Diff for /imach/src/imach.c between versions 1.3 and 1.75

version 1.3, 2001/05/02 17:21:42 version 1.75, 2003/05/03 01:18:24
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************             Interpolated Markov Chain
   This program computes Healthy Life Expectancies from cross-longitudinal  
   data. Cross-longitudinal consist in a first survey ("cross") where    Short summary of the programme:
   individuals from different ages are interviewed on their health status    
   or degree of  disability. At least a second wave of interviews    This program computes Healthy Life Expectancies from
   ("longitudinal") should  measure each new individual health status.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   Health expectancies are computed from the transistions observed between    first survey ("cross") where individuals from different ages are
   waves and are computed for each degree of severity of disability (number    interviewed on their health status or degree of disability (in the
   of life states). More degrees you consider, more time is necessary to    case of a health survey which is our main interest) -2- at least a
   reach the Maximum Likelihood of the parameters involved in the model.    second wave of interviews ("longitudinal") which measure each change
   The simplest model is the multinomial logistic model where pij is    (if any) in individual health status.  Health expectancies are
   the probabibility to be observed in state j at the second wave conditional    computed from the time spent in each health state according to a
   to be observed in state i at the first wave. Therefore the model is:    model. More health states you consider, more time is necessary to reach the
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Maximum Likelihood of the parameters involved in the model.  The
   is a covariate. If you want to have a more complex model than "constant and    simplest model is the multinomial logistic model where pij is the
   age", you should modify the program where the markup    probability to be observed in state j at the second wave
     *Covariates have to be included here again* invites you to do it.    conditional to be observed in state i at the first wave. Therefore
   More covariates you add, less is the speed of the convergence.    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
   The advantage that this computer programme claims, comes from that if the    complex model than "constant and age", you should modify the program
   delay between waves is not identical for each individual, or if some    where the markup *Covariates have to be included here again* invites
   individual missed an interview, the information is not rounded or lost, but    you to do it.  More covariates you add, slower the
   taken into account using an interpolation or extrapolation.    convergence.
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    The advantage of this computer programme, compared to a simple
   x. The delay 'h' can be split into an exact number (nh*stepm) of    multinomial logistic model, is clear when the delay between waves is not
   unobserved intermediate  states. This elementary transition (by month or    identical for each individual. Also, if a individual missed an
   quarter trimester, semester or year) is model as a multinomial logistic.    intermediate interview, the information is lost, but taken into
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    account using an interpolation or extrapolation.  
   and the contribution of each individual to the likelihood is simply hPijx.  
     hPijx is the probability to be observed in state i at age x+h
   Also this programme outputs the covariance matrix of the parameters but also    conditional to the observed state i at age x. The delay 'h' can be
   of the life expectancies. It also computes the prevalence limits.    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    semester or year) is modelled as a multinomial logistic.  The hPx
            Institut national d'études démographiques, Paris.    matrix is simply the matrix product of nh*stepm elementary matrices
   This software have been partly granted by Euro-REVES, a concerted action    and the contribution of each individual to the likelihood is simply
   from the European Union.    hPijx.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Also this programme outputs the covariance matrix of the parameters but also
   can be accessed at http://euroreves.ined.fr/imach .    of the life expectancies. It also computes the stable prevalence. 
   **********************************************************************/    
      Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <math.h>             Institut national d'études démographiques, Paris.
 #include <stdio.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <stdlib.h>    from the European Union.
 #include <unistd.h>    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define MAXLINE 256    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define windows    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    **********************************************************************/
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  /*
     main
 #define NINTERVMAX 8    read parameterfile
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    read datafile
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    concatwav
 #define NCOVMAX 8 /* Maximum number of covariates */    if (mle >= 1)
 #define MAXN 20000      mlikeli
 #define YEARM 12. /* Number of months per year */    print results files
 #define AGESUP 130    if mle==1 
 #define AGEBASE 40       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 int nvar;    open gnuplot file
 static int cptcov;    open html file
 int cptcovn;    stable prevalence
 int npar=NPARMAX;     for age prevalim()
 int nlstate=2; /* Number of live states */    h Pij x
 int ndeath=1; /* Number of dead states */    variance of p varprob
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 int *wav; /* Number of waves for this individuual 0 is possible */    Variance-covariance of DFLE
 int maxwav; /* Maxim number of waves */    prevalence()
 int mle, weightopt;     movingaverage()
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    varevsij() 
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    if popbased==1 varevsij(,popbased)
 double **oldm, **newm, **savm; /* Working pointers to matrices */    total life expectancies
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Variance of stable prevalence
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;   end
 FILE *ficgp, *fichtm;  */
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];   
  FILE  *ficresvpl;  #include <math.h>
   char fileresvpl[FILENAMELENGTH];  #include <stdio.h>
   #include <stdlib.h>
   #include <unistd.h>
   
   #define MAXLINE 256
 #define NR_END 1  #define GNUPLOTPROGRAM "gnuplot"
 #define FREE_ARG char*  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FTOL 1.0e-10  #define FILENAMELENGTH 80
   /*#define DEBUG*/
 #define NRANSI  #define windows
 #define ITMAX 200  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define TOL 2.0e-4  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define CGOLD 0.3819660  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define GOLD 1.618034  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define GLIMIT 100.0  #define NCOVMAX 8 /* Maximum number of covariates */
 #define TINY 1.0e-20  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 static double maxarg1,maxarg2;  #define AGESUP 130
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define AGEBASE 40
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #ifdef windows
    #define DIRSEPARATOR '\\'
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define ODIRSEPARATOR '/'
 #define rint(a) floor(a+0.5)  #else
   #define DIRSEPARATOR '/'
 static double sqrarg;  #define ODIRSEPARATOR '\\'
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #endif
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
   char version[80]="Imach version 0.95, May 2003, INED-EUROREVES ";
 int imx;  int erreur; /* Error number */
 int stepm;  int nvar;
 /* Stepm, step in month: minimum step interpolation*/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 int m,nb;  int nlstate=2; /* Number of live states */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;  int ndeath=1; /* Number of dead states */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double **pmmij;  int popbased=0;
   
 double *weight;  int *wav; /* Number of waves for this individuual 0 is possible */
 int **s; /* Status */  int maxwav; /* Maxim number of waves */
 double *agedc, **covar, idx;  int jmin, jmax; /* min, max spacing between 2 waves */
 int **nbcode, *Tcode, *Tvar, **codtab;  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double ftolhess; /* Tolerance for computing hessian */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /******************************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 void replace(char *s, char*t)  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog;
   int i;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int lg=20;  FILE *ficresprobmorprev;
   i=0;  FILE *fichtm; /* Html File */
   lg=strlen(t);  FILE *ficreseij;
   for(i=0; i<= lg; i++) {  char filerese[FILENAMELENGTH];
     (s[i] = t[i]);  FILE  *ficresvij;
     if (t[i]== '\\') s[i]='/';  char fileresv[FILENAMELENGTH];
   }  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 int nbocc(char *s, char occ)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   int i,j=0;  
   int lg=20;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   i=0;  char filelog[FILENAMELENGTH]; /* Log file */
   lg=strlen(s);  char filerest[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char fileregp[FILENAMELENGTH];
   if  (s[i] == occ ) j++;  char popfile[FILENAMELENGTH];
   }  
   return j;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 }  
   #define NR_END 1
 void cutv(char *u,char *v, char*t, char occ)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   int i,lg,j,p;  
   i=0;  #define NRANSI 
   for(j=0; j<=strlen(t)-1; j++) {  #define ITMAX 200 
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define TOL 2.0e-4 
   
   lg=strlen(t);  #define CGOLD 0.3819660 
   for(j=0; j<p; j++) {  #define ZEPS 1.0e-10 
     (u[j] = t[j]);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     u[p]='\0';  
   }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
    for(j=0; j<= lg; j++) {  #define TINY 1.0e-20 
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /********************** nrerror ********************/    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void nrerror(char error_text[])  #define rint(a) floor(a+0.5)
 {  
   fprintf(stderr,"ERREUR ...\n");  static double sqrarg;
   fprintf(stderr,"%s\n",error_text);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   exit(1);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  
 /*********************** vector *******************/  int imx; 
 double *vector(int nl, int nh)  int stepm;
 {  /* Stepm, step in month: minimum step interpolation*/
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int estepm;
   if (!v) nrerror("allocation failure in vector");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return v-nl+NR_END;  
 }  int m,nb;
   int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 /************************ free vector ******************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 void free_vector(double*v, int nl, int nh)  double **pmmij, ***probs;
 {  double dateintmean=0;
   free((FREE_ARG)(v+nl-NR_END));  
 }  double *weight;
   int **s; /* Status */
 /************************ivector *******************************/  double *agedc, **covar, idx;
 int *ivector(long nl,long nh)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  
   int *v;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  double ftolhess; /* Tolerance for computing hessian */
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /******************free ivector **************************/    char  *ss;                            /* pointer */
 void free_ivector(int *v, long nl, long nh)    int   l1, l2;                         /* length counters */
 {  
   free((FREE_ARG)(v+nl-NR_END));    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /******************* imatrix *******************************/    if ( ss == NULL ) {                   /* no directory, so use current */
 int **imatrix(long nrl, long nrh, long ncl, long nch)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      /*    extern  char* getcwd ( char *buf , int len);*/
   int **m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
          return( GLOCK_ERROR_GETCWD );
   /* allocate pointers to rows */      }
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      strcpy( name, path );               /* we've got it */
   if (!m) nrerror("allocation failure 1 in matrix()");    } else {                              /* strip direcotry from path */
   m += NR_END;      ss++;                               /* after this, the filename */
   m -= nrl;      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
   /* allocate rows and set pointers to them */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      dirc[l1-l2] = 0;                    /* add zero */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    }
   m[nrl] += NR_END;    l1 = strlen( dirc );                  /* length of directory */
   m[nrl] -= ncl;  #ifdef windows
      if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #else
      if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   /* return pointer to array of pointers to rows */  #endif
   return m;    ss = strrchr( name, '.' );            /* find last / */
 }    ss++;
     strcpy(ext,ss);                       /* save extension */
 /****************** free_imatrix *************************/    l1= strlen( name);
 void free_imatrix(m,nrl,nrh,ncl,nch)    l2= strlen(ss)+1;
       int **m;    strncpy( finame, name, l1-l2);
       long nch,ncl,nrh,nrl;    finame[l1-l2]= 0;
      /* free an int matrix allocated by imatrix() */    return( 0 );                          /* we're done */
 {  }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  
 }  /******************************************/
   
 /******************* matrix *******************************/  void replace(char *s, char*t)
 double **matrix(long nrl, long nrh, long ncl, long nch)  {
 {    int i;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    int lg=20;
   double **m;    i=0;
     lg=strlen(t);
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(i=0; i<= lg; i++) {
   if (!m) nrerror("allocation failure 1 in matrix()");      (s[i] = t[i]);
   m += NR_END;      if (t[i]== '\\') s[i]='/';
   m -= nrl;    }
   }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int nbocc(char *s, char occ)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    int i,j=0;
     int lg=20;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    i=0;
   return m;    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /*************************free matrix ************************/    }
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    return j;
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  void cutv(char *u,char *v, char*t, char occ)
 }  {
     /* cuts string t into u and v where u is ended by char occ excluding it
 /******************* ma3x *******************************/       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)       gives u="abcedf" and v="ghi2j" */
 {    int i,lg,j,p=0;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    i=0;
   double ***m;    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    lg=strlen(t);
   m -= nrl;    for(j=0; j<p; j++) {
       (u[j] = t[j]);
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       u[p]='\0';
   m[nrl] += NR_END;  
   m[nrl] -= ncl;     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    }
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /********************** nrerror ********************/
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  void nrerror(char error_text[])
   for (j=ncl+1; j<=nch; j++)  {
     m[nrl][j]=m[nrl][j-1]+nlay;    fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
   for (i=nrl+1; i<=nrh; i++) {    exit(EXIT_FAILURE);
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)  /*********************** vector *******************/
       m[i][j]=m[i][j-1]+nlay;  double *vector(int nl, int nh)
   }  {
   return m;    double *v;
 }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
 /*************************free ma3x ************************/    return v-nl+NR_END;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /************************ free vector ******************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void free_vector(double*v, int nl, int nh)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /***************** f1dim *************************/  
 extern int ncom;  /************************ivector *******************************/
 extern double *pcom,*xicom;  int *ivector(long nl,long nh)
 extern double (*nrfunc)(double []);  {
      int *v;
 double f1dim(double x)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 {    if (!v) nrerror("allocation failure in ivector");
   int j;    return v-nl+NR_END;
   double f;  }
   double *xt;  
    /******************free ivector **************************/
   xt=vector(1,ncom);  void free_ivector(int *v, long nl, long nh)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  {
   f=(*nrfunc)(xt);    free((FREE_ARG)(v+nl-NR_END));
   free_vector(xt,1,ncom);  }
   return f;  
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /*****************brent *************************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  { 
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   int iter;    int **m; 
   double a,b,d,etemp;    
   double fu,fv,fw,fx;    /* allocate pointers to rows */ 
   double ftemp;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double e=0.0;    m += NR_END; 
      m -= nrl; 
   a=(ax < cx ? ax : cx);    
   b=(ax > cx ? ax : cx);    
   x=w=v=bx;    /* allocate rows and set pointers to them */ 
   fw=fv=fx=(*f)(x);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   for (iter=1;iter<=ITMAX;iter++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     xm=0.5*(a+b);    m[nrl] += NR_END; 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    m[nrl] -= ncl; 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    
     printf(".");fflush(stdout);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 #ifdef DEBUG    
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    /* return pointer to array of pointers to rows */ 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    return m; 
 #endif  } 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  /****************** free_imatrix *************************/
       return fx;  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
     ftemp=fu;        long nch,ncl,nrh,nrl; 
     if (fabs(e) > tol1) {       /* free an int matrix allocated by imatrix() */ 
       r=(x-w)*(fx-fv);  { 
       q=(x-v)*(fx-fw);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       p=(x-v)*q-(x-w)*r;    free((FREE_ARG) (m+nrl-NR_END)); 
       q=2.0*(q-r);  } 
       if (q > 0.0) p = -p;  
       q=fabs(q);  /******************* matrix *******************************/
       etemp=e;  double **matrix(long nrl, long nrh, long ncl, long nch)
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    double **m;
       else {  
         d=p/q;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         u=x+d;    if (!m) nrerror("allocation failure 1 in matrix()");
         if (u-a < tol2 || b-u < tol2)    m += NR_END;
           d=SIGN(tol1,xm-x);    m -= nrl;
       }  
     } else {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m[nrl] -= ncl;
     fu=(*f)(u);  
     if (fu <= fx) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       if (u >= x) a=x; else b=x;    return m;
       SHFT(v,w,x,u)    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
         SHFT(fv,fw,fx,fu)     */
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /*************************free matrix ************************/
             v=w;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
             w=u;  {
             fv=fw;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             fw=fu;    free((FREE_ARG)(m+nrl-NR_END));
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  /******************* ma3x *******************************/
           }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         }  {
   }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   nrerror("Too many iterations in brent");    double ***m;
   *xmin=x;  
   return fx;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /****************** mnbrak ***********************/    m -= nrl;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             double (*func)(double))    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   double ulim,u,r,q, dum;    m[nrl] -= ncl;
   double fu;  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   if (*fb > *fa) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     SHFT(dum,*ax,*bx,dum)    m[nrl][ncl] += NR_END;
       SHFT(dum,*fb,*fa,dum)    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
   *cx=(*bx)+GOLD*(*bx-*ax);      m[nrl][j]=m[nrl][j-1]+nlay;
   *fc=(*func)(*cx);    
   while (*fb > *fc) {    for (i=nrl+1; i<=nrh; i++) {
     r=(*bx-*ax)*(*fb-*fc);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     q=(*bx-*cx)*(*fb-*fa);      for (j=ncl+1; j<=nch; j++) 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/        m[i][j]=m[i][j-1]+nlay;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    }
     ulim=(*bx)+GLIMIT*(*cx-*bx);    return m; 
     if ((*bx-u)*(u-*cx) > 0.0) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       fu=(*func)(u);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     } else if ((*cx-u)*(u-ulim) > 0.0) {    */
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /*************************free ma3x ************************/
           SHFT(*fb,*fc,fu,(*func)(u))  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       u=ulim;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m+nrl-NR_END));
     } else {  }
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /***************** f1dim *************************/
     }  extern int ncom; 
     SHFT(*ax,*bx,*cx,u)  extern double *pcom,*xicom;
       SHFT(*fa,*fb,*fc,fu)  extern double (*nrfunc)(double []); 
       }   
 }  double f1dim(double x) 
   { 
 /*************** linmin ************************/    int j; 
     double f;
 int ncom;    double *xt; 
 double *pcom,*xicom;   
 double (*nrfunc)(double []);    xt=vector(1,ncom); 
      for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    f=(*nrfunc)(xt); 
 {    free_vector(xt,1,ncom); 
   double brent(double ax, double bx, double cx,    return f; 
                double (*f)(double), double tol, double *xmin);  } 
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /*****************brent *************************/
               double *fc, double (*func)(double));  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   int j;  { 
   double xx,xmin,bx,ax;    int iter; 
   double fx,fb,fa;    double a,b,d,etemp;
      double fu,fv,fw,fx;
   ncom=n;    double ftemp;
   pcom=vector(1,n);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   xicom=vector(1,n);    double e=0.0; 
   nrfunc=func;   
   for (j=1;j<=n;j++) {    a=(ax < cx ? ax : cx); 
     pcom[j]=p[j];    b=(ax > cx ? ax : cx); 
     xicom[j]=xi[j];    x=w=v=bx; 
   }    fw=fv=fx=(*f)(x); 
   ax=0.0;    for (iter=1;iter<=ITMAX;iter++) { 
   xx=1.0;      xm=0.5*(a+b); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 #ifdef DEBUG      printf(".");fflush(stdout);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      fprintf(ficlog,".");fflush(ficlog);
 #endif  #ifdef DEBUG
   for (j=1;j<=n;j++) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     xi[j] *= xmin;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     p[j] += xi[j];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   }  #endif
   free_vector(xicom,1,n);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   free_vector(pcom,1,n);        *xmin=x; 
 }        return fx; 
       } 
 /*************** powell ************************/      ftemp=fu;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      if (fabs(e) > tol1) { 
             double (*func)(double []))        r=(x-w)*(fx-fv); 
 {        q=(x-v)*(fx-fw); 
   void linmin(double p[], double xi[], int n, double *fret,        p=(x-v)*q-(x-w)*r; 
               double (*func)(double []));        q=2.0*(q-r); 
   int i,ibig,j;        if (q > 0.0) p = -p; 
   double del,t,*pt,*ptt,*xit;        q=fabs(q); 
   double fp,fptt;        etemp=e; 
   double *xits;        e=d; 
   pt=vector(1,n);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   ptt=vector(1,n);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   xit=vector(1,n);        else { 
   xits=vector(1,n);          d=p/q; 
   *fret=(*func)(p);          u=x+d; 
   for (j=1;j<=n;j++) pt[j]=p[j];          if (u-a < tol2 || b-u < tol2) 
   for (*iter=1;;++(*iter)) {            d=SIGN(tol1,xm-x); 
     fp=(*fret);        } 
     ibig=0;      } else { 
     del=0.0;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      } 
     for (i=1;i<=n;i++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       printf(" %d %.12f",i, p[i]);      fu=(*f)(u); 
     printf("\n");      if (fu <= fx) { 
     for (i=1;i<=n;i++) {        if (u >= x) a=x; else b=x; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        SHFT(v,w,x,u) 
       fptt=(*fret);          SHFT(fv,fw,fx,fu) 
 #ifdef DEBUG          } else { 
       printf("fret=%lf \n",*fret);            if (u < x) a=u; else b=u; 
 #endif            if (fu <= fw || w == x) { 
       printf("%d",i);fflush(stdout);              v=w; 
       linmin(p,xit,n,fret,func);              w=u; 
       if (fabs(fptt-(*fret)) > del) {              fv=fw; 
         del=fabs(fptt-(*fret));              fw=fu; 
         ibig=i;            } else if (fu <= fv || v == x || v == w) { 
       }              v=u; 
 #ifdef DEBUG              fv=fu; 
       printf("%d %.12e",i,(*fret));            } 
       for (j=1;j<=n;j++) {          } 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    } 
         printf(" x(%d)=%.12e",j,xit[j]);    nrerror("Too many iterations in brent"); 
       }    *xmin=x; 
       for(j=1;j<=n;j++)    return fx; 
         printf(" p=%.12e",p[j]);  } 
       printf("\n");  
 #endif  /****************** mnbrak ***********************/
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 #ifdef DEBUG              double (*func)(double)) 
       int k[2],l;  { 
       k[0]=1;    double ulim,u,r,q, dum;
       k[1]=-1;    double fu; 
       printf("Max: %.12e",(*func)(p));   
       for (j=1;j<=n;j++)    *fa=(*func)(*ax); 
         printf(" %.12e",p[j]);    *fb=(*func)(*bx); 
       printf("\n");    if (*fb > *fa) { 
       for(l=0;l<=1;l++) {      SHFT(dum,*ax,*bx,dum) 
         for (j=1;j<=n;j++) {        SHFT(dum,*fb,*fa,dum) 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        } 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    *cx=(*bx)+GOLD*(*bx-*ax); 
         }    *fc=(*func)(*cx); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    while (*fb > *fc) { 
       }      r=(*bx-*ax)*(*fb-*fc); 
 #endif      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       free_vector(xit,1,n);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       free_vector(xits,1,n);      if ((*bx-u)*(u-*cx) > 0.0) { 
       free_vector(ptt,1,n);        fu=(*func)(u); 
       free_vector(pt,1,n);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       return;        fu=(*func)(u); 
     }        if (fu < *fc) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for (j=1;j<=n;j++) {            SHFT(*fb,*fc,fu,(*func)(u)) 
       ptt[j]=2.0*p[j]-pt[j];            } 
       xit[j]=p[j]-pt[j];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       pt[j]=p[j];        u=ulim; 
     }        fu=(*func)(u); 
     fptt=(*func)(ptt);      } else { 
     if (fptt < fp) {        u=(*cx)+GOLD*(*cx-*bx); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        fu=(*func)(u); 
       if (t < 0.0) {      } 
         linmin(p,xit,n,fret,func);      SHFT(*ax,*bx,*cx,u) 
         for (j=1;j<=n;j++) {        SHFT(*fa,*fb,*fc,fu) 
           xi[j][ibig]=xi[j][n];        } 
           xi[j][n]=xit[j];  } 
         }  
 #ifdef DEBUG  /*************** linmin ************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  int ncom; 
           printf(" %.12e",xit[j]);  double *pcom,*xicom;
         printf("\n");  double (*nrfunc)(double []); 
 #endif   
       }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     }  { 
   }    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
 /**** Prevalence limit ****************/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    int j; 
 {    double xx,xmin,bx,ax; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double fx,fb,fa;
      matrix by transitions matrix until convergence is reached */   
     ncom=n; 
   int i, ii,j,k;    pcom=vector(1,n); 
   double min, max, maxmin, maxmax,sumnew=0.;    xicom=vector(1,n); 
   double **matprod2();    nrfunc=func; 
   double **out, cov[NCOVMAX], **pmij();    for (j=1;j<=n;j++) { 
   double **newm;      pcom[j]=p[j]; 
   double agefin, delaymax=50 ; /* Max number of years to converge */      xicom[j]=xi[j]; 
     } 
   for (ii=1;ii<=nlstate+ndeath;ii++)    ax=0.0; 
     for (j=1;j<=nlstate+ndeath;j++){    xx=1.0; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #ifdef DEBUG
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     newm=savm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     /* Covariates have to be included here again */  #endif
     cov[1]=1.;    for (j=1;j<=n;j++) { 
     cov[2]=agefin;      xi[j] *= xmin; 
     if (cptcovn>0){      p[j] += xi[j]; 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    } 
     }    free_vector(xicom,1,n); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    free_vector(pcom,1,n); 
   } 
     savm=oldm;  
     oldm=newm;  /*************** powell ************************/
     maxmax=0.;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for(j=1;j<=nlstate;j++){              double (*func)(double [])) 
       min=1.;  { 
       max=0.;    void linmin(double p[], double xi[], int n, double *fret, 
       for(i=1; i<=nlstate; i++) {                double (*func)(double [])); 
         sumnew=0;    int i,ibig,j; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double del,t,*pt,*ptt,*xit;
         prlim[i][j]= newm[i][j]/(1-sumnew);    double fp,fptt;
         max=FMAX(max,prlim[i][j]);    double *xits;
         min=FMIN(min,prlim[i][j]);    pt=vector(1,n); 
       }    ptt=vector(1,n); 
       maxmin=max-min;    xit=vector(1,n); 
       maxmax=FMAX(maxmax,maxmin);    xits=vector(1,n); 
     }    *fret=(*func)(p); 
     if(maxmax < ftolpl){    for (j=1;j<=n;j++) pt[j]=p[j]; 
       return prlim;    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
   }      ibig=0; 
 }      del=0.0; 
       printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
 /*************** transition probabilities **********/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       for (i=1;i<=n;i++) 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        printf(" %d %.12f",i, p[i]);
 {      fprintf(ficlog," %d %.12f",i, p[i]);
   double s1, s2;      printf("\n");
   /*double t34;*/      fprintf(ficlog,"\n");
   int i,j,j1, nc, ii, jj;      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for(i=1; i<= nlstate; i++){        fptt=(*fret); 
     for(j=1; j<i;j++){  #ifdef DEBUG
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("fret=%lf \n",*fret);
         /*s2 += param[i][j][nc]*cov[nc];*/        fprintf(ficlog,"fret=%lf \n",*fret);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #endif
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        printf("%d",i);fflush(stdout);
       }        fprintf(ficlog,"%d",i);fflush(ficlog);
       ps[i][j]=s2;        linmin(p,xit,n,fret,func); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        if (fabs(fptt-(*fret)) > del) { 
     }          del=fabs(fptt-(*fret)); 
     for(j=i+1; j<=nlstate+ndeath;j++){          ibig=i; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #ifdef DEBUG
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        printf("%d %.12e",i,(*fret));
       }        fprintf(ficlog,"%d %.12e",i,(*fret));
       ps[i][j]=s2;        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   }          printf(" x(%d)=%.12e",j,xit[j]);
   for(i=1; i<= nlstate; i++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
      s1=0;        }
     for(j=1; j<i; j++)        for(j=1;j<=n;j++) {
       s1+=exp(ps[i][j]);          printf(" p=%.12e",p[j]);
     for(j=i+1; j<=nlstate+ndeath; j++)          fprintf(ficlog," p=%.12e",p[j]);
       s1+=exp(ps[i][j]);        }
     ps[i][i]=1./(s1+1.);        printf("\n");
     for(j=1; j<i; j++)        fprintf(ficlog,"\n");
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #endif
     for(j=i+1; j<=nlstate+ndeath; j++)      } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #ifdef DEBUG
   } /* end i */        int k[2],l;
         k[0]=1;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        k[1]=-1;
     for(jj=1; jj<= nlstate+ndeath; jj++){        printf("Max: %.12e",(*func)(p));
       ps[ii][jj]=0;        fprintf(ficlog,"Max: %.12e",(*func)(p));
       ps[ii][ii]=1;        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
         }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        printf("\n");
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficlog,"\n");
      printf("%lf ",ps[ii][jj]);        for(l=0;l<=1;l++) {
    }          for (j=1;j<=n;j++) {
     printf("\n ");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("\n ");printf("%lf ",cov[2]);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /*          }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   goto end;*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     return ps;        }
 }  #endif
   
 /**************** Product of 2 matrices ******************/  
         free_vector(xit,1,n); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        free_vector(pt,1,n); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        return; 
   /* in, b, out are matrice of pointers which should have been initialized      } 
      before: only the contents of out is modified. The function returns      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
      a pointer to pointers identical to out */      for (j=1;j<=n;j++) { 
   long i, j, k;        ptt[j]=2.0*p[j]-pt[j]; 
   for(i=nrl; i<= nrh; i++)        xit[j]=p[j]-pt[j]; 
     for(k=ncolol; k<=ncoloh; k++)        pt[j]=p[j]; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      } 
         out[i][k] +=in[i][j]*b[j][k];      fptt=(*func)(ptt); 
       if (fptt < fp) { 
   return out;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 }        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
 /************* Higher Matrix Product ***************/            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          }
 {  #ifdef DEBUG
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      duration (i.e. until          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          for(j=1;j<=n;j++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            printf(" %.12e",xit[j]);
      (typically every 2 years instead of every month which is too big).            fprintf(ficlog," %.12e",xit[j]);
      Model is determined by parameters x and covariates have to be          }
      included manually here.          printf("\n");
           fprintf(ficlog,"\n");
      */  #endif
         }
   int i, j, d, h, k;      } 
   double **out, cov[NCOVMAX];    } 
   double **newm;  } 
   
   /* Hstepm could be zero and should return the unit matrix */  /**** Prevalence limit (stable prevalence)  ****************/
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){    int i, ii,j,k;
     for(d=1; d <=hstepm; d++){    double min, max, maxmin, maxmax,sumnew=0.;
       newm=savm;    double **matprod2();
       /* Covariates have to be included here again */    double **out, cov[NCOVMAX], **pmij();
       cov[1]=1.;    double **newm;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double agefin, delaymax=50 ; /* Max number of years to converge */
       if (cptcovn>0){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    for (ii=1;ii<=nlstate+ndeath;ii++)
     }      for (j=1;j<=nlstate+ndeath;j++){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));     cov[1]=1.;
       savm=oldm;   
       oldm=newm;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for(i=1; i<=nlstate+ndeath; i++)      newm=savm;
       for(j=1;j<=nlstate+ndeath;j++) {      /* Covariates have to be included here again */
         po[i][j][h]=newm[i][j];       cov[2]=agefin;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    
          */        for (k=1; k<=cptcovn;k++) {
       }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   } /* end h */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   return po;        }
 }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /*************** log-likelihood *************/  
 double func( double *x)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int i, ii, j, k, mi, d;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double **out;  
   double sw; /* Sum of weights */      savm=oldm;
   double lli; /* Individual log likelihood */      oldm=newm;
   long ipmx;      maxmax=0.;
   /*extern weight */      for(j=1;j<=nlstate;j++){
   /* We are differentiating ll according to initial status */        min=1.;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        max=0.;
   /*for(i=1;i<imx;i++)        for(i=1; i<=nlstate; i++) {
 printf(" %d\n",s[4][i]);          sumnew=0;
   */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   for(k=1; k<=nlstate; k++) ll[k]=0.;          max=FMAX(max,prlim[i][j]);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          min=FMIN(min,prlim[i][j]);
        for(mi=1; mi<= wav[i]-1; mi++){        }
       for (ii=1;ii<=nlstate+ndeath;ii++)        maxmin=max-min;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        maxmax=FMAX(maxmax,maxmin);
             for(d=0; d<dh[mi][i]; d++){      }
         newm=savm;      if(maxmax < ftolpl){
           cov[1]=1.;        return prlim;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      }
           if (cptcovn>0){    }
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];  }
             }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** transition probabilities ***************/ 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           oldm=newm;  {
     double s1, s2;
     /*double t34;*/
       } /* end mult */    int i,j,j1, nc, ii, jj;
      
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      for(i=1; i<= nlstate; i++){
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      for(j=1; j<i;j++){
       ipmx +=1;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       sw += weight[i];          /*s2 += param[i][j][nc]*cov[nc];*/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     } /* end of wave */          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   } /* end of individual */        }
         ps[i][j]=s2;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      for(j=i+1; j<=nlstate+ndeath;j++){
   return -l;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
 /*********** Maximum Likelihood Estimation ***************/        ps[i][j]=s2;
       }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    }
 {      /*ps[3][2]=1;*/
   int i,j, iter;  
   double **xi,*delti;    for(i=1; i<= nlstate; i++){
   double fret;       s1=0;
   xi=matrix(1,npar,1,npar);      for(j=1; j<i; j++)
   for (i=1;i<=npar;i++)        s1+=exp(ps[i][j]);
     for (j=1;j<=npar;j++)      for(j=i+1; j<=nlstate+ndeath; j++)
       xi[i][j]=(i==j ? 1.0 : 0.0);        s1+=exp(ps[i][j]);
   printf("Powell\n");      ps[i][i]=1./(s1+1.);
   powell(p,xi,npar,ftol,&iter,&fret,func);      for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      for(j=i+1; j<=nlstate+ndeath; j++)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 }    } /* end i */
   
 /**** Computes Hessian and covariance matrix ***/    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for(jj=1; jj<= nlstate+ndeath; jj++){
 {        ps[ii][jj]=0;
   double  **a,**y,*x,pd;        ps[ii][ii]=1;
   double **hess;      }
   int i, j,jk;    }
   int *indx;  
   
   double hessii(double p[], double delta, int theta, double delti[]);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   double hessij(double p[], double delti[], int i, int j);      for(jj=1; jj<= nlstate+ndeath; jj++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;       printf("%lf ",ps[ii][jj]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;     }
       printf("\n ");
       }
   hess=matrix(1,npar,1,npar);      printf("\n ");printf("%lf ",cov[2]);*/
   /*
   printf("\nCalculation of the hessian matrix. Wait...\n");    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for (i=1;i<=npar;i++){    goto end;*/
     printf("%d",i);fflush(stdout);      return ps;
     hess[i][i]=hessii(p,ftolhess,i,delti);  }
     /*printf(" %f ",p[i]);*/  
   }  /**************** Product of 2 matrices ******************/
   
   for (i=1;i<=npar;i++) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for (j=1;j<=npar;j++)  {  {
       if (j>i) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         printf(".%d%d",i,j);fflush(stdout);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         hess[i][j]=hessij(p,delti,i,j);    /* in, b, out are matrice of pointers which should have been initialized 
         hess[j][i]=hess[i][j];       before: only the contents of out is modified. The function returns
       }       a pointer to pointers identical to out */
     }    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
   printf("\n");      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          out[i][k] +=in[i][j]*b[j][k];
    
   a=matrix(1,npar,1,npar);    return out;
   y=matrix(1,npar,1,npar);  }
   x=vector(1,npar);  
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  /************* Higher Matrix Product ***************/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
   for (j=1;j<=npar;j++) {    /* Computes the transition matrix starting at age 'age' over 
     for (i=1;i<=npar;i++) x[i]=0;       'nhstepm*hstepm*stepm' months (i.e. until
     x[j]=1;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     lubksb(a,npar,indx,x);       nhstepm*hstepm matrices. 
     for (i=1;i<=npar;i++){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       matcov[i][j]=x[i];       (typically every 2 years instead of every month which is too big 
     }       for the memory).
   }       Model is determined by parameters x and covariates have to be 
        included manually here. 
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {       */
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);    int i, j, d, h, k;
     }    double **out, cov[NCOVMAX];
     printf("\n");    double **newm;
   }  
     /* Hstepm could be zero and should return the unit matrix */
   /* Recompute Inverse */    for (i=1;i<=nlstate+ndeath;i++)
   for (i=1;i<=npar;i++)      for (j=1;j<=nlstate+ndeath;j++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
   ludcmp(a,npar,indx,&pd);        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   /*  printf("\n#Hessian matrix recomputed#\n");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
   for (j=1;j<=npar;j++) {      for(d=1; d <=hstepm; d++){
     for (i=1;i<=npar;i++) x[i]=0;        newm=savm;
     x[j]=1;        /* Covariates have to be included here again */
     lubksb(a,npar,indx,x);        cov[1]=1.;
     for (i=1;i<=npar;i++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       y[i][j]=x[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       printf("%.3e ",y[i][j]);        for (k=1; k<=cptcovage;k++)
     }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     printf("\n");        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   */  
   
   free_matrix(a,1,npar,1,npar);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   free_matrix(y,1,npar,1,npar);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   free_vector(x,1,npar);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   free_ivector(indx,1,npar);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(hess,1,npar,1,npar);        savm=oldm;
         oldm=newm;
       }
 }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
 /*************** hessian matrix ****************/          po[i][j][h]=newm[i][j];
 double hessii( double x[], double delta, int theta, double delti[])          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 {           */
   int i;        }
   int l=1, lmax=20;    } /* end h */
   double k1,k2;    return po;
   double p2[NPARMAX+1];  }
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  /*************** log-likelihood *************/
   int k=0,kmax=10;  double func( double *x)
   double l1;  {
     int i, ii, j, k, mi, d, kk;
   fx=func(x);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (i=1;i<=npar;i++) p2[i]=x[i];    double **out;
   for(l=0 ; l <=lmax; l++){    double sw; /* Sum of weights */
     l1=pow(10,l);    double lli; /* Individual log likelihood */
     delts=delt;    int s1, s2;
     for(k=1 ; k <kmax; k=k+1){    double bbh, survp;
       delt = delta*(l1*k);    long ipmx;
       p2[theta]=x[theta] +delt;    /*extern weight */
       k1=func(p2)-fx;    /* We are differentiating ll according to initial status */
       p2[theta]=x[theta]-delt;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       k2=func(p2)-fx;    /*for(i=1;i<imx;i++) 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      printf(" %d\n",s[4][i]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    */
          cov[1]=1.;
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for(k=1; k<=nlstate; k++) ll[k]=0.;
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    if(mle==1){
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         k=kmax;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          for (ii=1;ii<=nlstate+ndeath;ii++)
         k=kmax; l=lmax*10.;            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         delts=delt;            }
       }          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   delti[theta]=delts;            for (kk=1; kk<=cptcovage;kk++) {
   return res;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 double hessij( double x[], double delti[], int thetai,int thetaj)            savm=oldm;
 {            oldm=newm;
   int i;          } /* end mult */
   int l=1, l1, lmax=20;        
   double k1,k2,k3,k4,res,fx;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double p2[NPARMAX+1];          /* But now since version 0.9 we anticipate for bias and large stepm.
   int k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   fx=func(x);           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (k=1; k<=2; k++) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (i=1;i<=npar;i++) p2[i]=x[i];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     p2[thetai]=x[thetai]+delti[thetai]/k;           * probability in order to take into account the bias as a fraction of the way
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     k1=func(p2)-fx;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
     p2[thetai]=x[thetai]+delti[thetai]/k;           * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           */
     k2=func(p2)-fx;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     p2[thetai]=x[thetai]-delti[thetai]/k;          bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* bias is positive if real duration
     k3=func(p2)-fx;           * is higher than the multiple of stepm and negative otherwise.
             */
     p2[thetai]=x[thetai]-delti[thetai]/k;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          if( s2 > nlstate){ 
     k4=func(p2)-fx;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */               to the likelihood is the probability to die between last step unit time and current 
 #ifdef DEBUG               step unit time, which is also the differences between probability to die before dh 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);               and probability to die before dh-stepm . 
 #endif               In version up to 0.92 likelihood was computed
   }          as if date of death was unknown. Death was treated as any other
   return res;          health state: the date of the interview describes the actual state
 }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 /************** Inverse of matrix **************/          (healthy, disable or death) and IMaCh was corrected; but when we
 void ludcmp(double **a, int n, int *indx, double *d)          introduced the exact date of death then we should have modified
 {          the contribution of an exact death to the likelihood. This new
   int i,imax,j,k;          contribution is smaller and very dependent of the step unit
   double big,dum,sum,temp;          stepm. It is no more the probability to die between last interview
   double *vv;          and month of death but the probability to survive from last
            interview up to one month before death multiplied by the
   vv=vector(1,n);          probability to die within a month. Thanks to Chris
   *d=1.0;          Jackson for correcting this bug.  Former versions increased
   for (i=1;i<=n;i++) {          mortality artificially. The bad side is that we add another loop
     big=0.0;          which slows down the processing. The difference can be up to 10%
     for (j=1;j<=n;j++)          lower mortality.
       if ((temp=fabs(a[i][j])) > big) big=temp;            */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            lli=log(out[s1][s2] - savm[s1][s2]);
     vv[i]=1.0/big;          }else{
   }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (j=1;j<=n;j++) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for (i=1;i<j;i++) {          } 
       sum=a[i][j];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /*if(lli ==000.0)*/
       a[i][j]=sum;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
     big=0.0;          sw += weight[i];
     for (i=j;i<=n;i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       sum=a[i][j];        } /* end of wave */
       for (k=1;k<j;k++)      } /* end of individual */
         sum -= a[i][k]*a[k][j];    }  else if(mle==2){
       a[i][j]=sum;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         big=dum;        for(mi=1; mi<= wav[i]-1; mi++){
         imax=i;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (j != imax) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=1;k<=n;k++) {            }
         dum=a[imax][k];          for(d=0; d<=dh[mi][i]; d++){
         a[imax][k]=a[j][k];            newm=savm;
         a[j][k]=dum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       *d = -(*d);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       vv[imax]=vv[j];            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     indx[j]=imax;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (a[j][j] == 0.0) a[j][j]=TINY;            savm=oldm;
     if (j != n) {            oldm=newm;
       dum=1.0/(a[j][j]);          } /* end mult */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias and large stepm.
   free_vector(vv,1,n);  /* Doesn't work */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 ;           * (in months) between two waves is not a multiple of stepm, we rounded to 
 }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
 void lubksb(double **a, int n, int *indx, double b[])           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 {           * probability in order to take into account the bias as a fraction of the way
   int i,ii=0,ip,j;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double sum;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
   for (i=1;i<=n;i++) {           * For stepm > 1 the results are less biased than in previous versions. 
     ip=indx[i];           */
     sum=b[ip];          s1=s[mw[mi][i]][i];
     b[ip]=b[i];          s2=s[mw[mi+1][i]][i];
     if (ii)          bbh=(double)bh[mi][i]/(double)stepm; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /* bias is positive if real duration
     else if (sum) ii=i;           * is higher than the multiple of stepm and negative otherwise.
     b[i]=sum;           */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (i=n;i>=1;i--) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     sum=b[i];          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     b[i]=sum/a[i][i];          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 }          ipmx +=1;
           sw += weight[i];
 /************ Frequencies ********************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        } /* end of wave */
 {  /* Some frequencies */      } /* end of individual */
      }  else if(mle==3){  /* exponential inter-extrapolation */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***freq; /* Frequencies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *pp;        for(mi=1; mi<= wav[i]-1; mi++){
   double pos;          for (ii=1;ii<=nlstate+ndeath;ii++)
   FILE *ficresp;            for (j=1;j<=nlstate+ndeath;j++){
   char fileresp[FILENAMELENGTH];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);            }
           for(d=0; d<dh[mi][i]; d++){
   strcpy(fileresp,"p");            newm=savm;
   strcat(fileresp,fileres);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if((ficresp=fopen(fileresp,"w"))==NULL) {            for (kk=1; kk<=cptcovage;kk++) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     exit(0);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   j1=0;            savm=oldm;
             oldm=newm;
   j=cptcovn;          } /* end mult */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   for(k1=1; k1<=j;k1++){          /* But now since version 0.9 we anticipate for bias and large stepm.
    for(i1=1; i1<=ncodemax[k1];i1++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
        j1++;           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
         for (i=-1; i<=nlstate+ndeath; i++)             * we keep into memory the bias bh[mi][i] and also the previous matrix product
          for (jk=-1; jk<=nlstate+ndeath; jk++)             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            for(m=agemin; m <= agemax+3; m++)           * probability in order to take into account the bias as a fraction of the way
              freq[i][jk][m]=0;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
                   * -stepm/2 to stepm/2 .
        for (i=1; i<=imx; i++) {           * For stepm=1 the results are the same as for previous versions of Imach.
          bool=1;           * For stepm > 1 the results are less biased than in previous versions. 
          if  (cptcovn>0) {           */
            for (z1=1; z1<=cptcovn; z1++)          s1=s[mw[mi][i]][i];
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          s2=s[mw[mi+1][i]][i];
          }          bbh=(double)bh[mi][i]/(double)stepm; 
           if (bool==1) {          /* bias is positive if real duration
            for(m=firstpass; m<=lastpass-1; m++){           * is higher than the multiple of stepm and negative otherwise.
              if(agev[m][i]==0) agev[m][i]=agemax+1;           */
              if(agev[m][i]==1) agev[m][i]=agemax+2;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            }          /*if(lli ==000.0)*/
          }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
        }          ipmx +=1;
         if  (cptcovn>0) {          sw += weight[i];
          fprintf(ficresp, "\n#Variable");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);        } /* end of wave */
        }      } /* end of individual */
        fprintf(ficresp, "\n#");    }else{  /* ml=4 no inter-extrapolation */
        for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        fprintf(ficresp, "\n");        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=(int)agemin; i <= (int)agemax+3; i++){            for (j=1;j<=nlstate+ndeath;j++){
     if(i==(int)agemax+3)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("Total");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     else            }
       printf("Age %d", i);          for(d=0; d<dh[mi][i]; d++){
     for(jk=1; jk <=nlstate ; jk++){            newm=savm;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(jk=1; jk <=nlstate ; jk++){            }
       for(m=-1, pos=0; m <=0 ; m++)          
         pos += freq[jk][m][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(pp[jk]>=1.e-10)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            savm=oldm;
       else            oldm=newm;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          } /* end mult */
     }        
     for(jk=1; jk <=nlstate ; jk++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          ipmx +=1;
         pp[jk] += freq[jk][m][i];          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(jk=1,pos=0; jk <=nlstate ; jk++)        } /* end of wave */
       pos += pp[jk];      } /* end of individual */
     for(jk=1; jk <=nlstate ; jk++){    } /* End of if */
       if(pos>=1.e-5)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       else    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    return -l;
       if( i <= (int) agemax){  }
         if(pos>=1.e-5)  
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
       else  /*********** Maximum Likelihood Estimation ***************/
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
       }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     }  {
     for(jk=-1; jk <=nlstate+ndeath; jk++)    int i,j, iter;
       for(m=-1; m <=nlstate+ndeath; m++)    double **xi;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double fret;
     if(i <= (int) agemax)    xi=matrix(1,npar,1,npar);
       fprintf(ficresp,"\n");    for (i=1;i<=npar;i++)
     printf("\n");      for (j=1;j<=npar;j++)
     }        xi[i][j]=(i==j ? 1.0 : 0.0);
     }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
  }    powell(p,xi,npar,ftol,&iter,&fret,func);
    
   fclose(ficresp);     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   free_vector(pp,1,nlstate);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
 }  /* End of Freq */  }
   
 /************* Waves Concatenation ***************/  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  {
 {    double  **a,**y,*x,pd;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double **hess;
      Death is a valid wave (if date is known).    int i, j,jk;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    int *indx;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.    double hessii(double p[], double delta, int theta, double delti[]);
      */    double hessij(double p[], double delti[], int i, int j);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   int i, mi, m;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
 float sum=0.;    hess=matrix(1,npar,1,npar);
   
   for(i=1; i<=imx; i++){    printf("\nCalculation of the hessian matrix. Wait...\n");
     mi=0;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     m=firstpass;    for (i=1;i<=npar;i++){
     while(s[m][i] <= nlstate){      printf("%d",i);fflush(stdout);
       if(s[m][i]>=1)      fprintf(ficlog,"%d",i);fflush(ficlog);
         mw[++mi][i]=m;      hess[i][i]=hessii(p,ftolhess,i,delti);
       if(m >=lastpass)      /*printf(" %f ",p[i]);*/
         break;      /*printf(" %lf ",hess[i][i]);*/
       else    }
         m++;    
     }/* end while */    for (i=1;i<=npar;i++) {
     if (s[m][i] > nlstate){      for (j=1;j<=npar;j++)  {
       mi++;     /* Death is another wave */        if (j>i) { 
       /* if(mi==0)  never been interviewed correctly before death */          printf(".%d%d",i,j);fflush(stdout);
          /* Only death is a correct wave */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       mw[mi][i]=m;          hess[i][j]=hessij(p,delti,i,j);
     }          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
     wav[i]=mi;        }
     if(mi==0)      }
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    }
   }    printf("\n");
     fprintf(ficlog,"\n");
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       if (stepm <=0)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         dh[mi][i]=1;    
       else{    a=matrix(1,npar,1,npar);
         if (s[mw[mi+1][i]][i] > nlstate) {    y=matrix(1,npar,1,npar);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    x=vector(1,npar);
           if(j=0) j=1;  /* Survives at least one month after exam */    indx=ivector(1,npar);
         }    for (i=1;i<=npar;i++)
         else{      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    ludcmp(a,npar,indx,&pd);
           k=k+1;  
           if (j >= jmax) jmax=j;    for (j=1;j<=npar;j++) {
           else if (j <= jmin)jmin=j;      for (i=1;i<=npar;i++) x[i]=0;
           sum=sum+j;      x[j]=1;
         }      lubksb(a,npar,indx,x);
         jk= j/stepm;      for (i=1;i<=npar;i++){ 
         jl= j -jk*stepm;        matcov[i][j]=x[i];
         ju= j -(jk+1)*stepm;      }
         if(jl <= -ju)    }
           dh[mi][i]=jk;  
         else    printf("\n#Hessian matrix#\n");
           dh[mi][i]=jk+1;    fprintf(ficlog,"\n#Hessian matrix#\n");
         if(dh[mi][i]==0)    for (i=1;i<=npar;i++) { 
           dh[mi][i]=1; /* At least one step */      for (j=1;j<=npar;j++) { 
       }        printf("%.3e ",hess[i][j]);
     }        fprintf(ficlog,"%.3e ",hess[i][j]);
   }      }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);      printf("\n");
 }      fprintf(ficlog,"\n");
 /*********** Tricode ****************************/    }
 void tricode(int *Tvar, int **nbcode, int imx)  
 {    /* Recompute Inverse */
   int Ndum[80],ij, k, j, i;    for (i=1;i<=npar;i++)
   int cptcode=0;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   for (k=0; k<79; k++) Ndum[k]=0;    ludcmp(a,npar,indx,&pd);
   for (k=1; k<=7; k++) ncodemax[k]=0;  
      /*  printf("\n#Hessian matrix recomputed#\n");
   for (j=1; j<=cptcovn; j++) {  
     for (i=1; i<=imx; i++) {    for (j=1;j<=npar;j++) {
       ij=(int)(covar[Tvar[j]][i]);      for (i=1;i<=npar;i++) x[i]=0;
       Ndum[ij]++;      x[j]=1;
       if (ij > cptcode) cptcode=ij;      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        y[i][j]=x[i];
     for (i=0; i<=cptcode; i++) {        printf("%.3e ",y[i][j]);
       if(Ndum[i]!=0) ncodemax[j]++;        fprintf(ficlog,"%.3e ",y[i][j]);
     }      }
        printf("\n");
     ij=1;      fprintf(ficlog,"\n");
     for (i=1; i<=ncodemax[j]; i++) {    }
       for (k=0; k<=79; k++) {    */
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;    free_matrix(a,1,npar,1,npar);
           ij++;    free_matrix(y,1,npar,1,npar);
         }    free_vector(x,1,npar);
         if (ij > ncodemax[j]) break;    free_ivector(indx,1,npar);
       }      free_matrix(hess,1,npar,1,npar);
     }  
   }    
   }
   }  
   /*************** hessian matrix ****************/
 /*********** Health Expectancies ****************/  double hessii( double x[], double delta, int theta, double delti[])
   {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    int i;
 {    int l=1, lmax=20;
   /* Health expectancies */    double k1,k2;
   int i, j, nhstepm, hstepm, h;    double p2[NPARMAX+1];
   double age, agelim,hf;    double res;
   double ***p3mat;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      double fx;
   fprintf(ficreseij,"# Health expectancies\n");    int k=0,kmax=10;
   fprintf(ficreseij,"# Age");    double l1;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    fx=func(x);
       fprintf(ficreseij," %1d-%1d",i,j);    for (i=1;i<=npar;i++) p2[i]=x[i];
   fprintf(ficreseij,"\n");    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   hstepm=1*YEARM; /*  Every j years of age (in month) */      delts=delt;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   agelim=AGESUP;        p2[theta]=x[theta] +delt;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        k1=func(p2)-fx;
     /* nhstepm age range expressed in number of stepm */        p2[theta]=x[theta]-delt;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);        k2=func(p2)-fx;
     /* Typically if 20 years = 20*12/6=40 stepm */        /*res= (k1-2.0*fx+k2)/delt/delt; */
     if (stepm >= YEARM) hstepm=1;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUG
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(i=1; i<=nlstate;i++)          k=kmax;
       for(j=1; j<=nlstate;j++)        }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           eij[i][j][(int)age] +=p3mat[i][j][h];          k=kmax; l=lmax*10.;
         }        }
            else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     hf=1;          delts=delt;
     if (stepm >= YEARM) hf=stepm/YEARM;        }
     fprintf(ficreseij,"%.0f",age );      }
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){    delti[theta]=delts;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    return res; 
       }    
     fprintf(ficreseij,"\n");  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  double hessij( double x[], double delti[], int thetai,int thetaj)
 }  {
     int i;
 /************ Variance ******************/    int l=1, l1, lmax=20;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double k1,k2,k3,k4,res,fx;
 {    double p2[NPARMAX+1];
   /* Variance of health expectancies */    int k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    fx=func(x);
   double **dnewm,**doldm;    for (k=1; k<=2; k++) {
   int i, j, nhstepm, hstepm, h;      for (i=1;i<=npar;i++) p2[i]=x[i];
   int k, cptcode;      p2[thetai]=x[thetai]+delti[thetai]/k;
    double *xp;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double **gp, **gm;      k1=func(p2)-fx;
   double ***gradg, ***trgradg;    
   double ***p3mat;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double age,agelim;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int theta;      k2=func(p2)-fx;
     
    fprintf(ficresvij,"# Covariances of life expectancies\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresvij,"# Age");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   for(i=1; i<=nlstate;i++)      k3=func(p2)-fx;
     for(j=1; j<=nlstate;j++)    
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresvij,"\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
   xp=vector(1,npar);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   dnewm=matrix(1,nlstate,1,npar);  #ifdef DEBUG
   doldm=matrix(1,nlstate,1,nlstate);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   hstepm=1*YEARM; /* Every year of age */  #endif
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    }
   agelim = AGESUP;    return res;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /************** Inverse of matrix **************/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  void ludcmp(double **a, int n, int *indx, double *d) 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    int i,imax,j,k; 
     gp=matrix(0,nhstepm,1,nlstate);    double big,dum,sum,temp; 
     gm=matrix(0,nhstepm,1,nlstate);    double *vv; 
    
     for(theta=1; theta <=npar; theta++){    vv=vector(1,n); 
       for(i=1; i<=npar; i++){ /* Computes gradient */    *d=1.0; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=n;i++) { 
       }      big=0.0; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (j=1;j<=n;j++) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       for(j=1; j<= nlstate; j++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         for(h=0; h<=nhstepm; h++){      vv[i]=1.0/big; 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    } 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (j=1;j<=n;j++) { 
         }      for (i=1;i<j;i++) { 
       }        sum=a[i][j]; 
            for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       for(i=1; i<=npar; i++) /* Computes gradient */        a[i][j]=sum; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        big=0.0; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=j;i<=n;i++) { 
       for(j=1; j<= nlstate; j++){        sum=a[i][j]; 
         for(h=0; h<=nhstepm; h++){        for (k=1;k<j;k++) 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          sum -= a[i][k]*a[k][j]; 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        a[i][j]=sum; 
         }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }          big=dum; 
       for(j=1; j<= nlstate; j++)          imax=i; 
         for(h=0; h<=nhstepm; h++){        } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      } 
         }      if (j != imax) { 
     } /* End theta */        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
     for(h=0; h<=nhstepm; h++)        } 
       for(j=1; j<=nlstate;j++)        *d = -(*d); 
         for(theta=1; theta <=npar; theta++)        vv[imax]=vv[j]; 
           trgradg[h][j][theta]=gradg[h][theta][j];      } 
       indx[j]=imax; 
     for(i=1;i<=nlstate;i++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(j=1;j<=nlstate;j++)      if (j != n) { 
         vareij[i][j][(int)age] =0.;        dum=1.0/(a[j][j]); 
     for(h=0;h<=nhstepm;h++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       for(k=0;k<=nhstepm;k++){      } 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    } 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    free_vector(vv,1,n);  /* Doesn't work */
         for(i=1;i<=nlstate;i++)  ;
           for(j=1;j<=nlstate;j++)  } 
             vareij[i][j][(int)age] += doldm[i][j];  
       }  void lubksb(double **a, int n, int *indx, double b[]) 
     }  { 
     h=1;    int i,ii=0,ip,j; 
     if (stepm >= YEARM) h=stepm/YEARM;    double sum; 
     fprintf(ficresvij,"%.0f ",age );   
     for(i=1; i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       for(j=1; j<=nlstate;j++){      ip=indx[i]; 
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      sum=b[ip]; 
       }      b[ip]=b[i]; 
     fprintf(ficresvij,"\n");      if (ii) 
     free_matrix(gp,0,nhstepm,1,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     free_matrix(gm,0,nhstepm,1,nlstate);      else if (sum) ii=i; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      b[i]=sum; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=n;i>=1;i--) { 
   } /* End age */      sum=b[i]; 
        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   free_vector(xp,1,npar);      b[i]=sum/a[i][i]; 
   free_matrix(doldm,1,nlstate,1,npar);    } 
   free_matrix(dnewm,1,nlstate,1,nlstate);  } 
   
 }  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
 /************ Variance of prevlim ******************/  {  /* Some frequencies */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    
 {    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   /* Variance of prevalence limit */    int first;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double ***freq; /* Frequencies */
   double **newm;    double *pp, **prop;
   double **dnewm,**doldm;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   int i, j, nhstepm, hstepm;    FILE *ficresp;
   int k, cptcode;    char fileresp[FILENAMELENGTH];
   double *xp;    
   double *gp, *gm;    pp=vector(1,nlstate);
   double **gradg, **trgradg;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double age,agelim;    strcpy(fileresp,"p");
   int theta;    strcat(fileresp,fileres);
        if((ficresp=fopen(fileresp,"w"))==NULL) {
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficresvpl,"# Age");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   for(i=1; i<=nlstate;i++)      exit(0);
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   xp=vector(1,npar);    
   dnewm=matrix(1,nlstate,1,npar);    j=cptcoveff;
   doldm=matrix(1,nlstate,1,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
   hstepm=1*YEARM; /* Every year of age */    first=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    for(k1=1; k1<=j;k1++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for(i1=1; i1<=ncodemax[k1];i1++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        j1++;
     if (stepm >= YEARM) hstepm=1;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          scanf("%d", i);*/
     gradg=matrix(1,npar,1,nlstate);        for (i=-1; i<=nlstate+ndeath; i++)  
     gp=vector(1,nlstate);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     gm=vector(1,nlstate);            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (i=1; i<=nlstate; i++)  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(m=iagemin; m <= iagemax+3; m++)
       }          prop[i][m]=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
       for(i=1;i<=nlstate;i++)        dateintsum=0;
         gp[i] = prlim[i][i];        k2cpt=0;
            for (i=1; i<=imx; i++) {
       for(i=1; i<=npar; i++) /* Computes gradient */          bool=1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          if  (cptcovn>0) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (z1=1; z1<=cptcoveff; z1++) 
       for(i=1;i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         gm[i] = prlim[i][i];                bool=0;
           }
       for(i=1;i<=nlstate;i++)          if (bool==1){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            for(m=firstpass; m<=lastpass; m++){
     } /* End theta */              k2=anint[m][i]+(mint[m][i]/12.);
               if ((k2>=dateprev1) && (k2<=dateprev2)) {
     trgradg =matrix(1,nlstate,1,npar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(j=1; j<=nlstate;j++)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(theta=1; theta <=npar; theta++)                if (m<lastpass) {
         trgradg[j][theta]=gradg[theta][j];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for(i=1;i<=nlstate;i++)                }
       varpl[i][(int)age] =0.;                
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                  dateintsum=dateintsum+k2;
     for(i=1;i<=nlstate;i++)                  k2cpt++;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */                }
               }
     fprintf(ficresvpl,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        }
     fprintf(ficresvpl,"\n");         
     free_vector(gp,1,nlstate);        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);        if  (cptcovn>0) {
     free_matrix(trgradg,1,nlstate,1,npar);          fprintf(ficresp, "\n#********** Variable "); 
   } /* End age */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,npar);        for(i=1; i<=nlstate;i++) 
   free_matrix(dnewm,1,nlstate,1,nlstate);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
 }        
         for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
             fprintf(ficlog,"Total");
 /***********************************************/          }else{
 /**************** Main Program *****************/            if(first==1){
 /***********************************************/              first=0;
               printf("See log file for details...\n");
 /*int main(int argc, char *argv[])*/            }
 int main()            fprintf(ficlog,"Age %d", i);
 {          }
           for(jk=1; jk <=nlstate ; jk++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double agedeb, agefin,hf;              pp[jk] += freq[jk][m][i]; 
   double agemin=1.e20, agemax=-1.e20;          }
           for(jk=1; jk <=nlstate ; jk++){
   double fret;            for(m=-1, pos=0; m <=0 ; m++)
   double **xi,tmp,delta;              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
   double dum; /* Dummy variable */              if(first==1){
   double ***p3mat;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   int *indx;              }
   char line[MAXLINE], linepar[MAXLINE];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   char title[MAXLINE];            }else{
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];              if(first==1)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   char filerest[FILENAMELENGTH];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   char fileregp[FILENAMELENGTH];            }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          }
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */          for(jk=1; jk <=nlstate ; jk++){
   int c,  h , cpt,l;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   int ju,jl, mi;              pp[jk] += freq[jk][m][i];
   int i1,j1, k1,jk,aa,bb, stepsize;          }       
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              pos += pp[jk];
   int hstepm, nhstepm;            posprop += prop[jk][i];
   double bage, fage, age, agelim, agebase;          }
   double ftolpl=FTOL;          for(jk=1; jk <=nlstate ; jk++){
   double **prlim;            if(pos>=1.e-5){
   double *severity;              if(first==1)
   double ***param; /* Matrix of parameters */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double  *p;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double **matcov; /* Matrix of covariance */            }else{
   double ***delti3; /* Scale */              if(first==1)
   double *delti; /* Scale */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double ***eij, ***vareij;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double **varpl; /* Variances of prevalence limits by age */            }
   double *epj, vepp;            if( i <= iagemax){
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";              if(pos>=1.e-5){
   char *alph[]={"a","a","b","c","d","e"}, str[4];                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   char z[1]="c", occ;                probs[i][jk][j1]= pp[jk]/pos;
 #include <sys/time.h>                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 #include <time.h>              }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              else
   /* long total_usecs;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   struct timeval start_time, end_time;            }
            }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   printf("\nIMACH, Version 0.63");              if(freq[jk][m][i] !=0 ) {
   printf("\nEnter the parameter file name: ");              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 #ifdef windows                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   scanf("%s",pathtot);              }
   getcwd(pathcd, size);          if(i <= iagemax)
   cutv(path,optionfile,pathtot,'\\');            fprintf(ficresp,"\n");
   chdir(path);          if(first==1)
   replace(pathc,path);            printf("Others in log...\n");
 #endif          fprintf(ficlog,"\n");
 #ifdef unix        }
   scanf("%s",optionfile);      }
 #endif    }
     dateintmean=dateintsum/k2cpt; 
 /*-------- arguments in the command line --------*/   
     fclose(ficresp);
   strcpy(fileres,"r");    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   strcat(fileres, optionfile);    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   /*---------arguments file --------*/    /* End of Freq */
   }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);  /************ Prevalence ********************/
     goto end;  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   strcpy(filereso,"o");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcat(filereso,fileres);       We still use firstpass and lastpass as another selection.
   if((ficparo=fopen(filereso,"w"))==NULL) {    */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;   
   }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
   /* Reads comments: lines beginning with '#' */    double *pp, **prop;
   while((c=getc(ficpar))=='#' && c!= EOF){    double pos,posprop; 
     ungetc(c,ficpar);    double  y2; /* in fractional years */
     fgets(line, MAXLINE, ficpar);    int iagemin, iagemax;
     puts(line);  
     fputs(line,ficparo);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
   ungetc(c,ficpar);    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    j1=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    
     j=cptcoveff;
   covar=matrix(1,NCOVMAX,1,n);        if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if (strlen(model)<=1) cptcovn=0;    
   else {    for(k1=1; k1<=j;k1++){
     j=0;      for(i1=1; i1<=ncodemax[k1];i1++){
     j=nbocc(model,'+');        j1++;
     cptcovn=j+1;        
   }        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   ncovmodel=2+cptcovn;            prop[i][m]=0.0;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       
          for (i=1; i<=imx; i++) { /* Each individual */
   /* Read guess parameters */          bool=1;
   /* Reads comments: lines beginning with '#' */          if  (cptcovn>0) {
   while((c=getc(ficpar))=='#' && c!= EOF){            for (z1=1; z1<=cptcoveff; z1++) 
     ungetc(c,ficpar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fgets(line, MAXLINE, ficpar);                bool=0;
     puts(line);          } 
     fputs(line,ficparo);          if (bool==1) { 
   }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   ungetc(c,ficpar);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(i=1; i <=nlstate; i++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(j=1; j <=nlstate+ndeath-1; j++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fprintf(ficparo,"%1d%1d",i1,j1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       printf("%1d%1d",i,j);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(k=1; k<=ncovmodel;k++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
         fscanf(ficpar," %lf",&param[i][j][k]);                } 
         printf(" %lf",param[i][j][k]);              }
         fprintf(ficparo," %lf",param[i][j][k]);            } /* end selection of waves */
       }          }
       fscanf(ficpar,"\n");        }
       printf("\n");        for(i=iagemin; i <= iagemax+3; i++){  
       fprintf(ficparo,"\n");          
     }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
              posprop += prop[jk][i]; 
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          } 
   p=param[1][1];  
            for(jk=1; jk <=nlstate ; jk++){     
   /* Reads comments: lines beginning with '#' */            if( i <=  iagemax){ 
   while((c=getc(ficpar))=='#' && c!= EOF){              if(posprop>=1.e-5){ 
     ungetc(c,ficpar);                probs[i][jk][j1]= prop[jk][i]/posprop;
     fgets(line, MAXLINE, ficpar);              } 
     puts(line);            } 
     fputs(line,ficparo);          }/* end jk */ 
   }        }/* end i */ 
   ungetc(c,ficpar);      } /* end i1 */
     } /* end k1 */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   for(i=1; i <=nlstate; i++){    /*free_vector(pp,1,nlstate);*/
     for(j=1; j <=nlstate+ndeath-1; j++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fscanf(ficpar,"%1d%1d",&i1,&j1);  }  /* End of prevalence */
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);  /************* Waves Concatenation ***************/
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         printf(" %le",delti3[i][j][k]);  {
         fprintf(ficparo," %le",delti3[i][j][k]);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
       fscanf(ficpar,"\n");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       printf("\n");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       fprintf(ficparo,"\n");       and mw[mi+1][i]. dh depends on stepm.
     }       */
   }  
   delti=delti3[1][1];    int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   /* Reads comments: lines beginning with '#' */       double sum=0., jmean=0.;*/
   while((c=getc(ficpar))=='#' && c!= EOF){    int first;
     ungetc(c,ficpar);    int j, k=0,jk, ju, jl;
     fgets(line, MAXLINE, ficpar);    double sum=0.;
     puts(line);    first=0;
     fputs(line,ficparo);    jmin=1e+5;
   }    jmax=-1;
   ungetc(c,ficpar);    jmean=0.;
      for(i=1; i<=imx; i++){
   matcov=matrix(1,npar,1,npar);      mi=0;
   for(i=1; i <=npar; i++){      m=firstpass;
     fscanf(ficpar,"%s",&str);      while(s[m][i] <= nlstate){
     printf("%s",str);        if(s[m][i]>=1)
     fprintf(ficparo,"%s",str);          mw[++mi][i]=m;
     for(j=1; j <=i; j++){        if(m >=lastpass)
       fscanf(ficpar," %le",&matcov[i][j]);          break;
       printf(" %.5le",matcov[i][j]);        else
       fprintf(ficparo," %.5le",matcov[i][j]);          m++;
     }      }/* end while */
     fscanf(ficpar,"\n");      if (s[m][i] > nlstate){
     printf("\n");        mi++;     /* Death is another wave */
     fprintf(ficparo,"\n");        /* if(mi==0)  never been interviewed correctly before death */
   }           /* Only death is a correct wave */
   for(i=1; i <=npar; i++)        mw[mi][i]=m;
     for(j=i+1;j<=npar;j++)      }
       matcov[i][j]=matcov[j][i];  
          wav[i]=mi;
   printf("\n");      if(mi==0){
         if(first==0){
           printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
    if(mle==1){          first=1;
     /*-------- data file ----------*/        }
     if((ficres =fopen(fileres,"w"))==NULL) {        if(first==1){
       printf("Problem with resultfile: %s\n", fileres);goto end;          fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
     }        }
     fprintf(ficres,"#%s\n",version);      } /* end mi==0 */
        }
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;    for(i=1; i<=imx; i++){
     }      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
     n= lastobs;          dh[mi][i]=1;
     severity = vector(1,maxwav);        else{
     outcome=imatrix(1,maxwav+1,1,n);          if (s[mw[mi+1][i]][i] > nlstate) {
     num=ivector(1,n);            if (agedc[i] < 2*AGESUP) {
     moisnais=vector(1,n);            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     annais=vector(1,n);            if(j==0) j=1;  /* Survives at least one month after exam */
     moisdc=vector(1,n);            k=k+1;
     andc=vector(1,n);            if (j >= jmax) jmax=j;
     agedc=vector(1,n);            if (j <= jmin) jmin=j;
     cod=ivector(1,n);            sum=sum+j;
     weight=vector(1,n);            /*if (j<0) printf("j=%d num=%d \n",j,i); */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     mint=matrix(1,maxwav,1,n);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     anint=matrix(1,maxwav,1,n);            }
     s=imatrix(1,maxwav+1,1,n);          }
     adl=imatrix(1,maxwav+1,1,n);              else{
     tab=ivector(1,NCOVMAX);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     ncodemax=ivector(1,8);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             k=k+1;
     i=1;            if (j >= jmax) jmax=j;
     while (fgets(line, MAXLINE, fic) != NULL)    {            else if (j <= jmin)jmin=j;
       if ((i >= firstobs) && (i <=lastobs)) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                    /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for (j=maxwav;j>=1;j--){            sum=sum+j;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          }
           strcpy(line,stra);          jk= j/stepm;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          jl= j -jk*stepm;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          ju= j -(jk+1)*stepm;
         }          if(mle <=1){ 
                    if(jl==0){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              dh[mi][i]=jk;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                    * at the price of an extra matrix product in likelihood */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            }
         for (j=ncov;j>=1;j--){          }else{
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if(jl <= -ju){
         }              dh[mi][i]=jk;
         num[i]=atol(stra);              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]),  (mint[5][i]), (anint[5][i]), (s[5][i]),  (mint[6][i]), (anint[6][i]), (s[6][i]));*/                                   */
             }
         i=i+1;            else{
       }              dh[mi][i]=jk+1;
     }              bh[mi][i]=ju;
             }
     /*scanf("%d",i);*/            if(dh[mi][i]==0){
   imx=i-1; /* Number of individuals */              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
   /* Calculation of the number of parameter from char model*/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   Tvar=ivector(1,8);                }
              }
   if (strlen(model) >1){        } /* end if mle */
     j=0;      } /* end wave */
     j=nbocc(model,'+');    }
     cptcovn=j+1;    jmean=sum/k;
        printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     strcpy(modelsav,model);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     if (j==0) {   }
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);  
     }  /*********** Tricode ****************************/
     else {  void tricode(int *Tvar, int **nbcode, int imx)
       for(i=j; i>=1;i--){  {
         cutv(stra,strb,modelsav,'+');    
         if (strchr(strb,'*')) {    int Ndum[20],ij=1, k, j, i, maxncov=19;
           cutv(strd,strc,strb,'*');    int cptcode=0;
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;    cptcoveff=0; 
           cutv(strb,strc,strd,'V');   
           for (k=1; k<=lastobs;k++)    for (k=0; k<maxncov; k++) Ndum[k]=0;
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    for (k=1; k<=7; k++) ncodemax[k]=0;
         }  
         else {cutv(strd,strc,strb,'V');    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         Tvar[i+1]=atoi(strc);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
         }                                 modality*/ 
         strcpy(modelsav,stra);          ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       }        Ndum[ij]++; /*store the modality */
       cutv(strd,strc,stra,'V');        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       Tvar[1]=atoi(strc);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     }                                         Tvar[j]. If V=sex and male is 0 and 
   }                                         female is 1, then  cptcode=1.*/
   /*printf("tvar=%d ",Tvar[1]);      }
   scanf("%d ",i);*/  
     fclose(fic);      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     if (weightopt != 1) { /* Maximisation without weights*/      }
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }      ij=1; 
     /*-calculation of age at interview from date of interview and age at death -*/      for (i=1; i<=ncodemax[j]; i++) {
     agev=matrix(1,maxwav,1,imx);        for (k=0; k<= maxncov; k++) {
              if (Ndum[k] != 0) {
     for (i=1; i<=imx; i++)  {            nbcode[Tvar[j]][ij]=k; 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       for(m=1; (m<= maxwav); m++){            
         if(s[m][i] >0){            ij++;
           if (s[m][i] == nlstate+1) {          }
             if(agedc[i]>0)          if (ij > ncodemax[j]) break; 
               if(moisdc[i]!=99 && andc[i]!=9999)        }  
               agev[m][i]=agedc[i];      } 
             else{    }  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;   for (k=0; k< maxncov; k++) Ndum[k]=0;
             }  
           }   for (i=1; i<=ncovmodel-2; i++) { 
           else if(s[m][i] !=9){ /* Should no more exist */     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);     ij=Tvar[i];
             if(mint[m][i]==99 || anint[m][i]==9999)     Ndum[ij]++;
               agev[m][i]=1;   }
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];   ij=1;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/   for (i=1; i<= maxncov; i++) {
             }     if((Ndum[i]!=0) && (i<=ncovcol)){
             else if(agev[m][i] >agemax){       Tvaraff[ij]=i; /*For printing */
               agemax=agev[m][i];       ij++;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/     }
             }   }
             /*agev[m][i]=anint[m][i]-annais[i];*/   
             /*   agev[m][i] = age[i]+2*m;*/   cptcoveff=ij-1; /*Number of simple covariates*/
           }  }
           else { /* =9 */  
             agev[m][i]=1;  /*********** Health Expectancies ****************/
             s[m][i]=-1;  
           }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         }  
         else /*= 0 Unknown */  {
           agev[m][i]=1;    /* Health expectancies */
       }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
        double age, agelim, hf;
     }    double ***p3mat,***varhe;
     for (i=1; i<=imx; i++)  {    double **dnewm,**doldm;
       for(m=1; (m<= maxwav); m++){    double *xp;
         if (s[m][i] > (nlstate+ndeath)) {    double **gp, **gm;
           printf("Error: Wrong value in nlstate or ndeath\n");      double ***gradg, ***trgradg;
           goto end;    int theta;
         }  
       }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     }    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     free_vector(severity,1,maxwav);    fprintf(ficreseij,"# Health expectancies\n");
     free_imatrix(outcome,1,maxwav+1,1,n);    fprintf(ficreseij,"# Age");
     free_vector(moisnais,1,n);    for(i=1; i<=nlstate;i++)
     free_vector(annais,1,n);      for(j=1; j<=nlstate;j++)
     free_matrix(mint,1,maxwav,1,n);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     free_matrix(anint,1,maxwav,1,n);    fprintf(ficreseij,"\n");
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
        }
     wav=ivector(1,imx);    else  hstepm=estepm;   
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    /* We compute the life expectancy from trapezoids spaced every estepm months
     mw=imatrix(1,lastpass-firstpass+1,1,imx);     * This is mainly to measure the difference between two models: for example
         * if stepm=24 months pijx are given only every 2 years and by summing them
     /* Concatenates waves */     * we are calculating an estimate of the Life Expectancy assuming a linear 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
 Tcode=ivector(1,100);     * to compare the new estimate of Life expectancy with the same linear 
    nbcode=imatrix(1,nvar,1,8);       * hypothesis. A more precise result, taking into account a more precise
    ncodemax[1]=1;     * curvature will be obtained if estepm is as small as stepm. */
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
      /* For example we decided to compute the life expectancy with the smallest unit */
    codtab=imatrix(1,100,1,10);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
    h=0;       nhstepm is the number of hstepm from age to agelim 
    m=pow(2,cptcovn);       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
    for(k=1;k<=cptcovn; k++){       and note for a fixed period like estepm months */
      for(i=1; i <=(m/pow(2,k));i++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        for(j=1; j <= ncodemax[k]; j++){       survival function given by stepm (the optimization length). Unfortunately it
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){       means that if the survival funtion is printed only each two years of age and if
            h++;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
            if (h>m) h=1;codtab[h][k]=j;       results. So we changed our mind and took the option of the best precision.
          }    */
        }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      }  
    }    agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    /*for(i=1; i <=m ;i++){      /* nhstepm age range expressed in number of stepm */
      for(k=1; k <=cptcovn; k++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      }      /* if (stepm >= YEARM) hstepm=1;*/
      printf("\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    }*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    /*scanf("%d",i);*/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
          gp=matrix(0,nhstepm,1,nlstate*nlstate);
    /* Calculates basic frequencies. Computes observed prevalence at single age      gm=matrix(0,nhstepm,1,nlstate*nlstate);
        and prints on file fileres'p'. */  
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   /*scanf("%d ",i);*/   
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Computing Variances of health expectancies */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(theta=1; theta <=npar; theta++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(i=1; i<=npar; i++){ 
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
     /* For Powell, parameters are in a vector p[] starting at p[1]        }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    
            cptj=0;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
                cptj=cptj+1;
     /*--------- results files --------------*/            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                }
    jk=1;          }
    fprintf(ficres,"# Parameters\n");        }
    printf("# Parameters\n");       
    for(i=1,jk=1; i <=nlstate; i++){       
      for(k=1; k <=(nlstate+ndeath); k++){        for(i=1; i<=npar; i++) 
        if (k != i)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            printf("%d%d ",i,k);        
            fprintf(ficres,"%1d%1d ",i,k);        cptj=0;
            for(j=1; j <=ncovmodel; j++){        for(j=1; j<= nlstate; j++){
              printf("%f ",p[jk]);          for(i=1;i<=nlstate;i++){
              fprintf(ficres,"%f ",p[jk]);            cptj=cptj+1;
              jk++;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
            }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
            printf("\n");            }
            fprintf(ficres,"\n");          }
          }        }
      }        for(j=1; j<= nlstate*nlstate; j++)
    }          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     /* Computing hessian and covariance matrix */          }
     ftolhess=ftol; /* Usually correct */       } 
     hesscov(matcov, p, npar, delti, ftolhess, func);     
     fprintf(ficres,"# Scales\n");  /* End theta */
     printf("# Scales\n");  
      for(i=1,jk=1; i <=nlstate; i++){       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {       for(h=0; h<=nhstepm-1; h++)
           fprintf(ficres,"%1d%1d",i,j);        for(j=1; j<=nlstate*nlstate;j++)
           printf("%1d%1d",i,j);          for(theta=1; theta <=npar; theta++)
           for(k=1; k<=ncovmodel;k++){            trgradg[h][j][theta]=gradg[h][theta][j];
             printf(" %.5e",delti[jk]);       
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;       for(i=1;i<=nlstate*nlstate;i++)
           }        for(j=1;j<=nlstate*nlstate;j++)
           printf("\n");          varhe[i][j][(int)age] =0.;
           fprintf(ficres,"\n");  
         }       printf("%d|",(int)age);fflush(stdout);
       }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       }       for(h=0;h<=nhstepm-1;h++){
            for(k=0;k<=nhstepm-1;k++){
     k=1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     fprintf(ficres,"# Covariance\n");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     printf("# Covariance\n");          for(i=1;i<=nlstate*nlstate;i++)
     for(i=1;i<=npar;i++){            for(j=1;j<=nlstate*nlstate;j++)
       /*  if (k>nlstate) k=1;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       i1=(i-1)/(ncovmodel*nlstate)+1;        }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      }
       printf("%s%d%d",alph[k],i1,tab[i]);*/      /* Computing expectancies */
       fprintf(ficres,"%3d",i);      for(i=1; i<=nlstate;i++)
       printf("%3d",i);        for(j=1; j<=nlstate;j++)
       for(j=1; j<=i;j++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficres," %.5e",matcov[i][j]);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         printf(" %.5e",matcov[i][j]);            
       }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficres,"\n");  
       printf("\n");          }
       k++;  
     }      fprintf(ficreseij,"%3.0f",age );
          cptj=0;
     while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
       ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
       fgets(line, MAXLINE, ficpar);          cptj++;
       puts(line);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       fputs(line,ficparo);        }
     }      fprintf(ficreseij,"\n");
     ungetc(c,ficpar);     
        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
          free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     if (fage <= 2) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       bage = agemin;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fage = agemax;    }
     }    printf("\n");
     fprintf(ficlog,"\n");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    free_vector(xp,1,npar);
 /*------------ gnuplot -------------*/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 chdir(pathcd);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   if((ficgp=fopen("graph.plt","w"))==NULL) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     printf("Problem with file graph.gp");goto end;  }
   }  
 #ifdef windows  /************ Variance ******************/
   fprintf(ficgp,"cd \"%s\" \n",pathc);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 #endif  {
 m=pow(2,cptcovn);    /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
  /* 1eme*/    /* double **newm;*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double **dnewm,**doldm;
    for (k1=1; k1<= m ; k1 ++) {    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
 #ifdef windows    int k, cptcode;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    double *xp;
 #endif    double **gp, **gm;  /* for var eij */
 #ifdef unix    double ***gradg, ***trgradg; /*for var eij */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    double **gradgp, **trgradgp; /* for var p point j */
 #endif    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 for (i=1; i<= nlstate ; i ++) {    double ***p3mat;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double age,agelim, hf;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double ***mobaverage;
 }    int theta;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    char digit[4];
     for (i=1; i<= nlstate ; i ++) {    char digitp[25];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    char fileresprobmorprev[FILENAMELENGTH];
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    if(popbased==1){
      for (i=1; i<= nlstate ; i ++) {      if(mobilav!=0)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        strcpy(digitp,"-populbased-mobilav-");
   else fprintf(ficgp," \%%*lf (\%%*lf)");      else strcpy(digitp,"-populbased-nomobil-");
 }      }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    else 
 #ifdef unix      strcpy(digitp,"-stablbased-");
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif    if (mobilav!=0) {
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   /*2 eme*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   for (k1=1; k1<= m ; k1 ++) {    }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
        strcpy(fileresprobmorprev,"prmorprev"); 
     for (i=1; i<= nlstate+1 ; i ++) {    sprintf(digit,"%-d",ij);
       k=2*i;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for (j=1; j<= nlstate+1 ; j ++) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprobmorprev,fileres);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 }        printf("Problem with resultfile: %s\n", fileresprobmorprev);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficresprobmorprev," p.%-d SE",j);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(i=1; i<=nlstate;i++)
       for (j=1; j<= nlstate+1 ; j ++) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev,"\n");
 }      if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       else fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     }      exit(0);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    }
   }    else{
        fprintf(ficgp,"\n# Routine varevsij");
   /*3eme*/    }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
    for (k1=1; k1<= m ; k1 ++) {      printf("Problem with html file: %s\n", optionfilehtm);
     for (cpt=1; cpt<= nlstate ; cpt ++) {      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       k=2+nlstate*(cpt-1);      exit(0);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    }
       for (i=1; i< nlstate ; i ++) {    else{
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       }      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    }
     }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    }  
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   /* CV preval stat */    fprintf(ficresvij,"# Age");
     for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=nlstate;i++)
     for (cpt=1; cpt<nlstate ; cpt ++) {      for(j=1; j<=nlstate;j++)
       k=3;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    fprintf(ficresvij,"\n");
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);    xp=vector(1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    dnewm=matrix(1,nlstate,1,npar);
          doldm=matrix(1,nlstate,1,nlstate);
       l=3+(nlstate+ndeath)*cpt;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficgp,"+$%d",l+i+1);    gpp=vector(nlstate+1,nlstate+ndeath);
       }    gmp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
     }    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   /* proba elementaires */    else  hstepm=estepm;   
   for(i=1,jk=1; i <=nlstate; i++){    /* For example we decided to compute the life expectancy with the smallest unit */
     for(k=1; k <=(nlstate+ndeath); k++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       if (k != i) {       nhstepm is the number of hstepm from age to agelim 
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/       nstepm is the number of stepm from age to agelin. 
         for(j=1; j <=ncovmodel; j++){       Look at hpijx to understand the reason of that which relies in memory size
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);       and note for a fixed period like k years */
           jk++;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           fprintf(ficgp,"\n");       survival function given by stepm (the optimization length). Unfortunately it
         }       means that if the survival funtion is printed every two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     }       results. So we changed our mind and took the option of the best precision.
   }    */
   for(jk=1; jk <=m; jk++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    agelim = AGESUP;
   for(i=1; i <=nlstate; i++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(k=1; k <=(nlstate+ndeath); k++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (k != i) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=3; j <=ncovmodel; j++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      gp=matrix(0,nhstepm,1,nlstate);
         fprintf(ficgp,")/(1");      gm=matrix(0,nhstepm,1,nlstate);
         for(k1=1; k1 <=(nlstate+ndeath); k1++)  
           if (k1 != i) {  
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);      for(theta=1; theta <=npar; theta++){
             for(j=3; j <=ncovmodel; j++)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             fprintf(ficgp,")");        }
           }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficgp,") t \"p%d%d\" ", i,k);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
       }        if (popbased==1) {
     }          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
  fclose(ficgp);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
     chdir(path);        }
     free_matrix(agev,1,maxwav,1,imx);    
     free_ivector(wav,1,imx);        for(j=1; j<= nlstate; j++){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for(h=0; h<=nhstepm; h++){
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                  gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     free_imatrix(s,1,maxwav+1,1,n);          }
            }
            /* This for computing probability of death (h=1 means
     free_ivector(num,1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     free_vector(agedc,1,n);           as a weighted average of prlim.
     free_vector(weight,1,n);        */
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fclose(ficparo);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     fclose(ficres);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
    }        }    
            /* end probability of death */
    /*________fin mle=1_________*/  
            for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     /* No more information from the sample is required now */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Reads comments: lines beginning with '#' */   
   while((c=getc(ficpar))=='#' && c!= EOF){        if (popbased==1) {
     ungetc(c,ficpar);          if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
     puts(line);              prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
         }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        for(j=1; j<= nlstate; j++){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);          for(h=0; h<=nhstepm; h++){
 /*--------- index.htm --------*/            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   if((fichtm=fopen("index.htm","w"))==NULL)    {          }
     printf("Problem with index.htm \n");goto end;        }
   }        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n           as a weighted average of prlim.
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        }    
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        /* end probability of death */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        for(j=1; j<= nlstate; j++) /* vareij */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  fprintf(fichtm," <li>Graphs</li>\n<p>");          }
   
  m=cptcovn;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
  j1=0;  
  for(k1=1; k1<=m;k1++){      } /* End theta */
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr>************ Results for covariates");      for(h=0; h<=nhstepm; h++) /* veij */
          for (cpt=1; cpt<=cptcovn;cpt++)        for(j=1; j<=nlstate;j++)
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);          for(theta=1; theta <=npar; theta++)
          fprintf(fichtm," ************\n<hr>");            trgradg[h][j][theta]=gradg[h][theta][j];
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            for(theta=1; theta <=npar; theta++)
        for(cpt=1; cpt<nlstate;cpt++){          trgradgp[j][theta]=gradgp[theta][j];
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  
        }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(cpt=1; cpt<=nlstate;cpt++) {      for(i=1;i<=nlstate;i++)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for(j=1;j<=nlstate;j++)
 interval) in state (%d): v%s%d%d.gif <br>          vareij[i][j][(int)age] =0.;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }      for(h=0;h<=nhstepm;h++){
      for(cpt=1; cpt<=nlstate;cpt++) {        for(k=0;k<=nhstepm;k++){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 <img src=\"ex%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
      }          for(i=1;i<=nlstate;i++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            for(j=1;j<=nlstate;j++)
 health expectancies in states (1) and (2): e%s%d.gif<br>              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        }
 fprintf(fichtm,"\n</body>");      }
    }    
  }      /* pptj */
 fclose(fichtm);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   /*--------------- Prevalence limit --------------*/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
   strcpy(filerespl,"pl");          varppt[j][i]=doldmp[j][i];
   strcat(filerespl,fileres);      /* end ppptj */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      /*  x centered again */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   
   fprintf(ficrespl,"#Prevalence limit\n");      if (popbased==1) {
   fprintf(ficrespl,"#Age ");        if(mobilav ==0){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          for(i=1; i<=nlstate;i++)
   fprintf(ficrespl,"\n");            prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
   prlim=matrix(1,nlstate,1,nlstate);          for(i=1; i<=nlstate;i++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            prlim[i][i]=mobaverage[(int)age][i][ij];
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      /* This for computing probability of death (h=1 means
   k=0;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   agebase=agemin;         as a weighted average of prlim.
   agelim=agemax;      */
   ftolpl=1.e-10;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   i1=cptcovn;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   if (cptcovn < 1){i1=1;}          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   for(cptcov=1;cptcov<=i1;cptcov++){      /* end probability of death */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficrespl,"\n#****** ");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(j=1;j<=cptcovn;j++)        for(i=1; i<=nlstate;i++){
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         fprintf(ficrespl,"******\n");        }
              } 
         for (age=agebase; age<=agelim; age++){      fprintf(ficresprobmorprev,"\n");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );      fprintf(ficresvij,"%.0f ",age );
           for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
           fprintf(ficrespl," %.5f", prlim[i][i]);        for(j=1; j<=nlstate;j++){
           fprintf(ficrespl,"\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }        }
       }      fprintf(ficresvij,"\n");
     }      free_matrix(gp,0,nhstepm,1,nlstate);
   fclose(ficrespl);      free_matrix(gm,0,nhstepm,1,nlstate);
   /*------------- h Pij x at various ages ------------*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    } /* End age */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   }    free_vector(gmp,nlstate+1,nlstate+ndeath);
   printf("Computing pij: result on file '%s' \n", filerespij);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   if (stepm<=24) stepsize=2;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   agelim=AGESUP;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   hstepm=stepsize*YEARM; /* Every year of age */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
   k=0;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
       k=k+1;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
         fprintf(ficrespij,"\n#****** ");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         for(j=1;j<=cptcovn;j++)  */
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
         fprintf(ficrespij,"******\n");  
            free_vector(xp,1,npar);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    free_matrix(doldm,1,nlstate,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_matrix(dnewm,1,nlstate,1,npar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           oldm=oldms;savm=savms;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespij,"# Age");    fclose(ficresprobmorprev);
           for(i=1; i<=nlstate;i++)    fclose(ficgp);
             for(j=1; j<=nlstate+ndeath;j++)    fclose(fichtm);
               fprintf(ficrespij," %1d-%1d",i,j);  }  
           fprintf(ficrespij,"\n");  
           for (h=0; h<=nhstepm; h++){  /************ Variance of prevlim ******************/
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
             for(i=1; i<=nlstate;i++)  {
               for(j=1; j<=nlstate+ndeath;j++)    /* Variance of prevalence limit */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             fprintf(ficrespij,"\n");    double **newm;
           }    double **dnewm,**doldm;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, j, nhstepm, hstepm;
           fprintf(ficrespij,"\n");    int k, cptcode;
         }    double *xp;
     }    double *gp, *gm;
   }    double **gradg, **trgradg;
     double age,agelim;
   fclose(ficrespij);    int theta;
      
   /*---------- Health expectancies and variances ------------*/    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
   strcpy(filerest,"t");    for(i=1; i<=nlstate;i++)
   strcat(filerest,fileres);        fprintf(ficresvpl," %1d-%1d",i,i);
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(ficresvpl,"\n");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    xp=vector(1,npar);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
   strcpy(filerese,"e");    hstepm=1*YEARM; /* Every year of age */
   strcat(filerese,fileres);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   if((ficreseij=fopen(filerese,"w"))==NULL) {    agelim = AGESUP;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
  strcpy(fileresv,"v");      gradg=matrix(1,npar,1,nlstate);
   strcat(fileresv,fileres);      gp=vector(1,nlstate);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      gm=vector(1,nlstate);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }      for(theta=1; theta <=npar; theta++){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(i=1;i<=nlstate;i++)
       k=k+1;          gp[i] = prlim[i][i];
       fprintf(ficrest,"\n#****** ");      
       for(j=1;j<=cptcovn;j++)        for(i=1; i<=npar; i++) /* Computes gradient */
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficrest,"******\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
       fprintf(ficreseij,"\n#****** ");          gm[i] = prlim[i][i];
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        for(i=1;i<=nlstate;i++)
       fprintf(ficreseij,"******\n");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcovn;j++)      trgradg =matrix(1,nlstate,1,npar);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          trgradg[j][theta]=gradg[theta][j];
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        for(i=1;i<=nlstate;i++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        varpl[i][(int)age] =0.;
       oldm=oldms;savm=savms;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
            for(i=1;i<=nlstate;i++)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");      fprintf(ficresvpl,"%.0f ",age );
              for(i=1; i<=nlstate;i++)
       hf=1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       if (stepm >= YEARM) hf=stepm/YEARM;      fprintf(ficresvpl,"\n");
       epj=vector(1,nlstate+1);      free_vector(gp,1,nlstate);
       for(age=bage; age <=fage ;age++){      free_vector(gm,1,nlstate);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      free_matrix(gradg,1,npar,1,nlstate);
         fprintf(ficrest," %.0f",age);      free_matrix(trgradg,1,nlstate,1,npar);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    } /* End age */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    free_vector(xp,1,npar);
           }    free_matrix(doldm,1,nlstate,1,npar);
           epj[nlstate+1] +=epj[j];    free_matrix(dnewm,1,nlstate,1,nlstate);
         }  
         for(i=1, vepp=0.;i <=nlstate;i++)  }
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  /************ Variance of one-step probabilities  ******************/
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
         for(j=1;j <=nlstate;j++){  {
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    int i, j=0,  i1, k1, l1, t, tj;
         }    int k2, l2, j1,  z1;
         fprintf(ficrest,"\n");    int k=0,l, cptcode;
       }    int first=1, first1;
     }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
            double *xp;
  fclose(ficreseij);    double *gp, *gm;
  fclose(ficresvij);    double **gradg, **trgradg;
   fclose(ficrest);    double **mu;
   fclose(ficpar);    double age,agelim, cov[NCOVMAX];
   free_vector(epj,1,nlstate+1);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   /*scanf("%d ",i); */    int theta;
     char fileresprob[FILENAMELENGTH];
   /*------- Variance limit prevalence------*/      char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
 strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    double ***varpij;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    strcpy(fileresprob,"prob"); 
     exit(0);    strcat(fileresprob,fileres);
   }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
  k=0;    }
  for(cptcov=1;cptcov<=i1;cptcov++){    strcpy(fileresprobcov,"probcov"); 
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcat(fileresprobcov,fileres);
      k=k+1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
      fprintf(ficresvpl,"\n#****** ");      printf("Problem with resultfile: %s\n", fileresprobcov);
      for(j=1;j<=cptcovn;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    }
      fprintf(ficresvpl,"******\n");    strcpy(fileresprobcor,"probcor"); 
          strcat(fileresprobcor,fileres);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
      oldm=oldms;savm=savms;      printf("Problem with resultfile: %s\n", fileresprobcor);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
    }    }
  }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fclose(ficresvpl);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /*---------- End : free ----------------*/    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficresprob,"# Age");
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobcov,"# Age");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
      for(i=1; i<=nlstate;i++)
   free_matrix(matcov,1,npar,1,npar);      for(j=1; j<=(nlstate+ndeath);j++){
   free_vector(delti,1,npar);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
   printf("End of Imach\n");   /* fprintf(ficresprob,"\n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fprintf(ficresprobcov,"\n");
      fprintf(ficresprobcor,"\n");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   */
   /*printf("Total time was %d uSec.\n", total_usecs);*/   xp=vector(1,npar);
   /*------ End -----------*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  end:    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 #ifdef windows    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
  chdir(pathcd);    first=1;
 #endif    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
  system("wgnuplot graph.plt");      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 #ifdef windows      exit(0);
   while (z[0] != 'q') {    }
     chdir(pathcd);    else{
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      fprintf(ficgp,"\n# Routine varprob");
     scanf("%s",z);    }
     if (z[0] == 'c') system("./imach");    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     else if (z[0] == 'e') {      printf("Problem with html file: %s\n", optionfilehtm);
       chdir(path);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       system("index.htm");      exit(0);
     }    }
     else if (z[0] == 'q') exit(0);    else{
   }      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 #endif      fprintf(fichtm,"\n");
 }  
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
     }
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fclose(ficgp);
     fclose(fichtm);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
     if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
       fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
    - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
    - Life expectancies by age and initial health status (estepm=%2d months): 
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and
   health expectancies in states (1) and (2): e%s%d.png<br>
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
    if(popforecast==1) fprintf(fichtm,"\n
    - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
    - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
           <br>",fileres,fileres,fileres,fileres);
    else 
      fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
   interval) in state (%d): v%s%d%d.png <br>
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   fclose(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   
     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   m=pow(2,cptcoveff);
     
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stat */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s",version);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if(moisdc[i]!=99 && andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if (andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if(mint[m][i]==99 || anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.3  
changed lines
  Added in v.1.75


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>