Diff for /imach/src/imach.c between versions 1.39 and 1.153

version 1.39, 2002/04/05 15:45:00 version 1.153, 2014/06/20 16:45:46
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.153  2014/06/20 16:45:46  brouard
      Summary: If 3 live state, convergence to period prevalence on same graph
   This program computes Healthy Life Expectancies from    Author: Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.152  2014/06/18 17:54:09  brouard
   interviewed on their health status or degree of disability (in the    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.151  2014/06/18 16:43:30  brouard
   (if any) in individual health status.  Health expectancies are    *** empty log message ***
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.150  2014/06/18 16:42:35  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   simplest model is the multinomial logistic model where pij is the    Author: brouard
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.149  2014/06/18 15:51:14  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: Some fixes in parameter files errors
   'age' is age and 'sex' is a covariate. If you want to have a more    Author: Nicolas Brouard
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.148  2014/06/17 17:38:48  brouard
   you to do it.  More covariates you add, slower the    Summary: Nothing new
   convergence.    Author: Brouard
   
   The advantage of this computer programme, compared to a simple    Just a new packaging for OS/X version 0.98nS
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.147  2014/06/16 10:33:11  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.146  2014/06/16 10:20:28  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: Merge
   conditional to the observed state i at age x. The delay 'h' can be    Author: Brouard
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Merge, before building revised version.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.145  2014/06/10 21:23:15  brouard
   and the contribution of each individual to the likelihood is simply    Summary: Debugging with valgrind
   hPijx.    Author: Nicolas Brouard
   
   Also this programme outputs the covariance matrix of the parameters but also    Lot of changes in order to output the results with some covariates
   of the life expectancies. It also computes the prevalence limits.    After the Edimburgh REVES conference 2014, it seems mandatory to
      improve the code.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    No more memory valgrind error but a lot has to be done in order to
            Institut national d'études démographiques, Paris.    continue the work of splitting the code into subroutines.
   This software have been partly granted by Euro-REVES, a concerted action    Also, decodemodel has been improved. Tricode is still not
   from the European Union.    optimal. nbcode should be improved. Documentation has been added in
   It is copyrighted identically to a GNU software product, ie programme and    the source code.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.143  2014/01/26 09:45:38  brouard
   **********************************************************************/    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
    
 #include <math.h>    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #include <stdio.h>    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "wgnuplot"    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.141  2014/01/26 02:42:01  brouard
 /*#define DEBUG*/    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.140  2011/09/02 10:37:54  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: times.h is ok with mingw32 now.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.139  2010/06/14 07:50:17  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.138  2010/04/30 18:19:40  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    *** empty log message ***
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.137  2010/04/29 18:11:38  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Checking covariates for more complex models
 #define AGESUP 130    than V1+V2. A lot of change to be done. Unstable.
 #define AGEBASE 40  
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
 int erreur; /* Error number */    of likelione (using inter/intrapolation if mle = 0) in order to
 int nvar;    get same likelihood as if mle=1.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Some cleaning of code and comments added.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.135  2009/10/29 15:33:14  brouard
 int ndeath=1; /* Number of dead states */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.133  2009/07/06 10:21:25  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    just nforces
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.132  2009/07/06 08:22:05  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Many tings
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.131  2009/06/20 16:22:47  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Some dimensions resccaled
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.130  2009/05/26 06:44:34  brouard
 FILE *ficreseij;    (Module): Max Covariate is now set to 20 instead of 8. A
   char filerese[FILENAMELENGTH];    lot of cleaning with variables initialized to 0. Trying to make
  FILE  *ficresvij;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.129  2007/08/31 13:49:27  lievre
   char fileresvpl[FILENAMELENGTH];    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
 #define NR_END 1    Revision 1.128  2006/06/30 13:02:05  brouard
 #define FREE_ARG char*    (Module): Clarifications on computing e.j
 #define FTOL 1.0e-10  
     Revision 1.127  2006/04/28 18:11:50  brouard
 #define NRANSI    (Module): Yes the sum of survivors was wrong since
 #define ITMAX 200    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 #define TOL 2.0e-4    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
 #define CGOLD 0.3819660    and then all the health expectancies with variances or standard
 #define ZEPS 1.0e-10    deviation (needs data from the Hessian matrices) which slows the
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    computation.
     In the future we should be able to stop the program is only health
 #define GOLD 1.618034    expectancies and graph are needed without standard deviations.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
 static double maxarg1,maxarg2;    imach-114 because nhstepm was no more computed in the age
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    loop. Now we define nhstepma in the age loop.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Version 0.98h
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.125  2006/04/04 15:20:31  lievre
 #define rint(a) floor(a+0.5)    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.124  2006/03/22 17:13:53  lievre
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
 int imx;  
 int stepm;    Revision 1.123  2006/03/20 10:52:43  brouard
 /* Stepm, step in month: minimum step interpolation*/    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 int m,nb;    otherwise the weight is truncated).
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Modification of warning when the covariates values are not 0 or
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    1.
 double **pmmij, ***probs, ***mobaverage;    Version 0.98g
 double dateintmean=0;  
     Revision 1.122  2006/03/20 09:45:41  brouard
 double *weight;    (Module): Weights can have a decimal point as for
 int **s; /* Status */    English (a comma might work with a correct LC_NUMERIC environment,
 double *agedc, **covar, idx;    otherwise the weight is truncated).
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Modification of warning when the covariates values are not 0 or
     1.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Version 0.98g
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.121  2006/03/16 17:45:01  lievre
 /**************** split *************************/    * imach.c (Module): Comments concerning covariates added
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    * imach.c (Module): refinements in the computation of lli if
    char *s;                             /* pointer */    status=-2 in order to have more reliable computation if stepm is
    int  l1, l2;                         /* length counters */    not 1 month. Version 0.98f
   
    l1 = strlen( path );                 /* length of path */    Revision 1.120  2006/03/16 15:10:38  lievre
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): refinements in the computation of lli if
 #ifdef windows    status=-2 in order to have more reliable computation if stepm is
    s = strrchr( path, '\\' );           /* find last / */    not 1 month. Version 0.98f
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.119  2006/03/15 17:42:26  brouard
 #endif    (Module): Bug if status = -2, the loglikelihood was
    if ( s == NULL ) {                   /* no directory, so use current */    computed as likelihood omitting the logarithm. Version O.98e
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
       if ( getwd( dirc ) == NULL ) {    table of variances if popbased=1 .
 #else    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       extern char       *getcwd( );    (Module): Function pstamp added
     (Module): Version 0.98d
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.117  2006/03/14 17:16:22  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): varevsij Comments added explaining the second
       }    table of variances if popbased=1 .
       strcpy( name, path );             /* we've got it */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    } else {                             /* strip direcotry from path */    (Module): Function pstamp added
       s++;                              /* after this, the filename */    (Module): Version 0.98d
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.116  2006/03/06 10:29:27  brouard
       strcpy( name, s );                /* save file name */    (Module): Variance-covariance wrong links and
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    varian-covariance of ej. is needed (Saito).
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.115  2006/02/27 12:17:45  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): One freematrix added in mlikeli! 0.98c
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.114  2006/02/26 12:57:58  brouard
 #else    (Module): Some improvements in processing parameter
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    filename with strsep.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.113  2006/02/24 14:20:24  brouard
    s++;    (Module): Memory leaks checks with valgrind and:
    strcpy(ext,s);                       /* save extension */    datafile was not closed, some imatrix were not freed and on matrix
    l1= strlen( name);    allocation too.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.112  2006/01/30 09:55:26  brouard
    finame[l1-l2]= 0;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    return( 0 );                         /* we're done */  
 }    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 /******************************************/    can be a simple dot '.'.
   
 void replace(char *s, char*t)    Revision 1.110  2006/01/25 00:51:50  brouard
 {    (Module): Lots of cleaning and bugs added (Gompertz)
   int i;  
   int lg=20;    Revision 1.109  2006/01/24 19:37:15  brouard
   i=0;    (Module): Comments (lines starting with a #) are allowed in data.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.108  2006/01/19 18:05:42  lievre
     (s[i] = t[i]);    Gnuplot problem appeared...
     if (t[i]== '\\') s[i]='/';    To be fixed
   }  
 }    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 int nbocc(char *s, char occ)  
 {    Revision 1.106  2006/01/19 13:24:36  brouard
   int i,j=0;    Some cleaning and links added in html output
   int lg=20;  
   i=0;    Revision 1.105  2006/01/05 20:23:19  lievre
   lg=strlen(s);    *** empty log message ***
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.104  2005/09/30 16:11:43  lievre
   }    (Module): sump fixed, loop imx fixed, and simplifications.
   return j;    (Module): If the status is missing at the last wave but we know
 }    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 void cutv(char *u,char *v, char*t, char occ)    contributions to the likelihood is 1 - Prob of dying from last
 {    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   int i,lg,j,p=0;    the healthy state at last known wave). Version is 0.98
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.103  2005/09/30 15:54:49  lievre
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): sump fixed, loop imx fixed, and simplifications.
   }  
     Revision 1.102  2004/09/15 17:31:30  brouard
   lg=strlen(t);    Add the possibility to read data file including tab characters.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.101  2004/09/15 10:38:38  brouard
   }    Fix on curr_time
      u[p]='\0';  
     Revision 1.100  2004/07/12 18:29:06  brouard
    for(j=0; j<= lg; j++) {    Add version for Mac OS X. Just define UNIX in Makefile
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.99  2004/06/05 08:57:40  brouard
 }    *** empty log message ***
   
 /********************** nrerror ********************/    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 void nrerror(char error_text[])    directly from the data i.e. without the need of knowing the health
 {    state at each age, but using a Gompertz model: log u =a + b*age .
   fprintf(stderr,"ERREUR ...\n");    This is the basic analysis of mortality and should be done before any
   fprintf(stderr,"%s\n",error_text);    other analysis, in order to test if the mortality estimated from the
   exit(1);    cross-longitudinal survey is different from the mortality estimated
 }    from other sources like vital statistic data.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    The same imach parameter file can be used but the option for mle should be -3.
 {  
   double *v;    Agnès, who wrote this part of the code, tried to keep most of the
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    former routines in order to include the new code within the former code.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    The output is very simple: only an estimate of the intercept and of
 }    the slope with 95% confident intervals.
   
 /************************ free vector ******************/    Current limitations:
 void free_vector(double*v, int nl, int nh)    A) Even if you enter covariates, i.e. with the
 {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   free((FREE_ARG)(v+nl-NR_END));    B) There is no computation of Life Expectancy nor Life Table.
 }  
     Revision 1.97  2004/02/20 13:25:42  lievre
 /************************ivector *******************************/    Version 0.96d. Population forecasting command line is (temporarily)
 int *ivector(long nl,long nh)    suppressed.
 {  
   int *v;    Revision 1.96  2003/07/15 15:38:55  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   if (!v) nrerror("allocation failure in ivector");    rewritten within the same printf. Workaround: many printfs.
   return v-nl+NR_END;  
 }    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 /******************free ivector **************************/    (Repository): Using imachwizard code to output a more meaningful covariance
 void free_ivector(int *v, long nl, long nh)    matrix (cov(a12,c31) instead of numbers.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.94  2003/06/27 13:00:02  brouard
 }    Just cleaning
   
 /******************* imatrix *******************************/    Revision 1.93  2003/06/25 16:33:55  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): On windows (cygwin) function asctime_r doesn't
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    exist so I changed back to asctime which exists.
 {    (Module): Version 0.96b
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.92  2003/06/25 16:30:45  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   /* allocate pointers to rows */    exist so I changed back to asctime which exists.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.91  2003/06/25 15:30:29  brouard
   m += NR_END;    * imach.c (Repository): Duplicated warning errors corrected.
   m -= nrl;    (Repository): Elapsed time after each iteration is now output. It
      helps to forecast when convergence will be reached. Elapsed time
      is stamped in powell.  We created a new html file for the graphs
   /* allocate rows and set pointers to them */    concerning matrix of covariance. It has extension -cov.htm.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.90  2003/06/24 12:34:15  brouard
   m[nrl] += NR_END;    (Module): Some bugs corrected for windows. Also, when
   m[nrl] -= ncl;    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.89  2003/06/24 12:30:52  brouard
   /* return pointer to array of pointers to rows */    (Module): Some bugs corrected for windows. Also, when
   return m;    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
 /****************** free_imatrix *************************/    Revision 1.88  2003/06/23 17:54:56  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.87  2003/06/18 12:26:01  brouard
      /* free an int matrix allocated by imatrix() */    Version 0.96
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.86  2003/06/17 20:04:08  brouard
   free((FREE_ARG) (m+nrl-NR_END));    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
   
 /******************* matrix *******************************/    Revision 1.85  2003/06/17 13:12:43  brouard
 double **matrix(long nrl, long nrh, long ncl, long nch)    * imach.c (Repository): Check when date of death was earlier that
 {    current date of interview. It may happen when the death was just
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    prior to the death. In this case, dh was negative and likelihood
   double **m;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    interview.
   if (!m) nrerror("allocation failure 1 in matrix()");    (Repository): Because some people have very long ID (first column)
   m += NR_END;    we changed int to long in num[] and we added a new lvector for
   m -= nrl;    memory allocation. But we also truncated to 8 characters (left
     truncation)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Repository): No more line truncation errors.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.84  2003/06/13 21:44:43  brouard
   m[nrl] -= ncl;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    many times. Probs is memory consuming and must be used with
   return m;    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /*************************free matrix ************************/    Revision 1.83  2003/06/10 13:39:11  lievre
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    *** empty log message ***
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.82  2003/06/05 15:57:20  brouard
   free((FREE_ARG)(m+nrl-NR_END));    Add log in  imach.c and  fullversion number is now printed.
 }  
   */
 /******************* ma3x *******************************/  /*
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)     Interpolated Markov Chain
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Short summary of the programme:
   double ***m;    
     This program computes Healthy Life Expectancies from
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   if (!m) nrerror("allocation failure 1 in matrix()");    first survey ("cross") where individuals from different ages are
   m += NR_END;    interviewed on their health status or degree of disability (in the
   m -= nrl;    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (if any) in individual health status.  Health expectancies are
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    computed from the time spent in each health state according to a
   m[nrl] += NR_END;    model. More health states you consider, more time is necessary to reach the
   m[nrl] -= ncl;    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    'age' is age and 'sex' is a covariate. If you want to have a more
   m[nrl][ncl] += NR_END;    complex model than "constant and age", you should modify the program
   m[nrl][ncl] -= nll;    where the markup *Covariates have to be included here again* invites
   for (j=ncl+1; j<=nch; j++)    you to do it.  More covariates you add, slower the
     m[nrl][j]=m[nrl][j-1]+nlay;    convergence.
    
   for (i=nrl+1; i<=nrh; i++) {    The advantage of this computer programme, compared to a simple
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    multinomial logistic model, is clear when the delay between waves is not
     for (j=ncl+1; j<=nch; j++)    identical for each individual. Also, if a individual missed an
       m[i][j]=m[i][j-1]+nlay;    intermediate interview, the information is lost, but taken into
   }    account using an interpolation or extrapolation.  
   return m;  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 /*************************free ma3x ************************/    split into an exact number (nh*stepm) of unobserved intermediate
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    states. This elementary transition (by month, quarter,
 {    semester or year) is modelled as a multinomial logistic.  The hPx
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    matrix is simply the matrix product of nh*stepm elementary matrices
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    and the contribution of each individual to the likelihood is simply
   free((FREE_ARG)(m+nrl-NR_END));    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /***************** f1dim *************************/    of the life expectancies. It also computes the period (stable) prevalence. 
 extern int ncom;    
 extern double *pcom,*xicom;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 extern double (*nrfunc)(double []);             Institut national d'études démographiques, Paris.
      This software have been partly granted by Euro-REVES, a concerted action
 double f1dim(double x)    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   int j;    software can be distributed freely for non commercial use. Latest version
   double f;    can be accessed at http://euroreves.ined.fr/imach .
   double *xt;  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   xt=vector(1,ncom);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);    **********************************************************************/
   free_vector(xt,1,ncom);  /*
   return f;    main
 }    read parameterfile
     read datafile
 /*****************brent *************************/    concatwav
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    freqsummary
 {    if (mle >= 1)
   int iter;      mlikeli
   double a,b,d,etemp;    print results files
   double fu,fv,fw,fx;    if mle==1 
   double ftemp;       computes hessian
   double p,q,r,tol1,tol2,u,v,w,x,xm;    read end of parameter file: agemin, agemax, bage, fage, estepm
   double e=0.0;        begin-prev-date,...
      open gnuplot file
   a=(ax < cx ? ax : cx);    open html file
   b=(ax > cx ? ax : cx);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   x=w=v=bx;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   fw=fv=fx=(*f)(x);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   for (iter=1;iter<=ITMAX;iter++) {      freexexit2 possible for memory heap.
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    h Pij x                         | pij_nom  ficrestpij
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     printf(".");fflush(stdout);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 #ifdef DEBUG         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 #endif         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       *xmin=x;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       return fx;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     }  
     ftemp=fu;    forecasting if prevfcast==1 prevforecast call prevalence()
     if (fabs(e) > tol1) {    health expectancies
       r=(x-w)*(fx-fv);    Variance-covariance of DFLE
       q=(x-v)*(fx-fw);    prevalence()
       p=(x-v)*q-(x-w)*r;     movingaverage()
       q=2.0*(q-r);    varevsij() 
       if (q > 0.0) p = -p;    if popbased==1 varevsij(,popbased)
       q=fabs(q);    total life expectancies
       etemp=e;    Variance of period (stable) prevalence
       e=d;   end
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  
         d=p/q;  
         u=x+d;   
         if (u-a < tol2 || b-u < tol2)  #include <math.h>
           d=SIGN(tol1,xm-x);  #include <stdio.h>
       }  #include <stdlib.h>
     } else {  #include <string.h>
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <unistd.h>
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #include <limits.h>
     fu=(*f)(u);  #include <sys/types.h>
     if (fu <= fx) {  #include <sys/stat.h>
       if (u >= x) a=x; else b=x;  #include <errno.h>
       SHFT(v,w,x,u)  extern int errno;
         SHFT(fv,fw,fx,fu)  
         } else {  #ifdef LINUX
           if (u < x) a=u; else b=u;  #include <time.h>
           if (fu <= fw || w == x) {  #include "timeval.h"
             v=w;  #else
             w=u;  #include <sys/time.h>
             fv=fw;  #endif
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  #ifdef GSL
             v=u;  #include <gsl/gsl_errno.h>
             fv=fu;  #include <gsl/gsl_multimin.h>
           }  #endif
         }  
   }  /* #include <libintl.h> */
   nrerror("Too many iterations in brent");  /* #define _(String) gettext (String) */
   *xmin=x;  
   return fx;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 }  
   #define GNUPLOTPROGRAM "gnuplot"
 /****************** mnbrak ***********************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double ulim,u,r,q, dum;  
   double fu;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
    #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  #define NINTERVMAX 8
   if (*fb > *fa) {  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     SHFT(dum,*ax,*bx,dum)  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       SHFT(dum,*fb,*fa,dum)  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       }  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   *cx=(*bx)+GOLD*(*bx-*ax);  #define MAXN 20000
   *fc=(*func)(*cx);  #define YEARM 12. /**< Number of months per year */
   while (*fb > *fc) {  #define AGESUP 130
     r=(*bx-*ax)*(*fb-*fc);  #define AGEBASE 40
     q=(*bx-*cx)*(*fb-*fa);  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #ifdef UNIX
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define DIRSEPARATOR '/'
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define CHARSEPARATOR "/"
     if ((*bx-u)*(u-*cx) > 0.0) {  #define ODIRSEPARATOR '\\'
       fu=(*func)(u);  #else
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define DIRSEPARATOR '\\'
       fu=(*func)(u);  #define CHARSEPARATOR "\\"
       if (fu < *fc) {  #define ODIRSEPARATOR '/'
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #endif
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /* $Id$ */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /* $State$ */
       u=ulim;  
       fu=(*func)(u);  char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     } else {  char fullversion[]="$Revision$ $Date$"; 
       u=(*cx)+GOLD*(*cx-*bx);  char strstart[80];
       fu=(*func)(u);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     }  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     SHFT(*ax,*bx,*cx,u)  int nvar=0, nforce=0; /* Number of variables, number of forces */
       SHFT(*fa,*fb,*fc,fu)  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 }  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 /*************** linmin ************************/  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   int cptcovprodnoage=0; /**< Number of covariate products without age */   
 int ncom;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 double *pcom,*xicom;  int cptcov=0; /* Working variable */
 double (*nrfunc)(double []);  int npar=NPARMAX;
    int nlstate=2; /* Number of live states */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int ndeath=1; /* Number of dead states */
 {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double brent(double ax, double bx, double cx,  int popbased=0;
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  int *wav; /* Number of waves for this individuual 0 is possible */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int maxwav=0; /* Maxim number of waves */
               double *fc, double (*func)(double));  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int j;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   double xx,xmin,bx,ax;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double fx,fb,fa;                     to the likelihood and the sum of weights (done by funcone)*/
    int mle=1, weightopt=0;
   ncom=n;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   pcom=vector(1,n);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   xicom=vector(1,n);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   nrfunc=func;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for (j=1;j<=n;j++) {  double jmean=1; /* Mean space between 2 waves */
     pcom[j]=p[j];  double **matprod2(); /* test */
     xicom[j]=xi[j];  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   ax=0.0;  /*FILE *fic ; */ /* Used in readdata only */
   xx=1.0;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  FILE *ficlog, *ficrespow;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int globpr=0; /* Global variable for printing or not */
 #ifdef DEBUG  double fretone; /* Only one call to likelihood */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  long ipmx=0; /* Number of contributions */
 #endif  double sw; /* Sum of weights */
   for (j=1;j<=n;j++) {  char filerespow[FILENAMELENGTH];
     xi[j] *= xmin;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     p[j] += xi[j];  FILE *ficresilk;
   }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   free_vector(xicom,1,n);  FILE *ficresprobmorprev;
   free_vector(pcom,1,n);  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /*************** powell ************************/  FILE *ficresstdeij;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  char fileresstde[FILENAMELENGTH];
             double (*func)(double []))  FILE *ficrescveij;
 {  char filerescve[FILENAMELENGTH];
   void linmin(double p[], double xi[], int n, double *fret,  FILE  *ficresvij;
               double (*func)(double []));  char fileresv[FILENAMELENGTH];
   int i,ibig,j;  FILE  *ficresvpl;
   double del,t,*pt,*ptt,*xit;  char fileresvpl[FILENAMELENGTH];
   double fp,fptt;  char title[MAXLINE];
   double *xits;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   pt=vector(1,n);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   ptt=vector(1,n);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   xit=vector(1,n);  char command[FILENAMELENGTH];
   xits=vector(1,n);  int  outcmd=0;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  char filelog[FILENAMELENGTH]; /* Log file */
     ibig=0;  char filerest[FILENAMELENGTH];
     del=0.0;  char fileregp[FILENAMELENGTH];
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char popfile[FILENAMELENGTH];
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     printf("\n");  
     for (i=1;i<=n;i++) {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  struct timezone tzp;
       fptt=(*fret);  extern int gettimeofday();
 #ifdef DEBUG  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       printf("fret=%lf \n",*fret);  long time_value;
 #endif  extern long time();
       printf("%d",i);fflush(stdout);  char strcurr[80], strfor[80];
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  char *endptr;
         del=fabs(fptt-(*fret));  long lval;
         ibig=i;  double dval;
       }  
 #ifdef DEBUG  #define NR_END 1
       printf("%d %.12e",i,(*fret));  #define FREE_ARG char*
       for (j=1;j<=n;j++) {  #define FTOL 1.0e-10
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  #define NRANSI 
       }  #define ITMAX 200 
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  #define TOL 2.0e-4 
       printf("\n");  
 #endif  #define CGOLD 0.3819660 
     }  #define ZEPS 1.0e-10 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 #ifdef DEBUG  
       int k[2],l;  #define GOLD 1.618034 
       k[0]=1;  #define GLIMIT 100.0 
       k[1]=-1;  #define TINY 1.0e-20 
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  static double maxarg1,maxarg2;
         printf(" %.12e",p[j]);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       printf("\n");  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #define rint(a) floor(a+0.5)
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  static double sqrarg;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 #endif  int agegomp= AGEGOMP;
   
   int imx; 
       free_vector(xit,1,n);  int stepm=1;
       free_vector(xits,1,n);  /* Stepm, step in month: minimum step interpolation*/
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  int estepm;
       return;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int m,nb;
     for (j=1;j<=n;j++) {  long *num;
       ptt[j]=2.0*p[j]-pt[j];  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       xit[j]=p[j]-pt[j];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       pt[j]=p[j];  double **pmmij, ***probs;
     }  double *ageexmed,*agecens;
     fptt=(*func)(ptt);  double dateintmean=0;
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double *weight;
       if (t < 0.0) {  int **s; /* Status */
         linmin(p,xit,n,fret,func);  double *agedc;
         for (j=1;j<=n;j++) {  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
           xi[j][ibig]=xi[j][n];                    * covar=matrix(0,NCOVMAX,1,n); 
           xi[j][n]=xit[j];                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
         }  double  idx; 
 #ifdef DEBUG  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int *Ndum; /** Freq of modality (tricode */
         for(j=1;j<=n;j++)  int **codtab; /**< codtab=imatrix(1,100,1,10); */
           printf(" %.12e",xit[j]);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         printf("\n");  double *lsurv, *lpop, *tpop;
 #endif  
       }  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     }  double ftolhess; /**< Tolerance for computing hessian */
   }  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /**** Prevalence limit ****************/  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */ 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    char  *ss;                            /* pointer */
      matrix by transitions matrix until convergence is reached */    int   l1, l2;                         /* length counters */
   
   int i, ii,j,k;    l1 = strlen(path );                   /* length of path */
   double min, max, maxmin, maxmax,sumnew=0.;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double **matprod2();    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double **out, cov[NCOVMAX], **pmij();    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double **newm;      strcpy( name, path );               /* we got the fullname name because no directory */
   double agefin, delaymax=50 ; /* Max number of years to converge */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for (ii=1;ii<=nlstate+ndeath;ii++)      /* get current working directory */
     for (j=1;j<=nlstate+ndeath;j++){      /*    extern  char* getcwd ( char *buf , int len);*/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     }        return( GLOCK_ERROR_GETCWD );
       }
    cov[1]=1.;      /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } else {                              /* strip direcotry from path */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      ss++;                               /* after this, the filename */
     newm=savm;      l2 = strlen( ss );                  /* length of filename */
     /* Covariates have to be included here again */      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
      cov[2]=agefin;      strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
       for (k=1; k<=cptcovn;k++) {      dirc[l1-l2] = 0;                    /* add zero */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      printf(" DIRC2 = %s \n",dirc);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    }
       }    /* We add a separator at the end of dirc if not exists */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    l1 = strlen( dirc );                  /* length of directory */
       for (k=1; k<=cptcovprod;k++)    if( dirc[l1-1] != DIRSEPARATOR ){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      printf(" DIRC3 = %s \n",dirc);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    ss = strrchr( name, '.' );            /* find last / */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (ss >0){
       ss++;
     savm=oldm;      strcpy(ext,ss);                     /* save extension */
     oldm=newm;      l1= strlen( name);
     maxmax=0.;      l2= strlen(ss)+1;
     for(j=1;j<=nlstate;j++){      strncpy( finame, name, l1-l2);
       min=1.;      finame[l1-l2]= 0;
       max=0.;    }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;    return( 0 );                          /* we're done */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  /******************************************/
       }  
       maxmin=max-min;  void replace_back_to_slash(char *s, char*t)
       maxmax=FMAX(maxmax,maxmin);  {
     }    int i;
     if(maxmax < ftolpl){    int lg=0;
       return prlim;    i=0;
     }    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /*************** transition probabilities ***************/    }
   }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  char *trimbb(char *out, char *in)
   double s1, s2;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   /*double t34;*/    char *s;
   int i,j,j1, nc, ii, jj;    s=out;
     while (*in != '\0'){
     for(i=1; i<= nlstate; i++){      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     for(j=1; j<i;j++){        in++;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      }
         /*s2 += param[i][j][nc]*cov[nc];*/      *out++ = *in++;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    *out='\0';
       }    return s;
       ps[i][j]=s2;  }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  char *cutl(char *blocc, char *alocc, char *in, char occ)
     for(j=i+1; j<=nlstate+ndeath;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/       gives blocc="abcdef2ghi" and alocc="j".
       }       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       ps[i][j]=s2;    */
     }    char *s, *t, *bl;
   }    t=in;s=in;
     /*ps[3][2]=1;*/    while ((*in != occ) && (*in != '\0')){
       *alocc++ = *in++;
   for(i=1; i<= nlstate; i++){    }
      s1=0;    if( *in == occ){
     for(j=1; j<i; j++)      *(alocc)='\0';
       s1+=exp(ps[i][j]);      s=++in;
     for(j=i+1; j<=nlstate+ndeath; j++)    }
       s1+=exp(ps[i][j]);   
     ps[i][i]=1./(s1+1.);    if (s == t) {/* occ not found */
     for(j=1; j<i; j++)      *(alocc-(in-s))='\0';
       ps[i][j]= exp(ps[i][j])*ps[i][i];      in=s;
     for(j=i+1; j<=nlstate+ndeath; j++)    }
       ps[i][j]= exp(ps[i][j])*ps[i][i];    while ( *in != '\0'){
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      *blocc++ = *in++;
   } /* end i */    }
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    *blocc='\0';
     for(jj=1; jj<= nlstate+ndeath; jj++){    return t;
       ps[ii][jj]=0;  }
       ps[ii][ii]=1;  char *cutv(char *blocc, char *alocc, char *in, char occ)
     }  {
   }    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
        and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     for(jj=1; jj<= nlstate+ndeath; jj++){    */
      printf("%lf ",ps[ii][jj]);    char *s, *t;
    }    t=in;s=in;
     printf("\n ");    while (*in != '\0'){
     }      while( *in == occ){
     printf("\n ");printf("%lf ",cov[2]);*/        *blocc++ = *in++;
 /*        s=in;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      }
   goto end;*/      *blocc++ = *in++;
     return ps;    }
 }    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
 /**************** Product of 2 matrices ******************/    else
       *(blocc-(in-s)-1)='\0';
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    in=s;
 {    while ( *in != '\0'){
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      *alocc++ = *in++;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    }
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns    *alocc='\0';
      a pointer to pointers identical to out */    return s;
   long i, j, k;  }
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  int nbocc(char *s, char occ)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  {
         out[i][k] +=in[i][j]*b[j][k];    int i,j=0;
     int lg=20;
   return out;    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /************* Higher Matrix Product ***************/    }
     return j;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  }
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /* void cutv(char *u,char *v, char*t, char occ) */
      duration (i.e. until  /* { */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
      (typically every 2 years instead of every month which is too big).  /*      gives u="abcdef2ghi" and v="j" *\/ */
      Model is determined by parameters x and covariates have to be  /*   int i,lg,j,p=0; */
      included manually here.  /*   i=0; */
   /*   lg=strlen(t); */
      */  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   int i, j, d, h, k;  /*   } */
   double **out, cov[NCOVMAX];  
   double **newm;  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
   /* Hstepm could be zero and should return the unit matrix */  /*   } */
   for (i=1;i<=nlstate+ndeath;i++)  /*      u[p]='\0'; */
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*    for(j=0; j<= lg; j++) { */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     }  /*   } */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /* } */
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  /********************** nrerror ********************/
       newm=savm;  
       /* Covariates have to be included here again */  void nrerror(char error_text[])
       cov[1]=1.;  {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    fprintf(stderr,"ERREUR ...\n");
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    fprintf(stderr,"%s\n",error_text);
       for (k=1; k<=cptcovage;k++)    exit(EXIT_FAILURE);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  /*********************** vector *******************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double *vector(int nl, int nh)
   {
     double *v;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    if (!v) nrerror("allocation failure in vector");
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    return v-nl+NR_END;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  }
       savm=oldm;  
       oldm=newm;  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    free((FREE_ARG)(v+nl-NR_END));
         po[i][j][h]=newm[i][j];  }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /************************ivector *******************************/
       }  int *ivector(long nl,long nh)
   } /* end h */  {
   return po;    int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /******************free ivector **************************/
   int i, ii, j, k, mi, d, kk;  void free_ivector(int *v, long nl, long nh)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    free((FREE_ARG)(v+nl-NR_END));
   double sw; /* Sum of weights */  }
   double lli; /* Individual log likelihood */  
   long ipmx;  /************************lvector *******************************/
   /*extern weight */  long *lvector(long nl,long nh)
   /* We are differentiating ll according to initial status */  {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    long *v;
   /*for(i=1;i<imx;i++)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     printf(" %d\n",s[4][i]);    if (!v) nrerror("allocation failure in ivector");
   */    return v-nl+NR_END;
   cov[1]=1.;  }
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /******************free lvector **************************/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  void free_lvector(long *v, long nl, long nh)
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  {
     for(mi=1; mi<= wav[i]-1; mi++){    free((FREE_ARG)(v+nl-NR_END));
       for (ii=1;ii<=nlstate+ndeath;ii++)  }
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  /******************* imatrix *******************************/
         newm=savm;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         for (kk=1; kk<=cptcovage;kk++) {  { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         }    int **m; 
            
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    /* allocate pointers to rows */ 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         savm=oldm;    if (!m) nrerror("allocation failure 1 in matrix()"); 
         oldm=newm;    m += NR_END; 
            m -= nrl; 
            
       } /* end mult */    
          /* allocate rows and set pointers to them */ 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       ipmx +=1;    m[nrl] += NR_END; 
       sw += weight[i];    m[nrl] -= ncl; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    
     } /* end of wave */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   } /* end of individual */    
     /* return pointer to array of pointers to rows */ 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    return m; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  } 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  /****************** free_imatrix *************************/
 }  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
         long nch,ncl,nrh,nrl; 
 /*********** Maximum Likelihood Estimation ***************/       /* free an int matrix allocated by imatrix() */ 
   { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   int i,j, iter;  } 
   double **xi,*delti;  
   double fret;  /******************* matrix *******************************/
   xi=matrix(1,npar,1,npar);  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       xi[i][j]=(i==j ? 1.0 : 0.0);    double **m;
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    m += NR_END;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    m -= nrl;
   
 }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /**** Computes Hessian and covariance matrix ***/    m[nrl] += NR_END;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    m[nrl] -= ncl;
 {  
   double  **a,**y,*x,pd;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double **hess;    return m;
   int i, j,jk;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   int *indx;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   double hessii(double p[], double delta, int theta, double delti[]);     */
   double hessij(double p[], double delti[], int i, int j);  }
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   hess=matrix(1,npar,1,npar);  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   printf("\nCalculation of the hessian matrix. Wait...\n");    free((FREE_ARG)(m+nrl-NR_END));
   for (i=1;i<=npar;i++){  }
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  /******************* ma3x *******************************/
     /*printf(" %f ",p[i]);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     /*printf(" %lf ",hess[i][i]);*/  {
   }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      double ***m;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (j>i) {    if (!m) nrerror("allocation failure 1 in matrix()");
         printf(".%d%d",i,j);fflush(stdout);    m += NR_END;
         hess[i][j]=hessij(p,delti,i,j);    m -= nrl;
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   printf("\n");  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
      m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   a=matrix(1,npar,1,npar);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   y=matrix(1,npar,1,npar);    m[nrl][ncl] += NR_END;
   x=vector(1,npar);    m[nrl][ncl] -= nll;
   indx=ivector(1,npar);    for (j=ncl+1; j<=nch; j++) 
   for (i=1;i<=npar;i++)      m[nrl][j]=m[nrl][j-1]+nlay;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    
   ludcmp(a,npar,indx,&pd);    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for (j=1;j<=npar;j++) {      for (j=ncl+1; j<=nch; j++) 
     for (i=1;i<=npar;i++) x[i]=0;        m[i][j]=m[i][j-1]+nlay;
     x[j]=1;    }
     lubksb(a,npar,indx,x);    return m; 
     for (i=1;i<=npar;i++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       matcov[i][j]=x[i];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     }    */
   }  }
   
   printf("\n#Hessian matrix#\n");  /*************************free ma3x ************************/
   for (i=1;i<=npar;i++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for (j=1;j<=npar;j++) {  {
       printf("%.3e ",hess[i][j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     printf("\n");    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   
   /* Recompute Inverse */  /*************** function subdirf ***********/
   for (i=1;i<=npar;i++)  char *subdirf(char fileres[])
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  {
   ludcmp(a,npar,indx,&pd);    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   /*  printf("\n#Hessian matrix recomputed#\n");    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   for (j=1;j<=npar;j++) {    return tmpout;
     for (i=1;i<=npar;i++) x[i]=0;  }
     x[j]=1;  
     lubksb(a,npar,indx,x);  /*************** function subdirf2 ***********/
     for (i=1;i<=npar;i++){  char *subdirf2(char fileres[], char *preop)
       y[i][j]=x[i];  {
       printf("%.3e ",y[i][j]);    
     }    /* Caution optionfilefiname is hidden */
     printf("\n");    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
   */    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   free_matrix(a,1,npar,1,npar);    return tmpout;
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /*************** function subdirf3 ***********/
   free_matrix(hess,1,npar,1,npar);  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
     
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /*************** hessian matrix ****************/    strcat(tmpout,"/");
 double hessii( double x[], double delta, int theta, double delti[])    strcat(tmpout,preop);
 {    strcat(tmpout,preop2);
   int i;    strcat(tmpout,fileres);
   int l=1, lmax=20;    return tmpout;
   double k1,k2;  }
   double p2[NPARMAX+1];  
   double res;  /***************** f1dim *************************/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  extern int ncom; 
   double fx;  extern double *pcom,*xicom;
   int k=0,kmax=10;  extern double (*nrfunc)(double []); 
   double l1;   
   double f1dim(double x) 
   fx=func(x);  { 
   for (i=1;i<=npar;i++) p2[i]=x[i];    int j; 
   for(l=0 ; l <=lmax; l++){    double f;
     l1=pow(10,l);    double *xt; 
     delts=delt;   
     for(k=1 ; k <kmax; k=k+1){    xt=vector(1,ncom); 
       delt = delta*(l1*k);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       p2[theta]=x[theta] +delt;    f=(*nrfunc)(xt); 
       k1=func(p2)-fx;    free_vector(xt,1,ncom); 
       p2[theta]=x[theta]-delt;    return f; 
       k2=func(p2)-fx;  } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /*****************brent *************************/
        double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 #ifdef DEBUG  { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    int iter; 
 #endif    double a,b,d,etemp;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double fu,fv,fw,fx;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    double ftemp;
         k=kmax;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       }    double e=0.0; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */   
         k=kmax; l=lmax*10.;    a=(ax < cx ? ax : cx); 
       }    b=(ax > cx ? ax : cx); 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    x=w=v=bx; 
         delts=delt;    fw=fv=fx=(*f)(x); 
       }    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
   }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   delti[theta]=delts;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   return res;      printf(".");fflush(stdout);
        fprintf(ficlog,".");fflush(ficlog);
 }  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double hessij( double x[], double delti[], int thetai,int thetaj)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   int i;  #endif
   int l=1, l1, lmax=20;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double k1,k2,k3,k4,res,fx;        *xmin=x; 
   double p2[NPARMAX+1];        return fx; 
   int k;      } 
       ftemp=fu;
   fx=func(x);      if (fabs(e) > tol1) { 
   for (k=1; k<=2; k++) {        r=(x-w)*(fx-fv); 
     for (i=1;i<=npar;i++) p2[i]=x[i];        q=(x-v)*(fx-fw); 
     p2[thetai]=x[thetai]+delti[thetai]/k;        p=(x-v)*q-(x-w)*r; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        q=2.0*(q-r); 
     k1=func(p2)-fx;        if (q > 0.0) p = -p; 
          q=fabs(q); 
     p2[thetai]=x[thetai]+delti[thetai]/k;        etemp=e; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        e=d; 
     k2=func(p2)-fx;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
            d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        else { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          d=p/q; 
     k3=func(p2)-fx;          u=x+d; 
            if (u-a < tol2 || b-u < tol2) 
     p2[thetai]=x[thetai]-delti[thetai]/k;            d=SIGN(tol1,xm-x); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        } 
     k4=func(p2)-fx;      } else { 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 #ifdef DEBUG      } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 #endif      fu=(*f)(u); 
   }      if (fu <= fx) { 
   return res;        if (u >= x) a=x; else b=x; 
 }        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 /************** Inverse of matrix **************/          } else { 
 void ludcmp(double **a, int n, int *indx, double *d)            if (u < x) a=u; else b=u; 
 {            if (fu <= fw || w == x) { 
   int i,imax,j,k;              v=w; 
   double big,dum,sum,temp;              w=u; 
   double *vv;              fv=fw; 
                fw=fu; 
   vv=vector(1,n);            } else if (fu <= fv || v == x || v == w) { 
   *d=1.0;              v=u; 
   for (i=1;i<=n;i++) {              fv=fu; 
     big=0.0;            } 
     for (j=1;j<=n;j++)          } 
       if ((temp=fabs(a[i][j])) > big) big=temp;    } 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    nrerror("Too many iterations in brent"); 
     vv[i]=1.0/big;    *xmin=x; 
   }    return fx; 
   for (j=1;j<=n;j++) {  } 
     for (i=1;i<j;i++) {  
       sum=a[i][j];  /****************** mnbrak ***********************/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     }              double (*func)(double)) 
     big=0.0;  { 
     for (i=j;i<=n;i++) {    double ulim,u,r,q, dum;
       sum=a[i][j];    double fu; 
       for (k=1;k<j;k++)   
         sum -= a[i][k]*a[k][j];    *fa=(*func)(*ax); 
       a[i][j]=sum;    *fb=(*func)(*bx); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    if (*fb > *fa) { 
         big=dum;      SHFT(dum,*ax,*bx,dum) 
         imax=i;        SHFT(dum,*fb,*fa,dum) 
       }        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
     if (j != imax) {    *fc=(*func)(*cx); 
       for (k=1;k<=n;k++) {    while (*fb > *fc) { 
         dum=a[imax][k];      r=(*bx-*ax)*(*fb-*fc); 
         a[imax][k]=a[j][k];      q=(*bx-*cx)*(*fb-*fa); 
         a[j][k]=dum;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       *d = -(*d);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       vv[imax]=vv[j];      if ((*bx-u)*(u-*cx) > 0.0) { 
     }        fu=(*func)(u); 
     indx[j]=imax;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     if (a[j][j] == 0.0) a[j][j]=TINY;        fu=(*func)(u); 
     if (j != n) {        if (fu < *fc) { 
       dum=1.0/(a[j][j]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
   }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   free_vector(vv,1,n);  /* Doesn't work */        u=ulim; 
 ;        fu=(*func)(u); 
 }      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
 void lubksb(double **a, int n, int *indx, double b[])        fu=(*func)(u); 
 {      } 
   int i,ii=0,ip,j;      SHFT(*ax,*bx,*cx,u) 
   double sum;        SHFT(*fa,*fb,*fc,fu) 
          } 
   for (i=1;i<=n;i++) {  } 
     ip=indx[i];  
     sum=b[ip];  /*************** linmin ************************/
     b[ip]=b[i];  
     if (ii)  int ncom; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  double *pcom,*xicom;
     else if (sum) ii=i;  double (*nrfunc)(double []); 
     b[i]=sum;   
   }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for (i=n;i>=1;i--) {  { 
     sum=b[i];    double brent(double ax, double bx, double cx, 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];                 double (*f)(double), double tol, double *xmin); 
     b[i]=sum/a[i][i];    double f1dim(double x); 
   }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 }                double *fc, double (*func)(double)); 
     int j; 
 /************ Frequencies ********************/    double xx,xmin,bx,ax; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double fx,fb,fa;
 {  /* Some frequencies */   
      ncom=n; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    pcom=vector(1,n); 
   double ***freq; /* Frequencies */    xicom=vector(1,n); 
   double *pp;    nrfunc=func; 
   double pos, k2, dateintsum=0,k2cpt=0;    for (j=1;j<=n;j++) { 
   FILE *ficresp;      pcom[j]=p[j]; 
   char fileresp[FILENAMELENGTH];      xicom[j]=xi[j]; 
      } 
   pp=vector(1,nlstate);    ax=0.0; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    xx=1.0; 
   strcpy(fileresp,"p");    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   strcat(fileresp,fileres);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {  #ifdef DEBUG
     printf("Problem with prevalence resultfile: %s\n", fileresp);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     exit(0);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }  #endif
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for (j=1;j<=n;j++) { 
   j1=0;      xi[j] *= xmin; 
        p[j] += xi[j]; 
   j=cptcoveff;    } 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
   for(k1=1; k1<=j;k1++){  } 
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  char *asc_diff_time(long time_sec, char ascdiff[])
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  {
         scanf("%d", i);*/    long sec_left, days, hours, minutes;
       for (i=-1; i<=nlstate+ndeath; i++)      days = (time_sec) / (60*60*24);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      sec_left = (time_sec) % (60*60*24);
           for(m=agemin; m <= agemax+3; m++)    hours = (sec_left) / (60*60) ;
             freq[i][jk][m]=0;    sec_left = (sec_left) %(60*60);
          minutes = (sec_left) /60;
       dateintsum=0;    sec_left = (sec_left) % (60);
       k2cpt=0;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       for (i=1; i<=imx; i++) {    return ascdiff;
         bool=1;  }
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  /*************** powell ************************/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               bool=0;              double (*func)(double [])) 
         }  { 
         if (bool==1) {    void linmin(double p[], double xi[], int n, double *fret, 
           for(m=firstpass; m<=lastpass; m++){                double (*func)(double [])); 
             k2=anint[m][i]+(mint[m][i]/12.);    int i,ibig,j; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double del,t,*pt,*ptt,*xit;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double fp,fptt;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double *xits;
               if (m<lastpass) {    int niterf, itmp;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    pt=vector(1,n); 
               }    ptt=vector(1,n); 
                  xit=vector(1,n); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    xits=vector(1,n); 
                 dateintsum=dateintsum+k2;    *fret=(*func)(p); 
                 k2cpt++;    for (j=1;j<=n;j++) pt[j]=p[j]; 
               }    for (*iter=1;;++(*iter)) { 
             }      fp=(*fret); 
           }      ibig=0; 
         }      del=0.0; 
       }      last_time=curr_time;
              (void) gettimeofday(&curr_time,&tzp);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       if  (cptcovn>0) {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         fprintf(ficresp, "\n#********** Variable ");     for (i=1;i<=n;i++) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        printf(" %d %.12f",i, p[i]);
         fprintf(ficresp, "**********\n#");        fprintf(ficlog," %d %.12lf",i, p[i]);
       }        fprintf(ficrespow," %.12lf", p[i]);
       for(i=1; i<=nlstate;i++)      }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      printf("\n");
       fprintf(ficresp, "\n");      fprintf(ficlog,"\n");
            fprintf(ficrespow,"\n");fflush(ficrespow);
       for(i=(int)agemin; i <= (int)agemax+3; i++){      if(*iter <=3){
         if(i==(int)agemax+3)        tm = *localtime(&curr_time.tv_sec);
           printf("Total");        strcpy(strcurr,asctime(&tm));
         else  /*       asctime_r(&tm,strcurr); */
           printf("Age %d", i);        forecast_time=curr_time; 
         for(jk=1; jk <=nlstate ; jk++){        itmp = strlen(strcurr);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
             pp[jk] += freq[jk][m][i];          strcurr[itmp-1]='\0';
         }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           for(m=-1, pos=0; m <=0 ; m++)        for(niterf=10;niterf<=30;niterf+=10){
             pos += freq[jk][m][i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           if(pp[jk]>=1.e-10)          tmf = *localtime(&forecast_time.tv_sec);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*      asctime_r(&tmf,strfor); */
           else          strcpy(strfor,asctime(&tmf));
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          itmp = strlen(strfor);
         }          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
         for(jk=1; jk <=nlstate ; jk++){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
             pp[jk] += freq[jk][m][i];        }
         }      }
       for (i=1;i<=n;i++) { 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
           pos += pp[jk];        fptt=(*fret); 
         for(jk=1; jk <=nlstate ; jk++){  #ifdef DEBUG
           if(pos>=1.e-5)        printf("fret=%lf \n",*fret);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        fprintf(ficlog,"fret=%lf \n",*fret);
           else  #endif
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        printf("%d",i);fflush(stdout);
           if( i <= (int) agemax){        fprintf(ficlog,"%d",i);fflush(ficlog);
             if(pos>=1.e-5){        linmin(p,xit,n,fret,func); 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        if (fabs(fptt-(*fret)) > del) { 
               probs[i][jk][j1]= pp[jk]/pos;          del=fabs(fptt-(*fret)); 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          ibig=i; 
             }        } 
             else  #ifdef DEBUG
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        printf("%d %.12e",i,(*fret));
           }        fprintf(ficlog,"%d %.12e",i,(*fret));
         }        for (j=1;j<=n;j++) {
                  xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         for(jk=-1; jk <=nlstate+ndeath; jk++)          printf(" x(%d)=%.12e",j,xit[j]);
           for(m=-1; m <=nlstate+ndeath; m++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        }
         if(i <= (int) agemax)        for(j=1;j<=n;j++) {
           fprintf(ficresp,"\n");          printf(" p=%.12e",p[j]);
         printf("\n");          fprintf(ficlog," p=%.12e",p[j]);
       }        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
   dateintmean=dateintsum/k2cpt;  #endif
        } 
   fclose(ficresp);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  #ifdef DEBUG
   free_vector(pp,1,nlstate);        int k[2],l;
          k[0]=1;
   /* End of Freq */        k[1]=-1;
 }        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
 /************ Prevalence ********************/        for (j=1;j<=n;j++) {
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          printf(" %.12e",p[j]);
 {  /* Some frequencies */          fprintf(ficlog," %.12e",p[j]);
          }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        printf("\n");
   double ***freq; /* Frequencies */        fprintf(ficlog,"\n");
   double *pp;        for(l=0;l<=1;l++) {
   double pos, k2;          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   pp=vector(1,nlstate);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   j1=0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          }
   j=cptcoveff;  #endif
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    
  for(k1=1; k1<=j;k1++){        free_vector(xit,1,n); 
     for(i1=1; i1<=ncodemax[k1];i1++){        free_vector(xits,1,n); 
       j1++;        free_vector(ptt,1,n); 
          free_vector(pt,1,n); 
       for (i=-1; i<=nlstate+ndeath; i++)          return; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        } 
           for(m=agemin; m <= agemax+3; m++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
             freq[i][jk][m]=0;      for (j=1;j<=n;j++) { 
              ptt[j]=2.0*p[j]-pt[j]; 
       for (i=1; i<=imx; i++) {        xit[j]=p[j]-pt[j]; 
         bool=1;        pt[j]=p[j]; 
         if  (cptcovn>0) {      } 
           for (z1=1; z1<=cptcoveff; z1++)      fptt=(*func)(ptt); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      if (fptt < fp) { 
               bool=0;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         }        if (t < 0.0) { 
         if (bool==1) {          linmin(p,xit,n,fret,func); 
           for(m=firstpass; m<=lastpass; m++){          for (j=1;j<=n;j++) { 
             k2=anint[m][i]+(mint[m][i]/12.);            xi[j][ibig]=xi[j][n]; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            xi[j][n]=xit[j]; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  #ifdef DEBUG
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             }          for(j=1;j<=n;j++){
           }            printf(" %.12e",xit[j]);
         }            fprintf(ficlog," %.12e",xit[j]);
       }          }
         for(i=(int)agemin; i <= (int)agemax+3; i++){          printf("\n");
           for(jk=1; jk <=nlstate ; jk++){          fprintf(ficlog,"\n");
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  #endif
               pp[jk] += freq[jk][m][i];        }
           }      } 
           for(jk=1; jk <=nlstate ; jk++){    } 
             for(m=-1, pos=0; m <=0 ; m++)  } 
             pos += freq[jk][m][i];  
         }  /**** Prevalence limit (stable or period prevalence)  ****************/
          
          for(jk=1; jk <=nlstate ; jk++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  {
              pp[jk] += freq[jk][m][i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
          }       matrix by transitions matrix until convergence is reached */
            
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
          for(jk=1; jk <=nlstate ; jk++){              /* double **matprod2(); */ /* test */
            if( i <= (int) agemax){    double **out, cov[NCOVMAX+1], **pmij();
              if(pos>=1.e-5){    double **newm;
                probs[i][jk][j1]= pp[jk]/pos;    double agefin, delaymax=50 ; /* Max number of years to converge */
              }  
            }    for (ii=1;ii<=nlstate+ndeath;ii++)
          }      for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }      }
     }  
   }     cov[1]=1.;
     
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   free_vector(pp,1,nlstate);      newm=savm;
        /* Covariates have to be included here again */
 }  /* End of Freq */      cov[2]=agefin;
       
 /************* Waves Concatenation ***************/      for (k=1; k<=cptcovn;k++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
 {      }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
      Death is a valid wave (if date is known).      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      
      and mw[mi+1][i]. dh depends on stepm.      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      */      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   int i, mi, m;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
      double sum=0., jmean=0.;*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       
   int j, k=0,jk, ju, jl;      savm=oldm;
   double sum=0.;      oldm=newm;
   jmin=1e+5;      maxmax=0.;
   jmax=-1;      for(j=1;j<=nlstate;j++){
   jmean=0.;        min=1.;
   for(i=1; i<=imx; i++){        max=0.;
     mi=0;        for(i=1; i<=nlstate; i++) {
     m=firstpass;          sumnew=0;
     while(s[m][i] <= nlstate){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       if(s[m][i]>=1)          prlim[i][j]= newm[i][j]/(1-sumnew);
         mw[++mi][i]=m;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
       if(m >=lastpass)          max=FMAX(max,prlim[i][j]);
         break;          min=FMIN(min,prlim[i][j]);
       else        }
         m++;        maxmin=max-min;
     }/* end while */        maxmax=FMAX(maxmax,maxmin);
     if (s[m][i] > nlstate){      }
       mi++;     /* Death is another wave */      if(maxmax < ftolpl){
       /* if(mi==0)  never been interviewed correctly before death */        return prlim;
          /* Only death is a correct wave */      }
       mw[mi][i]=m;    }
     }  }
   
     wav[i]=mi;  /*************** transition probabilities ***************/ 
     if(mi==0)  
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   }  {
     /* According to parameters values stored in x and the covariate's values stored in cov,
   for(i=1; i<=imx; i++){       computes the probability to be observed in state j being in state i by appying the
     for(mi=1; mi<wav[i];mi++){       model to the ncovmodel covariates (including constant and age).
       if (stepm <=0)       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         dh[mi][i]=1;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       else{       ncth covariate in the global vector x is given by the formula:
         if (s[mw[mi+1][i]][i] > nlstate) {       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
           if (agedc[i] < 2*AGESUP) {       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           if(j==0) j=1;  /* Survives at least one month after exam */       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
           k=k+1;       Outputs ps[i][j] the probability to be observed in j being in j according to
           if (j >= jmax) jmax=j;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
           if (j <= jmin) jmin=j;    */
           sum=sum+j;    double s1, lnpijopii;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    /*double t34;*/
           }    int i,j,j1, nc, ii, jj;
         }  
         else{      for(i=1; i<= nlstate; i++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for(j=1; j<i;j++){
           k=k+1;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           if (j >= jmax) jmax=j;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
           else if (j <= jmin)jmin=j;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           sum=sum+j;          }
         }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         jk= j/stepm;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         jl= j -jk*stepm;        }
         ju= j -(jk+1)*stepm;        for(j=i+1; j<=nlstate+ndeath;j++){
         if(jl <= -ju)          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           dh[mi][i]=jk;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
         else            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
           dh[mi][i]=jk+1;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         if(dh[mi][i]==0)          }
           dh[mi][i]=1; /* At least one step */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       }        }
     }      }
   }      
   jmean=sum/k;      for(i=1; i<= nlstate; i++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        s1=0;
  }        for(j=1; j<i; j++){
 /*********** Tricode ****************************/          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 void tricode(int *Tvar, int **nbcode, int imx)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 {        }
   int Ndum[20],ij=1, k, j, i;        for(j=i+1; j<=nlstate+ndeath; j++){
   int cptcode=0;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   cptcoveff=0;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
          }
   for (k=0; k<19; k++) Ndum[k]=0;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   for (k=1; k<=7; k++) ncodemax[k]=0;        ps[i][i]=1./(s1+1.);
         /* Computing other pijs */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        for(j=1; j<i; j++)
     for (i=1; i<=imx; i++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
       ij=(int)(covar[Tvar[j]][i]);        for(j=i+1; j<=nlstate+ndeath; j++)
       Ndum[ij]++;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       if (ij > cptcode) cptcode=ij;      } /* end i */
     }      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for (i=0; i<=cptcode; i++) {        for(jj=1; jj<= nlstate+ndeath; jj++){
       if(Ndum[i]!=0) ncodemax[j]++;          ps[ii][jj]=0;
     }          ps[ii][ii]=1;
     ij=1;        }
       }
       
     for (i=1; i<=ncodemax[j]; i++) {      
       for (k=0; k<=19; k++) {      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         if (Ndum[k] != 0) {      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
           nbcode[Tvar[j]][ij]=k;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                /*   } */
           ij++;      /*   printf("\n "); */
         }      /* } */
         if (ij > ncodemax[j]) break;      /* printf("\n ");printf("%lf ",cov[2]);*/
       }        /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }          goto end;*/
       return ps;
  for (k=0; k<19; k++) Ndum[k]=0;  }
   
  for (i=1; i<=ncovmodel-2; i++) {  /**************** Product of 2 matrices ******************/
       ij=Tvar[i];  
       Ndum[ij]++;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
  ij=1;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
  for (i=1; i<=10; i++) {    /* in, b, out are matrice of pointers which should have been initialized 
    if((Ndum[i]!=0) && (i<=ncovcol)){       before: only the contents of out is modified. The function returns
      Tvaraff[ij]=i;       a pointer to pointers identical to out */
      ij++;    int i, j, k;
    }    for(i=nrl; i<= nrh; i++)
  }      for(k=ncolol; k<=ncoloh; k++){
          out[i][k]=0.;
     cptcoveff=ij-1;        for(j=ncl; j<=nch; j++)
 }          out[i][k] +=in[i][j]*b[j][k];
       }
 /*********** Health Expectancies ****************/    return out;
   }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)  
 {  
   /* Health expectancies */  /************* Higher Matrix Product ***************/
   int i, j, nhstepm, hstepm, h, nstepm;  
   double age, agelim, hf;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double ***p3mat;  {
      /* Computes the transition matrix starting at age 'age' over 
   fprintf(ficreseij,"# Health expectancies\n");       'nhstepm*hstepm*stepm' months (i.e. until
   fprintf(ficreseij,"# Age");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for(i=1; i<=nlstate;i++)       nhstepm*hstepm matrices. 
     for(j=1; j<=nlstate;j++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       fprintf(ficreseij," %1d-%1d",i,j);       (typically every 2 years instead of every month which is too big 
   fprintf(ficreseij,"\n");       for the memory).
        Model is determined by parameters x and covariates have to be 
   if(estepm < stepm){       included manually here. 
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }       */
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months    int i, j, d, h, k;
    * This is mainly to measure the difference between two models: for example    double **out, cov[NCOVMAX+1];
    * if stepm=24 months pijx are given only every 2 years and by summing them    double **newm;
    * we are calculating an estimate of the Life Expectancy assuming a linear  
    * progression inbetween and thus overestimating or underestimating according    /* Hstepm could be zero and should return the unit matrix */
    * to the curvature of the survival function. If, for the same date, we    for (i=1;i<=nlstate+ndeath;i++)
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      for (j=1;j<=nlstate+ndeath;j++){
    * to compare the new estimate of Life expectancy with the same linear        oldm[i][j]=(i==j ? 1.0 : 0.0);
    * hypothesis. A more precise result, taking into account a more precise        po[i][j][0]=(i==j ? 1.0 : 0.0);
    * curvature will be obtained if estepm is as small as stepm. */      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* For example we decided to compute the life expectancy with the smallest unit */    for(h=1; h <=nhstepm; h++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      for(d=1; d <=hstepm; d++){
      nhstepm is the number of hstepm from age to agelim        newm=savm;
      nstepm is the number of stepm from age to agelin.        /* Covariates have to be included here again */
      Look at hpijx to understand the reason of that which relies in memory size        cov[1]=1.;
      and note for a fixed period like estepm months */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for (k=1; k<=cptcovn;k++) 
      survival function given by stepm (the optimization length). Unfortunately it          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      means that if the survival funtion is printed only each two years of age and if        for (k=1; k<=cptcovage;k++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      results. So we changed our mind and took the option of the best precision.        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
   
   agelim=AGESUP;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     /* nhstepm age range expressed in number of stepm */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        savm=oldm;
     /* if (stepm >= YEARM) hstepm=1;*/        oldm=newm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate+ndeath; i++)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        for(j=1;j<=nlstate+ndeath;j++) {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          po[i][j][h]=newm[i][j];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
          }
     /*for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++) printf("%f %.5f\n", age*12+h, p3mat[1][1][h]);*/      /*printf("h=%d ",h);*/
     } /* end h */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  /*     printf("\n H=%d \n",h); */
     for(i=1; i<=nlstate;i++)    return po;
       for(j=1; j<=nlstate;j++)  }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  /*************** log-likelihood *************/
         }  double func( double *x)
     fprintf(ficreseij,"%3.0f",age );  {
     for(i=1; i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
       for(j=1; j<=nlstate;j++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);    double **out;
       }    double sw; /* Sum of weights */
     fprintf(ficreseij,"\n");    double lli; /* Individual log likelihood */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int s1, s2;
   }    double bbh, survp;
 }    long ipmx;
     /*extern weight */
 /************ Variance ******************/    /* We are differentiating ll according to initial status */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 {    /*for(i=1;i<imx;i++) 
   /* Variance of health expectancies */      printf(" %d\n",s[4][i]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    */
   double **newm;    cov[1]=1.;
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm, h, nstepm ;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int k, cptcode;  
   double *xp;    if(mle==1){
   double **gp, **gm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***gradg, ***trgradg;        /* Computes the values of the ncovmodel covariates of the model
   double ***p3mat;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   double age,agelim, hf;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   int theta;           to be observed in j being in i according to the model.
          */
    fprintf(ficresvij,"# Covariances of life expectancies\n");        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   fprintf(ficresvij,"# Age");          cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=nlstate;i++)        }
     for(j=1; j<=nlstate;j++)        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   fprintf(ficresvij,"\n");           has been calculated etc */
         for(mi=1; mi<= wav[i]-1; mi++){
   xp=vector(1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   dnewm=matrix(1,nlstate,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   doldm=matrix(1,nlstate,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(estepm < stepm){            }
     printf ("Problem %d lower than %d\n",estepm, stepm);          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   else  hstepm=estepm;              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* For example we decided to compute the life expectancy with the smallest unit */            for (kk=1; kk<=cptcovage;kk++) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
      nhstepm is the number of hstepm from age to agelim            }
      nstepm is the number of stepm from age to agelin.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Look at hpijx to understand the reason of that which relies in memory size                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      and note for a fixed period like k years */            savm=oldm;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            oldm=newm;
      survival function given by stepm (the optimization length). Unfortunately it          } /* end mult */
      means that if the survival funtion is printed only each two years of age and if        
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
      results. So we changed our mind and took the option of the best precision.          /* But now since version 0.9 we anticipate for bias at large stepm.
   */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           * (in months) between two waves is not a multiple of stepm, we rounded to 
   agelim = AGESUP;           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */           * probability in order to take into account the bias as a fraction of the way
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);           * -stepm/2 to stepm/2 .
     gp=matrix(0,nhstepm,1,nlstate);           * For stepm=1 the results are the same as for previous versions of Imach.
     gm=matrix(0,nhstepm,1,nlstate);           * For stepm > 1 the results are less biased than in previous versions. 
            */
     for(theta=1; theta <=npar; theta++){          s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          bbh=(double)bh[mi][i]/(double)stepm; 
       }          /* bias bh is positive if real duration
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);             * is higher than the multiple of stepm and negative otherwise.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       if (popbased==1) {          if( s2 > nlstate){ 
         for(i=1; i<=nlstate;i++)            /* i.e. if s2 is a death state and if the date of death is known 
           prlim[i][i]=probs[(int)age][i][ij];               then the contribution to the likelihood is the probability to 
       }               die between last step unit time and current  step unit time, 
                 which is also equal to probability to die before dh 
       for(j=1; j<= nlstate; j++){               minus probability to die before dh-stepm . 
         for(h=0; h<=nhstepm; h++){               In version up to 0.92 likelihood was computed
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          as if date of death was unknown. Death was treated as any other
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          health state: the date of the interview describes the actual state
         }          and not the date of a change in health state. The former idea was
       }          to consider that at each interview the state was recorded
              (healthy, disable or death) and IMaCh was corrected; but when we
       for(i=1; i<=npar; i++) /* Computes gradient */          introduced the exact date of death then we should have modified
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          the contribution of an exact death to the likelihood. This new
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            contribution is smaller and very dependent of the step unit
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          stepm. It is no more the probability to die between last interview
            and month of death but the probability to survive from last
       if (popbased==1) {          interview up to one month before death multiplied by the
         for(i=1; i<=nlstate;i++)          probability to die within a month. Thanks to Chris
           prlim[i][i]=probs[(int)age][i][ij];          Jackson for correcting this bug.  Former versions increased
       }          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
       for(j=1; j<= nlstate; j++){          lower mortality.
         for(h=0; h<=nhstepm; h++){            */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  
       }          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
       for(j=1; j<= nlstate; j++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(h=0; h<=nhstepm; h++){            /*survp += out[s1][j]; */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            lli= log(survp);
         }          }
     } /* End theta */          
           else if  (s2==-4) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(h=0; h<=nhstepm; h++)            lli= log(survp); 
       for(j=1; j<=nlstate;j++)          } 
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(i=1;i<=nlstate;i++)            lli= log(survp); 
       for(j=1;j<=nlstate;j++)          } 
         vareij[i][j][(int)age] =0.;          
           else{
     for(h=0;h<=nhstepm;h++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(k=0;k<=nhstepm;k++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          } 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         for(i=1;i<=nlstate;i++)          /*if(lli ==000.0)*/
           for(j=1;j<=nlstate;j++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          ipmx +=1;
       }          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     fprintf(ficresvij,"%.0f ",age );      } /* end of individual */
     for(i=1; i<=nlstate;i++)    }  else if(mle==2){
       for(j=1; j<=nlstate;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficresvij,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_matrix(gp,0,nhstepm,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
     free_matrix(gm,0,nhstepm,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(d=0; d<=dh[mi][i]; d++){
   } /* End age */            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_vector(xp,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   free_matrix(doldm,1,nlstate,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_matrix(dnewm,1,nlstate,1,nlstate);            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************ Variance of prevlim ******************/            oldm=newm;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          } /* end mult */
 {        
   /* Variance of prevalence limit */          s1=s[mw[mi][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          s2=s[mw[mi+1][i]][i];
   double **newm;          bbh=(double)bh[mi][i]/(double)stepm; 
   double **dnewm,**doldm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i, j, nhstepm, hstepm;          ipmx +=1;
   int k, cptcode;          sw += weight[i];
   double *xp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *gp, *gm;        } /* end of wave */
   double **gradg, **trgradg;      } /* end of individual */
   double age,agelim;    }  else if(mle==3){  /* exponential inter-extrapolation */
   int theta;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresvpl,"# Age");          for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresvpl," %1d-%1d",i,i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvpl,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   xp=vector(1,npar);          for(d=0; d<dh[mi][i]; d++){
   dnewm=matrix(1,nlstate,1,npar);            newm=savm;
   doldm=matrix(1,nlstate,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   hstepm=1*YEARM; /* Every year of age */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            }
   agelim = AGESUP;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            savm=oldm;
     if (stepm >= YEARM) hstepm=1;            oldm=newm;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          } /* end mult */
     gradg=matrix(1,npar,1,nlstate);        
     gp=vector(1,nlstate);          s1=s[mw[mi][i]][i];
     gm=vector(1,nlstate);          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
     for(theta=1; theta <=npar; theta++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(i=1; i<=npar; i++){ /* Computes gradient */          ipmx +=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } /* end of wave */
       for(i=1;i<=nlstate;i++)      } /* end of individual */
         gp[i] = prlim[i][i];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
          for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=npar; i++) /* Computes gradient */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(mi=1; mi<= wav[i]-1; mi++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
         gm[i] = prlim[i][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1;i<=nlstate;i++)            }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for(d=0; d<dh[mi][i]; d++){
     } /* End theta */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     trgradg =matrix(1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(j=1; j<=nlstate;j++)            }
       for(theta=1; theta <=npar; theta++)          
         trgradg[j][theta]=gradg[theta][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1;i<=nlstate;i++)            savm=oldm;
       varpl[i][(int)age] =0.;            oldm=newm;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          } /* end mult */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        
     for(i=1;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
     fprintf(ficresvpl,"%.0f ",age );            lli=log(out[s1][s2] - savm[s1][s2]);
     for(i=1; i<=nlstate;i++)          }else{
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     fprintf(ficresvpl,"\n");          }
     free_vector(gp,1,nlstate);          ipmx +=1;
     free_vector(gm,1,nlstate);          sw += weight[i];
     free_matrix(gradg,1,npar,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(trgradg,1,nlstate,1,npar);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   } /* End age */        } /* end of wave */
       } /* end of individual */
   free_vector(xp,1,npar);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   free_matrix(doldm,1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_matrix(dnewm,1,nlstate,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************ Variance of one-step probabilities  ******************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i, j, i1, k1, j1, z1;          for(d=0; d<dh[mi][i]; d++){
   int k=0, cptcode;            newm=savm;
   double **dnewm,**doldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *xp;            for (kk=1; kk<=cptcovage;kk++) {
   double *gp, *gm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **gradg, **trgradg;            }
   double age,agelim, cov[NCOVMAX];          
   int theta;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   char fileresprob[FILENAMELENGTH];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   strcpy(fileresprob,"prob");            oldm=newm;
   strcat(fileresprob,fileres);          } /* end mult */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        
     printf("Problem with resultfile: %s\n", fileresprob);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            ipmx +=1;
           sw += weight[i];
   xp=vector(1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        } /* end of wave */
        } /* end of individual */
   cov[1]=1;    } /* End of if */
   j=cptcoveff;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   j1=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for(k1=1; k1<=1;k1++){    return -l;
     for(i1=1; i1<=ncodemax[k1];i1++){  }
     j1++;  
   /*************** log-likelihood *************/
     if  (cptcovn>0) {  double funcone( double *x)
       fprintf(ficresprob, "\n#********** Variable ");  {
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* Same as likeli but slower because of a lot of printf and if */
       fprintf(ficresprob, "**********\n#");    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
        double **out;
       for (age=bage; age<=fage; age ++){    double lli; /* Individual log likelihood */
         cov[2]=age;    double llt;
         for (k=1; k<=cptcovn;k++) {    int s1, s2;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    double bbh, survp;
              /*extern weight */
         }    /* We are differentiating ll according to initial status */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for (k=1; k<=cptcovprod;k++)    /*for(i=1;i<imx;i++) 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      printf(" %d\n",s[4][i]);
            */
         gradg=matrix(1,npar,1,9);    cov[1]=1.;
         trgradg=matrix(1,9,1,npar);  
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for(k=1; k<=nlstate; k++) ll[k]=0.;
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(theta=1; theta <=npar; theta++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(i=1; i<=npar; i++)      for(mi=1; mi<= wav[i]-1; mi++){
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (ii=1;ii<=nlstate+ndeath;ii++)
                    for (j=1;j<=nlstate+ndeath;j++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
           k=0;          }
           for(i=1; i<= (nlstate+ndeath); i++){        for(d=0; d<dh[mi][i]; d++){
             for(j=1; j<=(nlstate+ndeath);j++){          newm=savm;
               k=k+1;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               gp[k]=pmmij[i][j];          for (kk=1; kk<=cptcovage;kk++) {
             }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }          }
                    /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           for(i=1; i<=npar; i++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           k=0;          savm=oldm;
           for(i=1; i<=(nlstate+ndeath); i++){          oldm=newm;
             for(j=1; j<=(nlstate+ndeath);j++){        } /* end mult */
               k=k+1;        
               gm[k]=pmmij[i][j];        s1=s[mw[mi][i]][i];
             }        s2=s[mw[mi+1][i]][i];
           }        bbh=(double)bh[mi][i]/(double)stepm; 
              /* bias is positive if real duration
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)         * is higher than the multiple of stepm and negative otherwise.
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];           */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        } else if  (s2==-2) {
           for(theta=1; theta <=npar; theta++)          for (j=1,survp=0. ; j<=nlstate; j++) 
             trgradg[j][theta]=gradg[theta][j];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                  lli= log(survp);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);        }else if (mle==1){
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                } else if(mle==2){
         pmij(pmmij,cov,ncovmodel,x,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                } else if(mle==3){  /* exponential inter-extrapolation */
         k=0;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(i=1; i<=(nlstate+ndeath); i++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           for(j=1; j<=(nlstate+ndeath);j++){          lli=log(out[s1][s2]); /* Original formula */
             k=k+1;        } else{  /* mle=0 back to 1 */
             gm[k]=pmmij[i][j];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           }          /*lli=log(out[s1][s2]); */ /* Original formula */
         }        } /* End of if */
              ipmx +=1;
      /*printf("\n%d ",(int)age);        sw += weight[i];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      }*/        if(globpr){
           fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         fprintf(ficresprob,"\n%d ",(int)age);   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],doldm[i][i]);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
              llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     }          }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          fprintf(ficresilk," %10.6f\n", -llt);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      } /* end of wave */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   free_vector(xp,1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fclose(ficresprob);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      if(globpr==0){ /* First time we count the contributions and weights */
 }      gipmx=ipmx;
       gsw=sw;
 /******************* Printing html file ***********/    }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    return -l;
  int lastpass, int stepm, int weightopt, char model[],\  }
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  
  char version[], int popforecast, int estepm ){  /*************** function likelione ***********/
   int jj1, k1, i1, cpt;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   FILE *fichtm;  {
   /*char optionfilehtm[FILENAMELENGTH];*/    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
   strcpy(optionfilehtm,optionfile);       to check the exact contribution to the likelihood.
   strcat(optionfilehtm,".htm");       Plotting could be done.
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {     */
     printf("Problem with %s \n",optionfilehtm), exit(0);    int k;
   }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      strcpy(fileresilk,"ilk"); 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      strcat(fileresilk,fileres);
 \n      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 Total number of observations=%d <br>\n        printf("Problem with resultfile: %s\n", fileresilk);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 <hr  size=\"2\" color=\"#EC5E5E\">      }
  <ul><li>Outputs files<br>\n      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      for(k=1; k<=nlstate; k++) 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    }
   
  fprintf(fichtm,"\n    *fretone=(*funcone)(p);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    if(*globpri !=0){
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      fclose(ficresilk);
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      fflush(fichtm); 
     } 
  if(popforecast==1) fprintf(fichtm,"\n    return;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);  
  else  /*********** Maximum Likelihood Estimation ***************/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <li>Graphs</li><p>");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
  m=cptcoveff;    int i,j, iter;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double **xi;
     double fret;
  jj1=0;    double fretone; /* Only one call to likelihood */
  for(k1=1; k1<=m;k1++){    /*  char filerespow[FILENAMELENGTH];*/
    for(i1=1; i1<=ncodemax[k1];i1++){    xi=matrix(1,npar,1,npar);
        jj1++;    for (i=1;i<=npar;i++)
        if (cptcovn > 0) {      for (j=1;j<=npar;j++)
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        xi[i][j]=(i==j ? 1.0 : 0.0);
          for (cpt=1; cpt<=cptcoveff;cpt++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    strcpy(filerespow,"pow"); 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    strcat(filerespow,fileres);
        }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      printf("Problem with resultfile: %s\n", filerespow);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
        for(cpt=1; cpt<nlstate;cpt++){    }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    for (i=1;i<=nlstate;i++)
        }      for(j=1;j<=nlstate+ndeath;j++)
     for(cpt=1; cpt<=nlstate;cpt++) {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    fprintf(ficrespow,"\n");
 interval) in state (%d): v%s%d%d.gif <br>  
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      powell(p,xi,npar,ftol,&iter,&fret,func);
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    free_matrix(xi,1,npar,1,npar);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    fclose(ficrespow);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  }
 fprintf(fichtm,"\n</body>");  
    }  /**** Computes Hessian and covariance matrix ***/
    }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 fclose(fichtm);  {
 }    double  **a,**y,*x,pd;
     double **hess;
 /******************* Gnuplot file **************/    int i, j,jk;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    int *indx;
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   strcpy(optionfilegnuplot,optionfilefiname);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   strcat(optionfilegnuplot,".gp.txt");    void ludcmp(double **a, int npar, int *indx, double *d) ;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    double gompertz(double p[]);
     printf("Problem with file %s",optionfilegnuplot);    hess=matrix(1,npar,1,npar);
   }  
     printf("\nCalculation of the hessian matrix. Wait...\n");
 #ifdef windows    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficgp,"cd \"%s\" \n",pathc);    for (i=1;i<=npar;i++){
 #endif      printf("%d",i);fflush(stdout);
 m=pow(2,cptcoveff);      fprintf(ficlog,"%d",i);fflush(ficlog);
       
  /* 1eme*/       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   for (cpt=1; cpt<= nlstate ; cpt ++) {      
    for (k1=1; k1<= m ; k1 ++) {      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 #ifdef windows    }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    
 #endif    for (i=1;i<=npar;i++) {
 #ifdef unix      for (j=1;j<=npar;j++)  {
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        if (j>i) { 
 #endif          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 for (i=1; i<= nlstate ; i ++) {          hess[i][j]=hessij(p,delti,i,j,func,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          
   else fprintf(ficgp," \%%*lf (\%%*lf)");          hess[j][i]=hess[i][j];    
 }          /*printf(" %lf ",hess[i][j]);*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
     for (i=1; i<= nlstate ; i ++) {      }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    printf("\n");
 }    fprintf(ficlog,"\n");
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      a=matrix(1,npar,1,npar);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    y=matrix(1,npar,1,npar);
 #ifdef unix    x=vector(1,npar);
 fprintf(ficgp,"\nset ter gif small size 400,300");    indx=ivector(1,npar);
 #endif    for (i=1;i<=npar;i++)
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
    }    ludcmp(a,npar,indx,&pd);
   }  
   /*2 eme*/    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   for (k1=1; k1<= m ; k1 ++) {      x[j]=1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);      lubksb(a,npar,indx,x);
          for (i=1;i<=npar;i++){ 
     for (i=1; i<= nlstate+1 ; i ++) {        matcov[i][j]=x[i];
       k=2*i;      }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    printf("\n#Hessian matrix#\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficlog,"\n#Hessian matrix#\n");
 }      for (i=1;i<=npar;i++) { 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for (j=1;j<=npar;j++) { 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        printf("%.3e ",hess[i][j]);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficlog,"%.3e ",hess[i][j]);
       for (j=1; j<= nlstate+1 ; j ++) {      }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      printf("\n");
         else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficlog,"\n");
 }      }
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* Recompute Inverse */
       for (j=1; j<= nlstate+1 ; j ++) {    for (i=1;i<=npar;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    ludcmp(a,npar,indx,&pd);
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /*  printf("\n#Hessian matrix recomputed#\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }    for (j=1;j<=npar;j++) {
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      for (i=1;i<=npar;i++) x[i]=0;
   }      x[j]=1;
        lubksb(a,npar,indx,x);
   /*3eme*/      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   for (k1=1; k1<= m ; k1 ++) {        printf("%.3e ",y[i][j]);
     for (cpt=1; cpt<= nlstate ; cpt ++) {        fprintf(ficlog,"%.3e ",y[i][j]);
       k=2+nlstate*(cpt-1);      }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      printf("\n");
       for (i=1; i< nlstate ; i ++) {      fprintf(ficlog,"\n");
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    }
       }    */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    free_matrix(a,1,npar,1,npar);
     }    free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
   /* CV preval stat */    free_ivector(indx,1,npar);
     for (k1=1; k1<= m ; k1 ++) {    free_matrix(hess,1,npar,1,npar);
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  }
   
       for (i=1; i< nlstate ; i ++)  /*************** hessian matrix ****************/
         fprintf(ficgp,"+$%d",k+i+1);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  {
          int i;
       l=3+(nlstate+ndeath)*cpt;    int l=1, lmax=20;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    double k1,k2;
       for (i=1; i< nlstate ; i ++) {    double p2[MAXPARM+1]; /* identical to x */
         l=3+(nlstate+ndeath)*cpt;    double res;
         fprintf(ficgp,"+$%d",l+i+1);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       }    double fx;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      int k=0,kmax=10;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double l1;
     }  
   }      fx=func(x);
      for (i=1;i<=npar;i++) p2[i]=x[i];
   /* proba elementaires */    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
    for(i=1,jk=1; i <=nlstate; i++){      l1=pow(10,l);
     for(k=1; k <=(nlstate+ndeath); k++){      delts=delt;
       if (k != i) {      for(k=1 ; k <kmax; k=k+1){
         for(j=1; j <=ncovmodel; j++){        delt = delta*(l1*k);
                p2[theta]=x[theta] +delt;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
           jk++;        p2[theta]=x[theta]-delt;
           fprintf(ficgp,"\n");        k2=func(p2)-fx;
         }        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     }        
     }  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(jk=1; jk <=m; jk++) {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  #endif
    i=1;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
    for(k2=1; k2<=nlstate; k2++) {        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
      k3=i;          k=kmax;
      for(k=1; k<=(nlstate+ndeath); k++) {        }
        if (k != k2){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          k=kmax; l=lmax*10.;
 ij=1;        }
         for(j=3; j <=ncovmodel; j++) {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          delts=delt;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
             ij++;      }
           }    }
           else    delti[theta]=delts;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    return res; 
         }    
           fprintf(ficgp,")/(1");  }
          
         for(k1=1; k1 <=nlstate; k1++){    double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  {
 ij=1;    int i;
           for(j=3; j <=ncovmodel; j++){    int l=1, l1, lmax=20;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double k1,k2,k3,k4,res,fx;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double p2[MAXPARM+1];
             ij++;    int k;
           }  
           else    fx=func(x);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (k=1; k<=2; k++) {
           }      for (i=1;i<=npar;i++) p2[i]=x[i];
           fprintf(ficgp,")");      p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      k1=func(p2)-fx;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    
         i=i+ncovmodel;      p2[thetai]=x[thetai]+delti[thetai]/k;
        }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      }      k2=func(p2)-fx;
    }    
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      p2[thetai]=x[thetai]-delti[thetai]/k;
    }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k3=func(p2)-fx;
   fclose(ficgp);    
 }  /* end gnuplot */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
 /*************** Moving average **************/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int i, cpt, cptcod;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  #endif
       for (i=1; i<=nlstate;i++)    }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    return res;
           mobaverage[(int)agedeb][i][cptcod]=0.;  }
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  /************** Inverse of matrix **************/
       for (i=1; i<=nlstate;i++){  void ludcmp(double **a, int n, int *indx, double *d) 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  { 
           for (cpt=0;cpt<=4;cpt++){    int i,imax,j,k; 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double big,dum,sum,temp; 
           }    double *vv; 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;   
         }    vv=vector(1,n); 
       }    *d=1.0; 
     }    for (i=1;i<=n;i++) { 
          big=0.0; 
 }      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 /************** Forecasting ******************/      vv[i]=1.0/big; 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    } 
      for (j=1;j<=n;j++) { 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      for (i=1;i<j;i++) { 
   int *popage;        sum=a[i][j]; 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double *popeffectif,*popcount;        a[i][j]=sum; 
   double ***p3mat;      } 
   char fileresf[FILENAMELENGTH];      big=0.0; 
       for (i=j;i<=n;i++) { 
  agelim=AGESUP;        sum=a[i][j]; 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        a[i][j]=sum; 
          if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
   strcpy(fileresf,"f");          imax=i; 
   strcat(fileresf,fileres);        } 
   if((ficresf=fopen(fileresf,"w"))==NULL) {      } 
     printf("Problem with forecast resultfile: %s\n", fileresf);      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
   printf("Computing forecasting: result on file '%s' \n", fileresf);          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          a[j][k]=dum; 
         } 
   if (mobilav==1) {        *d = -(*d); 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        vv[imax]=vv[j]; 
     movingaverage(agedeb, fage, ageminpar, mobaverage);      } 
   }      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;      if (j != n) { 
   if (stepm<=12) stepsize=1;        dum=1.0/(a[j][j]); 
          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   agelim=AGESUP;      } 
      } 
   hstepm=1;    free_vector(vv,1,n);  /* Doesn't work */
   hstepm=hstepm/stepm;  ;
   yp1=modf(dateintmean,&yp);  } 
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);  void lubksb(double **a, int n, int *indx, double b[]) 
   mprojmean=yp;  { 
   yp1=modf((yp2*30.5),&yp);    int i,ii=0,ip,j; 
   jprojmean=yp;    double sum; 
   if(jprojmean==0) jprojmean=1;   
   if(mprojmean==0) jprojmean=1;    for (i=1;i<=n;i++) { 
        ip=indx[i]; 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      sum=b[ip]; 
        b[ip]=b[i]; 
   for(cptcov=1;cptcov<=i2;cptcov++){      if (ii) 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       k=k+1;      else if (sum) ii=i; 
       fprintf(ficresf,"\n#******");      b[i]=sum; 
       for(j=1;j<=cptcoveff;j++) {    } 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
       fprintf(ficresf,"******\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficresf,"# StartingAge FinalAge");      b[i]=sum/a[i][i]; 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    } 
        } 
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  void pstamp(FILE *fichier)
         fprintf(ficresf,"\n");  {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  /************ Frequencies ********************/
           nhstepm = nhstepm/hstepm;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
            {  /* Some frequencies */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    int i, m, jk, k1,i1, j1, bool, z1,j;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int first;
            double ***freq; /* Frequencies */
           for (h=0; h<=nhstepm; h++){    double *pp, **prop;
             if (h==(int) (calagedate+YEARM*cpt)) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    char fileresp[FILENAMELENGTH];
             }    
             for(j=1; j<=nlstate+ndeath;j++) {    pp=vector(1,nlstate);
               kk1=0.;kk2=0;    prop=matrix(1,nlstate,iagemin,iagemax+3);
               for(i=1; i<=nlstate;i++) {                  strcpy(fileresp,"p");
                 if (mobilav==1)    strcat(fileresp,fileres);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    if((ficresp=fopen(fileresp,"w"))==NULL) {
                 else {      printf("Problem with prevalence resultfile: %s\n", fileresp);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                 }      exit(0);
                    }
               }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
               if (h==(int)(calagedate+12*cpt)){    j1=0;
                 fprintf(ficresf," %.3f", kk1);    
                            j=cptcoveff;
               }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             }  
           }    first=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
       }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
     }    /*    j1++;
   }  */
            for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
   fclose(ficresf);        for (i=-5; i<=nlstate+ndeath; i++)  
 }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
 /************** Forecasting ******************/            for(m=iagemin; m <= iagemax+3; m++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              freq[i][jk][m]=0;
          
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for (i=1; i<=nlstate; i++)  
   int *popage;          for(m=iagemin; m <= iagemax+3; m++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            prop[i][m]=0;
   double *popeffectif,*popcount;        
   double ***p3mat,***tabpop,***tabpopprev;        dateintsum=0;
   char filerespop[FILENAMELENGTH];        k2cpt=0;
         for (i=1; i<=imx; i++) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          bool=1;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
   agelim=AGESUP;            for (z1=1; z1<=cptcoveff; z1++)       
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                    /* Tests if the value of each of the covariates of i is equal to filter j1 */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                bool=0;
                  /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                    bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
   strcpy(filerespop,"pop");                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
   strcat(filerespop,fileres);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
   if((ficrespop=fopen(filerespop,"w"))==NULL) {              } 
     printf("Problem with forecast resultfile: %s\n", filerespop);          }
   }   
   printf("Computing forecasting: result on file '%s' \n", filerespop);          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if (mobilav==1) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     movingaverage(agedeb, fage, ageminpar, mobaverage);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   stepsize=(int) (stepm+YEARM-1)/YEARM;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   if (stepm<=12) stepsize=1;                }
                  
   agelim=AGESUP;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                    dateintsum=dateintsum+k2;
   hstepm=1;                  k2cpt++;
   hstepm=hstepm/stepm;                }
                  /*}*/
   if (popforecast==1) {            }
     if((ficpop=fopen(popfile,"r"))==NULL) {          }
       printf("Problem with population file : %s\n",popfile);exit(0);        } /* end i */
     }         
     popage=ivector(0,AGESUP);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     popeffectif=vector(0,AGESUP);        pstamp(ficresp);
     popcount=vector(0,AGESUP);        if  (cptcovn>0) {
              fprintf(ficresp, "\n#********** Variable "); 
     i=1;            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(ficresp, "**********\n#");
              fprintf(ficlog, "\n#********** Variable "); 
     imx=i;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          fprintf(ficlog, "**********\n#");
   }        }
         for(i=1; i<=nlstate;i++) 
   for(cptcov=1;cptcov<=i2;cptcov++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficresp, "\n");
       k=k+1;        
       fprintf(ficrespop,"\n#******");        for(i=iagemin; i <= iagemax+3; i++){
       for(j=1;j<=cptcoveff;j++) {          if(i==iagemax+3){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficlog,"Total");
       }          }else{
       fprintf(ficrespop,"******\n");            if(first==1){
       fprintf(ficrespop,"# Age");              first=0;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              printf("See log file for details...\n");
       if (popforecast==1)  fprintf(ficrespop," [Population]");            }
                  fprintf(ficlog,"Age %d", i);
       for (cpt=0; cpt<=0;cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              pp[jk] += freq[jk][m][i]; 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
           nhstepm = nhstepm/hstepm;          for(jk=1; jk <=nlstate ; jk++){
                      for(m=-1, pos=0; m <=0 ; m++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              pos += freq[jk][m][i];
           oldm=oldms;savm=savms;            if(pp[jk]>=1.e-10){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                if(first==1){
                        printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for (h=0; h<=nhstepm; h++){              }
             if (h==(int) (calagedate+YEARM*cpt)) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            }else{
             }              if(first==1)
             for(j=1; j<=nlstate+ndeath;j++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               kk1=0.;kk2=0;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               for(i=1; i<=nlstate;i++) {                          }
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {          for(jk=1; jk <=nlstate ; jk++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                 }              pp[jk] += freq[jk][m][i];
               }          }       
               if (h==(int)(calagedate+12*cpt)){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            pos += pp[jk];
                   /*fprintf(ficrespop," %.3f", kk1);            posprop += prop[jk][i];
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          }
               }          for(jk=1; jk <=nlstate ; jk++){
             }            if(pos>=1.e-5){
             for(i=1; i<=nlstate;i++){              if(first==1)
               kk1=0.;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                 for(j=1; j<=nlstate;j++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            }else{
                 }              if(first==1)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            if( i <= iagemax){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              if(pos>=1.e-5){
           }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                /*probs[i][jk][j1]= pp[jk]/pos;*/
         }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
                else
   /******/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(jk=-1; jk <=nlstate+ndeath; jk++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(m=-1; m <=nlstate+ndeath; m++)
           nhstepm = nhstepm/hstepm;              if(freq[jk][m][i] !=0 ) {
                        if(first==1)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           oldm=oldms;savm=savms;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                }
           for (h=0; h<=nhstepm; h++){          if(i <= iagemax)
             if (h==(int) (calagedate+YEARM*cpt)) {            fprintf(ficresp,"\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          if(first==1)
             }            printf("Others in log...\n");
             for(j=1; j<=nlstate+ndeath;j++) {          fprintf(ficlog,"\n");
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                      /*}*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        }
               }    dateintmean=dateintsum/k2cpt; 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);   
             }    fclose(ficresp);
           }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(pp,1,nlstate);
         }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       }    /* End of Freq */
    }  }
   }  
    /************ Prevalence ********************/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
   if (popforecast==1) {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     free_ivector(popage,0,AGESUP);       in each health status at the date of interview (if between dateprev1 and dateprev2).
     free_vector(popeffectif,0,AGESUP);       We still use firstpass and lastpass as another selection.
     free_vector(popcount,0,AGESUP);    */
   }   
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, m, jk, k1, i1, j1, bool, z1,j;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***freq; /* Frequencies */
   fclose(ficrespop);    double *pp, **prop;
 }    double pos,posprop; 
     double  y2; /* in fractional years */
 /***********************************************/    int iagemin, iagemax;
 /**************** Main Program *****************/    int first; /** to stop verbosity which is redirected to log file */
 /***********************************************/  
     iagemin= (int) agemin;
 int main(int argc, char *argv[])    iagemax= (int) agemax;
 {    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   double agedeb, agefin,hf;    j1=0;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    
     /*j=cptcoveff;*/
   double fret;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double **xi,tmp,delta;    
     first=1;
   double dum; /* Dummy variable */    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   double ***p3mat;      /*for(i1=1; i1<=ncodemax[k1];i1++){
   int *indx;        j1++;*/
   char line[MAXLINE], linepar[MAXLINE];        
   char title[MAXLINE];        for (i=1; i<=nlstate; i++)  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          for(m=iagemin; m <= iagemax+3; m++)
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            prop[i][m]=0.0;
         
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
   char filerest[FILENAMELENGTH];          if  (cptcovn>0) {
   char fileregp[FILENAMELENGTH];            for (z1=1; z1<=cptcoveff; z1++) 
   char popfile[FILENAMELENGTH];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];                bool=0;
   int firstobs=1, lastobs=10;          } 
   int sdeb, sfin; /* Status at beginning and end */          if (bool==1) { 
   int c,  h , cpt,l;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   int ju,jl, mi;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int mobilav=0,popforecast=0;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int hstepm, nhstepm;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   double bage, fage, age, agelim, agebase;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double ftolpl=FTOL;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   double **prlim;                } 
   double *severity;              }
   double ***param; /* Matrix of parameters */            } /* end selection of waves */
   double  *p;          }
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */        for(i=iagemin; i <= iagemax+3; i++){  
   double *delti; /* Scale */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   double ***eij, ***vareij;            posprop += prop[jk][i]; 
   double **varpl; /* Variances of prevalence limits by age */          } 
   double *epj, vepp;          
   double kk1, kk2;          for(jk=1; jk <=nlstate ; jk++){     
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";              } else{
   char *alph[]={"a","a","b","c","d","e"}, str[4];                if(first==1){
                   first=0;
                   printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   char z[1]="c", occ;                }
 #include <sys/time.h>              }
 #include <time.h>            } 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          }/* end jk */ 
          }/* end i */ 
   /* long total_usecs;      /*} *//* end i1 */
   struct timeval start_time, end_time;    } /* end j1 */
      
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   getcwd(pathcd, size);    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   printf("\n%s",version);  }  /* End of prevalence */
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");  /************* Waves Concatenation ***************/
     scanf("%s",pathtot);  
   }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   else{  {
     strcpy(pathtot,argv[1]);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   }       Death is a valid wave (if date is known).
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   /*cygwin_split_path(pathtot,path,optionfile);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       and mw[mi+1][i]. dh depends on stepm.
   /* cutv(path,optionfile,pathtot,'\\');*/       */
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    int i, mi, m;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   chdir(path);       double sum=0., jmean=0.;*/
   replace(pathc,path);    int first;
     int j, k=0,jk, ju, jl;
 /*-------- arguments in the command line --------*/    double sum=0.;
     first=0;
   strcpy(fileres,"r");    jmin=1e+5;
   strcat(fileres, optionfilefiname);    jmax=-1;
   strcat(fileres,".txt");    /* Other files have txt extension */    jmean=0.;
     for(i=1; i<=imx; i++){
   /*---------arguments file --------*/      mi=0;
       m=firstpass;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      while(s[m][i] <= nlstate){
     printf("Problem with optionfile %s\n",optionfile);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     goto end;          mw[++mi][i]=m;
   }        if(m >=lastpass)
           break;
   strcpy(filereso,"o");        else
   strcat(filereso,fileres);          m++;
   if((ficparo=fopen(filereso,"w"))==NULL) {      }/* end while */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      if (s[m][i] > nlstate){
   }        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
   /* Reads comments: lines beginning with '#' */           /* Only death is a correct wave */
   while((c=getc(ficpar))=='#' && c!= EOF){        mw[mi][i]=m;
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      wav[i]=mi;
     fputs(line,ficparo);      if(mi==0){
   }        nbwarn++;
   ungetc(c,ficpar);        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          first=1;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        if(first==1){
 while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      } /* end mi==0 */
     puts(line);    } /* End individuals */
     fputs(line,ficparo);  
   }    for(i=1; i<=imx; i++){
   ungetc(c,ficpar);      for(mi=1; mi<wav[i];mi++){
          if (stepm <=0)
              dh[mi][i]=1;
   covar=matrix(0,NCOVMAX,1,n);        else{
   cptcovn=0;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   ncovmodel=2+cptcovn;              if(j==0) j=1;  /* Survives at least one month after exam */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              else if(j<0){
                  nberr++;
   /* Read guess parameters */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* Reads comments: lines beginning with '#' */                j=1; /* Temporary Dangerous patch */
   while((c=getc(ficpar))=='#' && c!= EOF){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     ungetc(c,ficpar);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fgets(line, MAXLINE, ficpar);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     puts(line);              }
     fputs(line,ficparo);              k=k+1;
   }              if (j >= jmax){
   ungetc(c,ficpar);                jmax=j;
                  ijmax=i;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              }
     for(i=1; i <=nlstate; i++)              if (j <= jmin){
     for(j=1; j <=nlstate+ndeath-1; j++){                jmin=j;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                ijmin=i;
       fprintf(ficparo,"%1d%1d",i1,j1);              }
       printf("%1d%1d",i,j);              sum=sum+j;
       for(k=1; k<=ncovmodel;k++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         fscanf(ficpar," %lf",&param[i][j][k]);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         printf(" %lf",param[i][j][k]);            }
         fprintf(ficparo," %lf",param[i][j][k]);          }
       }          else{
       fscanf(ficpar,"\n");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       printf("\n");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficparo,"\n");  
     }            k=k+1;
              if (j >= jmax) {
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;              jmax=j;
               ijmax=i;
   p=param[1][1];            }
              else if (j <= jmin){
   /* Reads comments: lines beginning with '#' */              jmin=j;
   while((c=getc(ficpar))=='#' && c!= EOF){              ijmin=i;
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     puts(line);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fputs(line,ficparo);            if(j<0){
   }              nberr++;
   ungetc(c,ficpar);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            sum=sum+j;
   for(i=1; i <=nlstate; i++){          }
     for(j=1; j <=nlstate+ndeath-1; j++){          jk= j/stepm;
       fscanf(ficpar,"%1d%1d",&i1,&j1);          jl= j -jk*stepm;
       printf("%1d%1d",i,j);          ju= j -(jk+1)*stepm;
       fprintf(ficparo,"%1d%1d",i1,j1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       for(k=1; k<=ncovmodel;k++){            if(jl==0){
         fscanf(ficpar,"%le",&delti3[i][j][k]);              dh[mi][i]=jk;
         printf(" %le",delti3[i][j][k]);              bh[mi][i]=0;
         fprintf(ficparo," %le",delti3[i][j][k]);            }else{ /* We want a negative bias in order to only have interpolation ie
       }                    * to avoid the price of an extra matrix product in likelihood */
       fscanf(ficpar,"\n");              dh[mi][i]=jk+1;
       printf("\n");              bh[mi][i]=ju;
       fprintf(ficparo,"\n");            }
     }          }else{
   }            if(jl <= -ju){
   delti=delti3[1][1];              dh[mi][i]=jk;
                bh[mi][i]=jl;       /* bias is positive if real duration
   /* Reads comments: lines beginning with '#' */                                   * is higher than the multiple of stepm and negative otherwise.
   while((c=getc(ficpar))=='#' && c!= EOF){                                   */
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);            else{
     puts(line);              dh[mi][i]=jk+1;
     fputs(line,ficparo);              bh[mi][i]=ju;
   }            }
   ungetc(c,ficpar);            if(dh[mi][i]==0){
                dh[mi][i]=1; /* At least one step */
   matcov=matrix(1,npar,1,npar);              bh[mi][i]=ju; /* At least one step */
   for(i=1; i <=npar; i++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fscanf(ficpar,"%s",&str);            }
     printf("%s",str);          } /* end if mle */
     fprintf(ficparo,"%s",str);        }
     for(j=1; j <=i; j++){      } /* end wave */
       fscanf(ficpar," %le",&matcov[i][j]);    }
       printf(" %.5le",matcov[i][j]);    jmean=sum/k;
       fprintf(ficparo," %.5le",matcov[i][j]);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     fscanf(ficpar,"\n");   }
     printf("\n");  
     fprintf(ficparo,"\n");  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   for(i=1; i <=npar; i++)  {
     for(j=i+1;j<=npar;j++)    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       matcov[i][j]=matcov[j][i];    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
        /* Boring subroutine which should only output nbcode[Tvar[j]][k]
   printf("\n");     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     /* nbcode[Tvar[j]][1]= 
     */
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    int modmaxcovj=0; /* Modality max of covariates j */
      strcat(rfileres,".");    /* */    int cptcode=0; /* Modality max of covariates j */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    int modmincovj=0; /* Modality min of covariates j */
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }    cptcoveff=0; 
     fprintf(ficres,"#%s\n",version);   
        for (k=-1; k < maxncov; k++) Ndum[k]=0;
     /*-------- data file ----------*/    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;    /* Loop on covariates without age and products */
     }    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
       for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
     n= lastobs;                                 modality of this covariate Vj*/ 
     severity = vector(1,maxwav);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
     outcome=imatrix(1,maxwav+1,1,n);                                      * If product of Vn*Vm, still boolean *:
     num=ivector(1,n);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
     moisnais=vector(1,n);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     annais=vector(1,n);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     moisdc=vector(1,n);                                        modality of the nth covariate of individual i. */
     andc=vector(1,n);        if (ij > modmaxcovj)
     agedc=vector(1,n);          modmaxcovj=ij; 
     cod=ivector(1,n);        else if (ij < modmincovj) 
     weight=vector(1,n);          modmincovj=ij; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        if ((ij < -1) && (ij > NCOVMAX)){
     mint=matrix(1,maxwav,1,n);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     anint=matrix(1,maxwav,1,n);          exit(1);
     s=imatrix(1,maxwav+1,1,n);        }else
     adl=imatrix(1,maxwav+1,1,n);            Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     tab=ivector(1,NCOVMAX);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     ncodemax=ivector(1,8);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
     i=1;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     while (fgets(line, MAXLINE, fic) != NULL)    {           female is 1, then modmaxcovj=1.*/
       if ((i >= firstobs) && (i <=lastobs)) {      }
              printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
         for (j=maxwav;j>=1;j--){      cptcode=modmaxcovj;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
           strcpy(line,stra);     /*for (i=0; i<=cptcode; i++) {*/
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
         }        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
                  ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      } /* Ndum[-1] number of undefined modalities */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
         for (j=ncovcol;j>=1;j--){      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);         modmincovj=3; modmaxcovj = 7;
         }         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
         num[i]=atol(stra);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
                 variables V1_1 and V1_2.
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){         nbcode[Tvar[j]][ij]=k;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
         i=i+1;         nbcode[Tvar[j]][3]=2;
       }      */
     }      ij=1; /* ij is similar to i but can jumps over null modalities */
     /* printf("ii=%d", ij);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
        scanf("%d",i);*/        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   imx=i-1; /* Number of individuals */          /*recode from 0 */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   /* for (i=1; i<=imx; i++){            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                                       k is a modality. If we have model=V1+V1*sex 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            ij++;
     }*/          }
    /*  for (i=1; i<=imx; i++){          if (ij > ncodemax[j]) break; 
      if (s[4][i]==9)  s[4][i]=-1;        }  /* end of loop on */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      } /* end of loop on modality */ 
      } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
      
   /* Calculation of the number of parameter from char model*/   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   Tvar=ivector(1,15);    
   Tprod=ivector(1,15);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   Tvaraff=ivector(1,15);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   Tvard=imatrix(1,15,1,2);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   Tage=ivector(1,15);           Ndum[ij]++; 
       } 
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;   ij=1;
     j=nbocc(model,'+');   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
     j1=nbocc(model,'*');     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
     cptcovn=j+1;     if((Ndum[i]!=0) && (i<=ncovcol)){
     cptcovprod=j1;       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
           Tvaraff[ij]=i; /*For printing (unclear) */
     strcpy(modelsav,model);       ij++;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){     }else
       printf("Error. Non available option model=%s ",model);         Tvaraff[ij]=0;
       goto end;   }
     }   ij--;
       cptcoveff=ij; /*Number of total covariates*/
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+');  }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/  /*********** Health Expectancies ****************/
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;  {
           cutv(strb,stre,strd,'V');    /* Health expectancies, no variances */
           Tvar[i]=atoi(stre);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           cptcovage++;    int nhstepma, nstepma; /* Decreasing with age */
             Tage[cptcovage]=i;    double age, agelim, hf;
             /*printf("stre=%s ", stre);*/    double ***p3mat;
         }    double eip;
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;    pstamp(ficreseij);
           cutv(strb,stre,strc,'V');    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           Tvar[i]=atoi(stre);    fprintf(ficreseij,"# Age");
           cptcovage++;    for(i=1; i<=nlstate;i++){
           Tage[cptcovage]=i;      for(j=1; j<=nlstate;j++){
         }        fprintf(ficreseij," e%1d%1d ",i,j);
         else {      }
           cutv(strb,stre,strc,'V');      fprintf(ficreseij," e%1d. ",i);
           Tvar[i]=ncovcol+k1;    }
           cutv(strb,strc,strd,'V');    fprintf(ficreseij,"\n");
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);    
           Tvard[k1][2]=atoi(stre);    if(estepm < stepm){
           Tvar[cptcovn+k2]=Tvard[k1][1];      printf ("Problem %d lower than %d\n",estepm, stepm);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    }
           for (k=1; k<=lastobs;k++)    else  hstepm=estepm;   
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    /* We compute the life expectancy from trapezoids spaced every estepm months
           k1++;     * This is mainly to measure the difference between two models: for example
           k2=k2+2;     * if stepm=24 months pijx are given only every 2 years and by summing them
         }     * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
       else {     * to the curvature of the survival function. If, for the same date, we 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
        /*  scanf("%d",i);*/     * to compare the new estimate of Life expectancy with the same linear 
       cutv(strd,strc,strb,'V');     * hypothesis. A more precise result, taking into account a more precise
       Tvar[i]=atoi(strc);     * curvature will be obtained if estepm is as small as stepm. */
       }  
       strcpy(modelsav,stra);      /* For example we decided to compute the life expectancy with the smallest unit */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         scanf("%d",i);*/       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
 }       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   printf("cptcovprod=%d ", cptcovprod);       survival function given by stepm (the optimization length). Unfortunately it
   scanf("%d ",i);*/       means that if the survival funtion is printed only each two years of age and if
     fclose(fic);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     /*  if(mle==1){*/    */
     if (weightopt != 1) { /* Maximisation without weights*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }    agelim=AGESUP;
     /*-calculation of age at interview from date of interview and age at death -*/    /* If stepm=6 months */
     agev=matrix(1,maxwav,1,imx);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     for (i=1; i<=imx; i++) {      
       for(m=2; (m<= maxwav); m++) {  /* nhstepm age range expressed in number of stepm */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
          anint[m][i]=9999;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          s[m][i]=-1;    /* if (stepm >= YEARM) hstepm=1;*/
        }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }  
     }    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     for (i=1; i<=imx; i++)  {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      /* if (stepm >= YEARM) hstepm=1;*/
       for(m=1; (m<= maxwav); m++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {      /* If stepm=6 months */
             if(agedc[i]>0)      /* Computed by stepm unit matrices, product of hstepma matrices, stored
               if(moisdc[i]!=99 && andc[i]!=9999)         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                 agev[m][i]=agedc[i];      
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
            else {      
               if (andc[i]!=9999){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      
               agev[m][i]=-1;      printf("%d|",(int)age);fflush(stdout);
               }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             }      
           }      /* Computing expectancies */
           else if(s[m][i] !=9){ /* Should no more exist */      for(i=1; i<=nlstate;i++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        for(j=1; j<=nlstate;j++)
             if(mint[m][i]==99 || anint[m][i]==9999)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               agev[m][i]=1;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             else if(agev[m][i] <agemin){            
               agemin=agev[m][i];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }          }
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];      fprintf(ficreseij,"%3.0f",age );
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      for(i=1; i<=nlstate;i++){
             }        eip=0;
             /*agev[m][i]=anint[m][i]-annais[i];*/        for(j=1; j<=nlstate;j++){
             /*   agev[m][i] = age[i]+2*m;*/          eip +=eij[i][j][(int)age];
           }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           else { /* =9 */        }
             agev[m][i]=1;        fprintf(ficreseij,"%9.4f", eip );
             s[m][i]=-1;      }
           }      fprintf(ficreseij,"\n");
         }      
         else /*= 0 Unknown */    }
           agev[m][i]=1;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    printf("\n");
        fprintf(ficlog,"\n");
     }    
     for (i=1; i<=imx; i++)  {  }
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;  {
         }    /* Covariances of health expectancies eij and of total life expectancies according
       }     to initial status i, ei. .
     }    */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     free_vector(severity,1,maxwav);    double ***p3matp, ***p3matm, ***varhe;
     free_imatrix(outcome,1,maxwav+1,1,n);    double **dnewm,**doldm;
     free_vector(moisnais,1,n);    double *xp, *xm;
     free_vector(annais,1,n);    double **gp, **gm;
     /* free_matrix(mint,1,maxwav,1,n);    double ***gradg, ***trgradg;
        free_matrix(anint,1,maxwav,1,n);*/    int theta;
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);    double eip, vip;
   
        varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     wav=ivector(1,imx);    xp=vector(1,npar);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    xm=vector(1,npar);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    dnewm=matrix(1,nlstate*nlstate,1,npar);
        doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     /* Concatenates waves */    
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
       Tcode=ivector(1,100);    for(i=1; i<=nlstate;i++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      for(j=1; j<=nlstate;j++)
       ncodemax[1]=1;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      fprintf(ficresstdeij," e%1d. ",i);
          }
    codtab=imatrix(1,100,1,10);    fprintf(ficresstdeij,"\n");
    h=0;  
    m=pow(2,cptcoveff);    pstamp(ficrescveij);
      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
    for(k=1;k<=cptcoveff; k++){    fprintf(ficrescveij,"# Age");
      for(i=1; i <=(m/pow(2,k));i++){    for(i=1; i<=nlstate;i++)
        for(j=1; j <= ncodemax[k]; j++){      for(j=1; j<=nlstate;j++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        cptj= (j-1)*nlstate+i;
            h++;        for(i2=1; i2<=nlstate;i2++)
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          for(j2=1; j2<=nlstate;j2++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            cptj2= (j2-1)*nlstate+i2;
          }            if(cptj2 <= cptj)
        }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
      }          }
    }      }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fprintf(ficrescveij,"\n");
       codtab[1][2]=1;codtab[2][2]=2; */    
    /* for(i=1; i <=m ;i++){    if(estepm < stepm){
       for(k=1; k <=cptcovn; k++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    }
       }    else  hstepm=estepm;   
       printf("\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
       }     * This is mainly to measure the difference between two models: for example
       scanf("%d",i);*/     * if stepm=24 months pijx are given only every 2 years and by summing them
         * we are calculating an estimate of the Life Expectancy assuming a linear 
    /* Calculates basic frequencies. Computes observed prevalence at single age     * progression in between and thus overestimating or underestimating according
        and prints on file fileres'p'. */     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
         * to compare the new estimate of Life expectancy with the same linear 
         * hypothesis. A more precise result, taking into account a more precise
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * curvature will be obtained if estepm is as small as stepm. */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* For example we decided to compute the life expectancy with the smallest unit */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       nhstepm is the number of hstepm from age to agelim 
             nstepm is the number of stepm from age to agelin. 
     /* For Powell, parameters are in a vector p[] starting at p[1]       Look at hpijx to understand the reason of that which relies in memory size
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       and note for a fixed period like estepm months */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
     if(mle==1){       means that if the survival funtion is printed only each two years of age and if
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     }       results. So we changed our mind and took the option of the best precision.
        */
     /*--------- results files --------------*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
    jk=1;    agelim=AGESUP;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    for(i=1,jk=1; i <=nlstate; i++){    /* if (stepm >= YEARM) hstepm=1;*/
      for(k=1; k <=(nlstate+ndeath); k++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        if (k != i)    
          {    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            printf("%d%d ",i,k);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            fprintf(ficres,"%1d%1d ",i,k);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
            for(j=1; j <=ncovmodel; j++){    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
              printf("%f ",p[jk]);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
              fprintf(ficres,"%f ",p[jk]);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
              jk++;  
            }    for (age=bage; age<=fage; age ++){ 
            printf("\n");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
            fprintf(ficres,"\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          }      /* if (stepm >= YEARM) hstepm=1;*/
      }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
    }  
  if(mle==1){      /* If stepm=6 months */
     /* Computing hessian and covariance matrix */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     ftolhess=ftol; /* Usually correct */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     hesscov(matcov, p, npar, delti, ftolhess, func);      
  }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");      /* Computing  Variances of health expectancies */
      for(i=1,jk=1; i <=nlstate; i++){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       for(j=1; j <=nlstate+ndeath; j++){         decrease memory allocation */
         if (j!=i) {      for(theta=1; theta <=npar; theta++){
           fprintf(ficres,"%1d%1d",i,j);        for(i=1; i<=npar; i++){ 
           printf("%1d%1d",i,j);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for(k=1; k<=ncovmodel;k++){          xm[i] = x[i] - (i==theta ?delti[theta]:0);
             printf(" %.5e",delti[jk]);        }
             fprintf(ficres," %.5e",delti[jk]);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
             jk++;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           }    
           printf("\n");        for(j=1; j<= nlstate; j++){
           fprintf(ficres,"\n");          for(i=1; i<=nlstate; i++){
         }            for(h=0; h<=nhstepm-1; h++){
       }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
      }              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                }
     k=1;          }
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       
     for(i=1;i<=npar;i++){        for(ij=1; ij<= nlstate*nlstate; ij++)
       /*  if (k>nlstate) k=1;          for(h=0; h<=nhstepm-1; h++){
       i1=(i-1)/(ncovmodel*nlstate)+1;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          }
       printf("%s%d%d",alph[k],i1,tab[i]);*/      }/* End theta */
       fprintf(ficres,"%3d",i);      
       printf("%3d",i);      
       for(j=1; j<=i;j++){      for(h=0; h<=nhstepm-1; h++)
         fprintf(ficres," %.5e",matcov[i][j]);        for(j=1; j<=nlstate*nlstate;j++)
         printf(" %.5e",matcov[i][j]);          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficres,"\n");      
       printf("\n");  
       k++;       for(ij=1;ij<=nlstate*nlstate;ij++)
     }        for(ji=1;ji<=nlstate*nlstate;ji++)
              varhe[ij][ji][(int)age] =0.;
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);       printf("%d|",(int)age);fflush(stdout);
       fgets(line, MAXLINE, ficpar);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       puts(line);       for(h=0;h<=nhstepm-1;h++){
       fputs(line,ficparo);        for(k=0;k<=nhstepm-1;k++){
     }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     ungetc(c,ficpar);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     estepm=0;          for(ij=1;ij<=nlstate*nlstate;ij++)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            for(ji=1;ji<=nlstate*nlstate;ji++)
     if (estepm==0 || estepm < stepm) estepm=stepm;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     if (fage <= 2) {        }
       bage = ageminpar;      }
       fage = agemaxpar;  
     }      /* Computing expectancies */
          hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for(i=1; i<=nlstate;i++)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for(j=1; j<=nlstate;j++)
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     while((c=getc(ficpar))=='#' && c!= EOF){            
     ungetc(c,ficpar);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fgets(line, MAXLINE, ficpar);  
     puts(line);          }
     fputs(line,ficparo);  
   }      fprintf(ficresstdeij,"%3.0f",age );
   ungetc(c,ficpar);      for(i=1; i<=nlstate;i++){
          eip=0.;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        vip=0.;
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=1; j<=nlstate;j++){
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          eip += eij[i][j][(int)age];
                for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   while((c=getc(ficpar))=='#' && c!= EOF){            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     ungetc(c,ficpar);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     fputs(line,ficparo);      }
   }      fprintf(ficresstdeij,"\n");
   ungetc(c,ficpar);  
        fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        for(j=1; j<=nlstate;j++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
   fscanf(ficpar,"pop_based=%d\n",&popbased);            for(j2=1; j2<=nlstate;j2++){
   fprintf(ficparo,"pop_based=%d\n",popbased);                cptj2= (j2-1)*nlstate+i2;
   fprintf(ficres,"pop_based=%d\n",popbased);                if(cptj2 <= cptj)
                  fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      fprintf(ficrescveij,"\n");
     puts(line);     
     fputs(line,ficparo);    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   ungetc(c,ficpar);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    free_vector(xm,1,npar);
     fgets(line, MAXLINE, ficpar);    free_vector(xp,1,npar);
     puts(line);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     fputs(line,ficparo);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   ungetc(c,ficpar);  }
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  /************ Variance ******************/
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  {
     /* Variance of health expectancies */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
 /*------------ gnuplot -------------*/    double **dnewm,**doldm;
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
 /*------------ free_vector  -------------*/    int k, cptcode;
  chdir(path);    double *xp;
      double **gp, **gm;  /* for var eij */
  free_ivector(wav,1,imx);    double ***gradg, ***trgradg; /*for var eij */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double **gradgp, **trgradgp; /* for var p point j */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      double *gpp, *gmp; /* for var p point j */
  free_ivector(num,1,n);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
  free_vector(agedc,1,n);    double ***p3mat;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    double age,agelim, hf;
  fclose(ficparo);    double ***mobaverage;
  fclose(ficres);    int theta;
     char digit[4];
 /*--------- index.htm --------*/    char digitp[25];
   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    char fileresprobmorprev[FILENAMELENGTH];
   
      if(popbased==1){
   /*--------------- Prevalence limit --------------*/      if(mobilav!=0)
          strcpy(digitp,"-populbased-mobilav-");
   strcpy(filerespl,"pl");      else strcpy(digitp,"-populbased-nomobil-");
   strcat(filerespl,fileres);    }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    else 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      strcpy(digitp,"-stablbased-");
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    if (mobilav!=0) {
   fprintf(ficrespl,"#Prevalence limit\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficrespl,"#Age ");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficrespl,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
   prlim=matrix(1,nlstate,1,nlstate);    }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(fileresprobmorprev,"prmorprev"); 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    sprintf(digit,"%-d",ij);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   k=0;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   agebase=ageminpar;    strcat(fileresprobmorprev,fileres);
   agelim=agemaxpar;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   ftolpl=1.e-10;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   i1=cptcoveff;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   if (cptcovn < 1){i1=1;}    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   for(cptcov=1;cptcov<=i1;cptcov++){   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         k=k+1;    pstamp(ficresprobmorprev);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficrespl,"\n#******");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         for(j=1;j<=cptcoveff;j++)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficresprobmorprev," p.%-d SE",j);
         fprintf(ficrespl,"******\n");      for(i=1; i<=nlstate;i++)
                fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         for (age=agebase; age<=agelim; age++){    }  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficresprobmorprev,"\n");
           fprintf(ficrespl,"%.0f",age );    fprintf(ficgp,"\n# Routine varevsij");
           for(i=1; i<=nlstate;i++)    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           fprintf(ficrespl," %.5f", prlim[i][i]);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           fprintf(ficrespl,"\n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         }  /*   } */
       }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }    pstamp(ficresvij);
   fclose(ficrespl);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
   /*------------- h Pij x at various ages ------------*/      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    fprintf(ficresvij,"# Age");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
   printf("Computing pij: result on file '%s' \n", filerespij);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   agelim=AGESUP;    doldm=matrix(1,nlstate,1,nlstate);
   hstepm=stepsize*YEARM; /* Every year of age */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   k=0;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   for(cptcov=1;cptcov<=i1;cptcov++){    gpp=vector(nlstate+1,nlstate+ndeath);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    gmp=vector(nlstate+1,nlstate+ndeath);
       k=k+1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficrespij,"\n#****** ");    
         for(j=1;j<=cptcoveff;j++)    if(estepm < stepm){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrespij,"******\n");    }
            else  hstepm=estepm;   
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /* For example we decided to compute the life expectancy with the smallest unit */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       nhstepm is the number of hstepm from age to agelim 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       nstepm is the number of stepm from age to agelin. 
           oldm=oldms;savm=savms;       Look at function hpijx to understand why (it is linked to memory size questions) */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           fprintf(ficrespij,"# Age");       survival function given by stepm (the optimization length). Unfortunately it
           for(i=1; i<=nlstate;i++)       means that if the survival funtion is printed every two years of age and if
             for(j=1; j<=nlstate+ndeath;j++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               fprintf(ficrespij," %1d-%1d",i,j);       results. So we changed our mind and took the option of the best precision.
           fprintf(ficrespij,"\n");    */
           for (h=0; h<=nhstepm; h++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    agelim = AGESUP;
             for(i=1; i<=nlstate;i++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               for(j=1; j<=nlstate+ndeath;j++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             fprintf(ficrespij,"\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gp=matrix(0,nhstepm,1,nlstate);
           fprintf(ficrespij,"\n");      gm=matrix(0,nhstepm,1,nlstate);
         }  
     }  
   }      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   fclose(ficrespij);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
   /*---------- Forecasting ------------------*/        if (popbased==1) {
   if((stepm == 1) && (strcmp(model,".")==0)){          if(mobilav ==0){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            for(i=1; i<=nlstate;i++)
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);              prlim[i][i]=probs[(int)age][i][ij];
     free_matrix(mint,1,maxwav,1,n);          }else{ /* mobilav */ 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);            for(i=1; i<=nlstate;i++)
     free_vector(weight,1,n);}              prlim[i][i]=mobaverage[(int)age][i][ij];
   else{          }
     erreur=108;        }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    
   }        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   /*---------- Health expectancies and variances ------------*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   strcpy(filerest,"t");        }
   strcat(filerest,fileres);        /* This for computing probability of death (h=1 means
   if((ficrest=fopen(filerest,"w"))==NULL) {           computed over hstepm matrices product = hstepm*stepm months) 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;           as a weighted average of prlim.
   }        */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
   strcpy(filerese,"e");        }    
   strcat(filerese,fileres);        /* end probability of death */
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  strcpy(fileresv,"v");   
   strcat(fileresv,fileres);        if (popbased==1) {
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          if(mobilav ==0){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   k=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
   for(cptcov=1;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;  
       fprintf(ficrest,"\n#****** ");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       for(j=1;j<=cptcoveff;j++)          for(h=0; h<=nhstepm; h++){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fprintf(ficrest,"******\n");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
       fprintf(ficreseij,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)        /* This for computing probability of death (h=1 means
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficreseij,"******\n");           as a weighted average of prlim.
         */
       fprintf(ficresvij,"\n#****** ");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(j=1;j<=cptcoveff;j++)          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficresvij,"******\n");        }    
         /* end probability of death */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;        for(j=1; j<= nlstate; j++) /* vareij */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);            for(h=0; h<=nhstepm; h++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       oldm=oldms;savm=savms;          }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
            for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      } /* End theta */
       fprintf(ficrest,"\n");  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){      for(h=0; h<=nhstepm; h++) /* veij */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(j=1; j<=nlstate;j++)
         if (popbased==1) {          for(theta=1; theta <=npar; theta++)
           for(i=1; i<=nlstate;i++)            trgradg[h][j][theta]=gradg[h][theta][j];
             prlim[i][i]=probs[(int)age][i][k];  
         }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                for(theta=1; theta <=npar; theta++)
         fprintf(ficrest," %4.0f",age);          trgradgp[j][theta]=gradgp[theta][j];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           }      for(i=1;i<=nlstate;i++)
           epj[nlstate+1] +=epj[j];        for(j=1;j<=nlstate;j++)
         }          vareij[i][j][(int)age] =0.;
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)      for(h=0;h<=nhstepm;h++){
             vepp += vareij[i][j][(int)age];        for(k=0;k<=nhstepm;k++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         for(j=1;j <=nlstate;j++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          for(i=1;i<=nlstate;i++)
         }            for(j=1;j<=nlstate;j++)
         fprintf(ficrest,"\n");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       }        }
     }      }
   }    
       /* pptj */
   fclose(ficreseij);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   fclose(ficresvij);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   fclose(ficrest);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fclose(ficpar);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   free_vector(epj,1,nlstate+1);          varppt[j][i]=doldmp[j][i];
        /* end ppptj */
   /*------- Variance limit prevalence------*/        /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   strcpy(fileresvpl,"vpl");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   strcat(fileresvpl,fileres);   
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      if (popbased==1) {
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        if(mobilav ==0){
     exit(0);          for(i=1; i<=nlstate;i++)
   }            prlim[i][i]=probs[(int)age][i][ij];
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   k=0;            prlim[i][i]=mobaverage[(int)age][i][ij];
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;               
       fprintf(ficresvpl,"\n#****** ");      /* This for computing probability of death (h=1 means
       for(j=1;j<=cptcoveff;j++)         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         as a weighted average of prlim.
       fprintf(ficresvpl,"******\n");      */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       oldm=oldms;savm=savms;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }    
     }      /* end probability of death */
  }  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   fclose(ficresvpl);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   /*---------- End : free ----------------*/        for(i=1; i<=nlstate;i++){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      } 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fprintf(ficresprobmorprev,"\n");
    
        fprintf(ficresvij,"%.0f ",age );
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      for(i=1; i<=nlstate;i++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(j=1; j<=nlstate;j++){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
        fprintf(ficresvij,"\n");
   free_matrix(matcov,1,npar,1,npar);      free_matrix(gp,0,nhstepm,1,nlstate);
   free_vector(delti,1,npar);      free_matrix(gm,0,nhstepm,1,nlstate);
   free_matrix(agev,1,maxwav,1,imx);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if(erreur >0)    } /* End age */
     printf("End of Imach with error or warning %d\n",erreur);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   else   printf("End of Imach\n");    free_vector(gmp,nlstate+1,nlstate+ndeath);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   /*------ End -----------*/    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
  end:  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 #ifdef windows    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
   /* chdir(pathcd);*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
 #endif    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
  /*system("wgnuplot graph.plt");*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  /*system("cd ../gp37mgw");*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  */
  strcpy(plotcmd,GNUPLOTPROGRAM);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
  strcat(plotcmd," ");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
 #ifdef windows    free_matrix(dnewm,1,nlstate,1,npar);
   while (z[0] != 'q') {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     /* chdir(path); */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     scanf("%s",z);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if (z[0] == 'c') system("./imach");    fclose(ficresprobmorprev);
     else if (z[0] == 'e') system(optionfilehtm);    fflush(ficgp);
     else if (z[0] == 'g') system(plotcmd);    fflush(fichtm); 
     else if (z[0] == 'q') exit(0);  }  /* end varevsij */
   }  
 #endif  /************ Variance of prevlim ******************/
 }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         l=(nlstate+ndeath)*(cpt-1)+1;
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l,k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
       printf("\n Trying on same directory\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef OSX
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.39  
changed lines
  Added in v.1.153


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>