Diff for /imach/src/imach.c between versions 1.40 and 1.132

version 1.40, 2002/04/19 13:46:19 version 1.132, 2009/07/06 08:22:05
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.132  2009/07/06 08:22:05  brouard
      Many tings
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.131  2009/06/20 16:22:47  brouard
   first survey ("cross") where individuals from different ages are    Some dimensions resccaled
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.130  2009/05/26 06:44:34  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): Max Covariate is now set to 20 instead of 8. A
   (if any) in individual health status.  Health expectancies are    lot of cleaning with variables initialized to 0. Trying to make
   computed from the time spent in each health state according to a    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.129  2007/08/31 13:49:27  lievre
   simplest model is the multinomial logistic model where pij is the    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.128  2006/06/30 13:02:05  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Clarifications on computing e.j
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.127  2006/04/28 18:11:50  brouard
   where the markup *Covariates have to be included here again* invites    (Module): Yes the sum of survivors was wrong since
   you to do it.  More covariates you add, slower the    imach-114 because nhstepm was no more computed in the age
   convergence.    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
   The advantage of this computer programme, compared to a simple    compute health expectancies (without variances) in a first step
   multinomial logistic model, is clear when the delay between waves is not    and then all the health expectancies with variances or standard
   identical for each individual. Also, if a individual missed an    deviation (needs data from the Hessian matrices) which slows the
   intermediate interview, the information is lost, but taken into    computation.
   account using an interpolation or extrapolation.      In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.126  2006/04/28 17:23:28  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Yes the sum of survivors was wrong since
   states. This elementary transition (by month or quarter trimester,    imach-114 because nhstepm was no more computed in the age
   semester or year) is model as a multinomial logistic.  The hPx    loop. Now we define nhstepma in the age loop.
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.98h
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
   Also this programme outputs the covariance matrix of the parameters but also    Forecasting file added.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.124  2006/03/22 17:13:53  lievre
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Parameters are printed with %lf instead of %f (more numbers after the comma).
            Institut national d'études démographiques, Paris.    The log-likelihood is printed in the log file
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.123  2006/03/20 10:52:43  brouard
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Module): <title> changed, corresponds to .htm file
   software can be distributed freely for non commercial use. Latest version    name. <head> headers where missing.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    * imach.c (Module): Weights can have a decimal point as for
      English (a comma might work with a correct LC_NUMERIC environment,
 #include <math.h>    otherwise the weight is truncated).
 #include <stdio.h>    Modification of warning when the covariates values are not 0 or
 #include <stdlib.h>    1.
 #include <unistd.h>    Version 0.98g
   
 #define MAXLINE 256    Revision 1.122  2006/03/20 09:45:41  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    (Module): Weights can have a decimal point as for
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    English (a comma might work with a correct LC_NUMERIC environment,
 #define FILENAMELENGTH 80    otherwise the weight is truncated).
 /*#define DEBUG*/    Modification of warning when the covariates values are not 0 or
 #define windows    1.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Version 0.98g
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.121  2006/03/16 17:45:01  lievre
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    * imach.c (Module): Comments concerning covariates added
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     * imach.c (Module): refinements in the computation of lli if
 #define NINTERVMAX 8    status=-2 in order to have more reliable computation if stepm is
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    not 1 month. Version 0.98f
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.120  2006/03/16 15:10:38  lievre
 #define MAXN 20000    (Module): refinements in the computation of lli if
 #define YEARM 12. /* Number of months per year */    status=-2 in order to have more reliable computation if stepm is
 #define AGESUP 130    not 1 month. Version 0.98f
 #define AGEBASE 40  
     Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 int erreur; /* Error number */    computed as likelihood omitting the logarithm. Version O.98e
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.118  2006/03/14 18:20:07  brouard
 int npar=NPARMAX;    (Module): varevsij Comments added explaining the second
 int nlstate=2; /* Number of live states */    table of variances if popbased=1 .
 int ndeath=1; /* Number of dead states */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Function pstamp added
 int popbased=0;    (Module): Version 0.98d
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.117  2006/03/14 17:16:22  brouard
 int maxwav; /* Maxim number of waves */    (Module): varevsij Comments added explaining the second
 int jmin, jmax; /* min, max spacing between 2 waves */    table of variances if popbased=1 .
 int mle, weightopt;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Function pstamp added
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Version 0.98d
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.116  2006/03/06 10:29:27  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Variance-covariance wrong links and
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    varian-covariance of ej. is needed (Saito).
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.115  2006/02/27 12:17:45  brouard
   char filerese[FILENAMELENGTH];    (Module): One freematrix added in mlikeli! 0.98c
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.114  2006/02/26 12:57:58  brouard
  FILE  *ficresvpl;    (Module): Some improvements in processing parameter
   char fileresvpl[FILENAMELENGTH];    filename with strsep.
   
 #define NR_END 1    Revision 1.113  2006/02/24 14:20:24  brouard
 #define FREE_ARG char*    (Module): Memory leaks checks with valgrind and:
 #define FTOL 1.0e-10    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 #define NRANSI  
 #define ITMAX 200    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define TOL 2.0e-4  
     Revision 1.111  2006/01/25 20:38:18  brouard
 #define CGOLD 0.3819660    (Module): Lots of cleaning and bugs added (Gompertz)
 #define ZEPS 1.0e-10    (Module): Comments can be added in data file. Missing date values
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    can be a simple dot '.'.
   
 #define GOLD 1.618034    Revision 1.110  2006/01/25 00:51:50  brouard
 #define GLIMIT 100.0    (Module): Lots of cleaning and bugs added (Gompertz)
 #define TINY 1.0e-20  
     Revision 1.109  2006/01/24 19:37:15  brouard
 static double maxarg1,maxarg2;    (Module): Comments (lines starting with a #) are allowed in data.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.108  2006/01/19 18:05:42  lievre
      Gnuplot problem appeared...
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    To be fixed
 #define rint(a) floor(a+0.5)  
     Revision 1.107  2006/01/19 16:20:37  brouard
 static double sqrarg;    Test existence of gnuplot in imach path
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 int imx;  
 int stepm;    Revision 1.105  2006/01/05 20:23:19  lievre
 /* Stepm, step in month: minimum step interpolation*/    *** empty log message ***
   
 int estepm;    Revision 1.104  2005/09/30 16:11:43  lievre
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 int m,nb;    that the person is alive, then we can code his/her status as -2
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (instead of missing=-1 in earlier versions) and his/her
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    contributions to the likelihood is 1 - Prob of dying from last
 double **pmmij, ***probs, ***mobaverage;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 double dateintmean=0;    the healthy state at last known wave). Version is 0.98
   
 double *weight;    Revision 1.103  2005/09/30 15:54:49  lievre
 int **s; /* Status */    (Module): sump fixed, loop imx fixed, and simplifications.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.100  2004/07/12 18:29:06  brouard
 {    Add version for Mac OS X. Just define UNIX in Makefile
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.98  2004/05/16 15:05:56  brouard
 #ifdef windows    New version 0.97 . First attempt to estimate force of mortality
    s = strrchr( path, '\\' );           /* find last / */    directly from the data i.e. without the need of knowing the health
 #else    state at each age, but using a Gompertz model: log u =a + b*age .
    s = strrchr( path, '/' );            /* find last / */    This is the basic analysis of mortality and should be done before any
 #endif    other analysis, in order to test if the mortality estimated from the
    if ( s == NULL ) {                   /* no directory, so use current */    cross-longitudinal survey is different from the mortality estimated
 #if     defined(__bsd__)                /* get current working directory */    from other sources like vital statistic data.
       extern char       *getwd( );  
     The same imach parameter file can be used but the option for mle should be -3.
       if ( getwd( dirc ) == NULL ) {  
 #else    Agnès, who wrote this part of the code, tried to keep most of the
       extern char       *getcwd( );    former routines in order to include the new code within the former code.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    The output is very simple: only an estimate of the intercept and of
 #endif    the slope with 95% confident intervals.
          return( GLOCK_ERROR_GETCWD );  
       }    Current limitations:
       strcpy( name, path );             /* we've got it */    A) Even if you enter covariates, i.e. with the
    } else {                             /* strip direcotry from path */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
       s++;                              /* after this, the filename */    B) There is no computation of Life Expectancy nor Life Table.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.97  2004/02/20 13:25:42  lievre
       strcpy( name, s );                /* save file name */    Version 0.96d. Population forecasting command line is (temporarily)
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    suppressed.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.96  2003/07/15 15:38:55  brouard
    l1 = strlen( dirc );                 /* length of directory */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #ifdef windows    rewritten within the same printf. Workaround: many printfs.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.95  2003/07/08 07:54:34  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    * imach.c (Repository):
 #endif    (Repository): Using imachwizard code to output a more meaningful covariance
    s = strrchr( name, '.' );            /* find last / */    matrix (cov(a12,c31) instead of numbers.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.94  2003/06/27 13:00:02  brouard
    l1= strlen( name);    Just cleaning
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.93  2003/06/25 16:33:55  brouard
    finame[l1-l2]= 0;    (Module): On windows (cygwin) function asctime_r doesn't
    return( 0 );                         /* we're done */    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
   
     Revision 1.92  2003/06/25 16:30:45  brouard
 /******************************************/    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 void replace(char *s, char*t)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   int i;    * imach.c (Repository): Duplicated warning errors corrected.
   int lg=20;    (Repository): Elapsed time after each iteration is now output. It
   i=0;    helps to forecast when convergence will be reached. Elapsed time
   lg=strlen(t);    is stamped in powell.  We created a new html file for the graphs
   for(i=0; i<= lg; i++) {    concerning matrix of covariance. It has extension -cov.htm.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.90  2003/06/24 12:34:15  brouard
   }    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int nbocc(char *s, char occ)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   int i,j=0;    (Module): Some bugs corrected for windows. Also, when
   int lg=20;    mle=-1 a template is output in file "or"mypar.txt with the design
   i=0;    of the covariance matrix to be input.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.88  2003/06/23 17:54:56  brouard
   if  (s[i] == occ ) j++;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   }  
   return j;    Revision 1.87  2003/06/18 12:26:01  brouard
 }    Version 0.96
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   int i,lg,j,p=0;    routine fileappend.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.85  2003/06/17 13:12:43  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    * imach.c (Repository): Check when date of death was earlier that
   }    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
   lg=strlen(t);    was wrong (infinity). We still send an "Error" but patch by
   for(j=0; j<p; j++) {    assuming that the date of death was just one stepm after the
     (u[j] = t[j]);    interview.
   }    (Repository): Because some people have very long ID (first column)
      u[p]='\0';    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
    for(j=0; j<= lg; j++) {    truncation)
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Repository): No more line truncation errors.
   }  
 }    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 /********************** nrerror ********************/    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 void nrerror(char error_text[])    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.83  2003/06/10 13:39:11  lievre
   exit(1);    *** empty log message ***
 }  
 /*********************** vector *******************/    Revision 1.82  2003/06/05 15:57:20  brouard
 double *vector(int nl, int nh)    Add log in  imach.c and  fullversion number is now printed.
 {  
   double *v;  */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /*
   if (!v) nrerror("allocation failure in vector");     Interpolated Markov Chain
   return v-nl+NR_END;  
 }    Short summary of the programme:
     
 /************************ free vector ******************/    This program computes Healthy Life Expectancies from
 void free_vector(double*v, int nl, int nh)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   free((FREE_ARG)(v+nl-NR_END));    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 /************************ivector *******************************/    (if any) in individual health status.  Health expectancies are
 int *ivector(long nl,long nh)    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
   int *v;    Maximum Likelihood of the parameters involved in the model.  The
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    simplest model is the multinomial logistic model where pij is the
   if (!v) nrerror("allocation failure in ivector");    probability to be observed in state j at the second wave
   return v-nl+NR_END;    conditional to be observed in state i at the first wave. Therefore
 }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 /******************free ivector **************************/    complex model than "constant and age", you should modify the program
 void free_ivector(int *v, long nl, long nh)    where the markup *Covariates have to be included here again* invites
 {    you to do it.  More covariates you add, slower the
   free((FREE_ARG)(v+nl-NR_END));    convergence.
 }  
     The advantage of this computer programme, compared to a simple
 /******************* imatrix *******************************/    multinomial logistic model, is clear when the delay between waves is not
 int **imatrix(long nrl, long nrh, long ncl, long nch)    identical for each individual. Also, if a individual missed an
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    intermediate interview, the information is lost, but taken into
 {    account using an interpolation or extrapolation.  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
   /* allocate pointers to rows */    split into an exact number (nh*stepm) of unobserved intermediate
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    states. This elementary transition (by month, quarter,
   if (!m) nrerror("allocation failure 1 in matrix()");    semester or year) is modelled as a multinomial logistic.  The hPx
   m += NR_END;    matrix is simply the matrix product of nh*stepm elementary matrices
   m -= nrl;    and the contribution of each individual to the likelihood is simply
      hPijx.
    
   /* allocate rows and set pointers to them */    Also this programme outputs the covariance matrix of the parameters but also
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    of the life expectancies. It also computes the period (stable) prevalence. 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m[nrl] -= ncl;             Institut national d'études démographiques, Paris.
      This software have been partly granted by Euro-REVES, a concerted action
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    from the European Union.
      It is copyrighted identically to a GNU software product, ie programme and
   /* return pointer to array of pointers to rows */    software can be distributed freely for non commercial use. Latest version
   return m;    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /****************** free_imatrix *************************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 void free_imatrix(m,nrl,nrh,ncl,nch)    
       int **m;    **********************************************************************/
       long nch,ncl,nrh,nrl;  /*
      /* free an int matrix allocated by imatrix() */    main
 {    read parameterfile
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    read datafile
   free((FREE_ARG) (m+nrl-NR_END));    concatwav
 }    freqsummary
     if (mle >= 1)
 /******************* matrix *******************************/      mlikeli
 double **matrix(long nrl, long nrh, long ncl, long nch)    print results files
 {    if mle==1 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;       computes hessian
   double **m;    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    open gnuplot file
   if (!m) nrerror("allocation failure 1 in matrix()");    open html file
   m += NR_END;    period (stable) prevalence
   m -= nrl;     for age prevalim()
     h Pij x
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    variance of p varprob
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    forecasting if prevfcast==1 prevforecast call prevalence()
   m[nrl] += NR_END;    health expectancies
   m[nrl] -= ncl;    Variance-covariance of DFLE
     prevalence()
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;     movingaverage()
   return m;    varevsij() 
 }    if popbased==1 varevsij(,popbased)
     total life expectancies
 /*************************free matrix ************************/    Variance of period (stable) prevalence
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)   end
 {  */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  
 }  
    
 /******************* ma3x *******************************/  #include <math.h>
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #include <stdio.h>
 {  #include <stdlib.h>
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #include <string.h>
   double ***m;  #include <unistd.h>
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <limits.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <sys/types.h>
   m += NR_END;  #include <sys/stat.h>
   m -= nrl;  #include <errno.h>
   extern int errno;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* #include <sys/time.h> */
   m[nrl] += NR_END;  #include <time.h>
   m[nrl] -= ncl;  #include "timeval.h"
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define MAXLINE 256
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define GNUPLOTPROGRAM "gnuplot"
   for (j=ncl+1; j<=nch; j++)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     m[nrl][j]=m[nrl][j-1]+nlay;  #define FILENAMELENGTH 132
    
   for (i=nrl+1; i<=nrh; i++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   }  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   return m;  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /*************************free ma3x ************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define NCOVMAX 20 /* Maximum number of covariates */
 {  #define MAXN 20000
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define YEARM 12. /* Number of months per year */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define AGESUP 130
   free((FREE_ARG)(m+nrl-NR_END));  #define AGEBASE 40
 }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
 /***************** f1dim *************************/  #define DIRSEPARATOR '/'
 extern int ncom;  #define CHARSEPARATOR "/"
 extern double *pcom,*xicom;  #define ODIRSEPARATOR '\\'
 extern double (*nrfunc)(double []);  #else
    #define DIRSEPARATOR '\\'
 double f1dim(double x)  #define CHARSEPARATOR "\\"
 {  #define ODIRSEPARATOR '/'
   int j;  #endif
   double f;  
   double *xt;  /* $Id$ */
    /* $State$ */
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char version[]="Imach version 0.98k, June 2006, INED-EUROREVES-Institut de longevite ";
   f=(*nrfunc)(xt);  char fullversion[]="$Revision$ $Date$"; 
   free_vector(xt,1,ncom);  char strstart[80];
   return f;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 }  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar=0;
 /*****************brent *************************/  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   int iter;  int ndeath=1; /* Number of dead states */
   double a,b,d,etemp;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double fu,fv,fw,fx;  int popbased=0;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int *wav; /* Number of waves for this individuual 0 is possible */
   double e=0.0;  int maxwav=0; /* Maxim number of waves */
    int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   a=(ax < cx ? ax : cx);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   b=(ax > cx ? ax : cx);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   x=w=v=bx;                     to the likelihood and the sum of weights (done by funcone)*/
   fw=fv=fx=(*f)(x);  int mle=1, weightopt=0;
   for (iter=1;iter<=ITMAX;iter++) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     xm=0.5*(a+b);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     printf(".");fflush(stdout);  double jmean=1; /* Mean space between 2 waves */
 #ifdef DEBUG  double **oldm, **newm, **savm; /* Working pointers to matrices */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #endif  FILE *ficlog, *ficrespow;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int globpr=0; /* Global variable for printing or not */
       *xmin=x;  double fretone; /* Only one call to likelihood */
       return fx;  long ipmx=0; /* Number of contributions */
     }  double sw; /* Sum of weights */
     ftemp=fu;  char filerespow[FILENAMELENGTH];
     if (fabs(e) > tol1) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       r=(x-w)*(fx-fv);  FILE *ficresilk;
       q=(x-v)*(fx-fw);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       p=(x-v)*q-(x-w)*r;  FILE *ficresprobmorprev;
       q=2.0*(q-r);  FILE *fichtm, *fichtmcov; /* Html File */
       if (q > 0.0) p = -p;  FILE *ficreseij;
       q=fabs(q);  char filerese[FILENAMELENGTH];
       etemp=e;  FILE *ficresstdeij;
       e=d;  char fileresstde[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  FILE *ficrescveij;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerescve[FILENAMELENGTH];
       else {  FILE  *ficresvij;
         d=p/q;  char fileresv[FILENAMELENGTH];
         u=x+d;  FILE  *ficresvpl;
         if (u-a < tol2 || b-u < tol2)  char fileresvpl[FILENAMELENGTH];
           d=SIGN(tol1,xm-x);  char title[MAXLINE];
       }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     } else {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     }  char command[FILENAMELENGTH];
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int  outcmd=0;
     fu=(*f)(u);  
     if (fu <= fx) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  char filelog[FILENAMELENGTH]; /* Log file */
         SHFT(fv,fw,fx,fu)  char filerest[FILENAMELENGTH];
         } else {  char fileregp[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  char popfile[FILENAMELENGTH];
           if (fu <= fw || w == x) {  
             v=w;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
             w=u;  
             fv=fw;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
             fw=fu;  struct timezone tzp;
           } else if (fu <= fv || v == x || v == w) {  extern int gettimeofday();
             v=u;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
             fv=fu;  long time_value;
           }  extern long time();
         }  char strcurr[80], strfor[80];
   }  
   nrerror("Too many iterations in brent");  char *endptr;
   *xmin=x;  long lval;
   return fx;  double dval;
 }  
   #define NR_END 1
 /****************** mnbrak ***********************/  #define FREE_ARG char*
   #define FTOL 1.0e-10
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  #define NRANSI 
 {  #define ITMAX 200 
   double ulim,u,r,q, dum;  
   double fu;  #define TOL 2.0e-4 
    
   *fa=(*func)(*ax);  #define CGOLD 0.3819660 
   *fb=(*func)(*bx);  #define ZEPS 1.0e-10 
   if (*fb > *fa) {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  #define GOLD 1.618034 
       }  #define GLIMIT 100.0 
   *cx=(*bx)+GOLD*(*bx-*ax);  #define TINY 1.0e-20 
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  static double maxarg1,maxarg2;
     r=(*bx-*ax)*(*fb-*fc);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     q=(*bx-*cx)*(*fb-*fa);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define rint(a) floor(a+0.5)
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  static double sqrarg;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       fu=(*func)(u);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       if (fu < *fc) {  int agegomp= AGEGOMP;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  int imx; 
           }  int stepm=1;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /* Stepm, step in month: minimum step interpolation*/
       u=ulim;  
       fu=(*func)(u);  int estepm;
     } else {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  int m,nb;
     }  long *num;
     SHFT(*ax,*bx,*cx,u)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       SHFT(*fa,*fb,*fc,fu)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       }  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /*************** linmin ************************/  
   double *weight;
 int ncom;  int **s; /* Status */
 double *pcom,*xicom;  double *agedc, **covar, idx;
 double (*nrfunc)(double []);  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    double *lsurv, *lpop, *tpop;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double brent(double ax, double bx, double cx,  double ftolhess; /* Tolerance for computing hessian */
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /**************** split *************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
               double *fc, double (*func)(double));  {
   int j;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double xx,xmin,bx,ax;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double fx,fb,fa;    */ 
      char  *ss;                            /* pointer */
   ncom=n;    int   l1, l2;                         /* length counters */
   pcom=vector(1,n);  
   xicom=vector(1,n);    l1 = strlen(path );                   /* length of path */
   nrfunc=func;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (j=1;j<=n;j++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     pcom[j]=p[j];    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     xicom[j]=xi[j];      strcpy( name, path );               /* we got the fullname name because no directory */
   }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   ax=0.0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   xx=1.0;      /* get current working directory */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      /*    extern  char* getcwd ( char *buf , int len);*/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 #ifdef DEBUG        return( GLOCK_ERROR_GETCWD );
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      }
 #endif      /* got dirc from getcwd*/
   for (j=1;j<=n;j++) {      printf(" DIRC = %s \n",dirc);
     xi[j] *= xmin;    } else {                              /* strip direcotry from path */
     p[j] += xi[j];      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
   free_vector(xicom,1,n);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free_vector(pcom,1,n);      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 /*************** powell ************************/      printf(" DIRC2 = %s \n",dirc);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    }
             double (*func)(double []))    /* We add a separator at the end of dirc if not exists */
 {    l1 = strlen( dirc );                  /* length of directory */
   void linmin(double p[], double xi[], int n, double *fret,    if( dirc[l1-1] != DIRSEPARATOR ){
               double (*func)(double []));      dirc[l1] =  DIRSEPARATOR;
   int i,ibig,j;      dirc[l1+1] = 0; 
   double del,t,*pt,*ptt,*xit;      printf(" DIRC3 = %s \n",dirc);
   double fp,fptt;    }
   double *xits;    ss = strrchr( name, '.' );            /* find last / */
   pt=vector(1,n);    if (ss >0){
   ptt=vector(1,n);      ss++;
   xit=vector(1,n);      strcpy(ext,ss);                     /* save extension */
   xits=vector(1,n);      l1= strlen( name);
   *fret=(*func)(p);      l2= strlen(ss)+1;
   for (j=1;j<=n;j++) pt[j]=p[j];      strncpy( finame, name, l1-l2);
   for (*iter=1;;++(*iter)) {      finame[l1-l2]= 0;
     fp=(*fret);    }
     ibig=0;  
     del=0.0;    return( 0 );                          /* we're done */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  }
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /******************************************/
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  void replace_back_to_slash(char *s, char*t)
       fptt=(*fret);  {
 #ifdef DEBUG    int i;
       printf("fret=%lf \n",*fret);    int lg=0;
 #endif    i=0;
       printf("%d",i);fflush(stdout);    lg=strlen(t);
       linmin(p,xit,n,fret,func);    for(i=0; i<= lg; i++) {
       if (fabs(fptt-(*fret)) > del) {      (s[i] = t[i]);
         del=fabs(fptt-(*fret));      if (t[i]== '\\') s[i]='/';
         ibig=i;    }
       }  }
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  char *trimbb(char *out, char *in)
       for (j=1;j<=n;j++) {  { /* Trim multiple blanks in line */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    char *s;
         printf(" x(%d)=%.12e",j,xit[j]);    s=out;
       }    while (*in != '\0'){
       for(j=1;j<=n;j++)      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
         printf(" p=%.12e",p[j]);        in++;
       printf("\n");      }
 #endif      *out++ = *in++;
     }    }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    *out='\0';
 #ifdef DEBUG    return s;
       int k[2],l;  }
       k[0]=1;  
       k[1]=-1;  int nbocc(char *s, char occ)
       printf("Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++)    int i,j=0;
         printf(" %.12e",p[j]);    int lg=20;
       printf("\n");    i=0;
       for(l=0;l<=1;l++) {    lg=strlen(s);
         for (j=1;j<=n;j++) {    for(i=0; i<= lg; i++) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if  (s[i] == occ ) j++;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    }
         }    return j;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
       }  
 #endif  void cutv(char *u,char *v, char*t, char occ)
   {
     /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       free_vector(xit,1,n);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       free_vector(xits,1,n);       gives u="abcedf" and v="ghi2j" */
       free_vector(ptt,1,n);    int i,lg,j,p=0;
       free_vector(pt,1,n);    i=0;
       return;    for(j=0; j<=strlen(t)-1; j++) {
     }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    lg=strlen(t);
       xit[j]=p[j]-pt[j];    for(j=0; j<p; j++) {
       pt[j]=p[j];      (u[j] = t[j]);
     }    }
     fptt=(*func)(ptt);       u[p]='\0';
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);     for(j=0; j<= lg; j++) {
       if (t < 0.0) {      if (j>=(p+1))(v[j-p-1] = t[j]);
         linmin(p,xit,n,fret,func);    }
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /********************** nrerror ********************/
         }  
 #ifdef DEBUG  void nrerror(char error_text[])
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  {
         for(j=1;j<=n;j++)    fprintf(stderr,"ERREUR ...\n");
           printf(" %.12e",xit[j]);    fprintf(stderr,"%s\n",error_text);
         printf("\n");    exit(EXIT_FAILURE);
 #endif  }
       }  /*********************** vector *******************/
     }  double *vector(int nl, int nh)
   }  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 /**** Prevalence limit ****************/    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /************************ free vector ******************/
      matrix by transitions matrix until convergence is reached */  void free_vector(double*v, int nl, int nh)
   {
   int i, ii,j,k;    free((FREE_ARG)(v+nl-NR_END));
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /************************ivector *******************************/
   double **newm;  int *ivector(long nl,long nh)
   double agefin, delaymax=50 ; /* Max number of years to converge */  {
     int *v;
   for (ii=1;ii<=nlstate+ndeath;ii++)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!v) nrerror("allocation failure in ivector");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return v-nl+NR_END;
     }  }
   
    cov[1]=1.;  /******************free ivector **************************/
    void free_ivector(int *v, long nl, long nh)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    free((FREE_ARG)(v+nl-NR_END));
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /************************lvector *******************************/
    long *lvector(long nl,long nh)
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    long *v;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       }    if (!v) nrerror("allocation failure in ivector");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return v-nl+NR_END;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /******************free lvector **************************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  void free_lvector(long *v, long nl, long nh)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    free((FREE_ARG)(v+nl-NR_END));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  }
   
     savm=oldm;  /******************* imatrix *******************************/
     oldm=newm;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     maxmax=0.;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     for(j=1;j<=nlstate;j++){  { 
       min=1.;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       max=0.;    int **m; 
       for(i=1; i<=nlstate; i++) {    
         sumnew=0;    /* allocate pointers to rows */ 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    if (!m) nrerror("allocation failure 1 in matrix()"); 
         max=FMAX(max,prlim[i][j]);    m += NR_END; 
         min=FMIN(min,prlim[i][j]);    m -= nrl; 
       }    
       maxmin=max-min;    
       maxmax=FMAX(maxmax,maxmin);    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if(maxmax < ftolpl){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       return prlim;    m[nrl] += NR_END; 
     }    m[nrl] -= ncl; 
   }    
 }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 /*************** transition probabilities ***************/    /* return pointer to array of pointers to rows */ 
     return m; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  } 
 {  
   double s1, s2;  /****************** free_imatrix *************************/
   /*double t34;*/  void free_imatrix(m,nrl,nrh,ncl,nch)
   int i,j,j1, nc, ii, jj;        int **m;
         long nch,ncl,nrh,nrl; 
     for(i=1; i<= nlstate; i++){       /* free an int matrix allocated by imatrix() */ 
     for(j=1; j<i;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         /*s2 += param[i][j][nc]*cov[nc];*/    free((FREE_ARG) (m+nrl-NR_END)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  
       }  /******************* matrix *******************************/
       ps[i][j]=s2;  double **matrix(long nrl, long nrh, long ncl, long nch)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for(j=i+1; j<=nlstate+ndeath;j++){    double **m;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       ps[i][j]=s2;    m -= nrl;
     }  
   }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     /*ps[3][2]=1;*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
   for(i=1; i<= nlstate; i++){    m[nrl] -= ncl;
      s1=0;  
     for(j=1; j<i; j++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       s1+=exp(ps[i][j]);    return m;
     for(j=i+1; j<=nlstate+ndeath; j++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       s1+=exp(ps[i][j]);     */
     ps[i][i]=1./(s1+1.);  }
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*************************free matrix ************************/
     for(j=i+1; j<=nlstate+ndeath; j++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   } /* end i */    free((FREE_ARG)(m+nrl-NR_END));
   }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /******************* ma3x *******************************/
       ps[ii][jj]=0;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       ps[ii][ii]=1;  {
     }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   }    double ***m;
   
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    if (!m) nrerror("allocation failure 1 in matrix()");
     for(jj=1; jj<= nlstate+ndeath; jj++){    m += NR_END;
      printf("%lf ",ps[ii][jj]);    m -= nrl;
    }  
     printf("\n ");    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\n ");printf("%lf ",cov[2]);*/    m[nrl] += NR_END;
 /*    m[nrl] -= ncl;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return ps;  
 }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 /**************** Product of 2 matrices ******************/    m[nrl][ncl] += NR_END;
     m[nrl][ncl] -= nll;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    for (j=ncl+1; j<=nch; j++) 
 {      m[nrl][j]=m[nrl][j-1]+nlay;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    for (i=nrl+1; i<=nrh; i++) {
   /* in, b, out are matrice of pointers which should have been initialized      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
      before: only the contents of out is modified. The function returns      for (j=ncl+1; j<=nch; j++) 
      a pointer to pointers identical to out */        m[i][j]=m[i][j-1]+nlay;
   long i, j, k;    }
   for(i=nrl; i<= nrh; i++)    return m; 
     for(k=ncolol; k<=ncoloh; k++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for(j=ncl,out[i][k]=0.; j<=nch; j++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         out[i][k] +=in[i][j]*b[j][k];    */
   }
   return out;  
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /************* Higher Matrix Product ***************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  /*************** function subdirf ***********/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  char *subdirf(char fileres[])
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  {
      (typically every 2 years instead of every month which is too big).    /* Caution optionfilefiname is hidden */
      Model is determined by parameters x and covariates have to be    strcpy(tmpout,optionfilefiname);
      included manually here.    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
      */    return tmpout;
   }
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /*************** function subdirf2 ***********/
   double **newm;  char *subdirf2(char fileres[], char *preop)
   {
   /* Hstepm could be zero and should return the unit matrix */    
   for (i=1;i<=nlstate+ndeath;i++)    /* Caution optionfilefiname is hidden */
     for (j=1;j<=nlstate+ndeath;j++){    strcpy(tmpout,optionfilefiname);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    strcat(tmpout,"/");
       po[i][j][0]=(i==j ? 1.0 : 0.0);    strcat(tmpout,preop);
     }    strcat(tmpout,fileres);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return tmpout;
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /*************** function subdirf3 ***********/
       /* Covariates have to be included here again */  char *subdirf3(char fileres[], char *preop, char *preop2)
       cov[1]=1.;  {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovage;k++)    strcpy(tmpout,optionfilefiname);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcat(tmpout,"/");
       for (k=1; k<=cptcovprod;k++)    strcat(tmpout,preop);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
     return tmpout;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /***************** f1dim *************************/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  extern int ncom; 
       savm=oldm;  extern double *pcom,*xicom;
       oldm=newm;  extern double (*nrfunc)(double []); 
     }   
     for(i=1; i<=nlstate+ndeath; i++)  double f1dim(double x) 
       for(j=1;j<=nlstate+ndeath;j++) {  { 
         po[i][j][h]=newm[i][j];    int j; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double f;
          */    double *xt; 
       }   
   } /* end h */    xt=vector(1,ncom); 
   return po;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
     return f; 
 /*************** log-likelihood *************/  } 
 double func( double *x)  
 {  /*****************brent *************************/
   int i, ii, j, k, mi, d, kk;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  { 
   double **out;    int iter; 
   double sw; /* Sum of weights */    double a,b,d,etemp;
   double lli; /* Individual log likelihood */    double fu,fv,fw,fx;
   long ipmx;    double ftemp;
   /*extern weight */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   /* We are differentiating ll according to initial status */    double e=0.0; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/   
   /*for(i=1;i<imx;i++)    a=(ax < cx ? ax : cx); 
     printf(" %d\n",s[4][i]);    b=(ax > cx ? ax : cx); 
   */    x=w=v=bx; 
   cov[1]=1.;    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      xm=0.5*(a+b); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for(mi=1; mi<= wav[i]-1; mi++){      printf(".");fflush(stdout);
       for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficlog,".");fflush(ficlog);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef DEBUG
       for(d=0; d<dh[mi][i]; d++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         newm=savm;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         for (kk=1; kk<=cptcovage;kk++) {  #endif
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         }        *xmin=x; 
                return fx; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      } 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      ftemp=fu;
         savm=oldm;      if (fabs(e) > tol1) { 
         oldm=newm;        r=(x-w)*(fx-fv); 
                q=(x-v)*(fx-fw); 
                p=(x-v)*q-(x-w)*r; 
       } /* end mult */        q=2.0*(q-r); 
              if (q > 0.0) p = -p; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        q=fabs(q); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        etemp=e; 
       ipmx +=1;        e=d; 
       sw += weight[i];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     } /* end of wave */        else { 
   } /* end of individual */          d=p/q; 
           u=x+d; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          if (u-a < tol2 || b-u < tol2) 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            d=SIGN(tol1,xm-x); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        } 
   return -l;      } else { 
 }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 /*********** Maximum Likelihood Estimation ***************/      fu=(*f)(u); 
       if (fu <= fx) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        if (u >= x) a=x; else b=x; 
 {        SHFT(v,w,x,u) 
   int i,j, iter;          SHFT(fv,fw,fx,fu) 
   double **xi,*delti;          } else { 
   double fret;            if (u < x) a=u; else b=u; 
   xi=matrix(1,npar,1,npar);            if (fu <= fw || w == x) { 
   for (i=1;i<=npar;i++)              v=w; 
     for (j=1;j<=npar;j++)              w=u; 
       xi[i][j]=(i==j ? 1.0 : 0.0);              fv=fw; 
   printf("Powell\n");              fw=fu; 
   powell(p,xi,npar,ftol,&iter,&fret,func);            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));              fv=fu; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));            } 
           } 
 }    } 
     nrerror("Too many iterations in brent"); 
 /**** Computes Hessian and covariance matrix ***/    *xmin=x; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    return fx; 
 {  } 
   double  **a,**y,*x,pd;  
   double **hess;  /****************** mnbrak ***********************/
   int i, j,jk;  
   int *indx;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   double hessii(double p[], double delta, int theta, double delti[]);  { 
   double hessij(double p[], double delti[], int i, int j);    double ulim,u,r,q, dum;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double fu; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;   
     *fa=(*func)(*ax); 
   hess=matrix(1,npar,1,npar);    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
   printf("\nCalculation of the hessian matrix. Wait...\n");      SHFT(dum,*ax,*bx,dum) 
   for (i=1;i<=npar;i++){        SHFT(dum,*fb,*fa,dum) 
     printf("%d",i);fflush(stdout);        } 
     hess[i][i]=hessii(p,ftolhess,i,delti);    *cx=(*bx)+GOLD*(*bx-*ax); 
     /*printf(" %f ",p[i]);*/    *fc=(*func)(*cx); 
     /*printf(" %lf ",hess[i][i]);*/    while (*fb > *fc) { 
   }      r=(*bx-*ax)*(*fb-*fc); 
        q=(*bx-*cx)*(*fb-*fa); 
   for (i=1;i<=npar;i++) {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for (j=1;j<=npar;j++)  {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       if (j>i) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         printf(".%d%d",i,j);fflush(stdout);      if ((*bx-u)*(u-*cx) > 0.0) { 
         hess[i][j]=hessij(p,delti,i,j);        fu=(*func)(u); 
         hess[j][i]=hess[i][j];          } else if ((*cx-u)*(u-ulim) > 0.0) { 
         /*printf(" %lf ",hess[i][j]);*/        fu=(*func)(u); 
       }        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   }            SHFT(*fb,*fc,fu,(*func)(u)) 
   printf("\n");            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        u=ulim; 
          fu=(*func)(u); 
   a=matrix(1,npar,1,npar);      } else { 
   y=matrix(1,npar,1,npar);        u=(*cx)+GOLD*(*cx-*bx); 
   x=vector(1,npar);        fu=(*func)(u); 
   indx=ivector(1,npar);      } 
   for (i=1;i<=npar;i++)      SHFT(*ax,*bx,*cx,u) 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        SHFT(*fa,*fb,*fc,fu) 
   ludcmp(a,npar,indx,&pd);        } 
   } 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /*************** linmin ************************/
     x[j]=1;  
     lubksb(a,npar,indx,x);  int ncom; 
     for (i=1;i<=npar;i++){  double *pcom,*xicom;
       matcov[i][j]=x[i];  double (*nrfunc)(double []); 
     }   
   }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   printf("\n#Hessian matrix#\n");    double brent(double ax, double bx, double cx, 
   for (i=1;i<=npar;i++) {                 double (*f)(double), double tol, double *xmin); 
     for (j=1;j<=npar;j++) {    double f1dim(double x); 
       printf("%.3e ",hess[i][j]);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     }                double *fc, double (*func)(double)); 
     printf("\n");    int j; 
   }    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   /* Recompute Inverse */   
   for (i=1;i<=npar;i++)    ncom=n; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    pcom=vector(1,n); 
   ludcmp(a,npar,indx,&pd);    xicom=vector(1,n); 
     nrfunc=func; 
   /*  printf("\n#Hessian matrix recomputed#\n");    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   for (j=1;j<=npar;j++) {      xicom[j]=xi[j]; 
     for (i=1;i<=npar;i++) x[i]=0;    } 
     x[j]=1;    ax=0.0; 
     lubksb(a,npar,indx,x);    xx=1.0; 
     for (i=1;i<=npar;i++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       y[i][j]=x[i];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       printf("%.3e ",y[i][j]);  #ifdef DEBUG
     }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     printf("\n");    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }  #endif
   */    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
   free_matrix(a,1,npar,1,npar);      p[j] += xi[j]; 
   free_matrix(y,1,npar,1,npar);    } 
   free_vector(x,1,npar);    free_vector(xicom,1,n); 
   free_ivector(indx,1,npar);    free_vector(pcom,1,n); 
   free_matrix(hess,1,npar,1,npar);  } 
   
   char *asc_diff_time(long time_sec, char ascdiff[])
 }  {
     long sec_left, days, hours, minutes;
 /*************** hessian matrix ****************/    days = (time_sec) / (60*60*24);
 double hessii( double x[], double delta, int theta, double delti[])    sec_left = (time_sec) % (60*60*24);
 {    hours = (sec_left) / (60*60) ;
   int i;    sec_left = (sec_left) %(60*60);
   int l=1, lmax=20;    minutes = (sec_left) /60;
   double k1,k2;    sec_left = (sec_left) % (60);
   double p2[NPARMAX+1];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double res;    return ascdiff;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  }
   double fx;  
   int k=0,kmax=10;  /*************** powell ************************/
   double l1;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
   fx=func(x);  { 
   for (i=1;i<=npar;i++) p2[i]=x[i];    void linmin(double p[], double xi[], int n, double *fret, 
   for(l=0 ; l <=lmax; l++){                double (*func)(double [])); 
     l1=pow(10,l);    int i,ibig,j; 
     delts=delt;    double del,t,*pt,*ptt,*xit;
     for(k=1 ; k <kmax; k=k+1){    double fp,fptt;
       delt = delta*(l1*k);    double *xits;
       p2[theta]=x[theta] +delt;    int niterf, itmp;
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;    pt=vector(1,n); 
       k2=func(p2)-fx;    ptt=vector(1,n); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    xit=vector(1,n); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    xits=vector(1,n); 
          *fret=(*func)(p); 
 #ifdef DEBUG    for (j=1;j<=n;j++) pt[j]=p[j]; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    for (*iter=1;;++(*iter)) { 
 #endif      fp=(*fret); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      ibig=0; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      del=0.0; 
         k=kmax;      last_time=curr_time;
       }      (void) gettimeofday(&curr_time,&tzp);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         k=kmax; l=lmax*10.;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){     for (i=1;i<=n;i++) {
         delts=delt;        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
     }        fprintf(ficrespow," %.12lf", p[i]);
   }      }
   delti[theta]=delts;      printf("\n");
   return res;      fprintf(ficlog,"\n");
        fprintf(ficrespow,"\n");fflush(ficrespow);
 }      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
 double hessij( double x[], double delti[], int thetai,int thetaj)        strcpy(strcurr,asctime(&tm));
 {  /*       asctime_r(&tm,strcurr); */
   int i;        forecast_time=curr_time; 
   int l=1, l1, lmax=20;        itmp = strlen(strcurr);
   double k1,k2,k3,k4,res,fx;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double p2[NPARMAX+1];          strcurr[itmp-1]='\0';
   int k;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   fx=func(x);        for(niterf=10;niterf<=30;niterf+=10){
   for (k=1; k<=2; k++) {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for (i=1;i<=npar;i++) p2[i]=x[i];          tmf = *localtime(&forecast_time.tv_sec);
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*      asctime_r(&tmf,strfor); */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          strcpy(strfor,asctime(&tmf));
     k1=func(p2)-fx;          itmp = strlen(strfor);
            if(strfor[itmp-1]=='\n')
     p2[thetai]=x[thetai]+delti[thetai]/k;          strfor[itmp-1]='\0';
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     k2=func(p2)-fx;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
          }
     p2[thetai]=x[thetai]-delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (i=1;i<=n;i++) { 
     k3=func(p2)-fx;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
          fptt=(*fret); 
     p2[thetai]=x[thetai]-delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        printf("fret=%lf \n",*fret);
     k4=func(p2)-fx;        fprintf(ficlog,"fret=%lf \n",*fret);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  #endif
 #ifdef DEBUG        printf("%d",i);fflush(stdout);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        fprintf(ficlog,"%d",i);fflush(ficlog);
 #endif        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
   return res;          del=fabs(fptt-(*fret)); 
 }          ibig=i; 
         } 
 /************** Inverse of matrix **************/  #ifdef DEBUG
 void ludcmp(double **a, int n, int *indx, double *d)        printf("%d %.12e",i,(*fret));
 {        fprintf(ficlog,"%d %.12e",i,(*fret));
   int i,imax,j,k;        for (j=1;j<=n;j++) {
   double big,dum,sum,temp;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double *vv;          printf(" x(%d)=%.12e",j,xit[j]);
            fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   vv=vector(1,n);        }
   *d=1.0;        for(j=1;j<=n;j++) {
   for (i=1;i<=n;i++) {          printf(" p=%.12e",p[j]);
     big=0.0;          fprintf(ficlog," p=%.12e",p[j]);
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;        printf("\n");
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        fprintf(ficlog,"\n");
     vv[i]=1.0/big;  #endif
   }      } 
   for (j=1;j<=n;j++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (i=1;i<j;i++) {  #ifdef DEBUG
       sum=a[i][j];        int k[2],l;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        k[0]=1;
       a[i][j]=sum;        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
     big=0.0;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (i=j;i<=n;i++) {        for (j=1;j<=n;j++) {
       sum=a[i][j];          printf(" %.12e",p[j]);
       for (k=1;k<j;k++)          fprintf(ficlog," %.12e",p[j]);
         sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;        printf("\n");
       if ( (dum=vv[i]*fabs(sum)) >= big) {        fprintf(ficlog,"\n");
         big=dum;        for(l=0;l<=1;l++) {
         imax=i;          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     if (j != imax) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (k=1;k<=n;k++) {          }
         dum=a[imax][k];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         a[imax][k]=a[j][k];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         a[j][k]=dum;        }
       }  #endif
       *d = -(*d);  
       vv[imax]=vv[j];  
     }        free_vector(xit,1,n); 
     indx[j]=imax;        free_vector(xits,1,n); 
     if (a[j][j] == 0.0) a[j][j]=TINY;        free_vector(ptt,1,n); 
     if (j != n) {        free_vector(pt,1,n); 
       dum=1.0/(a[j][j]);        return; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { 
   free_vector(vv,1,n);  /* Doesn't work */        ptt[j]=2.0*p[j]-pt[j]; 
 ;        xit[j]=p[j]-pt[j]; 
 }        pt[j]=p[j]; 
       } 
 void lubksb(double **a, int n, int *indx, double b[])      fptt=(*func)(ptt); 
 {      if (fptt < fp) { 
   int i,ii=0,ip,j;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double sum;        if (t < 0.0) { 
            linmin(p,xit,n,fret,func); 
   for (i=1;i<=n;i++) {          for (j=1;j<=n;j++) { 
     ip=indx[i];            xi[j][ibig]=xi[j][n]; 
     sum=b[ip];            xi[j][n]=xit[j]; 
     b[ip]=b[i];          }
     if (ii)  #ifdef DEBUG
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     else if (sum) ii=i;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     b[i]=sum;          for(j=1;j<=n;j++){
   }            printf(" %.12e",xit[j]);
   for (i=n;i>=1;i--) {            fprintf(ficlog," %.12e",xit[j]);
     sum=b[i];          }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          printf("\n");
     b[i]=sum/a[i][i];          fprintf(ficlog,"\n");
   }  #endif
 }        }
       } 
 /************ Frequencies ********************/    } 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  } 
 {  /* Some frequencies */  
    /**** Prevalence limit (stable or period prevalence)  ****************/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double *pp;  {
   double pos, k2, dateintsum=0,k2cpt=0;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   FILE *ficresp;       matrix by transitions matrix until convergence is reached */
   char fileresp[FILENAMELENGTH];  
      int i, ii,j,k;
   pp=vector(1,nlstate);    double min, max, maxmin, maxmax,sumnew=0.;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **matprod2();
   strcpy(fileresp,"p");    double **out, cov[NCOVMAX+1], **pmij();
   strcat(fileresp,fileres);    double **newm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double agefin, delaymax=50 ; /* Max number of years to converge */
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   j1=0;      }
    
   j=cptcoveff;     cov[1]=1.;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}   
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(k1=1; k1<=j;k1++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for(i1=1; i1<=ncodemax[k1];i1++){      newm=savm;
       j1++;      /* Covariates have to be included here again */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);       cov[2]=agefin;
         scanf("%d", i);*/    
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovn;k++) {
         for (jk=-1; jk<=nlstate+ndeath; jk++)            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           for(m=agemin; m <= agemax+3; m++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
             freq[i][jk][m]=0;        }
              for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       dateintsum=0;        for (k=1; k<=cptcovprod;k++)
       k2cpt=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (i=1; i<=imx; i++) {  
         bool=1;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         if  (cptcovn>0) {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           for (z1=1; z1<=cptcoveff; z1++)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
               bool=0;  
         }      savm=oldm;
         if (bool==1) {      oldm=newm;
           for(m=firstpass; m<=lastpass; m++){      maxmax=0.;
             k2=anint[m][i]+(mint[m][i]/12.);      for(j=1;j<=nlstate;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        min=1.;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        max=0.;
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for(i=1; i<=nlstate; i++) {
               if (m<lastpass) {          sumnew=0;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          prlim[i][j]= newm[i][j]/(1-sumnew);
               }          max=FMAX(max,prlim[i][j]);
                        min=FMIN(min,prlim[i][j]);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        }
                 dateintsum=dateintsum+k2;        maxmin=max-min;
                 k2cpt++;        maxmax=FMAX(maxmax,maxmin);
               }      }
             }      if(maxmax < ftolpl){
           }        return prlim;
         }      }
       }    }
          }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
   /*************** transition probabilities ***************/ 
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {
         fprintf(ficresp, "**********\n#");    double s1, s2;
       }    /*double t34;*/
       for(i=1; i<=nlstate;i++)    int i,j,j1, nc, ii, jj;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");      for(i=1; i<= nlstate; i++){
              for(j=1; j<i;j++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         if(i==(int)agemax+3)            /*s2 += param[i][j][nc]*cov[nc];*/
           printf("Total");            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         else  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           printf("Age %d", i);          }
         for(jk=1; jk <=nlstate ; jk++){          ps[i][j]=s2;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
             pp[jk] += freq[jk][m][i];        }
         }        for(j=i+1; j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           for(m=-1, pos=0; m <=0 ; m++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
             pos += freq[jk][m][i];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
           if(pp[jk]>=1.e-10)          }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          ps[i][j]=s2;
           else        }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
         }      /*ps[3][2]=1;*/
       
         for(jk=1; jk <=nlstate ; jk++){      for(i=1; i<= nlstate; i++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        s1=0;
             pp[jk] += freq[jk][m][i];        for(j=1; j<i; j++){
         }          s1+=exp(ps[i][j]);
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         for(jk=1,pos=0; jk <=nlstate ; jk++)        }
           pos += pp[jk];        for(j=i+1; j<=nlstate+ndeath; j++){
         for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]);
           if(pos>=1.e-5)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
           else        ps[i][i]=1./(s1+1.);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=1; j<i; j++)
           if( i <= (int) agemax){          ps[i][j]= exp(ps[i][j])*ps[i][i];
             if(pos>=1.e-5){        for(j=i+1; j<=nlstate+ndeath; j++)
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          ps[i][j]= exp(ps[i][j])*ps[i][i];
               probs[i][jk][j1]= pp[jk]/pos;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      } /* end i */
             }      
             else      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for(jj=1; jj<= nlstate+ndeath; jj++){
           }          ps[ii][jj]=0;
         }          ps[ii][ii]=1;
                }
         for(jk=-1; jk <=nlstate+ndeath; jk++)      }
           for(m=-1; m <=nlstate+ndeath; m++)      
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           fprintf(ficresp,"\n");  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         printf("\n");  /*         printf("ddd %lf ",ps[ii][jj]); */
       }  /*       } */
     }  /*       printf("\n "); */
   }  /*        } */
   dateintmean=dateintsum/k2cpt;  /*        printf("\n ");printf("%lf ",cov[2]); */
           /*
   fclose(ficresp);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        goto end;*/
   free_vector(pp,1,nlstate);      return ps;
    }
   /* End of Freq */  
 }  /**************** Product of 2 matrices ******************/
   
 /************ Prevalence ********************/  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  {
 {  /* Some frequencies */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    /* in, b, out are matrice of pointers which should have been initialized 
   double ***freq; /* Frequencies */       before: only the contents of out is modified. The function returns
   double *pp;       a pointer to pointers identical to out */
   double pos, k2;    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   pp=vector(1,nlstate);      for(k=ncolol; k<=ncoloh; k++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            out[i][k] +=in[i][j]*b[j][k];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;    return out;
    }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /************* Higher Matrix Product ***************/
  for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       j1++;  {
      /* Computes the transition matrix starting at age 'age' over 
       for (i=-1; i<=nlstate+ndeath; i++)         'nhstepm*hstepm*stepm' months (i.e. until
         for (jk=-1; jk<=nlstate+ndeath; jk++)         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           for(m=agemin; m <= agemax+3; m++)       nhstepm*hstepm matrices. 
             freq[i][jk][m]=0;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             (typically every 2 years instead of every month which is too big 
       for (i=1; i<=imx; i++) {       for the memory).
         bool=1;       Model is determined by parameters x and covariates have to be 
         if  (cptcovn>0) {       included manually here. 
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       */
               bool=0;  
         }    int i, j, d, h, k;
         if (bool==1) {    double **out, cov[NCOVMAX+1];
           for(m=firstpass; m<=lastpass; m++){    double **newm;
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /* Hstepm could be zero and should return the unit matrix */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    for (i=1;i<=nlstate+ndeath;i++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (j=1;j<=nlstate+ndeath;j++){
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */        po[i][j][0]=(i==j ? 1.0 : 0.0);
             }      }
           }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(h=1; h <=nhstepm; h++){
       }      for(d=1; d <=hstepm; d++){
         for(i=(int)agemin; i <= (int)agemax+3; i++){        newm=savm;
           for(jk=1; jk <=nlstate ; jk++){        /* Covariates have to be included here again */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        cov[1]=1.;
               pp[jk] += freq[jk][m][i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           }        for (k=1; k<=cptcovn;k++) 
           for(jk=1; jk <=nlstate ; jk++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovage;k++)
             pos += freq[jk][m][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }        for (k=1; k<=cptcovprod;k++)
                  cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
              pp[jk] += freq[jk][m][i];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
          for(jk=1; jk <=nlstate ; jk++){                  oldm=newm;
            if( i <= (int) agemax){      }
              if(pos>=1.e-5){      for(i=1; i<=nlstate+ndeath; i++)
                probs[i][jk][j1]= pp[jk]/pos;        for(j=1;j<=nlstate+ndeath;j++) {
              }          po[i][j][h]=newm[i][j];
            }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
          }        }
                /*printf("h=%d ",h);*/
         }    } /* end h */
     }  /*     printf("\n H=%d \n",h); */
   }    return po;
    }
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  /*************** log-likelihood *************/
    double func( double *x)
 }  /* End of Freq */  {
     int i, ii, j, k, mi, d, kk;
 /************* Waves Concatenation ***************/    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double sw; /* Sum of weights */
 {    double lli; /* Individual log likelihood */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    int s1, s2;
      Death is a valid wave (if date is known).    double bbh, survp;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    long ipmx;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    /*extern weight */
      and mw[mi+1][i]. dh depends on stepm.    /* We are differentiating ll according to initial status */
      */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   int i, mi, m;      printf(" %d\n",s[4][i]);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    */
      double sum=0., jmean=0.;*/    cov[1]=1.;
   
   int j, k=0,jk, ju, jl;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double sum=0.;  
   jmin=1e+5;    if(mle==1){
   jmax=-1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   jmean=0.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=imx; i++){        for(mi=1; mi<= wav[i]-1; mi++){
     mi=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
     m=firstpass;            for (j=1;j<=nlstate+ndeath;j++){
     while(s[m][i] <= nlstate){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(s[m][i]>=1)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         mw[++mi][i]=m;            }
       if(m >=lastpass)          for(d=0; d<dh[mi][i]; d++){
         break;            newm=savm;
       else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         m++;            for (kk=1; kk<=cptcovage;kk++) {
     }/* end while */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (s[m][i] > nlstate){            }
       mi++;     /* Death is another wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /* if(mi==0)  never been interviewed correctly before death */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          /* Only death is a correct wave */            savm=oldm;
       mw[mi][i]=m;            oldm=newm;
     }          } /* end mult */
         
     wav[i]=mi;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     if(mi==0)          /* But now since version 0.9 we anticipate for bias at large stepm.
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
   for(i=1; i<=imx; i++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for(mi=1; mi<wav[i];mi++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       if (stepm <=0)           * probability in order to take into account the bias as a fraction of the way
         dh[mi][i]=1;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       else{           * -stepm/2 to stepm/2 .
         if (s[mw[mi+1][i]][i] > nlstate) {           * For stepm=1 the results are the same as for previous versions of Imach.
           if (agedc[i] < 2*AGESUP) {           * For stepm > 1 the results are less biased than in previous versions. 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           */
           if(j==0) j=1;  /* Survives at least one month after exam */          s1=s[mw[mi][i]][i];
           k=k+1;          s2=s[mw[mi+1][i]][i];
           if (j >= jmax) jmax=j;          bbh=(double)bh[mi][i]/(double)stepm; 
           if (j <= jmin) jmin=j;          /* bias bh is positive if real duration
           sum=sum+j;           * is higher than the multiple of stepm and negative otherwise.
           /*if (j<0) printf("j=%d num=%d \n",j,i); */           */
           }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         }          if( s2 > nlstate){ 
         else{            /* i.e. if s2 is a death state and if the date of death is known 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));               then the contribution to the likelihood is the probability to 
           k=k+1;               die between last step unit time and current  step unit time, 
           if (j >= jmax) jmax=j;               which is also equal to probability to die before dh 
           else if (j <= jmin)jmin=j;               minus probability to die before dh-stepm . 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */               In version up to 0.92 likelihood was computed
           sum=sum+j;          as if date of death was unknown. Death was treated as any other
         }          health state: the date of the interview describes the actual state
         jk= j/stepm;          and not the date of a change in health state. The former idea was
         jl= j -jk*stepm;          to consider that at each interview the state was recorded
         ju= j -(jk+1)*stepm;          (healthy, disable or death) and IMaCh was corrected; but when we
         if(jl <= -ju)          introduced the exact date of death then we should have modified
           dh[mi][i]=jk;          the contribution of an exact death to the likelihood. This new
         else          contribution is smaller and very dependent of the step unit
           dh[mi][i]=jk+1;          stepm. It is no more the probability to die between last interview
         if(dh[mi][i]==0)          and month of death but the probability to survive from last
           dh[mi][i]=1; /* At least one step */          interview up to one month before death multiplied by the
       }          probability to die within a month. Thanks to Chris
     }          Jackson for correcting this bug.  Former versions increased
   }          mortality artificially. The bad side is that we add another loop
   jmean=sum/k;          which slows down the processing. The difference can be up to 10%
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          lower mortality.
  }            */
 /*********** Tricode ****************************/            lli=log(out[s1][s2] - savm[s1][s2]);
 void tricode(int *Tvar, int **nbcode, int imx)  
 {  
   int Ndum[20],ij=1, k, j, i;          } else if  (s2==-2) {
   int cptcode=0;            for (j=1,survp=0. ; j<=nlstate; j++) 
   cptcoveff=0;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              /*survp += out[s1][j]; */
   for (k=0; k<19; k++) Ndum[k]=0;            lli= log(survp);
   for (k=1; k<=7; k++) ncodemax[k]=0;          }
           
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          else if  (s2==-4) { 
     for (i=1; i<=imx; i++) {            for (j=3,survp=0. ; j<=nlstate; j++)  
       ij=(int)(covar[Tvar[j]][i]);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       Ndum[ij]++;            lli= log(survp); 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          } 
       if (ij > cptcode) cptcode=ij;  
     }          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
     for (i=0; i<=cptcode; i++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if(Ndum[i]!=0) ncodemax[j]++;            lli= log(survp); 
     }          } 
     ij=1;          
           else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (i=1; i<=ncodemax[j]; i++) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for (k=0; k<=19; k++) {          } 
         if (Ndum[k] != 0) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           nbcode[Tvar[j]][ij]=k;          /*if(lli ==000.0)*/
                    /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ij++;          ipmx +=1;
         }          sw += weight[i];
         if (ij > ncodemax[j]) break;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }          } /* end of wave */
     }      } /* end of individual */
   }      }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  for (k=0; k<19; k++) Ndum[k]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  for (i=1; i<=ncovmodel-2; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       ij=Tvar[i];            for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  ij=1;          for(d=0; d<=dh[mi][i]; d++){
  for (i=1; i<=10; i++) {            newm=savm;
    if((Ndum[i]!=0) && (i<=ncovcol)){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Tvaraff[ij]=i;            for (kk=1; kk<=cptcovage;kk++) {
      ij++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    }            }
  }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     cptcoveff=ij-1;            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /*********** Health Expectancies ****************/        
           s1=s[mw[mi][i]][i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   /* Health expectancies */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i, j, nhstepm, hstepm, h, nstepm;          ipmx +=1;
   double age, agelim, hf;          sw += weight[i];
   double ***p3mat;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   fprintf(ficreseij,"# Health expectancies\n");      } /* end of individual */
   fprintf(ficreseij,"# Age");    }  else if(mle==3){  /* exponential inter-extrapolation */
   for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(j=1; j<=nlstate;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficreseij," %1d-%1d",i,j);        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficreseij,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   if(estepm < stepm){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf ("Problem %d lower than %d\n",estepm, stepm);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   else  hstepm=estepm;            for(d=0; d<dh[mi][i]; d++){
   /* We compute the life expectancy from trapezoids spaced every estepm months            newm=savm;
    * This is mainly to measure the difference between two models: for example            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * if stepm=24 months pijx are given only every 2 years and by summing them            for (kk=1; kk<=cptcovage;kk++) {
    * we are calculating an estimate of the Life Expectancy assuming a linear              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * progression inbetween and thus overestimating or underestimating according            }
    * to the curvature of the survival function. If, for the same date, we            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * to compare the new estimate of Life expectancy with the same linear            savm=oldm;
    * hypothesis. A more precise result, taking into account a more precise            oldm=newm;
    * curvature will be obtained if estepm is as small as stepm. */          } /* end mult */
         
   /* For example we decided to compute the life expectancy with the smallest unit */          s1=s[mw[mi][i]][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          s2=s[mw[mi+1][i]][i];
      nhstepm is the number of hstepm from age to agelim          bbh=(double)bh[mi][i]/(double)stepm; 
      nstepm is the number of stepm from age to agelin.          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      Look at hpijx to understand the reason of that which relies in memory size          ipmx +=1;
      and note for a fixed period like estepm months */          sw += weight[i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      survival function given by stepm (the optimization length). Unfortunately it        } /* end of wave */
      means that if the survival funtion is printed only each two years of age and if      } /* end of individual */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      results. So we changed our mind and took the option of the best precision.      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   agelim=AGESUP;            for (j=1;j<=nlstate+ndeath;j++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* nhstepm age range expressed in number of stepm */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          for(d=0; d<dh[mi][i]; d++){
     /* if (stepm >= YEARM) hstepm=1;*/            newm=savm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /*for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++) printf("%f %.5f\n", age*12+h, p3mat[1][1][h]);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            oldm=newm;
     for(i=1; i<=nlstate;i++)          } /* end mult */
       for(j=1; j<=nlstate;j++)        
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          s1=s[mw[mi][i]][i];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          s2=s[mw[mi+1][i]][i];
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          if( s2 > nlstate){ 
         }            lli=log(out[s1][s2] - savm[s1][s2]);
     fprintf(ficreseij,"%3.0f",age );          }else{
     for(i=1; i<=nlstate;i++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(j=1; j<=nlstate;j++){          }
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);          ipmx +=1;
       }          sw += weight[i];
     fprintf(ficreseij,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }        } /* end of wave */
 }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 /************ Variance ******************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   /* Variance of health expectancies */          for (ii=1;ii<=nlstate+ndeath;ii++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            for (j=1;j<=nlstate+ndeath;j++){
   double **newm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **dnewm,**doldm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm ;            }
   int k, cptcode;          for(d=0; d<dh[mi][i]; d++){
   double *xp;            newm=savm;
   double **gp, **gm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***gradg, ***trgradg;            for (kk=1; kk<=cptcovage;kk++) {
   double ***p3mat;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double age,agelim, hf;            }
   int theta;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    fprintf(ficresvij,"# Covariances of life expectancies\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresvij,"# Age");            savm=oldm;
   for(i=1; i<=nlstate;i++)            oldm=newm;
     for(j=1; j<=nlstate;j++)          } /* end mult */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        
   fprintf(ficresvij,"\n");          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   xp=vector(1,npar);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   dnewm=matrix(1,nlstate,1,npar);          ipmx +=1;
   doldm=matrix(1,nlstate,1,nlstate);          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if(estepm < stepm){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);        } /* end of wave */
   }      } /* end of individual */
   else  hstepm=estepm;      } /* End of if */
   /* For example we decided to compute the life expectancy with the smallest unit */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      nhstepm is the number of hstepm from age to agelim    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      nstepm is the number of stepm from age to agelin.    return -l;
      Look at hpijx to understand the reason of that which relies in memory size  }
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  /*************** log-likelihood *************/
      survival function given by stepm (the optimization length). Unfortunately it  double funcone( double *x)
      means that if the survival funtion is printed only each two years of age and if  {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /* Same as likeli but slower because of a lot of printf and if */
      results. So we changed our mind and took the option of the best precision.    int i, ii, j, k, mi, d, kk;
   */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double **out;
   agelim = AGESUP;    double lli; /* Individual log likelihood */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double llt;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int s1, s2;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double bbh, survp;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*extern weight */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* We are differentiating ll according to initial status */
     gp=matrix(0,nhstepm,1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     gm=matrix(0,nhstepm,1,nlstate);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     for(theta=1; theta <=npar; theta++){    */
       for(i=1; i<=npar; i++){ /* Computes gradient */    cov[1]=1.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if (popbased==1) {      for(mi=1; mi<= wav[i]-1; mi++){
         for(i=1; i<=nlstate;i++)        for (ii=1;ii<=nlstate+ndeath;ii++)
           prlim[i][i]=probs[(int)age][i][ij];          for (j=1;j<=nlstate+ndeath;j++){
       }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){        for(d=0; d<dh[mi][i]; d++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          newm=savm;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
       for(i=1; i<=npar; i++) /* Computes gradient */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          oldm=newm;
          } /* end mult */
       if (popbased==1) {        
         for(i=1; i<=nlstate;i++)        s1=s[mw[mi][i]][i];
           prlim[i][i]=probs[(int)age][i][ij];        s2=s[mw[mi+1][i]][i];
       }        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
       for(j=1; j<= nlstate; j++){         * is higher than the multiple of stepm and negative otherwise.
         for(h=0; h<=nhstepm; h++){         */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          lli=log(out[s1][s2] - savm[s1][s2]);
         }        } else if  (s2==-2) {
       }          for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1; j<= nlstate; j++)          lli= log(survp);
         for(h=0; h<=nhstepm; h++){        }else if (mle==1){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
     } /* End theta */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for(h=0; h<=nhstepm; h++)          lli=log(out[s1][s2]); /* Original formula */
       for(j=1; j<=nlstate;j++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         for(theta=1; theta <=npar; theta++)          lli=log(out[s1][s2]); /* Original formula */
           trgradg[h][j][theta]=gradg[h][theta][j];        } /* End of if */
         ipmx +=1;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        sw += weight[i];
     for(i=1;i<=nlstate;i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1;j<=nlstate;j++)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         vareij[i][j][(int)age] =0.;        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     for(h=0;h<=nhstepm;h++){   %11.6f %11.6f %11.6f ", \
       for(k=0;k<=nhstepm;k++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         for(i=1;i<=nlstate;i++)            llt +=ll[k]*gipmx/gsw;
           for(j=1;j<=nlstate;j++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          }
       }          fprintf(ficresilk," %10.6f\n", -llt);
     }        }
       } /* end of wave */
     fprintf(ficresvij,"%.0f ",age );    } /* end of individual */
     for(i=1; i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<=nlstate;j++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    if(globpr==0){ /* First time we count the contributions and weights */
     fprintf(ficresvij,"\n");      gipmx=ipmx;
     free_matrix(gp,0,nhstepm,1,nlstate);      gsw=sw;
     free_matrix(gm,0,nhstepm,1,nlstate);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    return -l;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */  
    /*************** function likelione ***********/
   free_vector(xp,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_matrix(doldm,1,nlstate,1,npar);  {
   free_matrix(dnewm,1,nlstate,1,nlstate);    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
 }       to check the exact contribution to the likelihood.
        Plotting could be done.
 /************ Variance of prevlim ******************/     */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int k;
 {  
   /* Variance of prevalence limit */    if(*globpri !=0){ /* Just counts and sums, no printings */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      strcpy(fileresilk,"ilk"); 
   double **newm;      strcat(fileresilk,fileres);
   double **dnewm,**doldm;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int i, j, nhstepm, hstepm;        printf("Problem with resultfile: %s\n", fileresilk);
   int k, cptcode;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double *xp;      }
   double *gp, *gm;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double **gradg, **trgradg;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double age,agelim;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   int theta;      for(k=1; k<=nlstate; k++) 
            fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   fprintf(ficresvpl,"# Age");    }
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);    *fretone=(*funcone)(p);
   fprintf(ficresvpl,"\n");    if(*globpri !=0){
       fclose(ficresilk);
   xp=vector(1,npar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   dnewm=matrix(1,nlstate,1,npar);      fflush(fichtm); 
   doldm=matrix(1,nlstate,1,nlstate);    } 
      return;
   hstepm=1*YEARM; /* Every year of age */  }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*********** Maximum Likelihood Estimation ***************/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
     gradg=matrix(1,npar,1,nlstate);    int i,j, iter;
     gp=vector(1,nlstate);    double **xi;
     gm=vector(1,nlstate);    double fret;
     double fretone; /* Only one call to likelihood */
     for(theta=1; theta <=npar; theta++){    /*  char filerespow[FILENAMELENGTH];*/
       for(i=1; i<=npar; i++){ /* Computes gradient */    xi=matrix(1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        xi[i][j]=(i==j ? 1.0 : 0.0);
       for(i=1;i<=nlstate;i++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         gp[i] = prlim[i][i];    strcpy(filerespow,"pow"); 
        strcat(filerespow,fileres);
       for(i=1; i<=npar; i++) /* Computes gradient */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      printf("Problem with resultfile: %s\n", filerespow);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(i=1;i<=nlstate;i++)    }
         gm[i] = prlim[i][i];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
       for(i=1;i<=nlstate;i++)      for(j=1;j<=nlstate+ndeath;j++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     } /* End theta */    fprintf(ficrespow,"\n");
   
     trgradg =matrix(1,nlstate,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   
     for(j=1; j<=nlstate;j++)    free_matrix(xi,1,npar,1,npar);
       for(theta=1; theta <=npar; theta++)    fclose(ficrespow);
         trgradg[j][theta]=gradg[theta][j];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(i=1;i<=nlstate;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  /**** Computes Hessian and covariance matrix ***/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     fprintf(ficresvpl,"%.0f ",age );    double  **a,**y,*x,pd;
     for(i=1; i<=nlstate;i++)    double **hess;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int i, j,jk;
     fprintf(ficresvpl,"\n");    int *indx;
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     free_matrix(gradg,1,npar,1,nlstate);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     free_matrix(trgradg,1,nlstate,1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   } /* End age */    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
   free_vector(xp,1,npar);    hess=matrix(1,npar,1,npar);
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
 /************ Variance of one-step probabilities  ******************/      fprintf(ficlog,"%d",i);fflush(ficlog);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)     
 {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   int i, j, i1, k1, j1, z1;      
   int k=0, cptcode;      /*  printf(" %f ",p[i]);
   double **dnewm,**doldm;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double *xp;    }
   double *gp, *gm;    
   double **gradg, **trgradg;    for (i=1;i<=npar;i++) {
   double age,agelim, cov[NCOVMAX];      for (j=1;j<=npar;j++)  {
   int theta;        if (j>i) { 
   char fileresprob[FILENAMELENGTH];          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   strcpy(fileresprob,"prob");          hess[i][j]=hessij(p,delti,i,j,func,npar);
   strcat(fileresprob,fileres);          
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          hess[j][i]=hess[i][j];    
     printf("Problem with resultfile: %s\n", fileresprob);          /*printf(" %lf ",hess[i][j]);*/
   }        }
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      }
      }
     printf("\n");
   xp=vector(1,npar);    fprintf(ficlog,"\n");
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   cov[1]=1;    
   j=cptcoveff;    a=matrix(1,npar,1,npar);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    y=matrix(1,npar,1,npar);
   j1=0;    x=vector(1,npar);
   for(k1=1; k1<=1;k1++){    indx=ivector(1,npar);
     for(i1=1; i1<=ncodemax[k1];i1++){    for (i=1;i<=npar;i++)
     j1++;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     if  (cptcovn>0) {  
       fprintf(ficresprob, "\n#********** Variable ");    for (j=1;j<=npar;j++) {
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (i=1;i<=npar;i++) x[i]=0;
       fprintf(ficresprob, "**********\n#");      x[j]=1;
     }      lubksb(a,npar,indx,x);
          for (i=1;i<=npar;i++){ 
       for (age=bage; age<=fage; age ++){        matcov[i][j]=x[i];
         cov[2]=age;      }
         for (k=1; k<=cptcovn;k++) {    }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
              printf("\n#Hessian matrix#\n");
         }    fprintf(ficlog,"\n#Hessian matrix#\n");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (i=1;i<=npar;i++) { 
         for (k=1; k<=cptcovprod;k++)      for (j=1;j<=npar;j++) { 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        printf("%.3e ",hess[i][j]);
                fprintf(ficlog,"%.3e ",hess[i][j]);
         gradg=matrix(1,npar,1,9);      }
         trgradg=matrix(1,9,1,npar);      printf("\n");
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficlog,"\n");
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    }
      
         for(theta=1; theta <=npar; theta++){    /* Recompute Inverse */
           for(i=1; i<=npar; i++)    for (i=1;i<=npar;i++)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
              ludcmp(a,npar,indx,&pd);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
              /*  printf("\n#Hessian matrix recomputed#\n");
           k=0;  
           for(i=1; i<= (nlstate+ndeath); i++){    for (j=1;j<=npar;j++) {
             for(j=1; j<=(nlstate+ndeath);j++){      for (i=1;i<=npar;i++) x[i]=0;
               k=k+1;      x[j]=1;
               gp[k]=pmmij[i][j];      lubksb(a,npar,indx,x);
             }      for (i=1;i<=npar;i++){ 
           }        y[i][j]=x[i];
                  printf("%.3e ",y[i][j]);
           for(i=1; i<=npar; i++)        fprintf(ficlog,"%.3e ",y[i][j]);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      }
          printf("\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      fprintf(ficlog,"\n");
           k=0;    }
           for(i=1; i<=(nlstate+ndeath); i++){    */
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    free_matrix(a,1,npar,1,npar);
               gm[k]=pmmij[i][j];    free_matrix(y,1,npar,1,npar);
             }    free_vector(x,1,npar);
           }    free_ivector(indx,1,npar);
          free_matrix(hess,1,npar,1,npar);
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
         }  }
   
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  /*************** hessian matrix ****************/
           for(theta=1; theta <=npar; theta++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
             trgradg[j][theta]=gradg[theta][j];  {
            int i;
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    int l=1, lmax=20;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    double k1,k2;
            double p2[MAXPARM+1]; /* identical to x */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    double res;
            double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         k=0;    double fx;
         for(i=1; i<=(nlstate+ndeath); i++){    int k=0,kmax=10;
           for(j=1; j<=(nlstate+ndeath);j++){    double l1;
             k=k+1;  
             gm[k]=pmmij[i][j];    fx=func(x);
           }    for (i=1;i<=npar;i++) p2[i]=x[i];
         }    for(l=0 ; l <=lmax; l++){
            l1=pow(10,l);
      /*printf("\n%d ",(int)age);      delts=delt;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for(k=1 ; k <kmax; k=k+1){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        delt = delta*(l1*k);
      }*/        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
         fprintf(ficresprob,"\n%d ",(int)age);        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],doldm[i][i]);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          
       }  #ifdef DEBUGHESS
     }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  #endif
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   }          k=kmax;
   free_vector(xp,1,npar);        }
   fclose(ficresprob);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            k=kmax; l=lmax*10.;
 }        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 /******************* Printing html file ***********/          delts=delt;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        }
  int lastpass, int stepm, int weightopt, char model[],\      }
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    }
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    delti[theta]=delts;
  char version[], int popforecast, int estepm ){    return res; 
   int jj1, k1, i1, cpt;    
   FILE *fichtm;  }
   /*char optionfilehtm[FILENAMELENGTH];*/  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   strcpy(optionfilehtm,optionfile);  {
   strcat(optionfilehtm,".htm");    int i;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    int l=1, l1, lmax=20;
     printf("Problem with %s \n",optionfilehtm), exit(0);    double k1,k2,k3,k4,res,fx;
   }    double p2[MAXPARM+1];
     int k;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    fx=func(x);
 \n    for (k=1; k<=2; k++) {
 Total number of observations=%d <br>\n      for (i=1;i<=npar;i++) p2[i]=x[i];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      p2[thetai]=x[thetai]+delti[thetai]/k;
 <hr  size=\"2\" color=\"#EC5E5E\">      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  <ul><li>Outputs files<br>\n      k1=func(p2)-fx;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      p2[thetai]=x[thetai]+delti[thetai]/k;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      k2=func(p2)-fx;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  fprintf(fichtm,"\n      k3=func(p2)-fx;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      p2[thetai]=x[thetai]-delti[thetai]/k;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
  if(popforecast==1) fprintf(fichtm,"\n  #ifdef DEBUG
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         <br>",fileres,fileres,fileres,fileres);  #endif
  else    }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    return res;
 fprintf(fichtm," <li>Graphs</li><p>");  }
   
  m=cptcoveff;  /************** Inverse of matrix **************/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
  jj1=0;    int i,imax,j,k; 
  for(k1=1; k1<=m;k1++){    double big,dum,sum,temp; 
    for(i1=1; i1<=ncodemax[k1];i1++){    double *vv; 
        jj1++;   
        if (cptcovn > 0) {    vv=vector(1,n); 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    *d=1.0; 
          for (cpt=1; cpt<=cptcoveff;cpt++)    for (i=1;i<=n;i++) { 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      big=0.0; 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for (j=1;j<=n;j++) 
        }        if ((temp=fabs(a[i][j])) > big) big=temp; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          vv[i]=1.0/big; 
        for(cpt=1; cpt<nlstate;cpt++){    } 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    for (j=1;j<=n;j++) { 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (i=1;i<j;i++) { 
        }        sum=a[i][j]; 
     for(cpt=1; cpt<=nlstate;cpt++) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        a[i][j]=sum; 
 interval) in state (%d): v%s%d%d.gif <br>      } 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        big=0.0; 
      }      for (i=j;i<=n;i++) { 
      for(cpt=1; cpt<=nlstate;cpt++) {        sum=a[i][j]; 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        for (k=1;k<j;k++) 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          sum -= a[i][k]*a[k][j]; 
      }        a[i][j]=sum; 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 health expectancies in states (1) and (2): e%s%d.gif<br>          big=dum; 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          imax=i; 
 fprintf(fichtm,"\n</body>");        } 
    }      } 
    }      if (j != imax) { 
 fclose(fichtm);        for (k=1;k<=n;k++) { 
 }          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
 /******************* Gnuplot file **************/          a[j][k]=dum; 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        } 
         *d = -(*d); 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        vv[imax]=vv[j]; 
       } 
   strcpy(optionfilegnuplot,optionfilefiname);      indx[j]=imax; 
   strcat(optionfilegnuplot,".gp.txt");      if (a[j][j] == 0.0) a[j][j]=TINY; 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      if (j != n) { 
     printf("Problem with file %s",optionfilegnuplot);        dum=1.0/(a[j][j]); 
   }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
 #ifdef windows    } 
     fprintf(ficgp,"cd \"%s\" \n",pathc);    free_vector(vv,1,n);  /* Doesn't work */
 #endif  ;
 m=pow(2,cptcoveff);  } 
    
  /* 1eme*/  void lubksb(double **a, int n, int *indx, double b[]) 
   for (cpt=1; cpt<= nlstate ; cpt ++) {  { 
    for (k1=1; k1<= m ; k1 ++) {    int i,ii=0,ip,j; 
     double sum; 
 #ifdef windows   
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    for (i=1;i<=n;i++) { 
 #endif      ip=indx[i]; 
 #ifdef unix      sum=b[ip]; 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      b[ip]=b[i]; 
 #endif      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 for (i=1; i<= nlstate ; i ++) {      else if (sum) ii=i; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      b[i]=sum; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    } 
 }    for (i=n;i>=1;i--) { 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      sum=b[i]; 
     for (i=1; i<= nlstate ; i ++) {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      b[i]=sum/a[i][i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    } 
 }  } 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {  void pstamp(FILE *fichier)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 }    }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix  /************ Frequencies ********************/
 fprintf(ficgp,"\nset ter gif small size 400,300");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 #endif  {  /* Some frequencies */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    
    }    int i, m, jk, k1,i1, j1, bool, z1,j;
   }    int first;
   /*2 eme*/    double ***freq; /* Frequencies */
     double *pp, **prop;
   for (k1=1; k1<= m ; k1 ++) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    char fileresp[FILENAMELENGTH];
        
     for (i=1; i<= nlstate+1 ; i ++) {    pp=vector(1,nlstate);
       k=2*i;    prop=matrix(1,nlstate,iagemin,iagemax+3);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    strcpy(fileresp,"p");
       for (j=1; j<= nlstate+1 ; j ++) {    strcat(fileresp,fileres);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if((ficresp=fopen(fileresp,"w"))==NULL) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");      printf("Problem with prevalence resultfile: %s\n", fileresp);
 }        fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      exit(0);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       for (j=1; j<= nlstate+1 ; j ++) {    j1=0;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    
         else fprintf(ficgp," \%%*lf (\%%*lf)");    j=cptcoveff;
 }      if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    first=1;
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(k1=1; k1<=j;k1++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(i1=1; i1<=ncodemax[k1];i1++){
 }          j1++;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       else fprintf(ficgp,"\" t\"\" w l 0,");          scanf("%d", i);*/
     }        for (i=-5; i<=nlstate+ndeath; i++)  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
                freq[i][jk][m]=0;
   /*3eme*/  
       for (i=1; i<=nlstate; i++)  
   for (k1=1; k1<= m ; k1 ++) {        for(m=iagemin; m <= iagemax+3; m++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {          prop[i][m]=0;
       k=2+nlstate*(cpt-1);        
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        dateintsum=0;
       for (i=1; i< nlstate ; i ++) {        k2cpt=0;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        for (i=1; i<=imx; i++) {
       }          bool=1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if  (cptcovn>0) {
     }            for (z1=1; z1<=cptcoveff; z1++) 
     }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   /* CV preval stat */          }
     for (k1=1; k1<= m ; k1 ++) {          if (bool==1){
     for (cpt=1; cpt<nlstate ; cpt ++) {            for(m=firstpass; m<=lastpass; m++){
       k=3;              k2=anint[m][i]+(mint[m][i]/12.);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for (i=1; i< nlstate ; i ++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficgp,"+$%d",k+i+1);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                if (m<lastpass) {
                        freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       l=3+(nlstate+ndeath)*cpt;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                }
       for (i=1; i< nlstate ; i ++) {                
         l=3+(nlstate+ndeath)*cpt;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         fprintf(ficgp,"+$%d",l+i+1);                  dateintsum=dateintsum+k2;
       }                  k2cpt++;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                /*}*/
     }            }
   }            }
          }
   /* proba elementaires */         
    for(i=1,jk=1; i <=nlstate; i++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     for(k=1; k <=(nlstate+ndeath); k++){        pstamp(ficresp);
       if (k != i) {        if  (cptcovn>0) {
         for(j=1; j <=ncovmodel; j++){          fprintf(ficresp, "\n#********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          fprintf(ficresp, "**********\n#");
           jk++;        }
           fprintf(ficgp,"\n");        for(i=1; i<=nlstate;i++) 
         }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       }        fprintf(ficresp, "\n");
     }        
     }        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
     for(jk=1; jk <=m; jk++) {            fprintf(ficlog,"Total");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          }else{
    i=1;            if(first==1){
    for(k2=1; k2<=nlstate; k2++) {              first=0;
      k3=i;              printf("See log file for details...\n");
      for(k=1; k<=(nlstate+ndeath); k++) {            }
        if (k != k2){            fprintf(ficlog,"Age %d", i);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }
 ij=1;          for(jk=1; jk <=nlstate ; jk++){
         for(j=3; j <=ncovmodel; j++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              pp[jk] += freq[jk][m][i]; 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pos=0; m <=0 ; m++)
           else              pos += freq[jk][m][i];
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            if(pp[jk]>=1.e-10){
         }              if(first==1){
           fprintf(ficgp,")/(1");                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                      }
         for(k1=1; k1 <=nlstate; k1++){                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            }else{
 ij=1;              if(first==1)
           for(j=3; j <=ncovmodel; j++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
             ij++;          }
           }  
           else          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           }              pp[jk] += freq[jk][m][i];
           fprintf(ficgp,")");          }       
         }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            pos += pp[jk];
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            posprop += prop[jk][i];
         i=i+ncovmodel;          }
        }          for(jk=1; jk <=nlstate ; jk++){
      }            if(pos>=1.e-5){
    }              if(first==1)
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                }else{
   fclose(ficgp);              if(first==1)
 }  /* end gnuplot */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
 /*************** Moving average **************/            if( i <= iagemax){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   int i, cpt, cptcod;                /*probs[i][jk][j1]= pp[jk]/pos;*/
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for (i=1; i<=nlstate;i++)              }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              else
           mobaverage[(int)agedeb][i][cptcod]=0.;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          }
       for (i=1; i<=nlstate;i++){          
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
           for (cpt=0;cpt<=4;cpt++){            for(m=-1; m <=nlstate+ndeath; m++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              if(freq[jk][m][i] !=0 ) {
           }              if(first==1)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       }              }
     }          if(i <= iagemax)
                fprintf(ficresp,"\n");
 }          if(first==1)
             printf("Others in log...\n");
           fprintf(ficlog,"\n");
 /************** Forecasting ******************/        }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      }
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    dateintmean=dateintsum/k2cpt; 
   int *popage;   
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fclose(ficresp);
   double *popeffectif,*popcount;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   double ***p3mat;    free_vector(pp,1,nlstate);
   char fileresf[FILENAMELENGTH];    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
  agelim=AGESUP;  }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
   /************ Prevalence ********************/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   strcpy(fileresf,"f");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcat(fileresf,fileres);       We still use firstpass and lastpass as another selection.
   if((ficresf=fopen(fileresf,"w"))==NULL) {    */
     printf("Problem with forecast resultfile: %s\n", fileresf);   
   }    int i, m, jk, k1, i1, j1, bool, z1,j;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double ***freq; /* Frequencies */
     double *pp, **prop;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double pos,posprop; 
     double  y2; /* in fractional years */
   if (mobilav==1) {    int iagemin, iagemax;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   if (stepm<=12) stepsize=1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      j1=0;
   agelim=AGESUP;    
      j=cptcoveff;
   hstepm=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   hstepm=hstepm/stepm;    
   yp1=modf(dateintmean,&yp);    for(k1=1; k1<=j;k1++){
   anprojmean=yp;      for(i1=1; i1<=ncodemax[k1];i1++){
   yp2=modf((yp1*12),&yp);        j1++;
   mprojmean=yp;        
   yp1=modf((yp2*30.5),&yp);        for (i=1; i<=nlstate; i++)  
   jprojmean=yp;          for(m=iagemin; m <= iagemax+3; m++)
   if(jprojmean==0) jprojmean=1;            prop[i][m]=0.0;
   if(mprojmean==0) jprojmean=1;       
          for (i=1; i<=imx; i++) { /* Each individual */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          bool=1;
            if  (cptcovn>0) {
   for(cptcov=1;cptcov<=i2;cptcov++){            for (z1=1; z1<=cptcoveff; z1++) 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       k=k+1;                bool=0;
       fprintf(ficresf,"\n#******");          } 
       for(j=1;j<=cptcoveff;j++) {          if (bool==1) { 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fprintf(ficresf,"******\n");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       fprintf(ficresf,"# StartingAge FinalAge");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                      if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                      if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         fprintf(ficresf,"\n");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                    prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            } /* end selection of waves */
           nhstepm = nhstepm/hstepm;          }
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=iagemin; i <= iagemax+3; i++){  
           oldm=oldms;savm=savms;          
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                    posprop += prop[jk][i]; 
           for (h=0; h<=nhstepm; h++){          } 
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          for(jk=1; jk <=nlstate ; jk++){     
             }            if( i <=  iagemax){ 
             for(j=1; j<=nlstate+ndeath;j++) {              if(posprop>=1.e-5){ 
               kk1=0.;kk2=0;                probs[i][jk][j1]= prop[jk][i]/posprop;
               for(i=1; i<=nlstate;i++) {                            } else
                 if (mobilav==1)                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            } 
                 else {          }/* end jk */ 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }/* end i */ 
                 }      } /* end i1 */
                    } /* end k1 */
               }    
               if (h==(int)(calagedate+12*cpt)){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                 fprintf(ficresf," %.3f", kk1);    /*free_vector(pp,1,nlstate);*/
                            free_matrix(prop,1,nlstate, iagemin,iagemax+3);
               }  }  /* End of prevalence */
             }  
           }  /************* Waves Concatenation ***************/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
     }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   }       Death is a valid wave (if date is known).
               mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   fclose(ficresf);       */
 }  
 /************** Forecasting ******************/    int i, mi, m;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    int first;
   int *popage;    int j, k=0,jk, ju, jl;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double sum=0.;
   double *popeffectif,*popcount;    first=0;
   double ***p3mat,***tabpop,***tabpopprev;    jmin=1e+5;
   char filerespop[FILENAMELENGTH];    jmax=-1;
     jmean=0.;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=imx; i++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      mi=0;
   agelim=AGESUP;      m=firstpass;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      while(s[m][i] <= nlstate){
          if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          mw[++mi][i]=m;
          if(m >=lastpass)
            break;
   strcpy(filerespop,"pop");        else
   strcat(filerespop,fileres);          m++;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      }/* end while */
     printf("Problem with forecast resultfile: %s\n", filerespop);      if (s[m][i] > nlstate){
   }        mi++;     /* Death is another wave */
   printf("Computing forecasting: result on file '%s' \n", filerespop);        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        mw[mi][i]=m;
       }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      wav[i]=mi;
     movingaverage(agedeb, fage, ageminpar, mobaverage);      if(mi==0){
   }        nbwarn++;
         if(first==0){
   stepsize=(int) (stepm+YEARM-1)/YEARM;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if (stepm<=12) stepsize=1;          first=1;
          }
   agelim=AGESUP;        if(first==1){
            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   hstepm=1;        }
   hstepm=hstepm/stepm;      } /* end mi==0 */
      } /* End individuals */
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {    for(i=1; i<=imx; i++){
       printf("Problem with population file : %s\n",popfile);exit(0);      for(mi=1; mi<wav[i];mi++){
     }        if (stepm <=0)
     popage=ivector(0,AGESUP);          dh[mi][i]=1;
     popeffectif=vector(0,AGESUP);        else{
     popcount=vector(0,AGESUP);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                if (agedc[i] < 2*AGESUP) {
     i=1;                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              if(j==0) j=1;  /* Survives at least one month after exam */
                  else if(j<0){
     imx=i;                nberr++;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   for(cptcov=1;cptcov<=i2;cptcov++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       k=k+1;              }
       fprintf(ficrespop,"\n#******");              k=k+1;
       for(j=1;j<=cptcoveff;j++) {              if (j >= jmax){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                jmax=j;
       }                ijmax=i;
       fprintf(ficrespop,"******\n");              }
       fprintf(ficrespop,"# Age");              if (j <= jmin){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                jmin=j;
       if (popforecast==1)  fprintf(ficrespop," [Population]");                ijmin=i;
                    }
       for (cpt=0; cpt<=0;cpt++) {              sum=sum+j;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                      /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
           nhstepm = nhstepm/hstepm;          else{
                      j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              k=k+1;
                    if (j >= jmax) {
           for (h=0; h<=nhstepm; h++){              jmax=j;
             if (h==(int) (calagedate+YEARM*cpt)) {              ijmax=i;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            }
             }            else if (j <= jmin){
             for(j=1; j<=nlstate+ndeath;j++) {              jmin=j;
               kk1=0.;kk2=0;              ijmin=i;
               for(i=1; i<=nlstate;i++) {                          }
                 if (mobilav==1)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                 else {            if(j<0){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              nberr++;
                 }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               if (h==(int)(calagedate+12*cpt)){            }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            sum=sum+j;
                   /*fprintf(ficrespop," %.3f", kk1);          }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          jk= j/stepm;
               }          jl= j -jk*stepm;
             }          ju= j -(jk+1)*stepm;
             for(i=1; i<=nlstate;i++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
               kk1=0.;            if(jl==0){
                 for(j=1; j<=nlstate;j++){              dh[mi][i]=jk;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              bh[mi][i]=0;
                 }            }else{ /* We want a negative bias in order to only have interpolation ie
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                    * at the price of an extra matrix product in likelihood */
             }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          }else{
           }            if(jl <= -ju){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              dh[mi][i]=jk;
         }              bh[mi][i]=jl;       /* bias is positive if real duration
       }                                   * is higher than the multiple of stepm and negative otherwise.
                                     */
   /******/            }
             else{
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {              dh[mi][i]=jk+1;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                bh[mi][i]=ju;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            if(dh[mi][i]==0){
           nhstepm = nhstepm/hstepm;              dh[mi][i]=1; /* At least one step */
                        bh[mi][i]=ju; /* At least one step */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            } /* end if mle */
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {      } /* end wave */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    }
             }    jmean=sum/k;
             for(j=1; j<=nlstate+ndeath;j++) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
               kk1=0.;kk2=0;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
               for(i=1; i<=nlstate;i++) {                 }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }  /*********** Tricode ****************************/
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  void tricode(int *Tvar, int **nbcode, int imx)
             }  {
           }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
         }  
       }    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
    }    int cptcode=0;
   }    cptcoveff=0; 
     
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
     free_vector(popeffectif,0,AGESUP);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     free_vector(popcount,0,AGESUP);                                 modality*/ 
   }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        Ndum[ij]++; /*counts the occurence of this modality */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   fclose(ficrespop);        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
 }                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
 /***********************************************/      }
 /**************** Main Program *****************/  
 /***********************************************/      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
 int main(int argc, char *argv[])                                         th covariate. In fact
 {                                         ncodemax[j]=2
                                          (dichotom. variables only) but
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                                         it can be more */
   double agedeb, agefin,hf;      } /* Ndum[-1] number of undefined modalities */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
       ij=1; 
   double fret;      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
   double **xi,tmp,delta;        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   double dum; /* Dummy variable */            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   double ***p3mat;                                       k is a modality. If we have model=V1+V1*sex 
   int *indx;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   char line[MAXLINE], linepar[MAXLINE];            ij++;
   char title[MAXLINE];          }
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          if (ij > ncodemax[j]) break; 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        }  
        } 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    }  
   
   char filerest[FILENAMELENGTH];   for (k=0; k< maxncov; k++) Ndum[k]=0;
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   int firstobs=1, lastobs=10;     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   int sdeb, sfin; /* Status at beginning and end */     Ndum[ij]++;
   int c,  h , cpt,l;   }
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;   ij=1;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;   for (i=1; i<= maxncov; i++) {
   int mobilav=0,popforecast=0;     if((Ndum[i]!=0) && (i<=ncovcol)){
   int hstepm, nhstepm;       Tvaraff[ij]=i; /*For printing */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;       ij++;
      }
   double bage, fage, age, agelim, agebase;   }
   double ftolpl=FTOL;   ij--;
   double **prlim;   cptcoveff=ij; /*Number of simple covariates*/
   double *severity;  }
   double ***param; /* Matrix of parameters */  
   double  *p;  /*********** Health Expectancies ****************/
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double *delti; /* Scale */  
   double ***eij, ***vareij;  {
   double **varpl; /* Variances of prevalence limits by age */    /* Health expectancies, no variances */
   double *epj, vepp;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double kk1, kk2;    int nhstepma, nstepma; /* Decreasing with age */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    double age, agelim, hf;
      double ***p3mat;
     double eip;
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   char z[1]="c", occ;    for(i=1; i<=nlstate;i++){
 #include <sys/time.h>      for(j=1; j<=nlstate;j++){
 #include <time.h>        fprintf(ficreseij," e%1d%1d ",i,j);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      }
        fprintf(ficreseij," e%1d. ",i);
   /* long total_usecs;    }
   struct timeval start_time, end_time;    fprintf(ficreseij,"\n");
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    
   getcwd(pathcd, size);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   printf("\n%s",version);    }
   if(argc <=1){    else  hstepm=estepm;   
     printf("\nEnter the parameter file name: ");    /* We compute the life expectancy from trapezoids spaced every estepm months
     scanf("%s",pathtot);     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
   else{     * we are calculating an estimate of the Life Expectancy assuming a linear 
     strcpy(pathtot,argv[1]);     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /*cygwin_split_path(pathtot,path,optionfile);     * to compare the new estimate of Life expectancy with the same linear 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/     * hypothesis. A more precise result, taking into account a more precise
   /* cutv(path,optionfile,pathtot,'\\');*/     * curvature will be obtained if estepm is as small as stepm. */
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    /* For example we decided to compute the life expectancy with the smallest unit */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   chdir(path);       nhstepm is the number of hstepm from age to agelim 
   replace(pathc,path);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
 /*-------- arguments in the command line --------*/       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   strcpy(fileres,"r");       survival function given by stepm (the optimization length). Unfortunately it
   strcat(fileres, optionfilefiname);       means that if the survival funtion is printed only each two years of age and if
   strcat(fileres,".txt");    /* Other files have txt extension */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   /*---------arguments file --------*/    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    agelim=AGESUP;
     goto end;    /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   strcpy(filereso,"o");      
   strcat(filereso,fileres);  /* nhstepm age range expressed in number of stepm */
   if((ficparo=fopen(filereso,"w"))==NULL) {    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /* Reads comments: lines beginning with '#' */    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ 
     fgets(line, MAXLINE, ficpar);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     puts(line);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fputs(line,ficparo);      /* if (stepm >= YEARM) hstepm=1;*/
   }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   ungetc(c,ficpar);  
       /* If stepm=6 months */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      
 while((c=getc(ficpar))=='#' && c!= EOF){      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     puts(line);      
     fputs(line,ficparo);      printf("%d|",(int)age);fflush(stdout);
   }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   ungetc(c,ficpar);      
        /* Computing expectancies */
          for(i=1; i<=nlstate;i++)
   covar=matrix(0,NCOVMAX,1,n);        for(j=1; j<=nlstate;j++)
   cptcovn=0;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   ncovmodel=2+cptcovn;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
            }
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */      fprintf(ficreseij,"%3.0f",age );
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++){
     ungetc(c,ficpar);        eip=0;
     fgets(line, MAXLINE, ficpar);        for(j=1; j<=nlstate;j++){
     puts(line);          eip +=eij[i][j][(int)age];
     fputs(line,ficparo);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   }        }
   ungetc(c,ficpar);        fprintf(ficreseij,"%9.4f", eip );
        }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficreseij,"\n");
     for(i=1; i <=nlstate; i++)      
     for(j=1; j <=nlstate+ndeath-1; j++){    }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficparo,"%1d%1d",i1,j1);    printf("\n");
       printf("%1d%1d",i,j);    fprintf(ficlog,"\n");
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar," %lf",&param[i][j][k]);  }
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       }  
       fscanf(ficpar,"\n");  {
       printf("\n");    /* Covariances of health expectancies eij and of total life expectancies according
       fprintf(ficparo,"\n");     to initial status i, ei. .
     }    */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   p=param[1][1];    double ***p3matp, ***p3matm, ***varhe;
      double **dnewm,**doldm;
   /* Reads comments: lines beginning with '#' */    double *xp, *xm;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **gp, **gm;
     ungetc(c,ficpar);    double ***gradg, ***trgradg;
     fgets(line, MAXLINE, ficpar);    int theta;
     puts(line);  
     fputs(line,ficparo);    double eip, vip;
   }  
   ungetc(c,ficpar);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    xm=vector(1,npar);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    dnewm=matrix(1,nlstate*nlstate,1,npar);
   for(i=1; i <=nlstate; i++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     for(j=1; j <=nlstate+ndeath-1; j++){    
       fscanf(ficpar,"%1d%1d",&i1,&j1);    pstamp(ficresstdeij);
       printf("%1d%1d",i,j);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficresstdeij,"# Age");
       for(k=1; k<=ncovmodel;k++){    for(i=1; i<=nlstate;i++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(j=1; j<=nlstate;j++)
         printf(" %le",delti3[i][j][k]);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         fprintf(ficparo," %le",delti3[i][j][k]);      fprintf(ficresstdeij," e%1d. ",i);
       }    }
       fscanf(ficpar,"\n");    fprintf(ficresstdeij,"\n");
       printf("\n");  
       fprintf(ficparo,"\n");    pstamp(ficrescveij);
     }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   }    fprintf(ficrescveij,"# Age");
   delti=delti3[1][1];    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++){
   /* Reads comments: lines beginning with '#' */        cptj= (j-1)*nlstate+i;
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i2=1; i2<=nlstate;i2++)
     ungetc(c,ficpar);          for(j2=1; j2<=nlstate;j2++){
     fgets(line, MAXLINE, ficpar);            cptj2= (j2-1)*nlstate+i2;
     puts(line);            if(cptj2 <= cptj)
     fputs(line,ficparo);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   }          }
   ungetc(c,ficpar);      }
      fprintf(ficrescveij,"\n");
   matcov=matrix(1,npar,1,npar);    
   for(i=1; i <=npar; i++){    if(estepm < stepm){
     fscanf(ficpar,"%s",&str);      printf ("Problem %d lower than %d\n",estepm, stepm);
     printf("%s",str);    }
     fprintf(ficparo,"%s",str);    else  hstepm=estepm;   
     for(j=1; j <=i; j++){    /* We compute the life expectancy from trapezoids spaced every estepm months
       fscanf(ficpar," %le",&matcov[i][j]);     * This is mainly to measure the difference between two models: for example
       printf(" %.5le",matcov[i][j]);     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficparo," %.5le",matcov[i][j]);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     }     * progression in between and thus overestimating or underestimating according
     fscanf(ficpar,"\n");     * to the curvature of the survival function. If, for the same date, we 
     printf("\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fprintf(ficparo,"\n");     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
   for(i=1; i <=npar; i++)     * curvature will be obtained if estepm is as small as stepm. */
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("\n");       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
     /*-------- Rewriting paramater file ----------*/       and note for a fixed period like estepm months */
      strcpy(rfileres,"r");    /* "Rparameterfile */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/       survival function given by stepm (the optimization length). Unfortunately it
      strcat(rfileres,".");    /* */       means that if the survival funtion is printed only each two years of age and if
      strcat(rfileres,optionfilext);    /* Other files have txt extension */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     if((ficres =fopen(rfileres,"w"))==NULL) {       results. So we changed our mind and took the option of the best precision.
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     fprintf(ficres,"#%s\n",version);  
        /* If stepm=6 months */
     /*-------- data file ----------*/    /* nhstepm age range expressed in number of stepm */
     if((fic=fopen(datafile,"r"))==NULL)    {    agelim=AGESUP;
       printf("Problem with datafile: %s\n", datafile);goto end;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     n= lastobs;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     severity = vector(1,maxwav);    
     outcome=imatrix(1,maxwav+1,1,n);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     num=ivector(1,n);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     moisnais=vector(1,n);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     annais=vector(1,n);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     moisdc=vector(1,n);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     andc=vector(1,n);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     agedc=vector(1,n);  
     cod=ivector(1,n);    for (age=bage; age<=fage; age ++){ 
     weight=vector(1,n);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     mint=matrix(1,maxwav,1,n);      /* if (stepm >= YEARM) hstepm=1;*/
     anint=matrix(1,maxwav,1,n);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);          /* If stepm=6 months */
     tab=ivector(1,NCOVMAX);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     ncodemax=ivector(1,8);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
     i=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {      /* Computing  Variances of health expectancies */
              /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         for (j=maxwav;j>=1;j--){         decrease memory allocation */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      for(theta=1; theta <=npar; theta++){
           strcpy(line,stra);        for(i=1; i<=npar; i++){ 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }        }
                hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    
         for(j=1; j<= nlstate; j++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=nlstate; i++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         for (j=ncovcol;j>=1;j--){            }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }        }
         num[i]=atol(stra);       
                for(ij=1; ij<= nlstate*nlstate; ij++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          for(h=0; h<=nhstepm-1; h++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
         i=i+1;      }/* End theta */
       }      
     }      
     /* printf("ii=%d", ij);      for(h=0; h<=nhstepm-1; h++)
        scanf("%d",i);*/        for(j=1; j<=nlstate*nlstate;j++)
   imx=i-1; /* Number of individuals */          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   /* for (i=1; i<=imx; i++){      
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;       for(ij=1;ij<=nlstate*nlstate;ij++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        for(ji=1;ji<=nlstate*nlstate;ji++)
     }*/          varhe[ij][ji][(int)age] =0.;
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;       printf("%d|",(int)age);fflush(stdout);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   /* Calculation of the number of parameter from char model*/          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   Tvar=ivector(1,15);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   Tprod=ivector(1,15);          for(ij=1;ij<=nlstate*nlstate;ij++)
   Tvaraff=ivector(1,15);            for(ji=1;ji<=nlstate*nlstate;ji++)
   Tvard=imatrix(1,15,1,2);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   Tage=ivector(1,15);              }
          }
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;      /* Computing expectancies */
     j=nbocc(model,'+');      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     j1=nbocc(model,'*');      for(i=1; i<=nlstate;i++)
     cptcovn=j+1;        for(j=1; j<=nlstate;j++)
     cptcovprod=j1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     strcpy(modelsav,model);            
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       printf("Error. Non available option model=%s ",model);  
       goto end;          }
     }  
          fprintf(ficresstdeij,"%3.0f",age );
     for(i=(j+1); i>=1;i--){      for(i=1; i<=nlstate;i++){
       cutv(stra,strb,modelsav,'+');        eip=0.;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        vip=0.;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        for(j=1; j<=nlstate;j++){
       /*scanf("%d",i);*/          eip += eij[i][j][(int)age];
       if (strchr(strb,'*')) {          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         cutv(strd,strc,strb,'*');            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         if (strcmp(strc,"age")==0) {          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
           Tvar[i]=atoi(stre);      }
           cptcovage++;      fprintf(ficresstdeij,"\n");
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/      fprintf(ficrescveij,"%3.0f",age );
         }      for(i=1; i<=nlstate;i++)
         else if (strcmp(strd,"age")==0) {        for(j=1; j<=nlstate;j++){
           cptcovprod--;          cptj= (j-1)*nlstate+i;
           cutv(strb,stre,strc,'V');          for(i2=1; i2<=nlstate;i2++)
           Tvar[i]=atoi(stre);            for(j2=1; j2<=nlstate;j2++){
           cptcovage++;              cptj2= (j2-1)*nlstate+i2;
           Tage[cptcovage]=i;              if(cptj2 <= cptj)
         }                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         else {            }
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=ncovcol+k1;      fprintf(ficrescveij,"\n");
           cutv(strb,strc,strd,'V');     
           Tprod[k1]=i;    }
           Tvard[k1][1]=atoi(strc);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           Tvard[k1][2]=atoi(stre);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           Tvar[cptcovn+k2]=Tvard[k1][1];    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           for (k=1; k<=lastobs;k++)    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           k1++;    printf("\n");
           k2=k2+2;    fprintf(ficlog,"\n");
         }  
       }    free_vector(xm,1,npar);
       else {    free_vector(xp,1,npar);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
        /*  scanf("%d",i);*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       cutv(strd,strc,strb,'V');    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       Tvar[i]=atoi(strc);  }
       }  
       strcpy(modelsav,stra);    /************ Variance ******************/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         scanf("%d",i);*/  {
     }    /* Variance of health expectancies */
 }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double **dnewm,**doldm;
   printf("cptcovprod=%d ", cptcovprod);    double **dnewmp,**doldmp;
   scanf("%d ",i);*/    int i, j, nhstepm, hstepm, h, nstepm ;
     fclose(fic);    int k, cptcode;
     double *xp;
     /*  if(mle==1){*/    double **gp, **gm;  /* for var eij */
     if (weightopt != 1) { /* Maximisation without weights*/    double ***gradg, ***trgradg; /*for var eij */
       for(i=1;i<=n;i++) weight[i]=1.0;    double **gradgp, **trgradgp; /* for var p point j */
     }    double *gpp, *gmp; /* for var p point j */
     /*-calculation of age at interview from date of interview and age at death -*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     agev=matrix(1,maxwav,1,imx);    double ***p3mat;
     double age,agelim, hf;
     for (i=1; i<=imx; i++) {    double ***mobaverage;
       for(m=2; (m<= maxwav); m++) {    int theta;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    char digit[4];
          anint[m][i]=9999;    char digitp[25];
          s[m][i]=-1;  
        }    char fileresprobmorprev[FILENAMELENGTH];
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }    if(popbased==1){
     }      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
     for (i=1; i<=imx; i++)  {      else strcpy(digitp,"-populbased-nomobil-");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    }
       for(m=1; (m<= maxwav); m++){    else 
         if(s[m][i] >0){      strcpy(digitp,"-stablbased-");
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)    if (mobilav!=0) {
               if(moisdc[i]!=99 && andc[i]!=9999)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 agev[m][i]=agedc[i];      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            else {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               if (andc[i]!=9999){      }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    }
               agev[m][i]=-1;  
               }    strcpy(fileresprobmorprev,"prmorprev"); 
             }    sprintf(digit,"%-d",ij);
           }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           else if(s[m][i] !=9){ /* Should no more exist */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             if(mint[m][i]==99 || anint[m][i]==9999)    strcat(fileresprobmorprev,fileres);
               agev[m][i]=1;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             else if(agev[m][i] <agemin){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               agemin=agev[m][i];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    }
             }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             else if(agev[m][i] >agemax){   
               agemax=agev[m][i];    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    pstamp(ficresprobmorprev);
             }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
             /*agev[m][i]=anint[m][i]-annais[i];*/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             /*   agev[m][i] = age[i]+2*m;*/    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           }      fprintf(ficresprobmorprev," p.%-d SE",j);
           else { /* =9 */      for(i=1; i<=nlstate;i++)
             agev[m][i]=1;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             s[m][i]=-1;    }  
           }    fprintf(ficresprobmorprev,"\n");
         }    fprintf(ficgp,"\n# Routine varevsij");
         else /*= 0 Unknown */    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           agev[m][i]=1;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      /*   } */
     }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for (i=1; i<=imx; i++)  {    pstamp(ficresvij);
       for(m=1; (m<= maxwav); m++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         if (s[m][i] > (nlstate+ndeath)) {    if(popbased==1)
           printf("Error: Wrong value in nlstate or ndeath\n");        fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
           goto end;    else
         }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       }    fprintf(ficresvij,"# Age");
     }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);    xp=vector(1,npar);
     free_vector(moisnais,1,n);    dnewm=matrix(1,nlstate,1,npar);
     free_vector(annais,1,n);    doldm=matrix(1,nlstate,1,nlstate);
     /* free_matrix(mint,1,maxwav,1,n);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
        free_matrix(anint,1,maxwav,1,n);*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
        gmp=vector(nlstate+1,nlstate+ndeath);
     wav=ivector(1,imx);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     /* Concatenates waves */    }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       Tcode=ivector(1,100);       nhstepm is the number of hstepm from age to agelim 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       nstepm is the number of stepm from age to agelin. 
       ncodemax[1]=1;       Look at function hpijx to understand why (it is linked to memory size questions) */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             survival function given by stepm (the optimization length). Unfortunately it
    codtab=imatrix(1,100,1,10);       means that if the survival funtion is printed every two years of age and if
    h=0;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    m=pow(2,cptcoveff);       results. So we changed our mind and took the option of the best precision.
      */
    for(k=1;k<=cptcoveff; k++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      for(i=1; i <=(m/pow(2,k));i++){    agelim = AGESUP;
        for(j=1; j <= ncodemax[k]; j++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
            h++;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
          }      gp=matrix(0,nhstepm,1,nlstate);
        }      gm=matrix(0,nhstepm,1,nlstate);
      }  
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      for(theta=1; theta <=npar; theta++){
       codtab[1][2]=1;codtab[2][2]=2; */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
    /* for(i=1; i <=m ;i++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(k=1; k <=cptcovn; k++){        }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("\n");  
       }        if (popbased==1) {
       scanf("%d",i);*/          if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
    /* Calculates basic frequencies. Computes observed prevalence at single age              prlim[i][i]=probs[(int)age][i][ij];
        and prints on file fileres'p'. */          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
                  prlim[i][i]=mobaverage[(int)age][i][ij];
              }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<= nlstate; j++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(h=0; h<=nhstepm; h++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                    gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     /* For Powell, parameters are in a vector p[] starting at p[1]          }
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
     if(mle==1){           as a weighted average of prlim.
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gpp[j]=0.; i<= nlstate; i++)
     /*--------- results files --------------*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        }    
          /* end probability of death */
   
    jk=1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    for(i=1,jk=1; i <=nlstate; i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      for(k=1; k <=(nlstate+ndeath); k++){   
        if (k != i)        if (popbased==1) {
          {          if(mobilav ==0){
            printf("%d%d ",i,k);            for(i=1; i<=nlstate;i++)
            fprintf(ficres,"%1d%1d ",i,k);              prlim[i][i]=probs[(int)age][i][ij];
            for(j=1; j <=ncovmodel; j++){          }else{ /* mobilav */ 
              printf("%f ",p[jk]);            for(i=1; i<=nlstate;i++)
              fprintf(ficres,"%f ",p[jk]);              prlim[i][i]=mobaverage[(int)age][i][ij];
              jk++;          }
            }        }
            printf("\n");  
            fprintf(ficres,"\n");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
          }          for(h=0; h<=nhstepm; h++){
      }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
    }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
  if(mle==1){          }
     /* Computing hessian and covariance matrix */        }
     ftolhess=ftol; /* Usually correct */        /* This for computing probability of death (h=1 means
     hesscov(matcov, p, npar, delti, ftolhess, func);           computed over hstepm matrices product = hstepm*stepm months) 
  }           as a weighted average of prlim.
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        */
     printf("# Scales (for hessian or gradient estimation)\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
      for(i=1,jk=1; i <=nlstate; i++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       for(j=1; j <=nlstate+ndeath; j++){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         if (j!=i) {        }    
           fprintf(ficres,"%1d%1d",i,j);        /* end probability of death */
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){        for(j=1; j<= nlstate; j++) /* vareij */
             printf(" %.5e",delti[jk]);          for(h=0; h<=nhstepm; h++){
             fprintf(ficres," %.5e",delti[jk]);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             jk++;          }
           }  
           printf("\n");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           fprintf(ficres,"\n");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }        }
       }  
      }      } /* End theta */
      
     k=1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for(h=0; h<=nhstepm; h++) /* veij */
     for(i=1;i<=npar;i++){        for(j=1; j<=nlstate;j++)
       /*  if (k>nlstate) k=1;          for(theta=1; theta <=npar; theta++)
       i1=(i-1)/(ncovmodel*nlstate)+1;            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       fprintf(ficres,"%3d",i);        for(theta=1; theta <=npar; theta++)
       printf("%3d",i);          trgradgp[j][theta]=gradgp[theta][j];
       for(j=1; j<=i;j++){    
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       }      for(i=1;i<=nlstate;i++)
       fprintf(ficres,"\n");        for(j=1;j<=nlstate;j++)
       printf("\n");          vareij[i][j][(int)age] =0.;
       k++;  
     }      for(h=0;h<=nhstepm;h++){
            for(k=0;k<=nhstepm;k++){
     while((c=getc(ficpar))=='#' && c!= EOF){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       ungetc(c,ficpar);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fgets(line, MAXLINE, ficpar);          for(i=1;i<=nlstate;i++)
       puts(line);            for(j=1;j<=nlstate;j++)
       fputs(line,ficparo);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     }        }
     ungetc(c,ficpar);      }
     estepm=0;    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      /* pptj */
     if (estepm==0 || estepm < stepm) estepm=stepm;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     if (fage <= 2) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       bage = ageminpar;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fage = agemaxpar;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     }          varppt[j][i]=doldmp[j][i];
          /* end ppptj */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      /*  x centered again */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
     while((c=getc(ficpar))=='#' && c!= EOF){      if (popbased==1) {
     ungetc(c,ficpar);        if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);          for(i=1; i<=nlstate;i++)
     puts(line);            prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);        }else{ /* mobilav */ 
   }          for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);               
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /* This for computing probability of death (h=1 means
               computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   while((c=getc(ficpar))=='#' && c!= EOF){         as a weighted average of prlim.
     ungetc(c,ficpar);      */
     fgets(line, MAXLINE, ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     puts(line);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     fputs(line,ficparo);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   }      }    
   ungetc(c,ficpar);      /* end probability of death */
    
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   fprintf(ficparo,"pop_based=%d\n",popbased);          }
   fprintf(ficres,"pop_based=%d\n",popbased);        } 
        fprintf(ficresprobmorprev,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      fprintf(ficresvij,"%.0f ",age );
     fgets(line, MAXLINE, ficpar);      for(i=1; i<=nlstate;i++)
     puts(line);        for(j=1; j<=nlstate;j++){
     fputs(line,ficparo);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   }        }
   ungetc(c,ficpar);      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      free_matrix(gm,0,nhstepm,1,nlstate);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
 while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(gpp,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     puts(line);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fputs(line,ficparo);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   ungetc(c,ficpar);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
 /*------------ gnuplot -------------*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    */
 /*------------ free_vector  -------------*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
  chdir(path);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    
  free_ivector(wav,1,imx);    free_vector(xp,1,npar);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    free_matrix(doldm,1,nlstate,1,nlstate);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      free_matrix(dnewm,1,nlstate,1,npar);
  free_ivector(num,1,n);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  free_vector(agedc,1,n);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  fclose(ficparo);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  fclose(ficres);    fclose(ficresprobmorprev);
     fflush(ficgp);
 /*--------- index.htm --------*/    fflush(fichtm); 
   }  /* end varevsij */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   /*--------------- Prevalence limit --------------*/  {
      /* Variance of prevalence limit */
   strcpy(filerespl,"pl");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   strcat(filerespl,fileres);    double **newm;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    int i, j, nhstepm, hstepm;
   }    int k, cptcode;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    double *xp;
   fprintf(ficrespl,"#Prevalence limit\n");    double *gp, *gm;
   fprintf(ficrespl,"#Age ");    double **gradg, **trgradg;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    double age,agelim;
   fprintf(ficrespl,"\n");    int theta;
      
   prlim=matrix(1,nlstate,1,nlstate);    pstamp(ficresvpl);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresvpl,"# Age");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(i=1; i<=nlstate;i++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresvpl," %1d-%1d",i,i);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficresvpl,"\n");
   k=0;  
   agebase=ageminpar;    xp=vector(1,npar);
   agelim=agemaxpar;    dnewm=matrix(1,nlstate,1,npar);
   ftolpl=1.e-10;    doldm=matrix(1,nlstate,1,nlstate);
   i1=cptcoveff;    
   if (cptcovn < 1){i1=1;}    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   for(cptcov=1;cptcov<=i1;cptcov++){    agelim = AGESUP;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         k=k+1;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      if (stepm >= YEARM) hstepm=1;
         fprintf(ficrespl,"\n#******");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         for(j=1;j<=cptcoveff;j++)      gradg=matrix(1,npar,1,nlstate);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      gp=vector(1,nlstate);
         fprintf(ficrespl,"******\n");      gm=vector(1,nlstate);
          
         for (age=agebase; age<=agelim; age++){      for(theta=1; theta <=npar; theta++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(i=1; i<=npar; i++){ /* Computes gradient */
           fprintf(ficrespl,"%.0f",age );          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for(i=1; i<=nlstate;i++)        }
           fprintf(ficrespl," %.5f", prlim[i][i]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           fprintf(ficrespl,"\n");        for(i=1;i<=nlstate;i++)
         }          gp[i] = prlim[i][i];
       }      
     }        for(i=1; i<=npar; i++) /* Computes gradient */
   fclose(ficrespl);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /*------------- h Pij x at various ages ------------*/        for(i=1;i<=nlstate;i++)
            gm[i] = prlim[i][i];
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        for(i=1;i<=nlstate;i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   }      } /* End theta */
   printf("Computing pij: result on file '%s' \n", filerespij);  
        trgradg =matrix(1,nlstate,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   agelim=AGESUP;          trgradg[j][theta]=gradg[theta][j];
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   k=0;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   for(cptcov=1;cptcov<=i1;cptcov++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1;i<=nlstate;i++)
       k=k+1;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)      fprintf(ficresvpl,"%.0f ",age );
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1; i<=nlstate;i++)
         fprintf(ficrespij,"******\n");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
              fprintf(ficresvpl,"\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      free_vector(gp,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      free_vector(gm,1,nlstate);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      free_matrix(gradg,1,npar,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_matrix(trgradg,1,nlstate,1,npar);
           oldm=oldms;savm=savms;    } /* End age */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");    free_vector(xp,1,npar);
           for(i=1; i<=nlstate;i++)    free_matrix(doldm,1,nlstate,1,npar);
             for(j=1; j<=nlstate+ndeath;j++)    free_matrix(dnewm,1,nlstate,1,nlstate);
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");  }
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  /************ Variance of one-step probabilities  ******************/
             for(i=1; i<=nlstate;i++)  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
               for(j=1; j<=nlstate+ndeath;j++)  {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    int i, j=0,  i1, k1, l1, t, tj;
             fprintf(ficrespij,"\n");    int k2, l2, j1,  z1;
              }    int k=0,l, cptcode;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int first=1, first1;
           fprintf(ficrespij,"\n");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         }    double **dnewm,**doldm;
     }    double *xp;
   }    double *gp, *gm;
     double **gradg, **trgradg;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    double **mu;
     double age,agelim, cov[NCOVMAX];
   fclose(ficrespij);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
   /*---------- Forecasting ------------------*/    char fileresprobcov[FILENAMELENGTH];
   if((stepm == 1) && (strcmp(model,".")==0)){    char fileresprobcor[FILENAMELENGTH];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double ***varpij;
     free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    strcpy(fileresprob,"prob"); 
     free_vector(weight,1,n);}    strcat(fileresprob,fileres);
   else{    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     erreur=108;      printf("Problem with resultfile: %s\n", fileresprob);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   }    }
      strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   /*---------- Health expectancies and variances ------------*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
   strcpy(filerest,"t");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   strcat(filerest,fileres);    }
   if((ficrest=fopen(filerest,"w"))==NULL) {    strcpy(fileresprobcor,"probcor"); 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   strcpy(filerese,"e");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   strcat(filerese,fileres);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
  strcpy(fileresv,"v");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   strcat(fileresv,fileres);    fprintf(ficresprob,"# Age");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    pstamp(ficresprobcov);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   }    fprintf(ficresprobcov,"# Age");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   k=0;    fprintf(ficresprobcor,"# Age");
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    for(i=1; i<=nlstate;i++)
       fprintf(ficrest,"\n#****** ");      for(j=1; j<=(nlstate+ndeath);j++){
       for(j=1;j<=cptcoveff;j++)        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficrest,"******\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
       fprintf(ficreseij,"\n#****** ");   /* fprintf(ficresprob,"\n");
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobcov,"\n");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobcor,"\n");
       fprintf(ficreseij,"******\n");   */
     xp=vector(1,npar);
       fprintf(ficresvij,"\n#****** ");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficresvij,"******\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficgp,"\n# Routine varprob");
       oldm=oldms;savm=savms;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);      fprintf(fichtm,"\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
        file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    and drawn. It helps understanding how is the covariance between two incidences.\
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fprintf(ficrest,"\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       epj=vector(1,nlstate+1);  standard deviations wide on each axis. <br>\
       for(age=bage; age <=fage ;age++){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         if (popbased==1) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];    cov[1]=1;
         }    tj=cptcoveff;
            if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(ficrest," %4.0f",age);    j1=0;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    for(t=1; t<=tj;t++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      for(i1=1; i1<=ncodemax[t];i1++){ 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        j1++;
           }        if  (cptcovn>0) {
           epj[nlstate+1] +=epj[j];          fprintf(ficresprob, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(i=1, vepp=0.;i <=nlstate;i++)          fprintf(ficresprob, "**********\n#\n");
           for(j=1;j <=nlstate;j++)          fprintf(ficresprobcov, "\n#********** Variable "); 
             vepp += vareij[i][j][(int)age];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          fprintf(ficresprobcov, "**********\n#\n");
         for(j=1;j <=nlstate;j++){          
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          fprintf(ficgp, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrest,"\n");          fprintf(ficgp, "**********\n#\n");
       }          
     }          
   }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fclose(ficreseij);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   fclose(ficresvij);          
   fclose(ficrest);          fprintf(ficresprobcor, "\n#********** Variable ");    
   fclose(ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   free_vector(epj,1,nlstate+1);          fprintf(ficresprobcor, "**********\n#");    
          }
   /*------- Variance limit prevalence------*/          
         for (age=bage; age<=fage; age ++){ 
   strcpy(fileresvpl,"vpl");          cov[2]=age;
   strcat(fileresvpl,fileres);          for (k=1; k<=cptcovn;k++) {
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          }
     exit(0);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }          for (k=1; k<=cptcovprod;k++)
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
   k=0;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   for(cptcov=1;cptcov<=i1;cptcov++){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          gp=vector(1,(nlstate)*(nlstate+ndeath));
       k=k+1;          gm=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficresvpl,"\n#****** ");      
       for(j=1;j<=cptcoveff;j++)          for(theta=1; theta <=npar; theta++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<=npar; i++)
       fprintf(ficresvpl,"******\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                  
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       oldm=oldms;savm=savms;            
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            k=0;
     }            for(i=1; i<= (nlstate); i++){
  }              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   fclose(ficresvpl);                gp[k]=pmmij[i][j];
               }
   /*---------- End : free ----------------*/            }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            
              for(i=1; i<=npar; i++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
              k=0;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            for(i=1; i<=(nlstate); i++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);              for(j=1; j<=(nlstate+ndeath);j++){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                k=k+1;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                gm[k]=pmmij[i][j];
                }
   free_matrix(matcov,1,npar,1,npar);            }
   free_vector(delti,1,npar);       
   free_matrix(agev,1,maxwav,1,imx);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   else   printf("End of Imach\n");            for(theta=1; theta <=npar; theta++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              trgradg[j][theta]=gradg[theta][j];
            
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   /*printf("Total time was %d uSec.\n", total_usecs);*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   /*------ End -----------*/          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  end:          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 #ifdef windows  
   /* chdir(pathcd);*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
 #endif          
  /*system("wgnuplot graph.plt");*/          k=0;
  /*system("../gp37mgw/wgnuplot graph.plt");*/          for(i=1; i<=(nlstate); i++){
  /*system("cd ../gp37mgw");*/            for(j=1; j<=(nlstate+ndeath);j++){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/              k=k+1;
  strcpy(plotcmd,GNUPLOTPROGRAM);              mu[k][(int) age]=pmmij[i][j];
  strcat(plotcmd," ");            }
  strcat(plotcmd,optionfilegnuplot);          }
  system(plotcmd);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 #ifdef windows              varpij[i][j][(int)age] = doldm[i][j];
   while (z[0] != 'q') {  
     /* chdir(path); */          /*printf("\n%d ",(int)age);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     scanf("%s",z);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     if (z[0] == 'c') system("./imach");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     else if (z[0] == 'e') system(optionfilehtm);            }*/
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);          fprintf(ficresprob,"\n%d ",(int)age);
   }          fprintf(ficresprobcov,"\n%d ",(int)age);
 #endif          fprintf(ficresprobcor,"\n%d ",(int)age);
 }  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforces= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
           goto end;
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.40  
changed lines
  Added in v.1.132


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>