    char fileresprobcor[FILENAMELENGTH];
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");    double ***varpij;
         }  
       }    strcpy(fileresprob,"prob"); 
     }    strcat(fileresprob,fileres);
   fclose(ficrespl);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
   /*------------- h Pij x at various ages ------------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    strcpy(fileresprobcov,"probcov"); 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    strcat(fileresprobcov,fileres);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcov);
   printf("Computing pij: result on file '%s' \n", filerespij);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    strcpy(fileresprobcor,"probcor"); 
   /*if (stepm<=24) stepsize=2;*/    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   agelim=AGESUP;      printf("Problem with resultfile: %s\n", fileresprobcor);
   hstepm=stepsize*YEARM; /* Every year of age */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    }
      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   k=0;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   for(cptcov=1;cptcov<=i1;cptcov++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       k=k+1;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficrespij,"\n#****** ");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         for(j=1;j<=cptcoveff;j++)    pstamp(ficresprob);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         fprintf(ficrespij,"******\n");    fprintf(ficresprob,"# Age");
            pstamp(ficresprobcov);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficresprobcov,"# Age");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    pstamp(ficresprobcor);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           oldm=oldms;savm=savms;    fprintf(ficresprobcor,"# Age");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)    for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)      for(j=1; j<=(nlstate+ndeath);j++){
               fprintf(ficrespij," %1d-%1d",i,j);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           fprintf(ficrespij,"\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           for (h=0; h<=nhstepm; h++){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      }  
             for(i=1; i<=nlstate;i++)   /* fprintf(ficresprob,"\n");
               for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficresprobcov,"\n");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    fprintf(ficresprobcor,"\n");
             fprintf(ficrespij,"\n");   */
           }   xp=vector(1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           fprintf(ficrespij,"\n");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   }    first=1;
     fprintf(ficgp,"\n# Routine varprob");
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   fclose(ficrespij);  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   /*---------- Forecasting ------------------*/    file %s<br>\n",optionfilehtmcov);
   if((stepm == 1) && (strcmp(model,".")==0)){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  and drawn. It helps understanding how is the covariance between two incidences.\
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     free_matrix(mint,1,maxwav,1,n);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     free_vector(weight,1,n);}  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   else{  standard deviations wide on each axis. <br>\
     erreur=108;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    
     cov[1]=1;
   /*---------- Health expectancies and variances ------------*/    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   strcpy(filerest,"t");    j1=0;
   strcat(filerest,fileres);    for(t=1; t<=tj;t++){
   if((ficrest=fopen(filerest,"w"))==NULL) {      for(i1=1; i1<=ncodemax[t];i1++){ 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        j1++;
   }        if  (cptcovn>0) {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
   strcpy(filerese,"e");          fprintf(ficresprobcov, "\n#********** Variable "); 
   strcat(filerese,fileres);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if((ficreseij=fopen(filerese,"w"))==NULL) {          fprintf(ficresprobcov, "**********\n#\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          
   }          fprintf(ficgp, "\n#********** Variable "); 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
  strcpy(fileresv,"v");          
   strcat(fileresv,fileres);          
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   k=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficresprobcor, "**********\n#");    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;        
       fprintf(ficrest,"\n#****** ");        for (age=bage; age<=fage; age ++){ 
       for(j=1;j<=cptcoveff;j++)          cov[2]=age;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (k=1; k<=cptcovn;k++) {
       fprintf(ficrest,"******\n");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
       fprintf(ficreseij,"\n#****** ");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(j=1;j<=cptcoveff;j++)          for (k=1; k<=cptcovprod;k++)
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficreseij,"******\n");          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       fprintf(ficresvij,"\n#****** ");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)          gp=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          gm=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficresvij,"******\n");      
           for(theta=1; theta <=npar; theta++){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            for(i=1; i<=npar; i++)
       oldm=oldms;savm=savms;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);              
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       oldm=oldms;savm=savms;            
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);            k=0;
                for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                gp[k]=pmmij[i][j];
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              }
       fprintf(ficrest,"\n");            }
             
       epj=vector(1,nlstate+1);            for(i=1; i<=npar; i++)
       for(age=bage; age <=fage ;age++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      
         if (popbased==1) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for(i=1; i<=nlstate;i++)            k=0;
             prlim[i][i]=probs[(int)age][i][k];            for(i=1; i<=(nlstate); i++){
         }              for(j=1; j<=(nlstate+ndeath);j++){
                        k=k+1;
         fprintf(ficrest," %4.0f",age);                gm[k]=pmmij[i][j];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){              }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];       
           }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           epj[nlstate+1] +=epj[j];              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         }          }
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             vepp += vareij[i][j][(int)age];            for(theta=1; theta <=npar; theta++)
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));              trgradg[j][theta]=gradg[theta][j];
         for(j=1;j <=nlstate;j++){          
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
         }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         fprintf(ficrest,"\n");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   fclose(ficreseij);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   fclose(ficresvij);          
   fclose(ficrest);          k=0;
   fclose(ficpar);          for(i=1; i<=(nlstate); i++){
   free_vector(epj,1,nlstate+1);            for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
   /*------- Variance limit prevalence------*/                mu[k][(int) age]=pmmij[i][j];
             }
   strcpy(fileresvpl,"vpl");          }
   strcat(fileresvpl,fileres);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              varpij[i][j][(int)age] = doldm[i][j];
     exit(0);  
   }          /*printf("\n%d ",(int)age);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   k=0;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   for(cptcov=1;cptcov<=i1;cptcov++){            }*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;          fprintf(ficresprob,"\n%d ",(int)age);
       fprintf(ficresvpl,"\n#****** ");          fprintf(ficresprobcov,"\n%d ",(int)age);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobcor,"\n%d ",(int)age);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                  fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       oldm=oldms;savm=savms;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     }          }
  }          i=0;
           for (k=1; k<=(nlstate);k++){
   fclose(ficresvpl);            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
   /*---------- End : free ----------------*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                for (j=1; j<=i;j++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
              }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          }/* end of loop for state */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        } /* end of loop for age */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        /* Confidence intervalle of pij  */
          /*
   free_matrix(matcov,1,npar,1,npar);          fprintf(ficgp,"\nset noparametric;unset label");
   free_vector(delti,1,npar);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   free_matrix(agev,1,maxwav,1,imx);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   if(erreur >0)          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     printf("End of Imach with error or warning %d\n",erreur);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   else   printf("End of Imach\n");        */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
          /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        first1=1;
   /*printf("Total time was %d uSec.\n", total_usecs);*/        for (k2=1; k2<=(nlstate);k2++){
   /*------ End -----------*/          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
  end:            for (k1=1; k1<=(nlstate);k1++){
 #ifdef windows              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   /* chdir(pathcd);*/                if(l1==k1) continue;
 #endif                i=(k1-1)*(nlstate+ndeath)+l1;
  /*system("wgnuplot graph.plt");*/                if(i<=j) continue;
  /*system("../gp37mgw/wgnuplot graph.plt");*/                for (age=bage; age<=fage; age ++){ 
  /*system("cd ../gp37mgw");*/                  if ((int)age %5==0){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
  strcpy(plotcmd,GNUPLOTPROGRAM);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
  strcat(plotcmd," ");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
  strcat(plotcmd,optionfilegnuplot);                    mu1=mu[i][(int) age]/stepm*YEARM ;
  system(plotcmd);                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
 #ifdef windows                    /* Computing eigen value of matrix of covariance */
   while (z[0] != 'q') {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     /* chdir(path); */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                    /* Eigen vectors */
     scanf("%s",z);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     if (z[0] == 'c') system("./imach");                    /*v21=sqrt(1.-v11*v11); *//* error */
     else if (z[0] == 'e') system(optionfilehtm);                    v21=(lc1-v1)/cv12*v11;
     else if (z[0] == 'g') system(plotcmd);                    v12=-v21;
     else if (z[0] == 'q') exit(0);                    v22=v11;
   }                    tnalp=v21/v11;
 #endif                    if(first1==1){
 }                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.38  
changed lines
  Added in v.1.124


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>