Diff for /imach/src/imach.c between versions 1.38 and 1.184

version 1.38, 2002/04/03 12:19:36 version 1.184, 2015/03/11 11:52:39
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.184  2015/03/11 11:52:39  brouard
      Summary: Back from Windows 8. Intel Compiler
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.183  2015/03/10 20:34:32  brouard
   first survey ("cross") where individuals from different ages are    Summary: 0.98q0, trying with directest, mnbrak fixed
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    We use directest instead of original Powell test; probably no
   second wave of interviews ("longitudinal") which measure each change    incidence on the results, but better justifications;
   (if any) in individual health status.  Health expectancies are    We fixed Numerical Recipes mnbrak routine which was wrong and gave
   computed from the time spent in each health state according to a    wrong results.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.182  2015/02/12 08:19:57  brouard
   simplest model is the multinomial logistic model where pij is the    Summary: Trying to keep directest which seems simpler and more general
   probabibility to be observed in state j at the second wave    Author: Nicolas Brouard
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.181  2015/02/11 23:22:24  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Summary: Comments on Powell added
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Author:
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.179  2015/01/04 09:57:06  brouard
   identical for each individual. Also, if a individual missed an    Summary: back to OS/X
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.177  2015/01/03 18:40:56  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Summary: Still testing ilc32 on OSX
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.176  2015/01/03 16:45:04  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    *** empty log message ***
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.174  2015/01/03 16:15:49  brouard
      Summary: Still in cross-compilation
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.173  2015/01/03 12:06:26  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: trying to detect cross-compilation
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.172  2014/12/27 12:07:47  brouard
   software can be distributed freely for non commercial use. Latest version    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.171  2014/12/23 13:26:59  brouard
      Summary: Back from Visual C
 #include <math.h>  
 #include <stdio.h>    Still problem with utsname.h on Windows
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "wgnuplot"    The escape was mandatory for a specific compiler (which one?), but too many warnings.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.169  2014/12/22 23:08:31  brouard
 /*#define DEBUG*/    Summary: 0.98p
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.168  2014/12/22 15:17:42  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Summary: update
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.167  2014/12/22 13:50:56  brouard
 #define NINTERVMAX 8    Summary: Testing uname and compiler version and if compiled 32 or 64
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Testing on Linux 64
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.166  2014/12/22 11:40:47  brouard
 #define YEARM 12. /* Number of months per year */    *** empty log message ***
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   
 int erreur; /* Error number */    * imach.c (Module): Merging 1.61 to 1.162
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.164  2014/12/16 10:52:11  brouard
 int npar=NPARMAX;    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    * imach.c (Module): Merging 1.61 to 1.162
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.162  2014/09/25 11:43:39  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Summary: temporary backup 0.99!
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.1  2014/09/16 11:06:58  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Summary: With some code (wrong) for nlopt
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Author:
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.161  2014/09/15 20:41:41  brouard
 FILE *ficgp,*ficresprob,*ficpop;    Summary: Problem with macro SQR on Intel compiler
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.160  2014/09/02 09:24:05  brouard
  FILE  *ficresvij;    *** empty log message ***
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.159  2014/09/01 10:34:10  brouard
   char fileresvpl[FILENAMELENGTH];    Summary: WIN32
     Author: Brouard
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.158  2014/08/27 17:11:51  brouard
 #define FTOL 1.0e-10    *** empty log message ***
   
 #define NRANSI    Revision 1.157  2014/08/27 16:26:55  brouard
 #define ITMAX 200    Summary: Preparing windows Visual studio version
     Author: Brouard
 #define TOL 2.0e-4  
     In order to compile on Visual studio, time.h is now correct and time_t
 #define CGOLD 0.3819660    and tm struct should be used. difftime should be used but sometimes I
 #define ZEPS 1.0e-10    just make the differences in raw time format (time(&now).
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.156  2014/08/25 20:10:10  brouard
 #define TINY 1.0e-20    *** empty log message ***
   
 static double maxarg1,maxarg2;    Revision 1.155  2014/08/25 18:32:34  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Summary: New compile, minor changes
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Author: Brouard
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.154  2014/06/20 17:32:08  brouard
 #define rint(a) floor(a+0.5)    Summary: Outputs now all graphs of convergence to period prevalence
   
 static double sqrarg;    Revision 1.153  2014/06/20 16:45:46  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Summary: If 3 live state, convergence to period prevalence on same graph
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Author: Brouard
   
 int imx;    Revision 1.152  2014/06/18 17:54:09  brouard
 int stepm;    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.151  2014/06/18 16:43:30  brouard
 int estepm;    *** empty log message ***
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.150  2014/06/18 16:42:35  brouard
 int m,nb;    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Author: brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.149  2014/06/18 15:51:14  brouard
 double dateintmean=0;    Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
 double *weight;  
 int **s; /* Status */    Revision 1.148  2014/06/17 17:38:48  brouard
 double *agedc, **covar, idx;    Summary: Nothing new
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Author: Brouard
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Just a new packaging for OS/X version 0.98nS
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.147  2014/06/16 10:33:11  brouard
 /**************** split *************************/    *** empty log message ***
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.146  2014/06/16 10:20:28  brouard
    char *s;                             /* pointer */    Summary: Merge
    int  l1, l2;                         /* length counters */    Author: Brouard
   
    l1 = strlen( path );                 /* length of path */    Merge, before building revised version.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.145  2014/06/10 21:23:15  brouard
    s = strrchr( path, '\\' );           /* find last / */    Summary: Debugging with valgrind
 #else    Author: Nicolas Brouard
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Lot of changes in order to output the results with some covariates
    if ( s == NULL ) {                   /* no directory, so use current */    After the Edimburgh REVES conference 2014, it seems mandatory to
 #if     defined(__bsd__)                /* get current working directory */    improve the code.
       extern char       *getwd( );    No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
       if ( getwd( dirc ) == NULL ) {    Also, decodemodel has been improved. Tricode is still not
 #else    optimal. nbcode should be improved. Documentation has been added in
       extern char       *getcwd( );    the source code.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.143  2014/01/26 09:45:38  brouard
 #endif    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
          return( GLOCK_ERROR_GETCWD );  
       }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       strcpy( name, path );             /* we've got it */    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.142  2014/01/26 03:57:36  brouard
       l2 = strlen( s );                 /* length of filename */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.141  2014/01/26 02:42:01  brouard
    }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.140  2011/09/02 10:37:54  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Summary: times.h is ok with mingw32 now.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.139  2010/06/14 07:50:17  brouard
 #endif    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
    s = strrchr( name, '.' );            /* find last / */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.138  2010/04/30 18:19:40  brouard
    l1= strlen( name);    *** empty log message ***
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.137  2010/04/29 18:11:38  brouard
    finame[l1-l2]= 0;    (Module): Checking covariates for more complex models
    return( 0 );                         /* we're done */    than V1+V2. A lot of change to be done. Unstable.
 }  
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
 /******************************************/    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
 void replace(char *s, char*t)    Some cleaning of code and comments added.
 {  
   int i;    Revision 1.135  2009/10/29 15:33:14  brouard
   int lg=20;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   i=0;  
   lg=strlen(t);    Revision 1.134  2009/10/29 13:18:53  brouard
   for(i=0; i<= lg; i++) {    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.133  2009/07/06 10:21:25  brouard
   }    just nforces
 }  
     Revision 1.132  2009/07/06 08:22:05  brouard
 int nbocc(char *s, char occ)    Many tings
 {  
   int i,j=0;    Revision 1.131  2009/06/20 16:22:47  brouard
   int lg=20;    Some dimensions resccaled
   i=0;  
   lg=strlen(s);    Revision 1.130  2009/05/26 06:44:34  brouard
   for(i=0; i<= lg; i++) {    (Module): Max Covariate is now set to 20 instead of 8. A
   if  (s[i] == occ ) j++;    lot of cleaning with variables initialized to 0. Trying to make
   }    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   return j;  
 }    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.128  2006/06/30 13:02:05  brouard
   int i,lg,j,p=0;    (Module): Clarifications on computing e.j
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.127  2006/04/28 18:11:50  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): Yes the sum of survivors was wrong since
   }    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
   lg=strlen(t);    (Module): In order to speed up (in case of numerous covariates) we
   for(j=0; j<p; j++) {    compute health expectancies (without variances) in a first step
     (u[j] = t[j]);    and then all the health expectancies with variances or standard
   }    deviation (needs data from the Hessian matrices) which slows the
      u[p]='\0';    computation.
     In the future we should be able to stop the program is only health
    for(j=0; j<= lg; j++) {    expectancies and graph are needed without standard deviations.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.126  2006/04/28 17:23:28  brouard
 }    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 /********************** nrerror ********************/    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 void nrerror(char error_text[])  
 {    Revision 1.125  2006/04/04 15:20:31  lievre
   fprintf(stderr,"ERREUR ...\n");    Errors in calculation of health expectancies. Age was not initialized.
   fprintf(stderr,"%s\n",error_text);    Forecasting file added.
   exit(1);  
 }    Revision 1.124  2006/03/22 17:13:53  lievre
 /*********************** vector *******************/    Parameters are printed with %lf instead of %f (more numbers after the comma).
 double *vector(int nl, int nh)    The log-likelihood is printed in the log file
 {  
   double *v;    Revision 1.123  2006/03/20 10:52:43  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    * imach.c (Module): <title> changed, corresponds to .htm file
   if (!v) nrerror("allocation failure in vector");    name. <head> headers where missing.
   return v-nl+NR_END;  
 }    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 /************************ free vector ******************/    otherwise the weight is truncated).
 void free_vector(double*v, int nl, int nh)    Modification of warning when the covariates values are not 0 or
 {    1.
   free((FREE_ARG)(v+nl-NR_END));    Version 0.98g
 }  
     Revision 1.122  2006/03/20 09:45:41  brouard
 /************************ivector *******************************/    (Module): Weights can have a decimal point as for
 int *ivector(long nl,long nh)    English (a comma might work with a correct LC_NUMERIC environment,
 {    otherwise the weight is truncated).
   int *v;    Modification of warning when the covariates values are not 0 or
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    1.
   if (!v) nrerror("allocation failure in ivector");    Version 0.98g
   return v-nl+NR_END;  
 }    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    * imach.c (Module): refinements in the computation of lli if
 {    status=-2 in order to have more reliable computation if stepm is
   free((FREE_ARG)(v+nl-NR_END));    not 1 month. Version 0.98f
 }  
     Revision 1.120  2006/03/16 15:10:38  lievre
 /******************* imatrix *******************************/    (Module): refinements in the computation of lli if
 int **imatrix(long nrl, long nrh, long ncl, long nch)    status=-2 in order to have more reliable computation if stepm is
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    not 1 month. Version 0.98f
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.119  2006/03/15 17:42:26  brouard
   int **m;    (Module): Bug if status = -2, the loglikelihood was
      computed as likelihood omitting the logarithm. Version O.98e
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.118  2006/03/14 18:20:07  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): varevsij Comments added explaining the second
   m += NR_END;    table of variances if popbased=1 .
   m -= nrl;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
      (Module): Function pstamp added
      (Module): Version 0.98d
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.117  2006/03/14 17:16:22  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): varevsij Comments added explaining the second
   m[nrl] += NR_END;    table of variances if popbased=1 .
   m[nrl] -= ncl;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
      (Module): Function pstamp added
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    (Module): Version 0.98d
    
   /* return pointer to array of pointers to rows */    Revision 1.116  2006/03/06 10:29:27  brouard
   return m;    (Module): Variance-covariance wrong links and
 }    varian-covariance of ej. is needed (Saito).
   
 /****************** free_imatrix *************************/    Revision 1.115  2006/02/27 12:17:45  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): One freematrix added in mlikeli! 0.98c
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.114  2006/02/26 12:57:58  brouard
      /* free an int matrix allocated by imatrix() */    (Module): Some improvements in processing parameter
 {    filename with strsep.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.113  2006/02/24 14:20:24  brouard
 }    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 /******************* matrix *******************************/    allocation too.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.112  2006/01/30 09:55:26  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   double **m;  
     Revision 1.111  2006/01/25 20:38:18  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): Lots of cleaning and bugs added (Gompertz)
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Comments can be added in data file. Missing date values
   m += NR_END;    can be a simple dot '.'.
   m -= nrl;  
     Revision 1.110  2006/01/25 00:51:50  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Lots of cleaning and bugs added (Gompertz)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.109  2006/01/24 19:37:15  brouard
   m[nrl] -= ncl;    (Module): Comments (lines starting with a #) are allowed in data.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.108  2006/01/19 18:05:42  lievre
   return m;    Gnuplot problem appeared...
 }    To be fixed
   
 /*************************free matrix ************************/    Revision 1.107  2006/01/19 16:20:37  brouard
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Test existence of gnuplot in imach path
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.106  2006/01/19 13:24:36  brouard
   free((FREE_ARG)(m+nrl-NR_END));    Some cleaning and links added in html output
 }  
     Revision 1.105  2006/01/05 20:23:19  lievre
 /******************* ma3x *******************************/    *** empty log message ***
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Revision 1.104  2005/09/30 16:11:43  lievre
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    (Module): sump fixed, loop imx fixed, and simplifications.
   double ***m;    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (instead of missing=-1 in earlier versions) and his/her
   if (!m) nrerror("allocation failure 1 in matrix()");    contributions to the likelihood is 1 - Prob of dying from last
   m += NR_END;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   m -= nrl;    the healthy state at last known wave). Version is 0.98
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.103  2005/09/30 15:54:49  lievre
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): sump fixed, loop imx fixed, and simplifications.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.101  2004/09/15 10:38:38  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Fix on curr_time
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Revision 1.100  2004/07/12 18:29:06  brouard
   m[nrl][ncl] -= nll;    Add version for Mac OS X. Just define UNIX in Makefile
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.99  2004/06/05 08:57:40  brouard
      *** empty log message ***
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.98  2004/05/16 15:05:56  brouard
     for (j=ncl+1; j<=nch; j++)    New version 0.97 . First attempt to estimate force of mortality
       m[i][j]=m[i][j-1]+nlay;    directly from the data i.e. without the need of knowing the health
   }    state at each age, but using a Gompertz model: log u =a + b*age .
   return m;    This is the basic analysis of mortality and should be done before any
 }    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 /*************************free ma3x ************************/    from other sources like vital statistic data.
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    The same imach parameter file can be used but the option for mle should be -3.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Agnès, who wrote this part of the code, tried to keep most of the
   free((FREE_ARG)(m+nrl-NR_END));    former routines in order to include the new code within the former code.
 }  
     The output is very simple: only an estimate of the intercept and of
 /***************** f1dim *************************/    the slope with 95% confident intervals.
 extern int ncom;  
 extern double *pcom,*xicom;    Current limitations:
 extern double (*nrfunc)(double []);    A) Even if you enter covariates, i.e. with the
      model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 double f1dim(double x)    B) There is no computation of Life Expectancy nor Life Table.
 {  
   int j;    Revision 1.97  2004/02/20 13:25:42  lievre
   double f;    Version 0.96d. Population forecasting command line is (temporarily)
   double *xt;    suppressed.
    
   xt=vector(1,ncom);    Revision 1.96  2003/07/15 15:38:55  brouard
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   f=(*nrfunc)(xt);    rewritten within the same printf. Workaround: many printfs.
   free_vector(xt,1,ncom);  
   return f;    Revision 1.95  2003/07/08 07:54:34  brouard
 }    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 /*****************brent *************************/    matrix (cov(a12,c31) instead of numbers.
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    Revision 1.94  2003/06/27 13:00:02  brouard
   int iter;    Just cleaning
   double a,b,d,etemp;  
   double fu,fv,fw,fx;    Revision 1.93  2003/06/25 16:33:55  brouard
   double ftemp;    (Module): On windows (cygwin) function asctime_r doesn't
   double p,q,r,tol1,tol2,u,v,w,x,xm;    exist so I changed back to asctime which exists.
   double e=0.0;    (Module): Version 0.96b
    
   a=(ax < cx ? ax : cx);    Revision 1.92  2003/06/25 16:30:45  brouard
   b=(ax > cx ? ax : cx);    (Module): On windows (cygwin) function asctime_r doesn't
   x=w=v=bx;    exist so I changed back to asctime which exists.
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    Revision 1.91  2003/06/25 15:30:29  brouard
     xm=0.5*(a+b);    * imach.c (Repository): Duplicated warning errors corrected.
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    (Repository): Elapsed time after each iteration is now output. It
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    helps to forecast when convergence will be reached. Elapsed time
     printf(".");fflush(stdout);    is stamped in powell.  We created a new html file for the graphs
 #ifdef DEBUG    concerning matrix of covariance. It has extension -cov.htm.
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Revision 1.90  2003/06/24 12:34:15  brouard
 #endif    (Module): Some bugs corrected for windows. Also, when
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    mle=-1 a template is output in file "or"mypar.txt with the design
       *xmin=x;    of the covariance matrix to be input.
       return fx;  
     }    Revision 1.89  2003/06/24 12:30:52  brouard
     ftemp=fu;    (Module): Some bugs corrected for windows. Also, when
     if (fabs(e) > tol1) {    mle=-1 a template is output in file "or"mypar.txt with the design
       r=(x-w)*(fx-fv);    of the covariance matrix to be input.
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.88  2003/06/23 17:54:56  brouard
       q=2.0*(q-r);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       if (q > 0.0) p = -p;  
       q=fabs(q);    Revision 1.87  2003/06/18 12:26:01  brouard
       etemp=e;    Version 0.96
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Revision 1.86  2003/06/17 20:04:08  brouard
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    (Module): Change position of html and gnuplot routines and added
       else {    routine fileappend.
         d=p/q;  
         u=x+d;    Revision 1.85  2003/06/17 13:12:43  brouard
         if (u-a < tol2 || b-u < tol2)    * imach.c (Repository): Check when date of death was earlier that
           d=SIGN(tol1,xm-x);    current date of interview. It may happen when the death was just
       }    prior to the death. In this case, dh was negative and likelihood
     } else {    was wrong (infinity). We still send an "Error" but patch by
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    assuming that the date of death was just one stepm after the
     }    interview.
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    (Repository): Because some people have very long ID (first column)
     fu=(*f)(u);    we changed int to long in num[] and we added a new lvector for
     if (fu <= fx) {    memory allocation. But we also truncated to 8 characters (left
       if (u >= x) a=x; else b=x;    truncation)
       SHFT(v,w,x,u)    (Repository): No more line truncation errors.
         SHFT(fv,fw,fx,fu)  
         } else {    Revision 1.84  2003/06/13 21:44:43  brouard
           if (u < x) a=u; else b=u;    * imach.c (Repository): Replace "freqsummary" at a correct
           if (fu <= fw || w == x) {    place. It differs from routine "prevalence" which may be called
             v=w;    many times. Probs is memory consuming and must be used with
             w=u;    parcimony.
             fv=fw;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    Revision 1.83  2003/06/10 13:39:11  lievre
             v=u;    *** empty log message ***
             fv=fu;  
           }    Revision 1.82  2003/06/05 15:57:20  brouard
         }    Add log in  imach.c and  fullversion number is now printed.
   }  
   nrerror("Too many iterations in brent");  */
   *xmin=x;  /*
   return fx;     Interpolated Markov Chain
 }  
     Short summary of the programme:
 /****************** mnbrak ***********************/    
     This program computes Healthy Life Expectancies from
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
             double (*func)(double))    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   double ulim,u,r,q, dum;    case of a health survey which is our main interest) -2- at least a
   double fu;    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
   *fa=(*func)(*ax);    computed from the time spent in each health state according to a
   *fb=(*func)(*bx);    model. More health states you consider, more time is necessary to reach the
   if (*fb > *fa) {    Maximum Likelihood of the parameters involved in the model.  The
     SHFT(dum,*ax,*bx,dum)    simplest model is the multinomial logistic model where pij is the
       SHFT(dum,*fb,*fa,dum)    probability to be observed in state j at the second wave
       }    conditional to be observed in state i at the first wave. Therefore
   *cx=(*bx)+GOLD*(*bx-*ax);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   *fc=(*func)(*cx);    'age' is age and 'sex' is a covariate. If you want to have a more
   while (*fb > *fc) {    complex model than "constant and age", you should modify the program
     r=(*bx-*ax)*(*fb-*fc);    where the markup *Covariates have to be included here again* invites
     q=(*bx-*cx)*(*fb-*fa);    you to do it.  More covariates you add, slower the
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    convergence.
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    The advantage of this computer programme, compared to a simple
     if ((*bx-u)*(u-*cx) > 0.0) {    multinomial logistic model, is clear when the delay between waves is not
       fu=(*func)(u);    identical for each individual. Also, if a individual missed an
     } else if ((*cx-u)*(u-ulim) > 0.0) {    intermediate interview, the information is lost, but taken into
       fu=(*func)(u);    account using an interpolation or extrapolation.  
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    hPijx is the probability to be observed in state i at age x+h
           SHFT(*fb,*fc,fu,(*func)(u))    conditional to the observed state i at age x. The delay 'h' can be
           }    split into an exact number (nh*stepm) of unobserved intermediate
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    states. This elementary transition (by month, quarter,
       u=ulim;    semester or year) is modelled as a multinomial logistic.  The hPx
       fu=(*func)(u);    matrix is simply the matrix product of nh*stepm elementary matrices
     } else {    and the contribution of each individual to the likelihood is simply
       u=(*cx)+GOLD*(*cx-*bx);    hPijx.
       fu=(*func)(u);  
     }    Also this programme outputs the covariance matrix of the parameters but also
     SHFT(*ax,*bx,*cx,u)    of the life expectancies. It also computes the period (stable) prevalence. 
       SHFT(*fa,*fb,*fc,fu)    
       }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /*************** linmin ************************/    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 int ncom;    software can be distributed freely for non commercial use. Latest version
 double *pcom,*xicom;    can be accessed at http://euroreves.ined.fr/imach .
 double (*nrfunc)(double []);  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
   double brent(double ax, double bx, double cx,    **********************************************************************/
                double (*f)(double), double tol, double *xmin);  /*
   double f1dim(double x);    main
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    read parameterfile
               double *fc, double (*func)(double));    read datafile
   int j;    concatwav
   double xx,xmin,bx,ax;    freqsummary
   double fx,fb,fa;    if (mle >= 1)
        mlikeli
   ncom=n;    print results files
   pcom=vector(1,n);    if mle==1 
   xicom=vector(1,n);       computes hessian
   nrfunc=func;    read end of parameter file: agemin, agemax, bage, fage, estepm
   for (j=1;j<=n;j++) {        begin-prev-date,...
     pcom[j]=p[j];    open gnuplot file
     xicom[j]=xi[j];    open html file
   }    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   ax=0.0;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   xx=1.0;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      freexexit2 possible for memory heap.
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    h Pij x                         | pij_nom  ficrestpij
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 #endif         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   for (j=1;j<=n;j++) {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     xi[j] *= xmin;  
     p[j] += xi[j];         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   }         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   free_vector(xicom,1,n);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   free_vector(pcom,1,n);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 }     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   
 /*************** powell ************************/    forecasting if prevfcast==1 prevforecast call prevalence()
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    health expectancies
             double (*func)(double []))    Variance-covariance of DFLE
 {    prevalence()
   void linmin(double p[], double xi[], int n, double *fret,     movingaverage()
               double (*func)(double []));    varevsij() 
   int i,ibig,j;    if popbased==1 varevsij(,popbased)
   double del,t,*pt,*ptt,*xit;    total life expectancies
   double fp,fptt;    Variance of period (stable) prevalence
   double *xits;   end
   pt=vector(1,n);  */
   ptt=vector(1,n);  
   xit=vector(1,n);  #define POWELL /* Instead of NLOPT */
   xits=vector(1,n);  /* #define POWELLORIGINAL */ /* Don't use Directest to decide new direction but original Powell test */
   *fret=(*func)(p);  /* #define MNBRAKORIGINAL */ /* Don't use mnbrak fix */
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  #include <math.h>
     fp=(*fret);  #include <stdio.h>
     ibig=0;  #include <stdlib.h>
     del=0.0;  #include <string.h>
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  #ifdef _WIN32
       printf(" %d %.12f",i, p[i]);  #include <io.h>
     printf("\n");  #include <windows.h>
     for (i=1;i<=n;i++) {  #include <tchar.h>
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #else
       fptt=(*fret);  #include <unistd.h>
 #ifdef DEBUG  #endif
       printf("fret=%lf \n",*fret);  
 #endif  #include <limits.h>
       printf("%d",i);fflush(stdout);  #include <sys/types.h>
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  #if defined(__GNUC__)
         del=fabs(fptt-(*fret));  #include <sys/utsname.h> /* Doesn't work on Windows */
         ibig=i;  #endif
       }  
 #ifdef DEBUG  #include <sys/stat.h>
       printf("%d %.12e",i,(*fret));  #include <errno.h>
       for (j=1;j<=n;j++) {  /* extern int errno; */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  /* #ifdef LINUX */
       }  /* #include <time.h> */
       for(j=1;j<=n;j++)  /* #include "timeval.h" */
         printf(" p=%.12e",p[j]);  /* #else */
       printf("\n");  /* #include <sys/time.h> */
 #endif  /* #endif */
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #include <time.h>
 #ifdef DEBUG  
       int k[2],l;  #ifdef GSL
       k[0]=1;  #include <gsl/gsl_errno.h>
       k[1]=-1;  #include <gsl/gsl_multimin.h>
       printf("Max: %.12e",(*func)(p));  #endif
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  
       printf("\n");  #ifdef NLOPT
       for(l=0;l<=1;l++) {  #include <nlopt.h>
         for (j=1;j<=n;j++) {  typedef struct {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    double (* function)(double [] );
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  } myfunc_data ;
         }  #endif
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  /* #include <libintl.h> */
 #endif  /* #define _(String) gettext (String) */
   
   #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  #define GNUPLOTPROGRAM "gnuplot"
       free_vector(ptt,1,n);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       free_vector(pt,1,n);  #define FILENAMELENGTH 132
       return;  
     }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       xit[j]=p[j]-pt[j];  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       pt[j]=p[j];  
     }  #define NINTERVMAX 8
     fptt=(*func)(ptt);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     if (fptt < fp) {  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       if (t < 0.0) {  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
         linmin(p,xit,n,fret,func);  #define MAXN 20000
         for (j=1;j<=n;j++) {  #define YEARM 12. /**< Number of months per year */
           xi[j][ibig]=xi[j][n];  #define AGESUP 130
           xi[j][n]=xit[j];  #define AGEBASE 40
         }  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 #ifdef DEBUG  #ifdef _WIN32
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #define DIRSEPARATOR '\\'
         for(j=1;j<=n;j++)  #define CHARSEPARATOR "\\"
           printf(" %.12e",xit[j]);  #define ODIRSEPARATOR '/'
         printf("\n");  #else
 #endif  #define DIRSEPARATOR '/'
       }  #define CHARSEPARATOR "/"
     }  #define ODIRSEPARATOR '\\'
   }  #endif
 }  
   /* $Id$ */
 /**** Prevalence limit ****************/  /* $State$ */
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  char version[]="Imach version 0.98q0, March 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 {  char fullversion[]="$Revision$ $Date$"; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  char strstart[80];
      matrix by transitions matrix until convergence is reached */  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int i, ii,j,k;  int nvar=0, nforce=0; /* Number of variables, number of forces */
   double min, max, maxmin, maxmax,sumnew=0.;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   double **matprod2();  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   double **out, cov[NCOVMAX], **pmij();  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   double **newm;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   double agefin, delaymax=50 ; /* Max number of years to converge */  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   int cptcovprodnoage=0; /**< Number of covariate products without age */   
   for (ii=1;ii<=nlstate+ndeath;ii++)  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     for (j=1;j<=nlstate+ndeath;j++){  int cptcov=0; /* Working variable */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int npar=NPARMAX;
     }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
    cov[1]=1.;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    int popbased=0;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  int *wav; /* Number of waves for this individuual 0 is possible */
     newm=savm;  int maxwav=0; /* Maxim number of waves */
     /* Covariates have to be included here again */  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
      cov[2]=agefin;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
    int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       for (k=1; k<=cptcovn;k++) {                     to the likelihood and the sum of weights (done by funcone)*/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int mle=1, weightopt=0;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       for (k=1; k<=cptcovprod;k++)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int countcallfunc=0;  /* Count the number of calls to func */
   double jmean=1; /* Mean space between 2 waves */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  double **matprod2(); /* test */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double **oldm, **newm, **savm; /* Working pointers to matrices */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /*FILE *fic ; */ /* Used in readdata only */
   FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     savm=oldm;  FILE *ficlog, *ficrespow;
     oldm=newm;  int globpr=0; /* Global variable for printing or not */
     maxmax=0.;  double fretone; /* Only one call to likelihood */
     for(j=1;j<=nlstate;j++){  long ipmx=0; /* Number of contributions */
       min=1.;  double sw; /* Sum of weights */
       max=0.;  char filerespow[FILENAMELENGTH];
       for(i=1; i<=nlstate; i++) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         sumnew=0;  FILE *ficresilk;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
         prlim[i][j]= newm[i][j]/(1-sumnew);  FILE *ficresprobmorprev;
         max=FMAX(max,prlim[i][j]);  FILE *fichtm, *fichtmcov; /* Html File */
         min=FMIN(min,prlim[i][j]);  FILE *ficreseij;
       }  char filerese[FILENAMELENGTH];
       maxmin=max-min;  FILE *ficresstdeij;
       maxmax=FMAX(maxmax,maxmin);  char fileresstde[FILENAMELENGTH];
     }  FILE *ficrescveij;
     if(maxmax < ftolpl){  char filerescve[FILENAMELENGTH];
       return prlim;  FILE  *ficresvij;
     }  char fileresv[FILENAMELENGTH];
   }  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /*************** transition probabilities ***************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 {  char command[FILENAMELENGTH];
   double s1, s2;  int  outcmd=0;
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
     for(i=1; i<= nlstate; i++){  char filelog[FILENAMELENGTH]; /* Log file */
     for(j=1; j<i;j++){  char filerest[FILENAMELENGTH];
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char fileregp[FILENAMELENGTH];
         /*s2 += param[i][j][nc]*cov[nc];*/  char popfile[FILENAMELENGTH];
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       }  
       ps[i][j]=s2;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /* struct timezone tzp; */
     }  /* extern int gettimeofday(); */
     for(j=i+1; j<=nlstate+ndeath;j++){  struct tm tml, *gmtime(), *localtime();
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  extern time_t time();
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  struct tm start_time, end_time, curr_time, last_time, forecast_time;
       ps[i][j]=s2;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
     }  struct tm tm;
   }  
     /*ps[3][2]=1;*/  char strcurr[80], strfor[80];
   
   for(i=1; i<= nlstate; i++){  char *endptr;
      s1=0;  long lval;
     for(j=1; j<i; j++)  double dval;
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  #define NR_END 1
       s1+=exp(ps[i][j]);  #define FREE_ARG char*
     ps[i][i]=1./(s1+1.);  #define FTOL 1.0e-10
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define NRANSI 
     for(j=i+1; j<=nlstate+ndeath; j++)  #define ITMAX 200 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #define TOL 2.0e-4 
   } /* end i */  
   #define CGOLD 0.3819660 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #define ZEPS 1.0e-10 
     for(jj=1; jj<= nlstate+ndeath; jj++){  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  #define GOLD 1.618034 
     }  #define GLIMIT 100.0 
   }  #define TINY 1.0e-20 
   
   static double maxarg1,maxarg2;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     for(jj=1; jj<= nlstate+ndeath; jj++){  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      printf("%lf ",ps[ii][jj]);    
    }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     printf("\n ");  #define rint(a) floor(a+0.5)
     }  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
     printf("\n ");printf("%lf ",cov[2]);*/  #define mytinydouble 1.0e-16
 /*  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   goto end;*/  /* static double dsqrarg; */
     return ps;  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /**************** Product of 2 matrices ******************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  int imx; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  int stepm=1;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /* Stepm, step in month: minimum step interpolation*/
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  int estepm;
      a pointer to pointers identical to out */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  int m,nb;
     for(k=ncolol; k<=ncoloh; k++)  long *num;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         out[i][k] +=in[i][j]*b[j][k];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   return out;  double *ageexmed,*agecens;
 }  double dateintmean=0;
   
   double *weight;
 /************* Higher Matrix Product ***************/  int **s; /* Status */
   double *agedc;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
 {                    * covar=matrix(0,NCOVMAX,1,n); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
      duration (i.e. until  double  idx; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  int *Ndum; /** Freq of modality (tricode */
      (typically every 2 years instead of every month which is too big).  int **codtab; /**< codtab=imatrix(1,100,1,10); */
      Model is determined by parameters x and covariates have to be  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
      included manually here.  double *lsurv, *lpop, *tpop;
   
      */  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   double ftolhess; /**< Tolerance for computing hessian */
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /**************** split *************************/
   double **newm;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   /* Hstepm could be zero and should return the unit matrix */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   for (i=1;i<=nlstate+ndeath;i++)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     for (j=1;j<=nlstate+ndeath;j++){    */ 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    char  *ss;                            /* pointer */
       po[i][j][0]=(i==j ? 1.0 : 0.0);    int   l1, l2;                         /* length counters */
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    l1 = strlen(path );                   /* length of path */
   for(h=1; h <=nhstepm; h++){    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     for(d=1; d <=hstepm; d++){    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       newm=savm;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       /* Covariates have to be included here again */      strcpy( name, path );               /* we got the fullname name because no directory */
       cov[1]=1.;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      /* get current working directory */
       for (k=1; k<=cptcovage;k++)      /*    extern  char* getcwd ( char *buf , int len);*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #ifdef WIN32
       for (k=1; k<=cptcovprod;k++)      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #else
           if (getcwd(dirc, FILENAME_MAX) == NULL) {
   #endif
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        return( GLOCK_ERROR_GETCWD );
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      /* got dirc from getcwd*/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      printf(" DIRC = %s \n",dirc);
       savm=oldm;    } else {                              /* strip direcotry from path */
       oldm=newm;      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
     for(i=1; i<=nlstate+ndeath; i++)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       for(j=1;j<=nlstate+ndeath;j++) {      strcpy( name, ss );         /* save file name */
         po[i][j][h]=newm[i][j];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      dirc[l1-l2] = 0;                    /* add zero */
          */      printf(" DIRC2 = %s \n",dirc);
       }    }
   } /* end h */    /* We add a separator at the end of dirc if not exists */
   return po;    l1 = strlen( dirc );                  /* length of directory */
 }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 /*************** log-likelihood *************/      printf(" DIRC3 = %s \n",dirc);
 double func( double *x)    }
 {    ss = strrchr( name, '.' );            /* find last / */
   int i, ii, j, k, mi, d, kk;    if (ss >0){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      ss++;
   double **out;      strcpy(ext,ss);                     /* save extension */
   double sw; /* Sum of weights */      l1= strlen( name);
   double lli; /* Individual log likelihood */      l2= strlen(ss)+1;
   long ipmx;      strncpy( finame, name, l1-l2);
   /*extern weight */      finame[l1-l2]= 0;
   /* We are differentiating ll according to initial status */    }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)    return( 0 );                          /* we're done */
     printf(" %d\n",s[4][i]);  }
   */  
   cov[1]=1.;  
   /******************************************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  void replace_back_to_slash(char *s, char*t)
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  {
     for(mi=1; mi<= wav[i]-1; mi++){    int i;
       for (ii=1;ii<=nlstate+ndeath;ii++)    int lg=0;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    i=0;
       for(d=0; d<dh[mi][i]; d++){    lg=strlen(t);
         newm=savm;    for(i=0; i<= lg; i++) {
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      (s[i] = t[i]);
         for (kk=1; kk<=cptcovage;kk++) {      if (t[i]== '\\') s[i]='/';
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    }
         }  }
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  char *trimbb(char *out, char *in)
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         savm=oldm;    char *s;
         oldm=newm;    s=out;
            while (*in != '\0'){
              while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       } /* end mult */        in++;
            }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      *out++ = *in++;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    }
       ipmx +=1;    *out='\0';
       sw += weight[i];    return s;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  }
     } /* end of wave */  
   } /* end of individual */  char *cutl(char *blocc, char *alocc, char *in, char occ)
   {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */       gives blocc="abcdef2ghi" and alocc="j".
   return -l;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
 }    */
     char *s, *t;
     t=in;s=in;
 /*********** Maximum Likelihood Estimation ***************/    while ((*in != occ) && (*in != '\0')){
       *alocc++ = *in++;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    }
 {    if( *in == occ){
   int i,j, iter;      *(alocc)='\0';
   double **xi,*delti;      s=++in;
   double fret;    }
   xi=matrix(1,npar,1,npar);   
   for (i=1;i<=npar;i++)    if (s == t) {/* occ not found */
     for (j=1;j<=npar;j++)      *(alocc-(in-s))='\0';
       xi[i][j]=(i==j ? 1.0 : 0.0);      in=s;
   printf("Powell\n");    }
   powell(p,xi,npar,ftol,&iter,&fret,func);    while ( *in != '\0'){
       *blocc++ = *in++;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
     *blocc='\0';
 }    return t;
   }
 /**** Computes Hessian and covariance matrix ***/  char *cutv(char *blocc, char *alocc, char *in, char occ)
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  {
 {    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   double  **a,**y,*x,pd;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double **hess;       gives blocc="abcdef2ghi" and alocc="j".
   int i, j,jk;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   int *indx;    */
     char *s, *t;
   double hessii(double p[], double delta, int theta, double delti[]);    t=in;s=in;
   double hessij(double p[], double delti[], int i, int j);    while (*in != '\0'){
   void lubksb(double **a, int npar, int *indx, double b[]) ;      while( *in == occ){
   void ludcmp(double **a, int npar, int *indx, double *d) ;        *blocc++ = *in++;
         s=in;
   hess=matrix(1,npar,1,npar);      }
       *blocc++ = *in++;
   printf("\nCalculation of the hessian matrix. Wait...\n");    }
   for (i=1;i<=npar;i++){    if (s == t) /* occ not found */
     printf("%d",i);fflush(stdout);      *(blocc-(in-s))='\0';
     hess[i][i]=hessii(p,ftolhess,i,delti);    else
     /*printf(" %f ",p[i]);*/      *(blocc-(in-s)-1)='\0';
     /*printf(" %lf ",hess[i][i]);*/    in=s;
   }    while ( *in != '\0'){
        *alocc++ = *in++;
   for (i=1;i<=npar;i++) {    }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {    *alocc='\0';
         printf(".%d%d",i,j);fflush(stdout);    return s;
         hess[i][j]=hessij(p,delti,i,j);  }
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/  int nbocc(char *s, char occ)
       }  {
     }    int i,j=0;
   }    int lg=20;
   printf("\n");    i=0;
     lg=strlen(s);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for(i=0; i<= lg; i++) {
      if  (s[i] == occ ) j++;
   a=matrix(1,npar,1,npar);    }
   y=matrix(1,npar,1,npar);    return j;
   x=vector(1,npar);  }
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  /* void cutv(char *u,char *v, char*t, char occ) */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /* { */
   ludcmp(a,npar,indx,&pd);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   for (j=1;j<=npar;j++) {  /*      gives u="abcdef2ghi" and v="j" *\/ */
     for (i=1;i<=npar;i++) x[i]=0;  /*   int i,lg,j,p=0; */
     x[j]=1;  /*   i=0; */
     lubksb(a,npar,indx,x);  /*   lg=strlen(t); */
     for (i=1;i<=npar;i++){  /*   for(j=0; j<=lg-1; j++) { */
       matcov[i][j]=x[i];  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
     }  /*   } */
   }  
   /*   for(j=0; j<p; j++) { */
   printf("\n#Hessian matrix#\n");  /*     (u[j] = t[j]); */
   for (i=1;i<=npar;i++) {  /*   } */
     for (j=1;j<=npar;j++) {  /*      u[p]='\0'; */
       printf("%.3e ",hess[i][j]);  
     }  /*    for(j=0; j<= lg; j++) { */
     printf("\n");  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   }  /*   } */
   /* } */
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  #ifdef _WIN32
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  char * strsep(char **pp, const char *delim)
   ludcmp(a,npar,indx,&pd);  {
     char *p, *q;
   /*  printf("\n#Hessian matrix recomputed#\n");           
     if ((p = *pp) == NULL)
   for (j=1;j<=npar;j++) {      return 0;
     for (i=1;i<=npar;i++) x[i]=0;    if ((q = strpbrk (p, delim)) != NULL)
     x[j]=1;    {
     lubksb(a,npar,indx,x);      *pp = q + 1;
     for (i=1;i<=npar;i++){      *q = '\0';
       y[i][j]=x[i];    }
       printf("%.3e ",y[i][j]);    else
     }      *pp = 0;
     printf("\n");    return p;
   }  }
   */  #endif
   
   free_matrix(a,1,npar,1,npar);  /********************** nrerror ********************/
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  void nrerror(char error_text[])
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /*************** hessian matrix ****************/  double *vector(int nl, int nh)
 double hessii( double x[], double delta, int theta, double delti[])  {
 {    double *v;
   int i;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   int l=1, lmax=20;    if (!v) nrerror("allocation failure in vector");
   double k1,k2;    return v-nl+NR_END;
   double p2[NPARMAX+1];  }
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /************************ free vector ******************/
   double fx;  void free_vector(double*v, int nl, int nh)
   int k=0,kmax=10;  {
   double l1;    free((FREE_ARG)(v+nl-NR_END));
   }
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /************************ivector *******************************/
   for(l=0 ; l <=lmax; l++){  int *ivector(long nl,long nh)
     l1=pow(10,l);  {
     delts=delt;    int *v;
     for(k=1 ; k <kmax; k=k+1){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       delt = delta*(l1*k);    if (!v) nrerror("allocation failure in ivector");
       p2[theta]=x[theta] +delt;    return v-nl+NR_END;
       k1=func(p2)-fx;  }
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  /******************free ivector **************************/
       /*res= (k1-2.0*fx+k2)/delt/delt; */  void free_ivector(int *v, long nl, long nh)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  {
          free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif  /************************lvector *******************************/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  long *lvector(long nl,long nh)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  {
         k=kmax;    long *v;
       }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    if (!v) nrerror("allocation failure in ivector");
         k=kmax; l=lmax*10.;    return v-nl+NR_END;
       }  }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  /******************free lvector **************************/
       }  void free_lvector(long *v, long nl, long nh)
     }  {
   }    free((FREE_ARG)(v+nl-NR_END));
   delti[theta]=delts;  }
   return res;  
    /******************* imatrix *******************************/
 }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 double hessij( double x[], double delti[], int thetai,int thetaj)  { 
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int i;    int **m; 
   int l=1, l1, lmax=20;    
   double k1,k2,k3,k4,res,fx;    /* allocate pointers to rows */ 
   double p2[NPARMAX+1];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   int k;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
   fx=func(x);    m -= nrl; 
   for (k=1; k<=2; k++) {    
     for (i=1;i<=npar;i++) p2[i]=x[i];    
     p2[thetai]=x[thetai]+delti[thetai]/k;    /* allocate rows and set pointers to them */ 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     k1=func(p2)-fx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      m[nrl] += NR_END; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    m[nrl] -= ncl; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    
     k2=func(p2)-fx;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* return pointer to array of pointers to rows */ 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    return m; 
     k3=func(p2)-fx;  } 
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /****************** free_imatrix *************************/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  void free_imatrix(m,nrl,nrh,ncl,nch)
     k4=func(p2)-fx;        int **m;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        long nch,ncl,nrh,nrl; 
 #ifdef DEBUG       /* free an int matrix allocated by imatrix() */ 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  { 
 #endif    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   }    free((FREE_ARG) (m+nrl-NR_END)); 
   return res;  } 
 }  
   /******************* matrix *******************************/
 /************** Inverse of matrix **************/  double **matrix(long nrl, long nrh, long ncl, long nch)
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   int i,imax,j,k;    double **m;
   double big,dum,sum,temp;  
   double *vv;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
   vv=vector(1,n);    m += NR_END;
   *d=1.0;    m -= nrl;
   for (i=1;i<=n;i++) {  
     big=0.0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=n;j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       if ((temp=fabs(a[i][j])) > big) big=temp;    m[nrl] += NR_END;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    m[nrl] -= ncl;
     vv[i]=1.0/big;  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=1;j<=n;j++) {    return m;
     for (i=1;i<j;i++) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       sum=a[i][j];  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       a[i][j]=sum;     */
     }  }
     big=0.0;  
     for (i=j;i<=n;i++) {  /*************************free matrix ************************/
       sum=a[i][j];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (k=1;k<j;k++)  {
         sum -= a[i][k]*a[k][j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       a[i][j]=sum;    free((FREE_ARG)(m+nrl-NR_END));
       if ( (dum=vv[i]*fabs(sum)) >= big) {  }
         big=dum;  
         imax=i;  /******************* ma3x *******************************/
       }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     if (j != imax) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       for (k=1;k<=n;k++) {    double ***m;
         dum=a[imax][k];  
         a[imax][k]=a[j][k];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         a[j][k]=dum;    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       *d = -(*d);    m -= nrl;
       vv[imax]=vv[j];  
     }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     indx[j]=imax;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (a[j][j] == 0.0) a[j][j]=TINY;    m[nrl] += NR_END;
     if (j != n) {    m[nrl] -= ncl;
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }  
   }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   free_vector(vv,1,n);  /* Doesn't work */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 ;    m[nrl][ncl] += NR_END;
 }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 void lubksb(double **a, int n, int *indx, double b[])      m[nrl][j]=m[nrl][j-1]+nlay;
 {    
   int i,ii=0,ip,j;    for (i=nrl+1; i<=nrh; i++) {
   double sum;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
        for (j=ncl+1; j<=nch; j++) 
   for (i=1;i<=n;i++) {        m[i][j]=m[i][j-1]+nlay;
     ip=indx[i];    }
     sum=b[ip];    return m; 
     b[ip]=b[i];    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     if (ii)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    */
     else if (sum) ii=i;  }
     b[i]=sum;  
   }  /*************************free ma3x ************************/
   for (i=n;i>=1;i--) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     sum=b[i];  {
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     b[i]=sum/a[i][i];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /************ Frequencies ********************/  /*************** function subdirf ***********/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  char *subdirf(char fileres[])
 {  /* Some frequencies */  {
      /* Caution optionfilefiname is hidden */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    strcpy(tmpout,optionfilefiname);
   double ***freq; /* Frequencies */    strcat(tmpout,"/"); /* Add to the right */
   double *pp;    strcat(tmpout,fileres);
   double pos, k2, dateintsum=0,k2cpt=0;    return tmpout;
   FILE *ficresp;  }
   char fileresp[FILENAMELENGTH];  
    /*************** function subdirf2 ***********/
   pp=vector(1,nlstate);  char *subdirf2(char fileres[], char *preop)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
   strcpy(fileresp,"p");    
   strcat(fileresp,fileres);    /* Caution optionfilefiname is hidden */
   if((ficresp=fopen(fileresp,"w"))==NULL) {    strcpy(tmpout,optionfilefiname);
     printf("Problem with prevalence resultfile: %s\n", fileresp);    strcat(tmpout,"/");
     exit(0);    strcat(tmpout,preop);
   }    strcat(tmpout,fileres);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    return tmpout;
   j1=0;  }
    
   j=cptcoveff;  /*************** function subdirf3 ***********/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  char *subdirf3(char fileres[], char *preop, char *preop2)
    {
   for(k1=1; k1<=j;k1++){    
     for(i1=1; i1<=ncodemax[k1];i1++){    /* Caution optionfilefiname is hidden */
       j1++;    strcpy(tmpout,optionfilefiname);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    strcat(tmpout,"/");
         scanf("%d", i);*/    strcat(tmpout,preop);
       for (i=-1; i<=nlstate+ndeath; i++)      strcat(tmpout,preop2);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      strcat(tmpout,fileres);
           for(m=agemin; m <= agemax+3; m++)    return tmpout;
             freq[i][jk][m]=0;  }
        
       dateintsum=0;  char *asc_diff_time(long time_sec, char ascdiff[])
       k2cpt=0;  {
       for (i=1; i<=imx; i++) {    long sec_left, days, hours, minutes;
         bool=1;    days = (time_sec) / (60*60*24);
         if  (cptcovn>0) {    sec_left = (time_sec) % (60*60*24);
           for (z1=1; z1<=cptcoveff; z1++)    hours = (sec_left) / (60*60) ;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    sec_left = (sec_left) %(60*60);
               bool=0;    minutes = (sec_left) /60;
         }    sec_left = (sec_left) % (60);
         if (bool==1) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
           for(m=firstpass; m<=lastpass; m++){    return ascdiff;
             k2=anint[m][i]+(mint[m][i]/12.);  }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /***************** f1dim *************************/
               if(agev[m][i]==1) agev[m][i]=agemax+2;  extern int ncom; 
               if (m<lastpass) {  extern double *pcom,*xicom;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  extern double (*nrfunc)(double []); 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];   
               }  double f1dim(double x) 
                { 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    int j; 
                 dateintsum=dateintsum+k2;    double f;
                 k2cpt++;    double *xt; 
               }   
             }    xt=vector(1,ncom); 
           }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         }    f=(*nrfunc)(xt); 
       }    free_vector(xt,1,ncom); 
            return f; 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  } 
   
       if  (cptcovn>0) {  /*****************brent *************************/
         fprintf(ficresp, "\n#********** Variable ");  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  { 
         fprintf(ficresp, "**********\n#");    int iter; 
       }    double a,b,d,etemp;
       for(i=1; i<=nlstate;i++)    double fu=0,fv,fw,fx;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double ftemp=0.;
       fprintf(ficresp, "\n");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
          double e=0.0; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){   
         if(i==(int)agemax+3)    a=(ax < cx ? ax : cx); 
           printf("Total");    b=(ax > cx ? ax : cx); 
         else    x=w=v=bx; 
           printf("Age %d", i);    fw=fv=fx=(*f)(x); 
         for(jk=1; jk <=nlstate ; jk++){    for (iter=1;iter<=ITMAX;iter++) { 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      xm=0.5*(a+b); 
             pp[jk] += freq[jk][m][i];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         for(jk=1; jk <=nlstate ; jk++){      printf(".");fflush(stdout);
           for(m=-1, pos=0; m <=0 ; m++)      fprintf(ficlog,".");fflush(ficlog);
             pos += freq[jk][m][i];  #ifdef DEBUGBRENT
           if(pp[jk]>=1.e-10)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           else      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  #endif
         }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
         for(jk=1; jk <=nlstate ; jk++){        return fx; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      } 
             pp[jk] += freq[jk][m][i];      ftemp=fu;
         }      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        q=(x-v)*(fx-fw); 
           pos += pp[jk];        p=(x-v)*q-(x-w)*r; 
         for(jk=1; jk <=nlstate ; jk++){        q=2.0*(q-r); 
           if(pos>=1.e-5)        if (q > 0.0) p = -p; 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        q=fabs(q); 
           else        etemp=e; 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        e=d; 
           if( i <= (int) agemax){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
             if(pos>=1.e-5){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        else { 
               probs[i][jk][j1]= pp[jk]/pos;          d=p/q; 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          u=x+d; 
             }          if (u-a < tol2 || b-u < tol2) 
             else            d=SIGN(tol1,xm-x); 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        } 
           }      } else { 
         }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
              } 
         for(jk=-1; jk <=nlstate+ndeath; jk++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
           for(m=-1; m <=nlstate+ndeath; m++)      fu=(*f)(u); 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      if (fu <= fx) { 
         if(i <= (int) agemax)        if (u >= x) a=x; else b=x; 
           fprintf(ficresp,"\n");        SHFT(v,w,x,u) 
         printf("\n");        SHFT(fv,fw,fx,fu) 
       }      } else { 
     }        if (u < x) a=u; else b=u; 
   }        if (fu <= fw || w == x) { 
   dateintmean=dateintsum/k2cpt;          v=w; 
            w=u; 
   fclose(ficresp);          fv=fw; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          fw=fu; 
   free_vector(pp,1,nlstate);        } else if (fu <= fv || v == x || v == w) { 
            v=u; 
   /* End of Freq */          fv=fu; 
 }        } 
       } 
 /************ Prevalence ********************/    } 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    nrerror("Too many iterations in brent"); 
 {  /* Some frequencies */    *xmin=x; 
      return fx; 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  } 
   double ***freq; /* Frequencies */  
   double *pp;  /****************** mnbrak ***********************/
   double pos, k2;  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   pp=vector(1,nlstate);              double (*func)(double)) 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
    the downhill direction (defined by the function as evaluated at the initial points) and returns
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
   j1=0;  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
       */
   j=cptcoveff;    double ulim,u,r,q, dum;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double fu; 
     
  for(k1=1; k1<=j;k1++){    *fa=(*func)(*ax); 
     for(i1=1; i1<=ncodemax[k1];i1++){    *fb=(*func)(*bx); 
       j1++;    if (*fb > *fa) { 
        SHFT(dum,*ax,*bx,dum) 
       for (i=-1; i<=nlstate+ndeath; i++)        SHFT(dum,*fb,*fa,dum) 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      } 
           for(m=agemin; m <= agemax+3; m++)    *cx=(*bx)+GOLD*(*bx-*ax); 
             freq[i][jk][m]=0;    *fc=(*func)(*cx); 
        #ifdef DEBUG
       for (i=1; i<=imx; i++) {    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
         bool=1;    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
         if  (cptcovn>0) {  #endif
           for (z1=1; z1<=cptcoveff; z1++)    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      r=(*bx-*ax)*(*fb-*fc); 
               bool=0;      q=(*bx-*cx)*(*fb-*fa); 
         }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         if (bool==1) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
           for(m=firstpass; m<=lastpass; m++){      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
             k2=anint[m][i]+(mint[m][i]/12.);      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        fu=(*func)(u); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;  #ifdef DEBUG
               if(agev[m][i]==1) agev[m][i]=agemax+2;        /* f(x)=A(x-u)**2+f(u) */
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        double A, fparabu; 
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
             }        fparabu= *fa - A*(*ax-u)*(*ax-u);
           }        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         }        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       }        /* And thus,it can be that fu > *fc even if fparabu < *fc */
         for(i=(int)agemin; i <= (int)agemax+3; i++){        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
           for(jk=1; jk <=nlstate ; jk++){          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
               pp[jk] += freq[jk][m][i];  #endif 
           }  #ifdef MNBRAKORIGINAL
           for(jk=1; jk <=nlstate ; jk++){  #else
             for(m=-1, pos=0; m <=0 ; m++)        if (fu > *fc) {
             pos += freq[jk][m][i];  #ifdef DEBUG
         }        printf("mnbrak4  fu > fc \n");
                fprintf(ficlog, "mnbrak4 fu > fc\n");
          for(jk=1; jk <=nlstate ; jk++){  #endif
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
              pp[jk] += freq[jk][m][i];          /* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
          }          dum=u; /* Shifting c and u */
                    u = *cx;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          *cx = dum;
           dum = fu;
          for(jk=1; jk <=nlstate ; jk++){                    fu = *fc;
            if( i <= (int) agemax){          *fc =dum;
              if(pos>=1.e-5){        } else { /* end */
                probs[i][jk][j1]= pp[jk]/pos;  #ifdef DEBUG
              }        printf("mnbrak3  fu < fc \n");
            }        fprintf(ficlog, "mnbrak3 fu < fc\n");
          }  #endif
                    dum=u; /* Shifting c and u */
         }          u = *cx;
     }          *cx = dum;
   }          dum = fu;
            fu = *fc;
            *fc =dum;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        }
   free_vector(pp,1,nlstate);  #endif
        } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 }  /* End of Freq */  #ifdef DEBUG
         printf("mnbrak2  u after c but before ulim\n");
 /************* Waves Concatenation ***************/        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   #endif
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        fu=(*func)(u); 
 {        if (fu < *fc) { 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  #ifdef DEBUG
      Death is a valid wave (if date is known).        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  #endif
      and mw[mi+1][i]. dh depends on stepm.          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      */          SHFT(*fb,*fc,fu,(*func)(u)) 
         } 
   int i, mi, m;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  #ifdef DEBUG
      double sum=0., jmean=0.;*/        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
         fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
   int j, k=0,jk, ju, jl;  #endif
   double sum=0.;        u=ulim; 
   jmin=1e+5;        fu=(*func)(u); 
   jmax=-1;      } else { /* u could be left to b (if r > q parabola has a maximum) */
   jmean=0.;  #ifdef DEBUG
   for(i=1; i<=imx; i++){        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
     mi=0;        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
     m=firstpass;  #endif
     while(s[m][i] <= nlstate){        u=(*cx)+GOLD*(*cx-*bx); 
       if(s[m][i]>=1)        fu=(*func)(u); 
         mw[++mi][i]=m;      } /* end tests */
       if(m >=lastpass)      SHFT(*ax,*bx,*cx,u) 
         break;      SHFT(*fa,*fb,*fc,fu) 
       else  #ifdef DEBUG
         m++;        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     }/* end while */        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     if (s[m][i] > nlstate){  #endif
       mi++;     /* Death is another wave */    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
       /* if(mi==0)  never been interviewed correctly before death */  } 
          /* Only death is a correct wave */  
       mw[mi][i]=m;  /*************** linmin ************************/
     }  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   resets p to where the function func(p) takes on a minimum along the direction xi from p ,
     wav[i]=mi;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
     if(mi==0)  the value of func at the returned location p . This is actually all accomplished by calling the
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  routines mnbrak and brent .*/
   }  int ncom; 
   double *pcom,*xicom;
   for(i=1; i<=imx; i++){  double (*nrfunc)(double []); 
     for(mi=1; mi<wav[i];mi++){   
       if (stepm <=0)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         dh[mi][i]=1;  { 
       else{    double brent(double ax, double bx, double cx, 
         if (s[mw[mi+1][i]][i] > nlstate) {                 double (*f)(double), double tol, double *xmin); 
           if (agedc[i] < 2*AGESUP) {    double f1dim(double x); 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           if(j==0) j=1;  /* Survives at least one month after exam */                double *fc, double (*func)(double)); 
           k=k+1;    int j; 
           if (j >= jmax) jmax=j;    double xx,xmin,bx,ax; 
           if (j <= jmin) jmin=j;    double fx,fb,fa;
           sum=sum+j;   
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    ncom=n; 
           }    pcom=vector(1,n); 
         }    xicom=vector(1,n); 
         else{    nrfunc=func; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    for (j=1;j<=n;j++) { 
           k=k+1;      pcom[j]=p[j]; 
           if (j >= jmax) jmax=j;      xicom[j]=xi[j]; 
           else if (j <= jmin)jmin=j;    } 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    ax=0.0; 
           sum=sum+j;    xx=1.0; 
         }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
         jk= j/stepm;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
         jl= j -jk*stepm;  #ifdef DEBUG
         ju= j -(jk+1)*stepm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         if(jl <= -ju)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           dh[mi][i]=jk;  #endif
         else    for (j=1;j<=n;j++) { 
           dh[mi][i]=jk+1;      xi[j] *= xmin; 
         if(dh[mi][i]==0)      p[j] += xi[j]; 
           dh[mi][i]=1; /* At least one step */    } 
       }    free_vector(xicom,1,n); 
     }    free_vector(pcom,1,n); 
   }  } 
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }  /*************** powell ************************/
 /*********** Tricode ****************************/  /*
 void tricode(int *Tvar, int **nbcode, int imx)  Minimization of a function func of n variables. Input consists of an initial starting point
 {  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   int Ndum[20],ij=1, k, j, i;  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   int cptcode=0;  such that failure to decrease by more than this amount on one iteration signals doneness. On
   cptcoveff=0;  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
    function value at p , and iter is the number of iterations taken. The routine linmin is used.
   for (k=0; k<19; k++) Ndum[k]=0;   */
   for (k=1; k<=7; k++) ncodemax[k]=0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  { 
     for (i=1; i<=imx; i++) {    void linmin(double p[], double xi[], int n, double *fret, 
       ij=(int)(covar[Tvar[j]][i]);                double (*func)(double [])); 
       Ndum[ij]++;    int i,ibig,j; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double del,t,*pt,*ptt,*xit;
       if (ij > cptcode) cptcode=ij;    double directest;
     }    double fp,fptt;
     double *xits;
     for (i=0; i<=cptcode; i++) {    int niterf, itmp;
       if(Ndum[i]!=0) ncodemax[j]++;  
     }    pt=vector(1,n); 
     ij=1;    ptt=vector(1,n); 
     xit=vector(1,n); 
     xits=vector(1,n); 
     for (i=1; i<=ncodemax[j]; i++) {    *fret=(*func)(p); 
       for (k=0; k<=19; k++) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
         if (Ndum[k] != 0) {      rcurr_time = time(NULL);  
           nbcode[Tvar[j]][ij]=k;    for (*iter=1;;++(*iter)) { 
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/      fp=(*fret); 
           ij++;      ibig=0; 
         }      del=0.0; 
         if (ij > ncodemax[j]) break;      rlast_time=rcurr_time;
       }        /* (void) gettimeofday(&curr_time,&tzp); */
     }      rcurr_time = time(NULL);  
   }        curr_time = *localtime(&rcurr_time);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
  for (k=0; k<19; k++) Ndum[k]=0;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
  for (i=1; i<=ncovmodel-2; i++) {     for (i=1;i<=n;i++) {
       ij=Tvar[i];        printf(" %d %.12f",i, p[i]);
       Ndum[ij]++;        fprintf(ficlog," %d %.12lf",i, p[i]);
     }        fprintf(ficrespow," %.12lf", p[i]);
       }
  ij=1;      printf("\n");
  for (i=1; i<=10; i++) {      fprintf(ficlog,"\n");
    if((Ndum[i]!=0) && (i<=ncovcol)){      fprintf(ficrespow,"\n");fflush(ficrespow);
      Tvaraff[ij]=i;      if(*iter <=3){
      ij++;        tml = *localtime(&rcurr_time);
    }        strcpy(strcurr,asctime(&tml));
  }        rforecast_time=rcurr_time; 
          itmp = strlen(strcurr);
     cptcoveff=ij-1;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 /*********** Health Expectancies ****************/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         for(niterf=10;niterf<=30;niterf+=10){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 {          forecast_time = *localtime(&rforecast_time);
   /* Health expectancies */          strcpy(strfor,asctime(&forecast_time));
   int i, j, nhstepm, hstepm, h, nstepm;          itmp = strlen(strfor);
   double age, agelim, hf;          if(strfor[itmp-1]=='\n')
   double ***p3mat;          strfor[itmp-1]='\0';
            printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   fprintf(ficreseij,"# Health expectancies\n");          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   fprintf(ficreseij,"# Age");        }
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=nlstate;j++)      for (i=1;i<=n;i++) { 
       fprintf(ficreseij," %1d-%1d",i,j);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   fprintf(ficreseij,"\n");        fptt=(*fret); 
   #ifdef DEBUG
   if(estepm < stepm){            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
     printf ("Problem %d lower than %d\n",estepm, stepm);            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   }  #endif
   else  hstepm=estepm;          printf("%d",i);fflush(stdout);
   /* We compute the life expectancy from trapezoids spaced every estepm months        fprintf(ficlog,"%d",i);fflush(ficlog);
    * This is mainly to measure the difference between two models: for example        linmin(p,xit,n,fret,func); /* xit[n] has been loaded for direction i */
    * if stepm=24 months pijx are given only every 2 years and by summing them        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
    * we are calculating an estimate of the Life Expectancy assuming a linear                                         because that direction will be replaced unless the gain del is small
    * progression inbetween and thus overestimating or underestimating according                                        in comparison with the 'probable' gain, mu^2, with the last average direction.
    * to the curvature of the survival function. If, for the same date, we                                        Unless the n directions are conjugate some gain in the determinant may be obtained
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                                        with the new direction.
    * to compare the new estimate of Life expectancy with the same linear                                        */
    * hypothesis. A more precise result, taking into account a more precise          del=fabs(fptt-(*fret)); 
    * curvature will be obtained if estepm is as small as stepm. */          ibig=i; 
         } 
   /* For example we decided to compute the life expectancy with the smallest unit */  #ifdef DEBUG
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        printf("%d %.12e",i,(*fret));
      nhstepm is the number of hstepm from age to agelim        fprintf(ficlog,"%d %.12e",i,(*fret));
      nstepm is the number of stepm from age to agelin.        for (j=1;j<=n;j++) {
      Look at hpijx to understand the reason of that which relies in memory size          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
      and note for a fixed period like estepm months */          printf(" x(%d)=%.12e",j,xit[j]);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed only each two years of age and if        for(j=1;j<=n;j++) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          printf(" p(%d)=%.12e",j,p[j]);
      results. So we changed our mind and took the option of the best precision.          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        printf("\n");
         fprintf(ficlog,"\n");
   agelim=AGESUP;  #endif
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } /* end i */
     /* nhstepm age range expressed in number of stepm */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  #ifdef DEBUG
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        int k[2],l;
     /* if (stepm >= YEARM) hstepm=1;*/        k[0]=1;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        k[1]=-1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf("Max: %.12e",(*func)(p));
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        fprintf(ficlog,"Max: %.12e",(*func)(p));
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for (j=1;j<=n;j++) {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            printf(" %.12e",p[j]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          fprintf(ficlog," %.12e",p[j]);
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++)        printf("\n");
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        fprintf(ficlog,"\n");
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        for(l=0;l<=1;l++) {
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          for (j=1;j<=n;j++) {
         }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     fprintf(ficreseij,"%3.0f",age );            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(i=1; i<=nlstate;i++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for(j=1; j<=nlstate;j++){          }
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     fprintf(ficreseij,"\n");        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #endif
   }  
 }  
         free_vector(xit,1,n); 
 /************ Variance ******************/        free_vector(xits,1,n); 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        free_vector(ptt,1,n); 
 {        free_vector(pt,1,n); 
   /* Variance of health expectancies */        return; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      } 
   double **newm;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double **dnewm,**doldm;      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   int i, j, nhstepm, hstepm, h, nstepm ;        ptt[j]=2.0*p[j]-pt[j]; 
   int k, cptcode;        xit[j]=p[j]-pt[j]; 
   double *xp;        pt[j]=p[j]; 
   double **gp, **gm;      } 
   double ***gradg, ***trgradg;      fptt=(*func)(ptt); /* f_3 */
   double ***p3mat;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   double age,agelim, hf;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   int theta;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         /* Let f"(x2) be the 2nd derivative equal everywhere.  */
    fprintf(ficresvij,"# Covariances of life expectancies\n");        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   fprintf(ficresvij,"# Age");        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   for(i=1; i<=nlstate;i++)        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
     for(j=1; j<=nlstate;j++)        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  #ifdef NRCORIGINAL
   fprintf(ficresvij,"\n");        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   #else
   xp=vector(1,npar);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
   dnewm=matrix(1,nlstate,1,npar);        t= t- del*SQR(fp-fptt);
   doldm=matrix(1,nlstate,1,nlstate);  #endif
          directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
   if(estepm < stepm){  #ifdef DEBUG
     printf ("Problem %d lower than %d\n",estepm, stepm);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   }        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   else  hstepm=estepm;          printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   /* For example we decided to compute the life expectancy with the smallest unit */               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
      nhstepm is the number of hstepm from age to agelim               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
      nstepm is the number of stepm from age to agelin.        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
      Look at hpijx to understand the reason of that which relies in memory size        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
      and note for a fixed period like k years */  #endif
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  #ifdef POWELLORIGINAL
      survival function given by stepm (the optimization length). Unfortunately it        if (t < 0.0) { /* Then we use it for new direction */
      means that if the survival funtion is printed only each two years of age and if  #else
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        if (directest*t < 0.0) { /* Contradiction between both tests */
      results. So we changed our mind and took the option of the best precision.        printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
   */        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   agelim = AGESUP;        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      } 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        if (directest < 0.0) { /* Then we use it for new direction */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  #endif
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          for (j=1;j<=n;j++) { 
     gp=matrix(0,nhstepm,1,nlstate);            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
     gm=matrix(0,nhstepm,1,nlstate);            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
           }
     for(theta=1; theta <=npar; theta++){          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       for(i=1; i<=npar; i++){ /* Computes gradient */          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  #ifdef DEBUG
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
       if (popbased==1) {            printf(" %.12e",xit[j]);
         for(i=1; i<=nlstate;i++)            fprintf(ficlog," %.12e",xit[j]);
           prlim[i][i]=probs[(int)age][i][ij];          }
       }          printf("\n");
            fprintf(ficlog,"\n");
       for(j=1; j<= nlstate; j++){  #endif
         for(h=0; h<=nhstepm; h++){        } /* end of t negative */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      } /* end if (fptt < fp)  */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    } 
         }  } 
       }  
      /**** Prevalence limit (stable or period prevalence)  ****************/
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         matrix by transitions matrix until convergence is reached */
       if (popbased==1) {    
         for(i=1; i<=nlstate;i++)    int i, ii,j,k;
           prlim[i][i]=probs[(int)age][i][ij];    double min, max, maxmin, maxmax,sumnew=0.;
       }    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij();
       for(j=1; j<= nlstate; j++){    double **newm;
         for(h=0; h<=nhstepm; h++){    double agefin, delaymax=50 ; /* Max number of years to converge */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    for (ii=1;ii<=nlstate+ndeath;ii++)
         }      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
       for(j=1; j<= nlstate; j++)    
         for(h=0; h<=nhstepm; h++){    cov[1]=1.;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    
         }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     } /* End theta */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      /* Covariates have to be included here again */
       cov[2]=agefin;
     for(h=0; h<=nhstepm; h++)      
       for(j=1; j<=nlstate;j++)      for (k=1; k<=cptcovn;k++) {
         for(theta=1; theta <=npar; theta++)        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           trgradg[h][j][theta]=gradg[h][theta][j];        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
       }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     for(i=1;i<=nlstate;i++)      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       for(j=1;j<=nlstate;j++)      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
         vareij[i][j][(int)age] =0.;      
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for(h=0;h<=nhstepm;h++){      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for(k=0;k<=nhstepm;k++){      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         for(i=1;i<=nlstate;i++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
           for(j=1;j<=nlstate;j++)      
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      savm=oldm;
       }      oldm=newm;
     }      maxmax=0.;
       for(j=1;j<=nlstate;j++){
     fprintf(ficresvij,"%.0f ",age );        min=1.;
     for(i=1; i<=nlstate;i++)        max=0.;
       for(j=1; j<=nlstate;j++){        for(i=1; i<=nlstate; i++) {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          sumnew=0;
       }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     fprintf(ficresvij,"\n");          prlim[i][j]= newm[i][j]/(1-sumnew);
     free_matrix(gp,0,nhstepm,1,nlstate);          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
     free_matrix(gm,0,nhstepm,1,nlstate);          max=FMAX(max,prlim[i][j]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          min=FMIN(min,prlim[i][j]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        maxmin=max-min;
   } /* End age */        maxmax=FMAX(maxmax,maxmin);
        } /* j loop */
   free_vector(xp,1,npar);      if(maxmax < ftolpl){
   free_matrix(doldm,1,nlstate,1,npar);        return prlim;
   free_matrix(dnewm,1,nlstate,1,nlstate);      }
     } /* age loop */
 }    return prlim; /* should not reach here */
   }
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  /*************** transition probabilities ***************/ 
 {  
   /* Variance of prevalence limit */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  {
   double **newm;    /* According to parameters values stored in x and the covariate's values stored in cov,
   double **dnewm,**doldm;       computes the probability to be observed in state j being in state i by appying the
   int i, j, nhstepm, hstepm;       model to the ncovmodel covariates (including constant and age).
   int k, cptcode;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   double *xp;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   double *gp, *gm;       ncth covariate in the global vector x is given by the formula:
   double **gradg, **trgradg;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   double age,agelim;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   int theta;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");       Outputs ps[i][j] the probability to be observed in j being in j according to
   fprintf(ficresvpl,"# Age");       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   for(i=1; i<=nlstate;i++)    */
       fprintf(ficresvpl," %1d-%1d",i,i);    double s1, lnpijopii;
   fprintf(ficresvpl,"\n");    /*double t34;*/
     int i,j, nc, ii, jj;
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);      for(i=1; i<= nlstate; i++){
   doldm=matrix(1,nlstate,1,nlstate);        for(j=1; j<i;j++){
            for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   hstepm=1*YEARM; /* Every year of age */            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   agelim = AGESUP;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     if (stepm >= YEARM) hstepm=1;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        }
     gradg=matrix(1,npar,1,nlstate);        for(j=i+1; j<=nlstate+ndeath;j++){
     gp=vector(1,nlstate);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     gm=vector(1,nlstate);            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
             lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     for(theta=1; theta <=npar; theta++){  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       }        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)      
         gp[i] = prlim[i][i];      for(i=1; i<= nlstate; i++){
            s1=0;
       for(i=1; i<=npar; i++) /* Computes gradient */        for(j=1; j<i; j++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       for(i=1;i<=nlstate;i++)        }
         gm[i] = prlim[i][i];        for(j=i+1; j<=nlstate+ndeath; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       for(i=1;i<=nlstate;i++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        }
     } /* End theta */        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         ps[i][i]=1./(s1+1.);
     trgradg =matrix(1,nlstate,1,npar);        /* Computing other pijs */
         for(j=1; j<i; j++)
     for(j=1; j<=nlstate;j++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(theta=1; theta <=npar; theta++)        for(j=i+1; j<=nlstate+ndeath; j++)
         trgradg[j][theta]=gradg[theta][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for(i=1;i<=nlstate;i++)      } /* end i */
       varpl[i][(int)age] =0.;      
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        for(jj=1; jj<= nlstate+ndeath; jj++){
     for(i=1;i<=nlstate;i++)          ps[ii][jj]=0;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          ps[ii][ii]=1;
         }
     fprintf(ficresvpl,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)      
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      
     fprintf(ficresvpl,"\n");      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     free_vector(gp,1,nlstate);      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     free_vector(gm,1,nlstate);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     free_matrix(gradg,1,npar,1,nlstate);      /*   } */
     free_matrix(trgradg,1,nlstate,1,npar);      /*   printf("\n "); */
   } /* End age */      /* } */
       /* printf("\n ");printf("%lf ",cov[2]);*/
   free_vector(xp,1,npar);      /*
   free_matrix(doldm,1,nlstate,1,npar);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   free_matrix(dnewm,1,nlstate,1,nlstate);        goto end;*/
       return ps;
 }  }
   
 /************ Variance of one-step probabilities  ******************/  /**************** Product of 2 matrices ******************/
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  
 {  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   int i, j;  {
   int k=0, cptcode;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double **dnewm,**doldm;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double *xp;    /* in, b, out are matrice of pointers which should have been initialized 
   double *gp, *gm;       before: only the contents of out is modified. The function returns
   double **gradg, **trgradg;       a pointer to pointers identical to out */
   double age,agelim, cov[NCOVMAX];    int i, j, k;
   int theta;    for(i=nrl; i<= nrh; i++)
   char fileresprob[FILENAMELENGTH];      for(k=ncolol; k<=ncoloh; k++){
         out[i][k]=0.;
   strcpy(fileresprob,"prob");        for(j=ncl; j<=nch; j++)
   strcat(fileresprob,fileres);          out[i][k] +=in[i][j]*b[j][k];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      }
     printf("Problem with resultfile: %s\n", fileresprob);    return out;
   }  }
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  
    
   /************* Higher Matrix Product ***************/
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  {
      /* Computes the transition matrix starting at age 'age' over 
   cov[1]=1;       'nhstepm*hstepm*stepm' months (i.e. until
   for (age=bage; age<=fage; age ++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     cov[2]=age;       nhstepm*hstepm matrices. 
     gradg=matrix(1,npar,1,9);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     trgradg=matrix(1,9,1,npar);       (typically every 2 years instead of every month which is too big 
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));       for the memory).
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));       Model is determined by parameters x and covariates have to be 
           included manually here. 
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++)       */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
          int i, j, d, h, k;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    double **out, cov[NCOVMAX+1];
        double **newm;
       k=0;  
       for(i=1; i<= (nlstate+ndeath); i++){    /* Hstepm could be zero and should return the unit matrix */
         for(j=1; j<=(nlstate+ndeath);j++){    for (i=1;i<=nlstate+ndeath;i++)
            k=k+1;      for (j=1;j<=nlstate+ndeath;j++){
           gp[k]=pmmij[i][j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
         }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(i=1; i<=npar; i++)    for(h=1; h <=nhstepm; h++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(d=1; d <=hstepm; d++){
            newm=savm;
         /* Covariates have to be included here again */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        cov[1]=1.;
       k=0;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for(i=1; i<=(nlstate+ndeath); i++){        for (k=1; k<=cptcovn;k++) 
         for(j=1; j<=(nlstate+ndeath);j++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           k=k+1;        for (k=1; k<=cptcovage;k++)
           gm[k]=pmmij[i][j];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
       }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(theta=1; theta <=npar; theta++)        savm=oldm;
       trgradg[j][theta]=gradg[theta][j];        oldm=newm;
        }
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      for(i=1; i<=nlstate+ndeath; i++)
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
      pmij(pmmij,cov,ncovmodel,x,nlstate);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
      k=0;      /*printf("h=%d ",h);*/
      for(i=1; i<=(nlstate+ndeath); i++){    } /* end h */
        for(j=1; j<=(nlstate+ndeath);j++){  /*     printf("\n H=%d \n",h); */
          k=k+1;    return po;
          gm[k]=pmmij[i][j];  }
         }  
      }  #ifdef NLOPT
          double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
      /*printf("\n%d ",(int)age);    double fret;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    double *xt;
            int j;
     myfunc_data *d2 = (myfunc_data *) pd;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /* xt = (p1-1); */
      }*/    xt=vector(1,n); 
     for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   fprintf(ficresprob,"\n%d ",(int)age);  
     fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    printf("Function = %.12lf ",fret);
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   }    printf("\n");
    free_vector(xt,1,n);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    return fret;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  #endif
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
 }  /*************** log-likelihood *************/
  free_vector(xp,1,npar);  double func( double *x)
 fclose(ficresprob);  {
     int i, ii, j, k, mi, d, kk;
 }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
 /******************* Printing html file ***********/    double sw; /* Sum of weights */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    double lli; /* Individual log likelihood */
  int lastpass, int stepm, int weightopt, char model[],\    int s1, s2;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    double bbh, survp;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    long ipmx;
  char version[], int popforecast, int estepm ){    /*extern weight */
   int jj1, k1, i1, cpt;    /* We are differentiating ll according to initial status */
   FILE *fichtm;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /*char optionfilehtm[FILENAMELENGTH];*/    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   strcpy(optionfilehtm,optionfile);    */
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    ++countcallfunc;
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    cov[1]=1.;
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    for(k=1; k<=nlstate; k++) ll[k]=0.;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n    if(mle==1){
 Total number of observations=%d <br>\n      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        /* Computes the values of the ncovmodel covariates of the model
 <hr  size=\"2\" color=\"#EC5E5E\">           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
  <ul><li>Outputs files<br>\n           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n           to be observed in j being in i according to the model.
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n         */
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          cov[2+k]=covar[Tvar[k]][i];
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        }
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
  fprintf(fichtm,"\n           has been calculated etc */
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        for(mi=1; mi<= wav[i]-1; mi++){
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          for (ii=1;ii<=nlstate+ndeath;ii++)
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n            for (j=1;j<=nlstate+ndeath;j++){
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
  if(popforecast==1) fprintf(fichtm,"\n            }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          for(d=0; d<dh[mi][i]; d++){
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            newm=savm;
         <br>",fileres,fileres,fileres,fileres);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  else            for (kk=1; kk<=cptcovage;kk++) {
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 fprintf(fichtm," <li>Graphs</li><p>");            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  m=cptcoveff;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            savm=oldm;
             oldm=newm;
  jj1=0;          } /* end mult */
  for(k1=1; k1<=m;k1++){        
    for(i1=1; i1<=ncodemax[k1];i1++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
        jj1++;          /* But now since version 0.9 we anticipate for bias at large stepm.
        if (cptcovn > 0) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");           * (in months) between two waves is not a multiple of stepm, we rounded to 
          for (cpt=1; cpt<=cptcoveff;cpt++)           * the nearest (and in case of equal distance, to the lowest) interval but now
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
        }           * probability in order to take into account the bias as a fraction of the way
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);               * -stepm/2 to stepm/2 .
        for(cpt=1; cpt<nlstate;cpt++){           * For stepm=1 the results are the same as for previous versions of Imach.
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>           * For stepm > 1 the results are less biased than in previous versions. 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);           */
        }          s1=s[mw[mi][i]][i];
     for(cpt=1; cpt<=nlstate;cpt++) {          s2=s[mw[mi+1][i]][i];
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          bbh=(double)bh[mi][i]/(double)stepm; 
 interval) in state (%d): v%s%d%d.gif <br>          /* bias bh is positive if real duration
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);             * is higher than the multiple of stepm and negative otherwise.
      }           */
      for(cpt=1; cpt<=nlstate;cpt++) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          if( s2 > nlstate){ 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            /* i.e. if s2 is a death state and if the date of death is known 
      }               then the contribution to the likelihood is the probability to 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and               die between last step unit time and current  step unit time, 
 health expectancies in states (1) and (2): e%s%d.gif<br>               which is also equal to probability to die before dh 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);               minus probability to die before dh-stepm . 
 fprintf(fichtm,"\n</body>");               In version up to 0.92 likelihood was computed
    }          as if date of death was unknown. Death was treated as any other
    }          health state: the date of the interview describes the actual state
 fclose(fichtm);          and not the date of a change in health state. The former idea was
 }          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
 /******************* Gnuplot file **************/          introduced the exact date of death then we should have modified
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
   strcpy(optionfilegnuplot,optionfilefiname);          interview up to one month before death multiplied by the
   strcat(optionfilegnuplot,".gp.txt");          probability to die within a month. Thanks to Chris
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          Jackson for correcting this bug.  Former versions increased
     printf("Problem with file %s",optionfilegnuplot);          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
           lower mortality.
 #ifdef windows            */
     fprintf(ficgp,"cd \"%s\" \n",pathc);          /* If, at the beginning of the maximization mostly, the
 #endif             cumulative probability or probability to be dead is
 m=pow(2,cptcoveff);             constant (ie = 1) over time d, the difference is equal to
               0.  out[s1][3] = savm[s1][3]: probability, being at state
  /* 1eme*/             s1 at precedent wave, to be dead a month before current
   for (cpt=1; cpt<= nlstate ; cpt ++) {             wave is equal to probability, being at state s1 at
    for (k1=1; k1<= m ; k1 ++) {             precedent wave, to be dead at mont of the current
              wave. Then the observed probability (that this person died)
 #ifdef windows             is null according to current estimated parameter. In fact,
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);             it should be very low but not zero otherwise the log go to
 #endif             infinity.
 #ifdef unix          */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  /* #ifdef INFINITYORIGINAL */
 #endif  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   /* #else */
 for (i=1; i<= nlstate ; i ++) {  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /*          lli=log(mytinydouble); */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /*        else */
 }  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  /* #endif */
     for (i=1; i<= nlstate ; i ++) {              lli=log(out[s1][s2] - savm[s1][s2]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          } else if  (s2==-2) {
 }            for (j=1,survp=0. ; j<=nlstate; j++) 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      for (i=1; i<= nlstate ; i ++) {            /*survp += out[s1][j]; */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            lli= log(survp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          else if  (s2==-4) { 
 #ifdef unix            for (j=3,survp=0. ; j<=nlstate; j++)  
 fprintf(ficgp,"\nset ter gif small size 400,300");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 #endif            lli= log(survp); 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          } 
    }  
   }          else if  (s2==-5) { 
   /*2 eme*/            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (k1=1; k1<= m ; k1 ++) {            lli= log(survp); 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);          } 
              
     for (i=1; i<= nlstate+1 ; i ++) {          else{
       k=2*i;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for (j=1; j<= nlstate+1 ; j ++) {          } 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");          /*if(lli ==000.0)*/
 }            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          ipmx +=1;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          sw += weight[i];
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (j=1; j<= nlstate+1 ; j ++) {          /* if (lli < log(mytinydouble)){ */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
         else fprintf(ficgp," \%%*lf (\%%*lf)");          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
 }            /* } */
       fprintf(ficgp,"\" t\"\" w l 0,");        } /* end of wave */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      } /* end of individual */
       for (j=1; j<= nlstate+1 ; j ++) {    }  else if(mle==2){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 }          for(mi=1; mi<= wav[i]-1; mi++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          for (ii=1;ii<=nlstate+ndeath;ii++)
       else fprintf(ficgp,"\" t\"\" w l 0,");            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
            for(d=0; d<=dh[mi][i]; d++){
   /*3eme*/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (k1=1; k1<= m ; k1 ++) {            for (kk=1; kk<=cptcovage;kk++) {
     for (cpt=1; cpt<= nlstate ; cpt ++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       k=2+nlstate*(cpt-1);            }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (i=1; i< nlstate ; i ++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            savm=oldm;
       }            oldm=newm;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          } /* end mult */
     }        
     }          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   /* CV preval stat */          bbh=(double)bh[mi][i]/(double)stepm; 
     for (k1=1; k1<= m ; k1 ++) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for (cpt=1; cpt<nlstate ; cpt ++) {          ipmx +=1;
       k=3;          sw += weight[i];
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       for (i=1; i< nlstate ; i ++)      } /* end of individual */
         fprintf(ficgp,"+$%d",k+i+1);    }  else if(mle==3){  /* exponential inter-extrapolation */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       l=3+(nlstate+ndeath)*cpt;        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i< nlstate ; i ++) {            for (j=1;j<=nlstate+ndeath;j++){
         l=3+(nlstate+ndeath)*cpt;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficgp,"+$%d",l+i+1);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            for(d=0; d<dh[mi][i]; d++){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }              for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* proba elementaires */            }
    for(i=1,jk=1; i <=nlstate; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(k=1; k <=(nlstate+ndeath); k++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (k != i) {            savm=oldm;
         for(j=1; j <=ncovmodel; j++){            oldm=newm;
                  } /* end mult */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        
           jk++;          s1=s[mw[mi][i]][i];
           fprintf(ficgp,"\n");          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
       }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }          ipmx +=1;
     }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(jk=1; jk <=m; jk++) {        } /* end of wave */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      } /* end of individual */
    i=1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
    for(k2=1; k2<=nlstate; k2++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      k3=i;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      for(k=1; k<=(nlstate+ndeath); k++) {        for(mi=1; mi<= wav[i]-1; mi++){
        if (k != k2){          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            for (j=1;j<=nlstate+ndeath;j++){
 ij=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(j=3; j <=ncovmodel; j++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(d=0; d<dh[mi][i]; d++){
             ij++;            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else            for (kk=1; kk<=cptcovage;kk++) {
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
           fprintf(ficgp,")/(1");          
                    out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(k1=1; k1 <=nlstate; k1++){                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            savm=oldm;
 ij=1;            oldm=newm;
           for(j=3; j <=ncovmodel; j++){          } /* end mult */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          s1=s[mw[mi][i]][i];
             ij++;          s2=s[mw[mi+1][i]][i];
           }          if( s2 > nlstate){ 
           else            lli=log(out[s1][s2] - savm[s1][s2]);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }else{
           }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           fprintf(ficgp,")");          }
         }          ipmx +=1;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          sw += weight[i];
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         i=i+ncovmodel;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
        }        } /* end of wave */
      }      } /* end of individual */
    }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
   fclose(ficgp);          for (ii=1;ii<=nlstate+ndeath;ii++)
 }  /* end gnuplot */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*************** Moving average **************/            }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   int i, cpt, cptcod;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            }
           mobaverage[(int)agedeb][i][cptcod]=0.;          
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=1; i<=nlstate;i++){            savm=oldm;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            oldm=newm;
           for (cpt=0;cpt<=4;cpt++){          } /* end mult */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        
           }          s1=s[mw[mi][i]][i];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          s2=s[mw[mi+1][i]][i];
         }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
     }          sw += weight[i];
              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
       } /* end of individual */
 /************** Forecasting ******************/    } /* End of if */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int *popage;    return -l;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  }
   double *popeffectif,*popcount;  
   double ***p3mat;  /*************** log-likelihood *************/
   char fileresf[FILENAMELENGTH];  double funcone( double *x)
   {
  agelim=AGESUP;    /* Same as likeli but slower because of a lot of printf and if */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double **out;
      double lli; /* Individual log likelihood */
      double llt;
   strcpy(fileresf,"f");    int s1, s2;
   strcat(fileresf,fileres);    double bbh, survp;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    /*extern weight */
     printf("Problem with forecast resultfile: %s\n", fileresf);    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   printf("Computing forecasting: result on file '%s' \n", fileresf);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    */
     cov[1]=1.;
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(mi=1; mi<= wav[i]-1; mi++){
   if (stepm<=12) stepsize=1;        for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
   agelim=AGESUP;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=1;          }
   hstepm=hstepm/stepm;        for(d=0; d<dh[mi][i]; d++){
   yp1=modf(dateintmean,&yp);          newm=savm;
   anprojmean=yp;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   yp2=modf((yp1*12),&yp);          for (kk=1; kk<=cptcovage;kk++) {
   mprojmean=yp;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   yp1=modf((yp2*30.5),&yp);          }
   jprojmean=yp;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   if(jprojmean==0) jprojmean=1;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if(mprojmean==0) jprojmean=1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
            savm=oldm;
   for(cptcov=1;cptcov<=i2;cptcov++){          oldm=newm;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        } /* end mult */
       k=k+1;        
       fprintf(ficresf,"\n#******");        s1=s[mw[mi][i]][i];
       for(j=1;j<=cptcoveff;j++) {        s2=s[mw[mi+1][i]][i];
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        bbh=(double)bh[mi][i]/(double)stepm; 
       }        /* bias is positive if real duration
       fprintf(ficresf,"******\n");         * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficresf,"# StartingAge FinalAge");         */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
                lli=log(out[s1][s2] - savm[s1][s2]);
              } else if  (s2==-2) {
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          for (j=1,survp=0. ; j<=nlstate; j++) 
         fprintf(ficresf,"\n");            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            lli= log(survp);
         }else if (mle==1){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        } else if(mle==2){
           nhstepm = nhstepm/hstepm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                  } else if(mle==3){  /* exponential inter-extrapolation */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           oldm=oldms;savm=savms;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            lli=log(out[s1][s2]); /* Original formula */
                } else{  /* mle=0 back to 1 */
           for (h=0; h<=nhstepm; h++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             if (h==(int) (calagedate+YEARM*cpt)) {          /*lli=log(out[s1][s2]); */ /* Original formula */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        } /* End of if */
             }        ipmx +=1;
             for(j=1; j<=nlstate+ndeath;j++) {        sw += weight[i];
               kk1=0.;kk2=0;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               for(i=1; i<=nlstate;i++) {                      /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                 if (mobilav==1)        if(globpr){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
                 else {   %11.6f %11.6f %11.6f ", \
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                 }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
               }            llt +=ll[k]*gipmx/gsw;
               if (h==(int)(calagedate+12*cpt)){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                 fprintf(ficresf," %.3f", kk1);          }
                                  fprintf(ficresilk," %10.6f\n", -llt);
               }        }
             }      } /* end of wave */
           }    } /* end of individual */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     }    if(globpr==0){ /* First time we count the contributions and weights */
   }      gipmx=ipmx;
              gsw=sw;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     return -l;
   fclose(ficresf);  }
 }  
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  {
   int *popage;    /* This routine should help understanding what is done with 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       the selection of individuals/waves and
   double *popeffectif,*popcount;       to check the exact contribution to the likelihood.
   double ***p3mat,***tabpop,***tabpopprev;       Plotting could be done.
   char filerespop[FILENAMELENGTH];     */
     int k;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if(*globpri !=0){ /* Just counts and sums, no printings */
   agelim=AGESUP;      strcpy(fileresilk,"ilk"); 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        printf("Problem with resultfile: %s\n", fileresilk);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        }
   strcpy(filerespop,"pop");      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   strcat(filerespop,fileres);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     printf("Problem with forecast resultfile: %s\n", filerespop);      for(k=1; k<=nlstate; k++) 
   }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   printf("Computing forecasting: result on file '%s' \n", filerespop);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     *fretone=(*funcone)(p);
   if (mobilav==1) {    if(*globpri !=0){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fclose(ficresilk);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   }      fflush(fichtm); 
     } 
   stepsize=(int) (stepm+YEARM-1)/YEARM;    return;
   if (stepm<=12) stepsize=1;  }
    
   agelim=AGESUP;  
    /*********** Maximum Likelihood Estimation ***************/
   hstepm=1;  
   hstepm=hstepm/stepm;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    {
   if (popforecast==1) {    int i,j, iter=0;
     if((ficpop=fopen(popfile,"r"))==NULL) {    double **xi;
       printf("Problem with population file : %s\n",popfile);exit(0);    double fret;
     }    double fretone; /* Only one call to likelihood */
     popage=ivector(0,AGESUP);    /*  char filerespow[FILENAMELENGTH];*/
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);  #ifdef NLOPT
        int creturn;
     i=1;      nlopt_opt opt;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
        double *lb;
     imx=i;    double minf; /* the minimum objective value, upon return */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    double * p1; /* Shifted parameters from 0 instead of 1 */
   }    myfunc_data dinst, *d = &dinst;
   #endif
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    xi=matrix(1,npar,1,npar);
       fprintf(ficrespop,"\n#******");    for (i=1;i<=npar;i++)
       for(j=1;j<=cptcoveff;j++) {      for (j=1;j<=npar;j++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       fprintf(ficrespop,"******\n");    strcpy(filerespow,"pow"); 
       fprintf(ficrespop,"# Age");    strcat(filerespow,fileres);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       if (popforecast==1)  fprintf(ficrespop," [Population]");      printf("Problem with resultfile: %s\n", filerespow);
            fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for (cpt=0; cpt<=0;cpt++) {    }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
            for (i=1;i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(j=1;j<=nlstate+ndeath;j++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           nhstepm = nhstepm/hstepm;    fprintf(ficrespow,"\n");
            #ifdef POWELL
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    powell(p,xi,npar,ftol,&iter,&fret,func);
           oldm=oldms;savm=savms;  #endif
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
          #ifdef NLOPT
           for (h=0; h<=nhstepm; h++){  #ifdef NEWUOA
             if (h==(int) (calagedate+YEARM*cpt)) {    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  #else
             }    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
             for(j=1; j<=nlstate+ndeath;j++) {  #endif
               kk1=0.;kk2=0;    lb=vector(0,npar-1);
               for(i=1; i<=nlstate;i++) {                  for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
                 if (mobilav==1)    nlopt_set_lower_bounds(opt, lb);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    nlopt_set_initial_step1(opt, 0.1);
                 else {    
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                 }    d->function = func;
               }    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
               if (h==(int)(calagedate+12*cpt)){    nlopt_set_min_objective(opt, myfunc, d);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    nlopt_set_xtol_rel(opt, ftol);
                   /*fprintf(ficrespop," %.3f", kk1);    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      printf("nlopt failed! %d\n",creturn); 
               }    }
             }    else {
             for(i=1; i<=nlstate;i++){      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
               kk1=0.;      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                 for(j=1; j<=nlstate;j++){      iter=1; /* not equal */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    }
                 }    nlopt_destroy(opt);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  #endif
             }    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           }    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  }
       }  
    /**** Computes Hessian and covariance matrix ***/
   /******/  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    double  **a,**y,*x,pd;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double **hess;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int i, j;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int *indx;
           nhstepm = nhstepm/hstepm;  
              double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           oldm=oldms;savm=savms;    void lubksb(double **a, int npar, int *indx, double b[]) ;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      void ludcmp(double **a, int npar, int *indx, double *d) ;
           for (h=0; h<=nhstepm; h++){    double gompertz(double p[]);
             if (h==(int) (calagedate+YEARM*cpt)) {    hess=matrix(1,npar,1,npar);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    printf("\nCalculation of the hessian matrix. Wait...\n");
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
               kk1=0.;kk2=0;    for (i=1;i<=npar;i++){
               for(i=1; i<=nlstate;i++) {                    printf("%d",i);fflush(stdout);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          fprintf(ficlog,"%d",i);fflush(ficlog);
               }     
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
             }      
           }      /*  printf(" %f ",p[i]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         }    }
       }    
    }    for (i=1;i<=npar;i++) {
   }      for (j=1;j<=npar;j++)  {
          if (j>i) { 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   if (popforecast==1) {          hess[i][j]=hessij(p,delti,i,j,func,npar);
     free_ivector(popage,0,AGESUP);          
     free_vector(popeffectif,0,AGESUP);          hess[j][i]=hess[i][j];    
     free_vector(popcount,0,AGESUP);          /*printf(" %lf ",hess[i][j]);*/
   }        }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   fclose(ficrespop);    printf("\n");
 }    fprintf(ficlog,"\n");
   
 /***********************************************/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 /**************** Main Program *****************/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 /***********************************************/    
     a=matrix(1,npar,1,npar);
 int main(int argc, char *argv[])    y=matrix(1,npar,1,npar);
 {    x=vector(1,npar);
     indx=ivector(1,npar);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    for (i=1;i<=npar;i++)
   double agedeb, agefin,hf;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    ludcmp(a,npar,indx,&pd);
   
   double fret;    for (j=1;j<=npar;j++) {
   double **xi,tmp,delta;      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
   double dum; /* Dummy variable */      lubksb(a,npar,indx,x);
   double ***p3mat;      for (i=1;i<=npar;i++){ 
   int *indx;        matcov[i][j]=x[i];
   char line[MAXLINE], linepar[MAXLINE];      }
   char title[MAXLINE];    }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    printf("\n#Hessian matrix#\n");
      fprintf(ficlog,"\n#Hessian matrix#\n");
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   char filerest[FILENAMELENGTH];        printf("%.3e ",hess[i][j]);
   char fileregp[FILENAMELENGTH];        fprintf(ficlog,"%.3e ",hess[i][j]);
   char popfile[FILENAMELENGTH];      }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      printf("\n");
   int firstobs=1, lastobs=10;      fprintf(ficlog,"\n");
   int sdeb, sfin; /* Status at beginning and end */    }
   int c,  h , cpt,l;  
   int ju,jl, mi;    /* Recompute Inverse */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    for (i=1;i<=npar;i++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   int mobilav=0,popforecast=0;    ludcmp(a,npar,indx,&pd);
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;    /*  printf("\n#Hessian matrix recomputed#\n");
   
   double bage, fage, age, agelim, agebase;    for (j=1;j<=npar;j++) {
   double ftolpl=FTOL;      for (i=1;i<=npar;i++) x[i]=0;
   double **prlim;      x[j]=1;
   double *severity;      lubksb(a,npar,indx,x);
   double ***param; /* Matrix of parameters */      for (i=1;i<=npar;i++){ 
   double  *p;        y[i][j]=x[i];
   double **matcov; /* Matrix of covariance */        printf("%.3e ",y[i][j]);
   double ***delti3; /* Scale */        fprintf(ficlog,"%.3e ",y[i][j]);
   double *delti; /* Scale */      }
   double ***eij, ***vareij;      printf("\n");
   double **varpl; /* Variances of prevalence limits by age */      fprintf(ficlog,"\n");
   double *epj, vepp;    }
   double kk1, kk2;    */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
      free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";    free_vector(x,1,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   
   char z[1]="c", occ;  
 #include <sys/time.h>  }
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  /*************** hessian matrix ****************/
    double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   /* long total_usecs;  {
   struct timeval start_time, end_time;    int i;
      int l=1, lmax=20;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double k1,k2;
   getcwd(pathcd, size);    double p2[MAXPARM+1]; /* identical to x */
     double res;
   printf("\n%s",version);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   if(argc <=1){    double fx;
     printf("\nEnter the parameter file name: ");    int k=0,kmax=10;
     scanf("%s",pathtot);    double l1;
   }  
   else{    fx=func(x);
     strcpy(pathtot,argv[1]);    for (i=1;i<=npar;i++) p2[i]=x[i];
   }    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      l1=pow(10,l);
   /*cygwin_split_path(pathtot,path,optionfile);      delts=delt;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      for(k=1 ; k <kmax; k=k+1){
   /* cutv(path,optionfile,pathtot,'\\');*/        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        p2[theta]=x[theta]-delt;
   chdir(path);        k2=func(p2)-fx;
   replace(pathc,path);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 /*-------- arguments in the command line --------*/        
   #ifdef DEBUGHESS
   strcpy(fileres,"r");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   strcat(fileres, optionfilefiname);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   strcat(fileres,".txt");    /* Other files have txt extension */  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   /*---------arguments file --------*/        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        }
     printf("Problem with optionfile %s\n",optionfile);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     goto end;          k=kmax; l=lmax*10;
   }        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   strcpy(filereso,"o");          delts=delt;
   strcat(filereso,fileres);        }
   if((ficparo=fopen(filereso,"w"))==NULL) {      }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    }
   }    delti[theta]=delts;
     return res; 
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     puts(line);  {
     fputs(line,ficparo);    int i;
   }    int l=1, lmax=20;
   ungetc(c,ficpar);    double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    int k;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fx=func(x);
 while((c=getc(ficpar))=='#' && c!= EOF){    for (k=1; k<=2; k++) {
     ungetc(c,ficpar);      for (i=1;i<=npar;i++) p2[i]=x[i];
     fgets(line, MAXLINE, ficpar);      p2[thetai]=x[thetai]+delti[thetai]/k;
     puts(line);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fputs(line,ficparo);      k1=func(p2)-fx;
   }    
   ungetc(c,ficpar);      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          k2=func(p2)-fx;
   covar=matrix(0,NCOVMAX,1,n);    
   cptcovn=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
   ncovmodel=2+cptcovn;    
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* Read guess parameters */      k4=func(p2)-fx;
   /* Reads comments: lines beginning with '#' */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   while((c=getc(ficpar))=='#' && c!= EOF){  #ifdef DEBUG
     ungetc(c,ficpar);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     puts(line);  #endif
     fputs(line,ficparo);    }
   }    return res;
   ungetc(c,ficpar);  }
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  /************** Inverse of matrix **************/
     for(i=1; i <=nlstate; i++)  void ludcmp(double **a, int n, int *indx, double *d) 
     for(j=1; j <=nlstate+ndeath-1; j++){  { 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int i,imax,j,k; 
       fprintf(ficparo,"%1d%1d",i1,j1);    double big,dum,sum,temp; 
       printf("%1d%1d",i,j);    double *vv; 
       for(k=1; k<=ncovmodel;k++){   
         fscanf(ficpar," %lf",&param[i][j][k]);    vv=vector(1,n); 
         printf(" %lf",param[i][j][k]);    *d=1.0; 
         fprintf(ficparo," %lf",param[i][j][k]);    for (i=1;i<=n;i++) { 
       }      big=0.0; 
       fscanf(ficpar,"\n");      for (j=1;j<=n;j++) 
       printf("\n");        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fprintf(ficparo,"\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     }      vv[i]=1.0/big; 
      } 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
   p=param[1][1];        sum=a[i][j]; 
          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   /* Reads comments: lines beginning with '#' */        a[i][j]=sum; 
   while((c=getc(ficpar))=='#' && c!= EOF){      } 
     ungetc(c,ficpar);      big=0.0; 
     fgets(line, MAXLINE, ficpar);      for (i=j;i<=n;i++) { 
     puts(line);        sum=a[i][j]; 
     fputs(line,ficparo);        for (k=1;k<j;k++) 
   }          sum -= a[i][k]*a[k][j]; 
   ungetc(c,ficpar);        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          big=dum; 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          imax=i; 
   for(i=1; i <=nlstate; i++){        } 
     for(j=1; j <=nlstate+ndeath-1; j++){      } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      if (j != imax) { 
       printf("%1d%1d",i,j);        for (k=1;k<=n;k++) { 
       fprintf(ficparo,"%1d%1d",i1,j1);          dum=a[imax][k]; 
       for(k=1; k<=ncovmodel;k++){          a[imax][k]=a[j][k]; 
         fscanf(ficpar,"%le",&delti3[i][j][k]);          a[j][k]=dum; 
         printf(" %le",delti3[i][j][k]);        } 
         fprintf(ficparo," %le",delti3[i][j][k]);        *d = -(*d); 
       }        vv[imax]=vv[j]; 
       fscanf(ficpar,"\n");      } 
       printf("\n");      indx[j]=imax; 
       fprintf(ficparo,"\n");      if (a[j][j] == 0.0) a[j][j]=TINY; 
     }      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
   delti=delti3[1][1];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
        } 
   /* Reads comments: lines beginning with '#' */    } 
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(vv,1,n);  /* Doesn't work */
     ungetc(c,ficpar);  ;
     fgets(line, MAXLINE, ficpar);  } 
     puts(line);  
     fputs(line,ficparo);  void lubksb(double **a, int n, int *indx, double b[]) 
   }  { 
   ungetc(c,ficpar);    int i,ii=0,ip,j; 
      double sum; 
   matcov=matrix(1,npar,1,npar);   
   for(i=1; i <=npar; i++){    for (i=1;i<=n;i++) { 
     fscanf(ficpar,"%s",&str);      ip=indx[i]; 
     printf("%s",str);      sum=b[ip]; 
     fprintf(ficparo,"%s",str);      b[ip]=b[i]; 
     for(j=1; j <=i; j++){      if (ii) 
       fscanf(ficpar," %le",&matcov[i][j]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       printf(" %.5le",matcov[i][j]);      else if (sum) ii=i; 
       fprintf(ficparo," %.5le",matcov[i][j]);      b[i]=sum; 
     }    } 
     fscanf(ficpar,"\n");    for (i=n;i>=1;i--) { 
     printf("\n");      sum=b[i]; 
     fprintf(ficparo,"\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   }      b[i]=sum/a[i][i]; 
   for(i=1; i <=npar; i++)    } 
     for(j=i+1;j<=npar;j++)  } 
       matcov[i][j]=matcov[j][i];  
      void pstamp(FILE *fichier)
   printf("\n");  {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */  /************ Frequencies ********************/
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      strcat(rfileres,".");    /* */  {  /* Some frequencies */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    
     if((ficres =fopen(rfileres,"w"))==NULL) {    int i, m, jk, j1, bool, z1,j;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    int first;
     }    double ***freq; /* Frequencies */
     fprintf(ficres,"#%s\n",version);    double *pp, **prop;
        double pos,posprop, k2, dateintsum=0,k2cpt=0;
     /*-------- data file ----------*/    char fileresp[FILENAMELENGTH];
     if((fic=fopen(datafile,"r"))==NULL)    {    
       printf("Problem with datafile: %s\n", datafile);goto end;    pp=vector(1,nlstate);
     }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
     n= lastobs;    strcat(fileresp,fileres);
     severity = vector(1,maxwav);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     outcome=imatrix(1,maxwav+1,1,n);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     num=ivector(1,n);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     moisnais=vector(1,n);      exit(0);
     annais=vector(1,n);    }
     moisdc=vector(1,n);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     andc=vector(1,n);    j1=0;
     agedc=vector(1,n);    
     cod=ivector(1,n);    j=cptcoveff;
     weight=vector(1,n);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);    first=1;
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
     adl=imatrix(1,maxwav+1,1,n);        /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
     tab=ivector(1,NCOVMAX);    /*    j1++; */
     ncodemax=ivector(1,8);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     i=1;          scanf("%d", i);*/
     while (fgets(line, MAXLINE, fic) != NULL)    {        for (i=-5; i<=nlstate+ndeath; i++)  
       if ((i >= firstobs) && (i <=lastobs)) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                    for(m=iagemin; m <= iagemax+3; m++)
         for (j=maxwav;j>=1;j--){              freq[i][jk][m]=0;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        
           strcpy(line,stra);        for (i=1; i<=nlstate; i++)  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(m=iagemin; m <= iagemax+3; m++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            prop[i][m]=0;
         }        
                dateintsum=0;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        k2cpt=0;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        for (i=1; i<=imx; i++) {
           bool=1;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for (z1=1; z1<=cptcoveff; z1++)       
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
         for (j=ncovcol;j>=1;j--){                bool=0;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
         }                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
         num[i]=atol(stra);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                        /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              } 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          }
    
         i=i+1;          if (bool==1){
       }            for(m=firstpass; m<=lastpass; m++){
     }              k2=anint[m][i]+(mint[m][i]/12.);
     /* printf("ii=%d", ij);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
        scanf("%d",i);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   imx=i-1; /* Number of individuals */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   /* for (i=1; i<=imx; i++){                if (m<lastpass) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                }
     }*/                
                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   /* for (i=1; i<=imx; i++){                  dateintsum=dateintsum+k2;
      if (s[4][i]==9)  s[4][i]=-1;                  k2cpt++;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}                }
   */                /*}*/
              }
   /* Calculation of the number of parameter from char model*/          }
   Tvar=ivector(1,15);        } /* end i */
   Tprod=ivector(1,15);         
   Tvaraff=ivector(1,15);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   Tvard=imatrix(1,15,1,2);        pstamp(ficresp);
   Tage=ivector(1,15);              if  (cptcovn>0) {
              fprintf(ficresp, "\n#********** Variable "); 
   if (strlen(model) >1){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     j=0, j1=0, k1=1, k2=1;          fprintf(ficresp, "**********\n#");
     j=nbocc(model,'+');          fprintf(ficlog, "\n#********** Variable "); 
     j1=nbocc(model,'*');          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     cptcovn=j+1;          fprintf(ficlog, "**********\n#");
     cptcovprod=j1;        }
            for(i=1; i<=nlstate;i++) 
     strcpy(modelsav,model);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        fprintf(ficresp, "\n");
       printf("Error. Non available option model=%s ",model);        
       goto end;        for(i=iagemin; i <= iagemax+3; i++){
     }          if(i==iagemax+3){
                fprintf(ficlog,"Total");
     for(i=(j+1); i>=1;i--){          }else{
       cutv(stra,strb,modelsav,'+');            if(first==1){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              first=0;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              printf("See log file for details...\n");
       /*scanf("%d",i);*/            }
       if (strchr(strb,'*')) {            fprintf(ficlog,"Age %d", i);
         cutv(strd,strc,strb,'*');          }
         if (strcmp(strc,"age")==0) {          for(jk=1; jk <=nlstate ; jk++){
           cptcovprod--;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           cutv(strb,stre,strd,'V');              pp[jk] += freq[jk][m][i]; 
           Tvar[i]=atoi(stre);          }
           cptcovage++;          for(jk=1; jk <=nlstate ; jk++){
             Tage[cptcovage]=i;            for(m=-1, pos=0; m <=0 ; m++)
             /*printf("stre=%s ", stre);*/              pos += freq[jk][m][i];
         }            if(pp[jk]>=1.e-10){
         else if (strcmp(strd,"age")==0) {              if(first==1){
           cptcovprod--;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           cutv(strb,stre,strc,'V');              }
           Tvar[i]=atoi(stre);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           cptcovage++;            }else{
           Tage[cptcovage]=i;              if(first==1)
         }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         else {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           cutv(strb,stre,strc,'V');            }
           Tvar[i]=ncovcol+k1;          }
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;          for(jk=1; jk <=nlstate ; jk++){
           Tvard[k1][1]=atoi(strc);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           Tvard[k1][2]=atoi(stre);              pp[jk] += freq[jk][m][i];
           Tvar[cptcovn+k2]=Tvard[k1][1];          }       
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           for (k=1; k<=lastobs;k++)            pos += pp[jk];
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            posprop += prop[jk][i];
           k1++;          }
           k2=k2+2;          for(jk=1; jk <=nlstate ; jk++){
         }            if(pos>=1.e-5){
       }              if(first==1)
       else {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
        /*  scanf("%d",i);*/            }else{
       cutv(strd,strc,strb,'V');              if(first==1)
       Tvar[i]=atoi(strc);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       strcpy(modelsav,stra);              }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            if( i <= iagemax){
         scanf("%d",i);*/              if(pos>=1.e-5){
     }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                  /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);              }
   printf("cptcovprod=%d ", cptcovprod);              else
   scanf("%d ",i);*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     fclose(fic);            }
           }
     /*  if(mle==1){*/          
     if (weightopt != 1) { /* Maximisation without weights*/          for(jk=-1; jk <=nlstate+ndeath; jk++)
       for(i=1;i<=n;i++) weight[i]=1.0;            for(m=-1; m <=nlstate+ndeath; m++)
     }              if(freq[jk][m][i] !=0 ) {
     /*-calculation of age at interview from date of interview and age at death -*/              if(first==1)
     agev=matrix(1,maxwav,1,imx);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for (i=1; i<=imx; i++) {              }
       for(m=2; (m<= maxwav); m++) {          if(i <= iagemax)
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            fprintf(ficresp,"\n");
          anint[m][i]=9999;          if(first==1)
          s[m][i]=-1;            printf("Others in log...\n");
        }          fprintf(ficlog,"\n");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        }
       }        /*}*/
     }    }
     dateintmean=dateintsum/k2cpt; 
     for (i=1; i<=imx; i++)  {   
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fclose(ficresp);
       for(m=1; (m<= maxwav); m++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         if(s[m][i] >0){    free_vector(pp,1,nlstate);
           if (s[m][i] >= nlstate+1) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             if(agedc[i]>0)    /* End of Freq */
               if(moisdc[i]!=99 && andc[i]!=9999)  }
                 agev[m][i]=agedc[i];  
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  /************ Prevalence ********************/
            else {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
               if (andc[i]!=9999){  {  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               agev[m][i]=-1;       in each health status at the date of interview (if between dateprev1 and dateprev2).
               }       We still use firstpass and lastpass as another selection.
             }    */
           }   
           else if(s[m][i] !=9){ /* Should no more exist */    int i, m, jk, j1, bool, z1,j;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)    double **prop;
               agev[m][i]=1;    double posprop; 
             else if(agev[m][i] <agemin){    double  y2; /* in fractional years */
               agemin=agev[m][i];    int iagemin, iagemax;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int first; /** to stop verbosity which is redirected to log file */
             }  
             else if(agev[m][i] >agemax){    iagemin= (int) agemin;
               agemax=agev[m][i];    iagemax= (int) agemax;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /*pp=vector(1,nlstate);*/
             }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
             /*agev[m][i]=anint[m][i]-annais[i];*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             /*   agev[m][i] = age[i]+2*m;*/    j1=0;
           }    
           else { /* =9 */    /*j=cptcoveff;*/
             agev[m][i]=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             s[m][i]=-1;    
           }    first=1;
         }    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
         else /*= 0 Unknown */      /*for(i1=1; i1<=ncodemax[k1];i1++){
           agev[m][i]=1;        j1++;*/
       }        
            for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
     for (i=1; i<=imx; i++)  {            prop[i][m]=0.0;
       for(m=1; (m<= maxwav); m++){       
         if (s[m][i] > (nlstate+ndeath)) {        for (i=1; i<=imx; i++) { /* Each individual */
           printf("Error: Wrong value in nlstate or ndeath\n");            bool=1;
           goto end;          if  (cptcovn>0) {
         }            for (z1=1; z1<=cptcoveff; z1++) 
       }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     }                bool=0;
           } 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     free_vector(severity,1,maxwav);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     free_imatrix(outcome,1,maxwav+1,1,n);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     free_vector(moisnais,1,n);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_vector(annais,1,n);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     /* free_matrix(mint,1,maxwav,1,n);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
        free_matrix(anint,1,maxwav,1,n);*/                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     free_vector(moisdc,1,n);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     free_vector(andc,1,n);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
                    } 
     wav=ivector(1,imx);              }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            } /* end selection of waves */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          }
            }
     /* Concatenates waves */        for(i=iagemin; i <= iagemax+3; i++){  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
           } 
       Tcode=ivector(1,100);          
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          for(jk=1; jk <=nlstate ; jk++){     
       ncodemax[1]=1;            if( i <=  iagemax){ 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);              if(posprop>=1.e-5){ 
                      probs[i][jk][j1]= prop[jk][i]/posprop;
    codtab=imatrix(1,100,1,10);              } else{
    h=0;                if(first==1){
    m=pow(2,cptcoveff);                  first=0;
                    printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
    for(k=1;k<=cptcoveff; k++){                }
      for(i=1; i <=(m/pow(2,k));i++){              }
        for(j=1; j <= ncodemax[k]; j++){            } 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          }/* end jk */ 
            h++;        }/* end i */ 
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      /*} *//* end i1 */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    } /* end j1 */
          }    
        }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      }    /*free_vector(pp,1,nlstate);*/
    }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  }  /* End of prevalence */
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){  /************* Waves Concatenation ***************/
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
       printf("\n");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
       scanf("%d",i);*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    /* Calculates basic frequencies. Computes observed prevalence at single age       and mw[mi+1][i]. dh depends on stepm.
        and prints on file fileres'p'. */       */
   
        int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       double sum=0., jmean=0.;*/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int first;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int j, k=0,jk, ju, jl;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double sum=0.;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    first=0;
          jmin=100000;
     /* For Powell, parameters are in a vector p[] starting at p[1]    jmax=-1;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    jmean=0.;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    for(i=1; i<=imx; i++){
       mi=0;
     if(mle==1){      m=firstpass;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      while(s[m][i] <= nlstate){
     }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
              mw[++mi][i]=m;
     /*--------- results files --------------*/        if(m >=lastpass)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          break;
          else
           m++;
    jk=1;      }/* end while */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      if (s[m][i] > nlstate){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        mi++;     /* Death is another wave */
    for(i=1,jk=1; i <=nlstate; i++){        /* if(mi==0)  never been interviewed correctly before death */
      for(k=1; k <=(nlstate+ndeath); k++){           /* Only death is a correct wave */
        if (k != i)        mw[mi][i]=m;
          {      }
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);      wav[i]=mi;
            for(j=1; j <=ncovmodel; j++){      if(mi==0){
              printf("%f ",p[jk]);        nbwarn++;
              fprintf(ficres,"%f ",p[jk]);        if(first==0){
              jk++;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
            }          first=1;
            printf("\n");        }
            fprintf(ficres,"\n");        if(first==1){
          }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
      }        }
    }      } /* end mi==0 */
  if(mle==1){    } /* End individuals */
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */    for(i=1; i<=imx; i++){
     hesscov(matcov, p, npar, delti, ftolhess, func);      for(mi=1; mi<wav[i];mi++){
  }        if (stepm <=0)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          dh[mi][i]=1;
     printf("# Scales (for hessian or gradient estimation)\n");        else{
      for(i=1,jk=1; i <=nlstate; i++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(j=1; j <=nlstate+ndeath; j++){            if (agedc[i] < 2*AGESUP) {
         if (j!=i) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           fprintf(ficres,"%1d%1d",i,j);              if(j==0) j=1;  /* Survives at least one month after exam */
           printf("%1d%1d",i,j);              else if(j<0){
           for(k=1; k<=ncovmodel;k++){                nberr++;
             printf(" %.5e",delti[jk]);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             fprintf(ficres," %.5e",delti[jk]);                j=1; /* Temporary Dangerous patch */
             jk++;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           printf("\n");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficres,"\n");              }
         }              k=k+1;
       }              if (j >= jmax){
      }                jmax=j;
                    ijmax=i;
     k=1;              }
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              if (j <= jmin){
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                jmin=j;
     for(i=1;i<=npar;i++){                ijmin=i;
       /*  if (k>nlstate) k=1;              }
       i1=(i-1)/(ncovmodel*nlstate)+1;              sum=sum+j;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficres,"%3d",i);            }
       printf("%3d",i);          }
       for(j=1; j<=i;j++){          else{
         fprintf(ficres," %.5e",matcov[i][j]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         printf(" %.5e",matcov[i][j]);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       }  
       fprintf(ficres,"\n");            k=k+1;
       printf("\n");            if (j >= jmax) {
       k++;              jmax=j;
     }              ijmax=i;
                }
     while((c=getc(ficpar))=='#' && c!= EOF){            else if (j <= jmin){
       ungetc(c,ficpar);              jmin=j;
       fgets(line, MAXLINE, ficpar);              ijmin=i;
       puts(line);            }
       fputs(line,ficparo);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     ungetc(c,ficpar);            if(j<0){
     estepm=0;              nberr++;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     if (estepm==0 || estepm < stepm) estepm=stepm;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     if (fage <= 2) {            }
       bage = ageminpar;            sum=sum+j;
       fage = agemaxpar;          }
     }          jk= j/stepm;
              jl= j -jk*stepm;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          ju= j -(jk+1)*stepm;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            if(jl==0){
                dh[mi][i]=jk;
     while((c=getc(ficpar))=='#' && c!= EOF){              bh[mi][i]=0;
     ungetc(c,ficpar);            }else{ /* We want a negative bias in order to only have interpolation ie
     fgets(line, MAXLINE, ficpar);                    * to avoid the price of an extra matrix product in likelihood */
     puts(line);              dh[mi][i]=jk+1;
     fputs(line,ficparo);              bh[mi][i]=ju;
   }            }
   ungetc(c,ficpar);          }else{
              if(jl <= -ju){
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);              dh[mi][i]=jk;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              bh[mi][i]=jl;       /* bias is positive if real duration
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                                   * is higher than the multiple of stepm and negative otherwise.
                                         */
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            else{
     fgets(line, MAXLINE, ficpar);              dh[mi][i]=jk+1;
     puts(line);              bh[mi][i]=ju;
     fputs(line,ficparo);            }
   }            if(dh[mi][i]==0){
   ungetc(c,ficpar);              dh[mi][i]=1; /* At least one step */
                bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          } /* end if mle */
         }
   fscanf(ficpar,"pop_based=%d\n",&popbased);      } /* end wave */
   fprintf(ficparo,"pop_based=%d\n",popbased);      }
   fprintf(ficres,"pop_based=%d\n",popbased);      jmean=sum/k;
      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     ungetc(c,ficpar);   }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /*********** Tricode ****************************/
     fputs(line,ficparo);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   }  {
   ungetc(c,ficpar);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     * nbcode[Tvar[j]][1]= 
     */
   
 while((c=getc(ficpar))=='#' && c!= EOF){    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     ungetc(c,ficpar);    int modmaxcovj=0; /* Modality max of covariates j */
     fgets(line, MAXLINE, ficpar);    int cptcode=0; /* Modality max of covariates j */
     puts(line);    int modmincovj=0; /* Modality min of covariates j */
     fputs(line,ficparo);  
   }  
   ungetc(c,ficpar);    cptcoveff=0; 
    
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
     /* Loop on covariates without age and products */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
       for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
 /*------------ gnuplot -------------*/                                 modality of this covariate Vj*/ 
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                        * If product of Vn*Vm, still boolean *:
 /*------------ free_vector  -------------*/                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
  chdir(path);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
          /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
  free_ivector(wav,1,imx);                                        modality of the nth covariate of individual i. */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        if (ij > modmaxcovj)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            modmaxcovj=ij; 
  free_ivector(num,1,n);        else if (ij < modmincovj) 
  free_vector(agedc,1,n);          modmincovj=ij; 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        if ((ij < -1) && (ij > NCOVMAX)){
  fclose(ficparo);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
  fclose(ficres);          exit(1);
         }else
 /*--------- index.htm --------*/        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
             (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   /*--------------- Prevalence limit --------------*/           female is 1, then modmaxcovj=1.*/
        }
   strcpy(filerespl,"pl");      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   strcat(filerespl,fileres);      cptcode=modmaxcovj;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;     /*for (i=0; i<=cptcode; i++) {*/
   }      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
   fprintf(ficrespl,"#Prevalence limit\n");        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   fprintf(ficrespl,"#Age ");          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }
   fprintf(ficrespl,"\n");        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
             historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   prlim=matrix(1,nlstate,1,nlstate);      } /* Ndum[-1] number of undefined modalities */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         modmincovj=3; modmaxcovj = 7;
   k=0;         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
   agebase=ageminpar;         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
   agelim=agemaxpar;         variables V1_1 and V1_2.
   ftolpl=1.e-10;         nbcode[Tvar[j]][ij]=k;
   i1=cptcoveff;         nbcode[Tvar[j]][1]=0;
   if (cptcovn < 1){i1=1;}         nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
   for(cptcov=1;cptcov<=i1;cptcov++){      */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      ij=1; /* ij is similar to i but can jumps over null modalities */
         k=k+1;      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
         fprintf(ficrespl,"\n#******");          /*recode from 0 */
         for(j=1;j<=cptcoveff;j++)          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
         fprintf(ficrespl,"******\n");                                       k is a modality. If we have model=V1+V1*sex 
                                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         for (age=agebase; age<=agelim; age++){            ij++;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          }
           fprintf(ficrespl,"%.0f",age );          if (ij > ncodemax[j]) break; 
           for(i=1; i<=nlstate;i++)        }  /* end of loop on */
           fprintf(ficrespl," %.5f", prlim[i][i]);      } /* end of loop on modality */ 
           fprintf(ficrespl,"\n");    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
         }    
       }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     }    
   fclose(ficrespl);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   /*------------- h Pij x at various ages ------------*/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       Ndum[ij]++; 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   } 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   ij=1;
   }   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   printf("Computing pij: result on file '%s' \n", filerespij);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       if((Ndum[i]!=0) && (i<=ncovcol)){
   stepsize=(int) (stepm+YEARM-1)/YEARM;       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   /*if (stepm<=24) stepsize=2;*/       Tvaraff[ij]=i; /*For printing (unclear) */
        ij++;
   agelim=AGESUP;     }else
   hstepm=stepsize*YEARM; /* Every year of age */         Tvaraff[ij]=0;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   }
     ij--;
   k=0;   cptcoveff=ij; /*Number of total covariates*/
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  }
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)  /*********** Health Expectancies ****************/
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* Health expectancies, no variances */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int i, j, nhstepm, hstepm, h, nstepm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int nhstepma, nstepma; /* Decreasing with age */
           oldm=oldms;savm=savms;    double age, agelim, hf;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double ***p3mat;
           fprintf(ficrespij,"# Age");    double eip;
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)    pstamp(ficreseij);
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           fprintf(ficrespij,"\n");    fprintf(ficreseij,"# Age");
           for (h=0; h<=nhstepm; h++){    for(i=1; i<=nlstate;i++){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      for(j=1; j<=nlstate;j++){
             for(i=1; i<=nlstate;i++)        fprintf(ficreseij," e%1d%1d ",i,j);
               for(j=1; j<=nlstate+ndeath;j++)      }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      fprintf(ficreseij," e%1d. ",i);
             fprintf(ficrespij,"\n");    }
           }    fprintf(ficreseij,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");    
         }    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
     else  hstepm=estepm;   
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   fclose(ficrespij);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   /*---------- Forecasting ------------------*/     * to the curvature of the survival function. If, for the same date, we 
   if((stepm == 1) && (strcmp(model,".")==0)){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);     * to compare the new estimate of Life expectancy with the same linear 
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);     * hypothesis. A more precise result, taking into account a more precise
     free_matrix(mint,1,maxwav,1,n);     * curvature will be obtained if estepm is as small as stepm. */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);}    /* For example we decided to compute the life expectancy with the smallest unit */
   else{    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     erreur=108;       nhstepm is the number of hstepm from age to agelim 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /*---------- Health expectancies and variances ------------*/       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   strcpy(filerest,"t");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   strcat(filerest,fileres);       results. So we changed our mind and took the option of the best precision.
   if((ficrest=fopen(filerest,"w"))==NULL) {    */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   strcpy(filerese,"e");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   strcat(filerese,fileres);      
   if((ficreseij=fopen(filerese,"w"))==NULL) {  /* nhstepm age range expressed in number of stepm */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  strcpy(fileresv,"v");    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    for (age=bage; age<=fage; age ++){ 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      /* If stepm=6 months */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       k=k+1;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       fprintf(ficrest,"\n#****** ");      
       for(j=1;j<=cptcoveff;j++)      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       fprintf(ficrest,"******\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       fprintf(ficreseij,"\n#****** ");      printf("%d|",(int)age);fflush(stdout);
       for(j=1;j<=cptcoveff;j++)      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       fprintf(ficreseij,"******\n");      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
       fprintf(ficresvij,"\n#****** ");        for(j=1; j<=nlstate;j++)
       for(j=1;j<=cptcoveff;j++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       fprintf(ficresvij,"******\n");            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;          }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fprintf(ficreseij,"%3.0f",age );
       oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++){
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        eip=0;
            for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
            fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        fprintf(ficreseij,"%9.4f", eip );
       fprintf(ficrest,"\n");      }
       fprintf(ficreseij,"\n");
       epj=vector(1,nlstate+1);      
       for(age=bage; age <=fage ;age++){    }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         if (popbased==1) {    printf("\n");
           for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n");
             prlim[i][i]=probs[(int)age][i][k];    
         }  }
          
         fprintf(ficrest," %4.0f",age);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  {
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    /* Covariances of health expectancies eij and of total life expectancies according
           }     to initial status i, ei. .
           epj[nlstate+1] +=epj[j];    */
         }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         for(i=1, vepp=0.;i <=nlstate;i++)    int nhstepma, nstepma; /* Decreasing with age */
           for(j=1;j <=nlstate;j++)    double age, agelim, hf;
             vepp += vareij[i][j][(int)age];    double ***p3matp, ***p3matm, ***varhe;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    double **dnewm,**doldm;
         for(j=1;j <=nlstate;j++){    double *xp, *xm;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    double **gp, **gm;
         }    double ***gradg, ***trgradg;
         fprintf(ficrest,"\n");    int theta;
       }  
     }    double eip, vip;
   }  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   fclose(ficreseij);    xp=vector(1,npar);
   fclose(ficresvij);    xm=vector(1,npar);
   fclose(ficrest);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   fclose(ficpar);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   free_vector(epj,1,nlstate+1);    
      pstamp(ficresstdeij);
   /*------- Variance limit prevalence------*/      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
   strcpy(fileresvpl,"vpl");    for(i=1; i<=nlstate;i++){
   strcat(fileresvpl,fileres);      for(j=1; j<=nlstate;j++)
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      fprintf(ficresstdeij," e%1d. ",i);
     exit(0);    }
   }    fprintf(ficresstdeij,"\n");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     pstamp(ficrescveij);
   k=0;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficrescveij,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i<=nlstate;i++)
       k=k+1;      for(j=1; j<=nlstate;j++){
       fprintf(ficresvpl,"\n#****** ");        cptj= (j-1)*nlstate+i;
       for(j=1;j<=cptcoveff;j++)        for(i2=1; i2<=nlstate;i2++)
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(j2=1; j2<=nlstate;j2++){
       fprintf(ficresvpl,"******\n");            cptj2= (j2-1)*nlstate+i2;
                  if(cptj2 <= cptj)
       varpl=matrix(1,nlstate,(int) bage, (int) fage);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       oldm=oldms;savm=savms;          }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }
     }    fprintf(ficrescveij,"\n");
  }    
     if(estepm < stepm){
   fclose(ficresvpl);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   /*---------- End : free ----------------*/    else  hstepm=estepm;   
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);     * if stepm=24 months pijx are given only every 2 years and by summing them
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);     * to compare the new estimate of Life expectancy with the same linear 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);     * hypothesis. A more precise result, taking into account a more precise
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);     * curvature will be obtained if estepm is as small as stepm. */
    
   free_matrix(matcov,1,npar,1,npar);    /* For example we decided to compute the life expectancy with the smallest unit */
   free_vector(delti,1,npar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   free_matrix(agev,1,maxwav,1,imx);       nhstepm is the number of hstepm from age to agelim 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   if(erreur >0)       and note for a fixed period like estepm months */
     printf("End of Imach with error or warning %d\n",erreur);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else   printf("End of Imach\n");       survival function given by stepm (the optimization length). Unfortunately it
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/       results. So we changed our mind and took the option of the best precision.
   /*printf("Total time was %d uSec.\n", total_usecs);*/    */
   /*------ End -----------*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
  end:    /* nhstepm age range expressed in number of stepm */
 #ifdef windows    agelim=AGESUP;
   /* chdir(pathcd);*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 #endif    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  /*system("wgnuplot graph.plt");*/    /* if (stepm >= YEARM) hstepm=1;*/
  /*system("../gp37mgw/wgnuplot graph.plt");*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  /*system("cd ../gp37mgw");*/    
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  strcpy(plotcmd,GNUPLOTPROGRAM);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  strcat(plotcmd," ");    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
  strcat(plotcmd,optionfilegnuplot);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
  system(plotcmd);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
 #ifdef windows  
   while (z[0] != 'q') {    for (age=bage; age<=fage; age ++){ 
     /* chdir(path); */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     scanf("%s",z);      /* if (stepm >= YEARM) hstepm=1;*/
     if (z[0] == 'c') system("./imach");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);      /* If stepm=6 months */
     else if (z[0] == 'q') exit(0);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 #endif      
 }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
           /* command line Intel compiler 64bit windows:
           /GS /W3 /Gy /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
           /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
           /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo 
           /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
           /*
           /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
           /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
           /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
           /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.38  
changed lines
  Added in v.1.184


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>