Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.84

version 1.41.2.1, 2003/06/12 10:43:20 version 1.84, 2003/06/13 21:44:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
   This program computes Healthy Life Expectancies from    place. It differs from routine "prevalence" which may be called
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    many times. Probs is memory consuming and must be used with
   first survey ("cross") where individuals from different ages are    parcimony.
   interviewed on their health status or degree of disability (in the    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.83  2003/06/10 13:39:11  lievre
   (if any) in individual health status.  Health expectancies are    *** empty log message ***
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.82  2003/06/05 15:57:20  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Add log in  imach.c and  fullversion number is now printed.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave  */
   conditional to be observed in state i at the first wave. Therefore  /*
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where     Interpolated Markov Chain
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Short summary of the programme:
   where the markup *Covariates have to be included here again* invites    
   you to do it.  More covariates you add, slower the    This program computes Healthy Life Expectancies from
   convergence.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
   The advantage of this computer programme, compared to a simple    interviewed on their health status or degree of disability (in the
   multinomial logistic model, is clear when the delay between waves is not    case of a health survey which is our main interest) -2- at least a
   identical for each individual. Also, if a individual missed an    second wave of interviews ("longitudinal") which measure each change
   intermediate interview, the information is lost, but taken into    (if any) in individual health status.  Health expectancies are
   account using an interpolation or extrapolation.      computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
   hPijx is the probability to be observed in state i at age x+h    Maximum Likelihood of the parameters involved in the model.  The
   conditional to the observed state i at age x. The delay 'h' can be    simplest model is the multinomial logistic model where pij is the
   split into an exact number (nh*stepm) of unobserved intermediate    probability to be observed in state j at the second wave
   states. This elementary transition (by month or quarter trimester,    conditional to be observed in state i at the first wave. Therefore
   semester or year) is model as a multinomial logistic.  The hPx    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   matrix is simply the matrix product of nh*stepm elementary matrices    'age' is age and 'sex' is a covariate. If you want to have a more
   and the contribution of each individual to the likelihood is simply    complex model than "constant and age", you should modify the program
   hPijx.    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
   Also this programme outputs the covariance matrix of the parameters but also    convergence.
   of the life expectancies. It also computes the prevalence limits.  
      The advantage of this computer programme, compared to a simple
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    multinomial logistic model, is clear when the delay between waves is not
            Institut national d'études démographiques, Paris.    identical for each individual. Also, if a individual missed an
   This software have been partly granted by Euro-REVES, a concerted action    intermediate interview, the information is lost, but taken into
   from the European Union.    account using an interpolation or extrapolation.  
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    hPijx is the probability to be observed in state i at age x+h
   can be accessed at http://euroreves.ined.fr/imach .    conditional to the observed state i at age x. The delay 'h' can be
   **********************************************************************/    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
 #include <math.h>    semester or year) is modelled as a multinomial logistic.  The hPx
 #include <stdio.h>    matrix is simply the matrix product of nh*stepm elementary matrices
 #include <stdlib.h>    and the contribution of each individual to the likelihood is simply
 #include <unistd.h>    hPijx.
   
 #define MAXLINE 256    Also this programme outputs the covariance matrix of the parameters but also
 #define GNUPLOTPROGRAM "wgnuplot"    of the life expectancies. It also computes the stable prevalence. 
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    
 #define FILENAMELENGTH 80    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /*#define DEBUG*/             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /*#define windows*/    from the European Union.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    It is copyrighted identically to a GNU software product, ie programme and
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define NINTERVMAX 8    
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    **********************************************************************/
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  /*
 #define NCOVMAX 8 /* Maximum number of covariates */    main
 #define MAXN 20000    read parameterfile
 #define YEARM 12. /* Number of months per year */    read datafile
 #define AGESUP 130    concatwav
 #define AGEBASE 40    freqsummary
     if (mle >= 1)
       mlikeli
 int erreur; /* Error number */    print results files
 int nvar;    if mle==1 
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;       computes hessian
 int npar=NPARMAX;    read end of parameter file: agemin, agemax, bage, fage, estepm
 int nlstate=2; /* Number of live states */        begin-prev-date,...
 int ndeath=1; /* Number of dead states */    open gnuplot file
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    open html file
 int popbased=0;    stable prevalence
      for age prevalim()
 int *wav; /* Number of waves for this individuual 0 is possible */    h Pij x
 int maxwav; /* Maxim number of waves */    variance of p varprob
 int jmin, jmax; /* min, max spacing between 2 waves */    forecasting if prevfcast==1 prevforecast call prevalence()
 int mle, weightopt;    health expectancies
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Variance-covariance of DFLE
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    prevalence()
 double jmean; /* Mean space between 2 waves */     movingaverage()
 double **oldm, **newm, **savm; /* Working pointers to matrices */    varevsij() 
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    if popbased==1 varevsij(,popbased)
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    total life expectancies
 FILE *ficgp,*ficresprob,*ficpop;    Variance of stable prevalence
 FILE *ficreseij;   end
   char filerese[FILENAMELENGTH];  */
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];   
   #include <math.h>
 #define NR_END 1  #include <stdio.h>
 #define FREE_ARG char*  #include <stdlib.h>
 #define FTOL 1.0e-10  #include <unistd.h>
   
 #define NRANSI  #define MAXLINE 256
 #define ITMAX 200  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define TOL 2.0e-4  #define FILENAMELENGTH 80
   /*#define DEBUG*/
 #define CGOLD 0.3819660  #define windows
 #define ZEPS 1.0e-10  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define GOLD 1.618034  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define GLIMIT 100.0  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define TINY 1.0e-20  
   #define NINTERVMAX 8
 static double maxarg1,maxarg2;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define NCOVMAX 8 /* Maximum number of covariates */
    #define MAXN 20000
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define YEARM 12. /* Number of months per year */
 #define rint(a) floor(a+0.5)  #define AGESUP 130
   #define AGEBASE 40
 static double sqrarg;  #ifdef windows
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define DIRSEPARATOR '\\'
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define ODIRSEPARATOR '/'
   #else
 int imx;  #define DIRSEPARATOR '/'
 int stepm;  #define ODIRSEPARATOR '\\'
 /* Stepm, step in month: minimum step interpolation*/  #endif
   
 int estepm;  /* $Id$ */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* $State$ */
   
 int m,nb;  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  char fullversion[]="$Revision$ $Date$"; 
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int erreur; /* Error number */
 double **pmmij, ***probs, ***mobaverage;  int nvar;
 double dateintmean=0;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 double *weight;  int nlstate=2; /* Number of live states */
 int **s; /* Status */  int ndeath=1; /* Number of dead states */
 double *agedc, **covar, idx;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int popbased=0;
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int *wav; /* Number of waves for this individuual 0 is possible */
 double ftolhess; /* Tolerance for computing hessian */  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 /**************** split *************************/  int mle, weightopt;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    char *s;                             /* pointer */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    int  l1, l2;                         /* length counters */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
    l1 = strlen( path );                 /* length of path */  double **oldm, **newm, **savm; /* Working pointers to matrices */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #ifdef windows  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    s = strrchr( path, '\\' );           /* find last / */  FILE *ficlog, *ficrespow;
 #else  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    s = strrchr( path, '/' );            /* find last / */  FILE *ficresprobmorprev;
 #endif  FILE *fichtm; /* Html File */
    if ( s == NULL ) {                   /* no directory, so use current */  FILE *ficreseij;
 #if     defined(__bsd__)                /* get current working directory */  char filerese[FILENAMELENGTH];
       extern char       *getwd( );  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
       if ( getwd( dirc ) == NULL ) {  FILE  *ficresvpl;
 #else  char fileresvpl[FILENAMELENGTH];
       extern char       *getcwd( );  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 #endif  
          return( GLOCK_ERROR_GETCWD );  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       }  char filelog[FILENAMELENGTH]; /* Log file */
       strcpy( name, path );             /* we've got it */  char filerest[FILENAMELENGTH];
    } else {                             /* strip direcotry from path */  char fileregp[FILENAMELENGTH];
       s++;                              /* after this, the filename */  char popfile[FILENAMELENGTH];
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define NR_END 1
       dirc[l1-l2] = 0;                  /* add zero */  #define FREE_ARG char*
    }  #define FTOL 1.0e-10
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows  #define NRANSI 
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define ITMAX 200 
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define TOL 2.0e-4 
 #endif  
    s = strrchr( name, '.' );            /* find last / */  #define CGOLD 0.3819660 
    s++;  #define ZEPS 1.0e-10 
    strcpy(ext,s);                       /* save extension */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    l1= strlen( name);  
    l2= strlen( s)+1;  #define GOLD 1.618034 
    strncpy( finame, name, l1-l2);  #define GLIMIT 100.0 
    finame[l1-l2]= 0;  #define TINY 1.0e-20 
    return( 0 );                         /* we're done */  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /******************************************/    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void replace(char *s, char*t)  #define rint(a) floor(a+0.5)
 {  
   int i;  static double sqrarg;
   int lg=20;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   i=0;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  int imx; 
     (s[i] = t[i]);  int stepm;
     if (t[i]== '\\') s[i]='/';  /* Stepm, step in month: minimum step interpolation*/
   }  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 int nbocc(char *s, char occ)  
 {  int m,nb;
   int i,j=0;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   int lg=20;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   i=0;  double **pmmij, ***probs;
   lg=strlen(s);  double dateintmean=0;
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  double *weight;
   }  int **s; /* Status */
   return j;  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 void cutv(char *u,char *v, char*t, char occ)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   int i,lg,j,p=0;  
   i=0;  /**************** split *************************/
   for(j=0; j<=strlen(t)-1; j++) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  {
   }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
   lg=strlen(t);  
   for(j=0; j<p; j++) {    l1 = strlen(path );                   /* length of path */
     (u[j] = t[j]);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
      u[p]='\0';    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
    for(j=0; j<= lg; j++) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     if (j>=(p+1))(v[j-p-1] = t[j]);      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /********************** nrerror ********************/      }
       strcpy( name, path );               /* we've got it */
 void nrerror(char error_text[])    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   fprintf(stderr,"ERREUR ...\n");      l2 = strlen( ss );                  /* length of filename */
   fprintf(stderr,"%s\n",error_text);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   exit(1);      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /*********************** vector *******************/      dirc[l1-l2] = 0;                    /* add zero */
 double *vector(int nl, int nh)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   double *v;  #ifdef windows
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!v) nrerror("allocation failure in vector");  #else
   return v-nl+NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 }  #endif
     ss = strrchr( name, '.' );            /* find last / */
 /************************ free vector ******************/    ss++;
 void free_vector(double*v, int nl, int nh)    strcpy(ext,ss);                       /* save extension */
 {    l1= strlen( name);
   free((FREE_ARG)(v+nl-NR_END));    l2= strlen(ss)+1;
 }    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
 /************************ivector *******************************/    return( 0 );                          /* we're done */
 int *ivector(long nl,long nh)  }
 {  
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  /******************************************/
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  void replace(char *s, char*t)
 }  {
     int i;
 /******************free ivector **************************/    int lg=20;
 void free_ivector(int *v, long nl, long nh)    i=0;
 {    lg=strlen(t);
   free((FREE_ARG)(v+nl-NR_END));    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /******************* imatrix *******************************/    }
 int **imatrix(long nrl, long nrh, long ncl, long nch)  }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  int nbocc(char *s, char occ)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  {
   int **m;    int i,j=0;
      int lg=20;
   /* allocate pointers to rows */    i=0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    lg=strlen(s);
   if (!m) nrerror("allocation failure 1 in matrix()");    for(i=0; i<= lg; i++) {
   m += NR_END;    if  (s[i] == occ ) j++;
   m -= nrl;    }
      return j;
    }
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  void cutv(char *u,char *v, char*t, char occ)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    /* cuts string t into u and v where u is ended by char occ excluding it
   m[nrl] -= ncl;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
         gives u="abcedf" and v="ghi2j" */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    int i,lg,j,p=0;
      i=0;
   /* return pointer to array of pointers to rows */    for(j=0; j<=strlen(t)-1; j++) {
   return m;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 }    }
   
 /****************** free_imatrix *************************/    lg=strlen(t);
 void free_imatrix(m,nrl,nrh,ncl,nch)    for(j=0; j<p; j++) {
       int **m;      (u[j] = t[j]);
       long nch,ncl,nrh,nrl;    }
      /* free an int matrix allocated by imatrix() */       u[p]='\0';
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     for(j=0; j<= lg; j++) {
   free((FREE_ARG) (m+nrl-NR_END));      if (j>=(p+1))(v[j-p-1] = t[j]);
 }    }
   }
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  /********************** nrerror ********************/
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  void nrerror(char error_text[])
   double **m;  {
     fprintf(stderr,"ERREUR ...\n");
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    fprintf(stderr,"%s\n",error_text);
   if (!m) nrerror("allocation failure 1 in matrix()");    exit(EXIT_FAILURE);
   m += NR_END;  }
   m -= nrl;  /*********************** vector *******************/
   double *vector(int nl, int nh)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    double *v;
   m[nrl] += NR_END;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m[nrl] -= ncl;    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   return m;  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*************************free matrix ************************/  {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /************************ivector *******************************/
 }  char *cvector(long nl,long nh)
   {
 /******************* ma3x *******************************/    char *v;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
 {    if (!v) nrerror("allocation failure in cvector");
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    return v-nl+NR_END;
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /******************free ivector **************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  void free_cvector(char *v, long nl, long nh)
   m += NR_END;  {
   m -= nrl;    free((FREE_ARG)(v+nl-NR_END));
   }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /************************ivector *******************************/
   m[nrl] += NR_END;  int *ivector(long nl,long nh)
   m[nrl] -= ncl;  {
     int *v;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  }
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  /******************free ivector **************************/
   for (j=ncl+1; j<=nch; j++)  void free_ivector(int *v, long nl, long nh)
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      free((FREE_ARG)(v+nl-NR_END));
   for (i=nrl+1; i<=nrh; i++) {  }
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  /******************* imatrix *******************************/
       m[i][j]=m[i][j-1]+nlay;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   return m;  { 
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 /*************************free ma3x ************************/    
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    /* allocate pointers to rows */ 
 {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if (!m) nrerror("allocation failure 1 in matrix()"); 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m += NR_END; 
   free((FREE_ARG)(m+nrl-NR_END));    m -= nrl; 
 }    
     
 /***************** f1dim *************************/    /* allocate rows and set pointers to them */ 
 extern int ncom;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 extern double *pcom,*xicom;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 extern double (*nrfunc)(double []);    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
 double f1dim(double x)    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int j;    
   double f;    /* return pointer to array of pointers to rows */ 
   double *xt;    return m; 
    } 
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /****************** free_imatrix *************************/
   f=(*nrfunc)(xt);  void free_imatrix(m,nrl,nrh,ncl,nch)
   free_vector(xt,1,ncom);        int **m;
   return f;        long nch,ncl,nrh,nrl; 
 }       /* free an int matrix allocated by imatrix() */ 
   { 
 /*****************brent *************************/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG) (m+nrl-NR_END)); 
 {  } 
   int iter;  
   double a,b,d,etemp;  /******************* matrix *******************************/
   double fu,fv,fw,fx;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double e=0.0;    double **m;
    
   a=(ax < cx ? ax : cx);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   b=(ax > cx ? ax : cx);    if (!m) nrerror("allocation failure 1 in matrix()");
   x=w=v=bx;    m += NR_END;
   fw=fv=fx=(*f)(x);    m -= nrl;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m[nrl] += NR_END;
     printf(".");fflush(stdout);    m[nrl] -= ncl;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    return m;
 #endif    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     */
       *xmin=x;  }
       return fx;  
     }  /*************************free matrix ************************/
     ftemp=fu;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       q=(x-v)*(fx-fw);    free((FREE_ARG)(m+nrl-NR_END));
       p=(x-v)*q-(x-w)*r;  }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  /******************* ma3x *******************************/
       q=fabs(q);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       etemp=e;  {
       e=d;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    double ***m;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         d=p/q;    if (!m) nrerror("allocation failure 1 in matrix()");
         u=x+d;    m += NR_END;
         if (u-a < tol2 || b-u < tol2)    m -= nrl;
           d=SIGN(tol1,xm-x);  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     } else {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       SHFT(v,w,x,u)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         SHFT(fv,fw,fx,fu)    m[nrl][ncl] += NR_END;
         } else {    m[nrl][ncl] -= nll;
           if (u < x) a=u; else b=u;    for (j=ncl+1; j<=nch; j++) 
           if (fu <= fw || w == x) {      m[nrl][j]=m[nrl][j-1]+nlay;
             v=w;    
             w=u;    for (i=nrl+1; i<=nrh; i++) {
             fv=fw;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
             fw=fu;      for (j=ncl+1; j<=nch; j++) 
           } else if (fu <= fv || v == x || v == w) {        m[i][j]=m[i][j-1]+nlay;
             v=u;    }
             fv=fu;    return m; 
           }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   }    */
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /*************************free ma3x ************************/
 }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /****************** mnbrak ***********************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    free((FREE_ARG)(m+nrl-NR_END));
             double (*func)(double))  }
 {  
   double ulim,u,r,q, dum;  /***************** f1dim *************************/
   double fu;  extern int ncom; 
    extern double *pcom,*xicom;
   *fa=(*func)(*ax);  extern double (*nrfunc)(double []); 
   *fb=(*func)(*bx);   
   if (*fb > *fa) {  double f1dim(double x) 
     SHFT(dum,*ax,*bx,dum)  { 
       SHFT(dum,*fb,*fa,dum)    int j; 
       }    double f;
   *cx=(*bx)+GOLD*(*bx-*ax);    double *xt; 
   *fc=(*func)(*cx);   
   while (*fb > *fc) {    xt=vector(1,ncom); 
     r=(*bx-*ax)*(*fb-*fc);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     q=(*bx-*cx)*(*fb-*fa);    f=(*nrfunc)(xt); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    free_vector(xt,1,ncom); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    return f; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  } 
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /*****************brent *************************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       fu=(*func)(u);  { 
       if (fu < *fc) {    int iter; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    double a,b,d,etemp;
           SHFT(*fb,*fc,fu,(*func)(u))    double fu,fv,fw,fx;
           }    double ftemp;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       u=ulim;    double e=0.0; 
       fu=(*func)(u);   
     } else {    a=(ax < cx ? ax : cx); 
       u=(*cx)+GOLD*(*cx-*bx);    b=(ax > cx ? ax : cx); 
       fu=(*func)(u);    x=w=v=bx; 
     }    fw=fv=fx=(*f)(x); 
     SHFT(*ax,*bx,*cx,u)    for (iter=1;iter<=ITMAX;iter++) { 
       SHFT(*fa,*fb,*fc,fu)      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 /*************** linmin ************************/      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 int ncom;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double *pcom,*xicom;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double (*nrfunc)(double []);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 {        *xmin=x; 
   double brent(double ax, double bx, double cx,        return fx; 
                double (*f)(double), double tol, double *xmin);      } 
   double f1dim(double x);      ftemp=fu;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      if (fabs(e) > tol1) { 
               double *fc, double (*func)(double));        r=(x-w)*(fx-fv); 
   int j;        q=(x-v)*(fx-fw); 
   double xx,xmin,bx,ax;        p=(x-v)*q-(x-w)*r; 
   double fx,fb,fa;        q=2.0*(q-r); 
          if (q > 0.0) p = -p; 
   ncom=n;        q=fabs(q); 
   pcom=vector(1,n);        etemp=e; 
   xicom=vector(1,n);        e=d; 
   nrfunc=func;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for (j=1;j<=n;j++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     pcom[j]=p[j];        else { 
     xicom[j]=xi[j];          d=p/q; 
   }          u=x+d; 
   ax=0.0;          if (u-a < tol2 || b-u < tol2) 
   xx=1.0;            d=SIGN(tol1,xm-x); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        } 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      } else { 
 #ifdef DEBUG        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      } 
 #endif      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for (j=1;j<=n;j++) {      fu=(*f)(u); 
     xi[j] *= xmin;      if (fu <= fx) { 
     p[j] += xi[j];        if (u >= x) a=x; else b=x; 
   }        SHFT(v,w,x,u) 
   free_vector(xicom,1,n);          SHFT(fv,fw,fx,fu) 
   free_vector(pcom,1,n);          } else { 
 }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 /*************** powell ************************/              v=w; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,              w=u; 
             double (*func)(double []))              fv=fw; 
 {              fw=fu; 
   void linmin(double p[], double xi[], int n, double *fret,            } else if (fu <= fv || v == x || v == w) { 
               double (*func)(double []));              v=u; 
   int i,ibig,j;              fv=fu; 
   double del,t,*pt,*ptt,*xit;            } 
   double fp,fptt;          } 
   double *xits;    } 
   pt=vector(1,n);    nrerror("Too many iterations in brent"); 
   ptt=vector(1,n);    *xmin=x; 
   xit=vector(1,n);    return fx; 
   xits=vector(1,n);  } 
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /****************** mnbrak ***********************/
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     ibig=0;              double (*func)(double)) 
     del=0.0;  { 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double ulim,u,r,q, dum;
     for (i=1;i<=n;i++)    double fu; 
       printf(" %d %.12f",i, p[i]);   
     printf("\n");    *fa=(*func)(*ax); 
     for (i=1;i<=n;i++) {    *fb=(*func)(*bx); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    if (*fb > *fa) { 
       fptt=(*fret);      SHFT(dum,*ax,*bx,dum) 
 #ifdef DEBUG        SHFT(dum,*fb,*fa,dum) 
       printf("fret=%lf \n",*fret);        } 
 #endif    *cx=(*bx)+GOLD*(*bx-*ax); 
       printf("%d",i);fflush(stdout);    *fc=(*func)(*cx); 
       linmin(p,xit,n,fret,func);    while (*fb > *fc) { 
       if (fabs(fptt-(*fret)) > del) {      r=(*bx-*ax)*(*fb-*fc); 
         del=fabs(fptt-(*fret));      q=(*bx-*cx)*(*fb-*fa); 
         ibig=i;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #ifdef DEBUG      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       printf("%d %.12e",i,(*fret));      if ((*bx-u)*(u-*cx) > 0.0) { 
       for (j=1;j<=n;j++) {        fu=(*func)(u); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         printf(" x(%d)=%.12e",j,xit[j]);        fu=(*func)(u); 
       }        if (fu < *fc) { 
       for(j=1;j<=n;j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         printf(" p=%.12e",p[j]);            SHFT(*fb,*fc,fu,(*func)(u)) 
       printf("\n");            } 
 #endif      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        fu=(*func)(u); 
 #ifdef DEBUG      } else { 
       int k[2],l;        u=(*cx)+GOLD*(*cx-*bx); 
       k[0]=1;        fu=(*func)(u); 
       k[1]=-1;      } 
       printf("Max: %.12e",(*func)(p));      SHFT(*ax,*bx,*cx,u) 
       for (j=1;j<=n;j++)        SHFT(*fa,*fb,*fc,fu) 
         printf(" %.12e",p[j]);        } 
       printf("\n");  } 
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /*************** linmin ************************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int ncom; 
         }  double *pcom,*xicom;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double (*nrfunc)(double []); 
       }   
 #endif  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
     double brent(double ax, double bx, double cx, 
       free_vector(xit,1,n);                 double (*f)(double), double tol, double *xmin); 
       free_vector(xits,1,n);    double f1dim(double x); 
       free_vector(ptt,1,n);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       free_vector(pt,1,n);                double *fc, double (*func)(double)); 
       return;    int j; 
     }    double xx,xmin,bx,ax; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double fx,fb,fa;
     for (j=1;j<=n;j++) {   
       ptt[j]=2.0*p[j]-pt[j];    ncom=n; 
       xit[j]=p[j]-pt[j];    pcom=vector(1,n); 
       pt[j]=p[j];    xicom=vector(1,n); 
     }    nrfunc=func; 
     fptt=(*func)(ptt);    for (j=1;j<=n;j++) { 
     if (fptt < fp) {      pcom[j]=p[j]; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      xicom[j]=xi[j]; 
       if (t < 0.0) {    } 
         linmin(p,xit,n,fret,func);    ax=0.0; 
         for (j=1;j<=n;j++) {    xx=1.0; 
           xi[j][ibig]=xi[j][n];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
           xi[j][n]=xit[j];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         }  #ifdef DEBUG
 #ifdef DEBUG    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(j=1;j<=n;j++)  #endif
           printf(" %.12e",xit[j]);    for (j=1;j<=n;j++) { 
         printf("\n");      xi[j] *= xmin; 
 #endif      p[j] += xi[j]; 
       }    } 
     }    free_vector(xicom,1,n); 
   }    free_vector(pcom,1,n); 
 }  } 
   
 /**** Prevalence limit ****************/  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)              double (*func)(double [])) 
 {  { 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    void linmin(double p[], double xi[], int n, double *fret, 
      matrix by transitions matrix until convergence is reached */                double (*func)(double [])); 
     int i,ibig,j; 
   int i, ii,j,k;    double del,t,*pt,*ptt,*xit;
   double min, max, maxmin, maxmax,sumnew=0.;    double fp,fptt;
   double **matprod2();    double *xits;
   double **out, cov[NCOVMAX], **pmij();    pt=vector(1,n); 
   double **newm;    ptt=vector(1,n); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    xit=vector(1,n); 
     xits=vector(1,n); 
   for (ii=1;ii<=nlstate+ndeath;ii++)    *fret=(*func)(p); 
     for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
       ibig=0; 
    cov[1]=1.;      del=0.0; 
        printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fprintf(ficrespow,"%d %.12f",*iter,*fret);
     newm=savm;      for (i=1;i<=n;i++) {
     /* Covariates have to be included here again */        printf(" %d %.12f",i, p[i]);
      cov[2]=agefin;        fprintf(ficlog," %d %.12lf",i, p[i]);
          fprintf(ficrespow," %.12lf", p[i]);
       for (k=1; k<=cptcovn;k++) {      }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      printf("\n");
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      fprintf(ficlog,"\n");
       }      fprintf(ficrespow,"\n");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for (i=1;i<=n;i++) { 
       for (k=1; k<=cptcovprod;k++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fptt=(*fret); 
   #ifdef DEBUG
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        printf("fret=%lf \n",*fret);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        fprintf(ficlog,"fret=%lf \n",*fret);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #endif
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
     savm=oldm;        linmin(p,xit,n,fret,func); 
     oldm=newm;        if (fabs(fptt-(*fret)) > del) { 
     maxmax=0.;          del=fabs(fptt-(*fret)); 
     for(j=1;j<=nlstate;j++){          ibig=i; 
       min=1.;        } 
       max=0.;  #ifdef DEBUG
       for(i=1; i<=nlstate; i++) {        printf("%d %.12e",i,(*fret));
         sumnew=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        for (j=1;j<=n;j++) {
         prlim[i][j]= newm[i][j]/(1-sumnew);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         max=FMAX(max,prlim[i][j]);          printf(" x(%d)=%.12e",j,xit[j]);
         min=FMIN(min,prlim[i][j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       maxmin=max-min;        for(j=1;j<=n;j++) {
       maxmax=FMAX(maxmax,maxmin);          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
     if(maxmax < ftolpl){        }
       return prlim;        printf("\n");
     }        fprintf(ficlog,"\n");
   }  #endif
 }      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 /*************** transition probabilities ***************/  #ifdef DEBUG
         int k[2],l;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        k[0]=1;
 {        k[1]=-1;
   double s1, s2;        printf("Max: %.12e",(*func)(p));
   /*double t34;*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
   int i,j,j1, nc, ii, jj;        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
     for(i=1; i<= nlstate; i++){          fprintf(ficlog," %.12e",p[j]);
     for(j=1; j<i;j++){        }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("\n");
         /*s2 += param[i][j][nc]*cov[nc];*/        fprintf(ficlog,"\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for(l=0;l<=1;l++) {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       ps[i][j]=s2;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
     for(j=i+1; j<=nlstate+ndeath;j++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #endif
       }  
       ps[i][j]=s2;  
     }        free_vector(xit,1,n); 
   }        free_vector(xits,1,n); 
     /*ps[3][2]=1;*/        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   for(i=1; i<= nlstate; i++){        return; 
      s1=0;      } 
     for(j=1; j<i; j++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       s1+=exp(ps[i][j]);      for (j=1;j<=n;j++) { 
     for(j=i+1; j<=nlstate+ndeath; j++)        ptt[j]=2.0*p[j]-pt[j]; 
       s1+=exp(ps[i][j]);        xit[j]=p[j]-pt[j]; 
     ps[i][i]=1./(s1+1.);        pt[j]=p[j]; 
     for(j=1; j<i; j++)      } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      fptt=(*func)(ptt); 
     for(j=i+1; j<=nlstate+ndeath; j++)      if (fptt < fp) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        if (t < 0.0) { 
   } /* end i */          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            xi[j][ibig]=xi[j][n]; 
     for(jj=1; jj<= nlstate+ndeath; jj++){            xi[j][n]=xit[j]; 
       ps[ii][jj]=0;          }
       ps[ii][ii]=1;  #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){            fprintf(ficlog," %.12e",xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){          }
      printf("%lf ",ps[ii][jj]);          printf("\n");
    }          fprintf(ficlog,"\n");
     printf("\n ");  #endif
     }        }
     printf("\n ");printf("%lf ",cov[2]);*/      } 
 /*    } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  } 
   goto end;*/  
     return ps;  /**** Prevalence limit (stable prevalence)  ****************/
 }  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 /**************** Product of 2 matrices ******************/  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)       matrix by transitions matrix until convergence is reached */
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    int i, ii,j,k;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double min, max, maxmin, maxmax,sumnew=0.;
   /* in, b, out are matrice of pointers which should have been initialized    double **matprod2();
      before: only the contents of out is modified. The function returns    double **out, cov[NCOVMAX], **pmij();
      a pointer to pointers identical to out */    double **newm;
   long i, j, k;    double agefin, delaymax=50 ; /* Max number of years to converge */
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)    for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      for (j=1;j<=nlstate+ndeath;j++){
         out[i][k] +=in[i][j]*b[j][k];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
   return out;  
 }     cov[1]=1.;
    
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /************* Higher Matrix Product ***************/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      /* Covariates have to be included here again */
 {       cov[2]=agefin;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    
      duration (i.e. until        for (k=1; k<=cptcovn;k++) {
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
      (typically every 2 years instead of every month which is too big).        }
      Model is determined by parameters x and covariates have to be        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      included manually here.        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      */  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int i, j, d, h, k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double **out, cov[NCOVMAX];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double **newm;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   /* Hstepm could be zero and should return the unit matrix */      savm=oldm;
   for (i=1;i<=nlstate+ndeath;i++)      oldm=newm;
     for (j=1;j<=nlstate+ndeath;j++){      maxmax=0.;
       oldm[i][j]=(i==j ? 1.0 : 0.0);      for(j=1;j<=nlstate;j++){
       po[i][j][0]=(i==j ? 1.0 : 0.0);        min=1.;
     }        max=0.;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for(i=1; i<=nlstate; i++) {
   for(h=1; h <=nhstepm; h++){          sumnew=0;
     for(d=1; d <=hstepm; d++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       newm=savm;          prlim[i][j]= newm[i][j]/(1-sumnew);
       /* Covariates have to be included here again */          max=FMAX(max,prlim[i][j]);
       cov[1]=1.;          min=FMIN(min,prlim[i][j]);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        maxmin=max-min;
       for (k=1; k<=cptcovage;k++)        maxmax=FMAX(maxmax,maxmin);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
       for (k=1; k<=cptcovprod;k++)      if(maxmax < ftolpl){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        return prlim;
       }
     }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** transition probabilities ***************/ 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       oldm=newm;  {
     }    double s1, s2;
     for(i=1; i<=nlstate+ndeath; i++)    /*double t34;*/
       for(j=1;j<=nlstate+ndeath;j++) {    int i,j,j1, nc, ii, jj;
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      for(i=1; i<= nlstate; i++){
          */      for(j=1; j<i;j++){
       }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   } /* end h */          /*s2 += param[i][j][nc]*cov[nc];*/
   return po;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
         ps[i][j]=s2;
 /*************** log-likelihood *************/        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
 double func( double *x)      }
 {      for(j=i+1; j<=nlstate+ndeath;j++){
   int i, ii, j, k, mi, d, kk;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double **out;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   double sw; /* Sum of weights */        }
   double lli; /* Individual log likelihood */        ps[i][j]=s2;
   long ipmx;      }
   /*extern weight */    }
   /* We are differentiating ll according to initial status */      /*ps[3][2]=1;*/
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)    for(i=1; i<= nlstate; i++){
     printf(" %d\n",s[4][i]);       s1=0;
   */      for(j=1; j<i; j++)
   cov[1]=1.;        s1+=exp(ps[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)
   for(k=1; k<=nlstate; k++) ll[k]=0.;        s1+=exp(ps[i][j]);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      ps[i][i]=1./(s1+1.);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for(j=1; j<i; j++)
     for(mi=1; mi<= wav[i]-1; mi++){        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (ii=1;ii<=nlstate+ndeath;ii++)      for(j=i+1; j<=nlstate+ndeath; j++)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(d=0; d<dh[mi][i]; d++){      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         newm=savm;    } /* end i */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for(jj=1; jj<= nlstate+ndeath; jj++){
         }        ps[ii][jj]=0;
                ps[ii][ii]=1;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    }
         savm=oldm;  
         oldm=newm;  
            /*   for(ii=1; ii<= nlstate+ndeath; ii++){
              for(jj=1; jj<= nlstate+ndeath; jj++){
       } /* end mult */       printf("%lf ",ps[ii][jj]);
           }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      printf("\n ");
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      }
       ipmx +=1;      printf("\n ");printf("%lf ",cov[2]);*/
       sw += weight[i];  /*
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     } /* end of wave */    goto end;*/
   } /* end of individual */      return ps;
   }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /**************** Product of 2 matrices ******************/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 /*********** Maximum Likelihood Estimation ***************/    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       a pointer to pointers identical to out */
 {    long i, j, k;
   int i,j, iter;    for(i=nrl; i<= nrh; i++)
   double **xi,*delti;      for(k=ncolol; k<=ncoloh; k++)
   double fret;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   xi=matrix(1,npar,1,npar);          out[i][k] +=in[i][j]*b[j][k];
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)    return out;
       xi[i][j]=(i==j ? 1.0 : 0.0);  }
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   /************* Higher Matrix Product ***************/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
 }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
 /**** Computes Hessian and covariance matrix ***/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))       nhstepm*hstepm matrices. 
 {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double  **a,**y,*x,pd;       (typically every 2 years instead of every month which is too big 
   double **hess;       for the memory).
   int i, j,jk;       Model is determined by parameters x and covariates have to be 
   int *indx;       included manually here. 
   
   double hessii(double p[], double delta, int theta, double delti[]);       */
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;    int i, j, d, h, k;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double **out, cov[NCOVMAX];
     double **newm;
   hess=matrix(1,npar,1,npar);  
     /* Hstepm could be zero and should return the unit matrix */
   printf("\nCalculation of the hessian matrix. Wait...\n");    for (i=1;i<=nlstate+ndeath;i++)
   for (i=1;i<=npar;i++){      for (j=1;j<=nlstate+ndeath;j++){
     printf("%d",i);fflush(stdout);        oldm[i][j]=(i==j ? 1.0 : 0.0);
     hess[i][i]=hessii(p,ftolhess,i,delti);        po[i][j][0]=(i==j ? 1.0 : 0.0);
     /*printf(" %f ",p[i]);*/      }
     /*printf(" %lf ",hess[i][i]);*/    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
   for (i=1;i<=npar;i++) {        newm=savm;
     for (j=1;j<=npar;j++)  {        /* Covariates have to be included here again */
       if (j>i) {        cov[1]=1.;
         printf(".%d%d",i,j);fflush(stdout);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         hess[i][j]=hessij(p,delti,i,j);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         hess[j][i]=hess[i][j];            for (k=1; k<=cptcovage;k++)
         /*printf(" %lf ",hess[i][j]);*/          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   printf("\n");  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   a=matrix(1,npar,1,npar);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   y=matrix(1,npar,1,npar);        savm=oldm;
   x=vector(1,npar);        oldm=newm;
   indx=ivector(1,npar);      }
   for (i=1;i<=npar;i++)      for(i=1; i<=nlstate+ndeath; i++)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for(j=1;j<=nlstate+ndeath;j++) {
   ludcmp(a,npar,indx,&pd);          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   for (j=1;j<=npar;j++) {           */
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;    } /* end h */
     lubksb(a,npar,indx,x);    return po;
     for (i=1;i<=npar;i++){  }
       matcov[i][j]=x[i];  
     }  
   }  /*************** log-likelihood *************/
   double func( double *x)
   printf("\n#Hessian matrix#\n");  {
   for (i=1;i<=npar;i++) {    int i, ii, j, k, mi, d, kk;
     for (j=1;j<=npar;j++) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       printf("%.3e ",hess[i][j]);    double **out;
     }    double sw; /* Sum of weights */
     printf("\n");    double lli; /* Individual log likelihood */
   }    int s1, s2;
     double bbh, survp;
   /* Recompute Inverse */    long ipmx;
   for (i=1;i<=npar;i++)    /*extern weight */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* We are differentiating ll according to initial status */
   ludcmp(a,npar,indx,&pd);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   /*  printf("\n#Hessian matrix recomputed#\n");      printf(" %d\n",s[4][i]);
     */
   for (j=1;j<=npar;j++) {    cov[1]=1.;
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    if(mle==1){
       y[i][j]=x[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       printf("%.3e ",y[i][j]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
     printf("\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(a,1,npar,1,npar);            }
   free_matrix(y,1,npar,1,npar);          for(d=0; d<dh[mi][i]; d++){
   free_vector(x,1,npar);            newm=savm;
   free_ivector(indx,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(hess,1,npar,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*************** hessian matrix ****************/            savm=oldm;
 double hessii( double x[], double delta, int theta, double delti[])            oldm=newm;
 {          } /* end mult */
   int i;        
   int l=1, lmax=20;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double k1,k2;          /* But now since version 0.9 we anticipate for bias and large stepm.
   double p2[NPARMAX+1];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double res;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double fx;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int k=0,kmax=10;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   double l1;           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   fx=func(x);           * -stepm/2 to stepm/2 .
   for (i=1;i<=npar;i++) p2[i]=x[i];           * For stepm=1 the results are the same as for previous versions of Imach.
   for(l=0 ; l <=lmax; l++){           * For stepm > 1 the results are less biased than in previous versions. 
     l1=pow(10,l);           */
     delts=delt;          s1=s[mw[mi][i]][i];
     for(k=1 ; k <kmax; k=k+1){          s2=s[mw[mi+1][i]][i];
       delt = delta*(l1*k);          bbh=(double)bh[mi][i]/(double)stepm; 
       p2[theta]=x[theta] +delt;          /* bias is positive if real duration
       k1=func(p2)-fx;           * is higher than the multiple of stepm and negative otherwise.
       p2[theta]=x[theta]-delt;           */
       k2=func(p2)-fx;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       /*res= (k1-2.0*fx+k2)/delt/delt; */          if( s2 > nlstate){ 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                     to the likelihood is the probability to die between last step unit time and current 
 #ifdef DEBUG               step unit time, which is also the differences between probability to die before dh 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);               and probability to die before dh-stepm . 
 #endif               In version up to 0.92 likelihood was computed
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          as if date of death was unknown. Death was treated as any other
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          health state: the date of the interview describes the actual state
         k=kmax;          and not the date of a change in health state. The former idea was
       }          to consider that at each interview the state was recorded
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          (healthy, disable or death) and IMaCh was corrected; but when we
         k=kmax; l=lmax*10.;          introduced the exact date of death then we should have modified
       }          the contribution of an exact death to the likelihood. This new
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          contribution is smaller and very dependent of the step unit
         delts=delt;          stepm. It is no more the probability to die between last interview
       }          and month of death but the probability to survive from last
     }          interview up to one month before death multiplied by the
   }          probability to die within a month. Thanks to Chris
   delti[theta]=delts;          Jackson for correcting this bug.  Former versions increased
   return res;          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
 }          lower mortality.
             */
 double hessij( double x[], double delti[], int thetai,int thetaj)            lli=log(out[s1][s2] - savm[s1][s2]);
 {          }else{
   int i;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int l=1, l1, lmax=20;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double k1,k2,k3,k4,res,fx;          } 
   double p2[NPARMAX+1];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int k;          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   fx=func(x);          ipmx +=1;
   for (k=1; k<=2; k++) {          sw += weight[i];
     for (i=1;i<=npar;i++) p2[i]=x[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p2[thetai]=x[thetai]+delti[thetai]/k;        } /* end of wave */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } /* end of individual */
     k1=func(p2)-fx;    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(mi=1; mi<= wav[i]-1; mi++){
     k2=func(p2)-fx;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     k3=func(p2)-fx;            }
            for(d=0; d<=dh[mi][i]; d++){
     p2[thetai]=x[thetai]-delti[thetai]/k;            newm=savm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     k4=func(p2)-fx;            for (kk=1; kk<=cptcovage;kk++) {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 #ifdef DEBUG            }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 #endif                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   return res;            oldm=newm;
 }          } /* end mult */
         
 /************** Inverse of matrix **************/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 void ludcmp(double **a, int n, int *indx, double *d)          /* But now since version 0.9 we anticipate for bias and large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i,imax,j,k;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double big,dum,sum,temp;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double *vv;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   vv=vector(1,n);           * probability in order to take into account the bias as a fraction of the way
   *d=1.0;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   for (i=1;i<=n;i++) {           * -stepm/2 to stepm/2 .
     big=0.0;           * For stepm=1 the results are the same as for previous versions of Imach.
     for (j=1;j<=n;j++)           * For stepm > 1 the results are less biased than in previous versions. 
       if ((temp=fabs(a[i][j])) > big) big=temp;           */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          s1=s[mw[mi][i]][i];
     vv[i]=1.0/big;          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   for (j=1;j<=n;j++) {          /* bias is positive if real duration
     for (i=1;i<j;i++) {           * is higher than the multiple of stepm and negative otherwise.
       sum=a[i][j];           */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       a[i][j]=sum;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     big=0.0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for (i=j;i<=n;i++) {          /*if(lli ==000.0)*/
       sum=a[i][j];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for (k=1;k<j;k++)          ipmx +=1;
         sum -= a[i][k]*a[k][j];          sw += weight[i];
       a[i][j]=sum;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if ( (dum=vv[i]*fabs(sum)) >= big) {        } /* end of wave */
         big=dum;      } /* end of individual */
         imax=i;    }  else if(mle==3){  /* exponential inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (j != imax) {        for(mi=1; mi<= wav[i]-1; mi++){
       for (k=1;k<=n;k++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         dum=a[imax][k];            for (j=1;j<=nlstate+ndeath;j++){
         a[imax][k]=a[j][k];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         a[j][k]=dum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       *d = -(*d);          for(d=0; d<dh[mi][i]; d++){
       vv[imax]=vv[j];            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     indx[j]=imax;            for (kk=1; kk<=cptcovage;kk++) {
     if (a[j][j] == 0.0) a[j][j]=TINY;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if (j != n) {            }
       dum=1.0/(a[j][j]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (i=j+1;i<=n;i++) a[i][j] *= dum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
   }            oldm=newm;
   free_vector(vv,1,n);  /* Doesn't work */          } /* end mult */
 ;        
 }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
 void lubksb(double **a, int n, int *indx, double b[])           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int i,ii=0,ip,j;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double sum;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for (i=1;i<=n;i++) {           * probability in order to take into account the bias as a fraction of the way
     ip=indx[i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     sum=b[ip];           * -stepm/2 to stepm/2 .
     b[ip]=b[i];           * For stepm=1 the results are the same as for previous versions of Imach.
     if (ii)           * For stepm > 1 the results are less biased than in previous versions. 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           */
     else if (sum) ii=i;          s1=s[mw[mi][i]][i];
     b[i]=sum;          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   for (i=n;i>=1;i--) {          /* bias is positive if real duration
     sum=b[i];           * is higher than the multiple of stepm and negative otherwise.
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           */
     b[i]=sum/a[i][i];          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 /************ Frequencies ********************/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          ipmx +=1;
 {  /* Some frequencies */          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        } /* end of wave */
   double ***freq; /* Frequencies */      } /* end of individual */
   double *pp;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double pos, k2, dateintsum=0,k2cpt=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   FILE *ficresp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char fileresp[FILENAMELENGTH];        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   pp=vector(1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(fileresp,"p");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);            }
   if((ficresp=fopen(fileresp,"w"))==NULL) {          for(d=0; d<dh[mi][i]; d++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);            newm=savm;
     exit(0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j1=0;            }
            
   j=cptcoveff;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   for(k1=1; k1<=j;k1++){            oldm=newm;
     for(i1=1; i1<=ncodemax[k1];i1++){          } /* end mult */
       j1++;        
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          s1=s[mw[mi][i]][i];
         scanf("%d", i);*/          s2=s[mw[mi+1][i]][i];
       for (i=-1; i<=nlstate+ndeath; i++)            if( s2 > nlstate){ 
         for (jk=-1; jk<=nlstate+ndeath; jk++)              lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=agemin; m <= agemax+3; m++)          }else{
             freq[i][jk][m]=0;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                }
       dateintsum=0;          ipmx +=1;
       k2cpt=0;          sw += weight[i];
       for (i=1; i<=imx; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         bool=1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         if  (cptcovn>0) {        } /* end of wave */
           for (z1=1; z1<=cptcoveff; z1++)      } /* end of individual */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
               bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (bool==1) {        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=firstpass; m<=lastpass; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               if (m<lastpass) {          for(d=0; d<dh[mi][i]; d++){
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            newm=savm;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               }            for (kk=1; kk<=cptcovage;kk++) {
                            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            }
                 dateintsum=dateintsum+k2;          
                 k2cpt++;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             }            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
       }        
                  s1=s[mw[mi][i]][i];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if  (cptcovn>0) {          ipmx +=1;
         fprintf(ficresp, "\n#********** Variable ");          sw += weight[i];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         fprintf(ficresp, "**********\n#");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       }        } /* end of wave */
       for(i=1; i<=nlstate;i++)      } /* end of individual */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    } /* End of if */
       fprintf(ficresp, "\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
          /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         if(i==(int)agemax+3)    /*exit(0); */
           printf("Total");    return -l;
         else  }
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*********** Maximum Likelihood Estimation ***************/
             pp[jk] += freq[jk][m][i];  
         }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pos=0; m <=0 ; m++)    int i,j, iter;
             pos += freq[jk][m][i];    double **xi;
           if(pp[jk]>=1.e-10)    double fret;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    char filerespow[FILENAMELENGTH];
           else    xi=matrix(1,npar,1,npar);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    strcpy(filerespow,"pow"); 
             pp[jk] += freq[jk][m][i];    strcat(filerespow,fileres);
         }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
         for(jk=1,pos=0; jk <=nlstate ; jk++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           pos += pp[jk];    }
         for(jk=1; jk <=nlstate ; jk++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           if(pos>=1.e-5)    for (i=1;i<=nlstate;i++)
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for(j=1;j<=nlstate+ndeath;j++)
           else        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    fprintf(ficrespow,"\n");
           if( i <= (int) agemax){    powell(p,xi,npar,ftol,&iter,&fret,func);
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    fclose(ficrespow);
               probs[i][jk][j1]= pp[jk]/pos;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  }
           }  
         }  /**** Computes Hessian and covariance matrix ***/
          void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         for(jk=-1; jk <=nlstate+ndeath; jk++)  {
           for(m=-1; m <=nlstate+ndeath; m++)    double  **a,**y,*x,pd;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double **hess;
         if(i <= (int) agemax)    int i, j,jk;
           fprintf(ficresp,"\n");    int *indx;
         printf("\n");  
       }    double hessii(double p[], double delta, int theta, double delti[]);
     }    double hessij(double p[], double delti[], int i, int j);
   }    void lubksb(double **a, int npar, int *indx, double b[]) ;
   dateintmean=dateintsum/k2cpt;    void ludcmp(double **a, int npar, int *indx, double *d) ;
    
   fclose(ficresp);    hess=matrix(1,npar,1,npar);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);    printf("\nCalculation of the hessian matrix. Wait...\n");
      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   /* End of Freq */    for (i=1;i<=npar;i++){
 }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
 /************ Prevalence ********************/      hess[i][i]=hessii(p,ftolhess,i,delti);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      /*printf(" %f ",p[i]);*/
 {  /* Some frequencies */      /*printf(" %lf ",hess[i][i]);*/
      }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    
   double ***freq; /* Frequencies */    for (i=1;i<=npar;i++) {
   double *pp;      for (j=1;j<=npar;j++)  {
   double pos, k2;        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   pp=vector(1,nlstate);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          hess[i][j]=hessij(p,delti,i,j);
            hess[j][i]=hess[i][j];    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*printf(" %lf ",hess[i][j]);*/
   j1=0;        }
        }
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    printf("\n");
      fprintf(ficlog,"\n");
  for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       j1++;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      
       for (i=-1; i<=nlstate+ndeath; i++)      a=matrix(1,npar,1,npar);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      y=matrix(1,npar,1,npar);
           for(m=agemin; m <= agemax+3; m++)    x=vector(1,npar);
             freq[i][jk][m]=0;    indx=ivector(1,npar);
          for (i=1;i<=npar;i++)
       for (i=1; i<=imx; i++) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         bool=1;    ludcmp(a,npar,indx,&pd);
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)    for (j=1;j<=npar;j++) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for (i=1;i<=npar;i++) x[i]=0;
               bool=0;      x[j]=1;
         }      lubksb(a,npar,indx,x);
         if (bool==1) {      for (i=1;i<=npar;i++){ 
           for(m=firstpass; m<=lastpass; m++){        matcov[i][j]=x[i];
             k2=anint[m][i]+(mint[m][i]/12.);      }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    }
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    printf("\n#Hessian matrix#\n");
               if (m<lastpass)    fprintf(ficlog,"\n#Hessian matrix#\n");
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    for (i=1;i<=npar;i++) { 
               else      for (j=1;j<=npar;j++) { 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        printf("%.3e ",hess[i][j]);
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        fprintf(ficlog,"%.3e ",hess[i][j]);
             }      }
           }      printf("\n");
         }      fprintf(ficlog,"\n");
       }    }
         for(i=(int)agemin; i <= (int)agemax+3; i++){  
           for(jk=1; jk <=nlstate ; jk++){    /* Recompute Inverse */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for (i=1;i<=npar;i++)
               pp[jk] += freq[jk][m][i];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           }    ludcmp(a,npar,indx,&pd);
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pos=0; m <=0 ; m++)    /*  printf("\n#Hessian matrix recomputed#\n");
             pos += freq[jk][m][i];  
         }    for (j=1;j<=npar;j++) {
              for (i=1;i<=npar;i++) x[i]=0;
          for(jk=1; jk <=nlstate ; jk++){      x[j]=1;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      lubksb(a,npar,indx,x);
              pp[jk] += freq[jk][m][i];      for (i=1;i<=npar;i++){ 
          }        y[i][j]=x[i];
                  printf("%.3e ",y[i][j]);
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        fprintf(ficlog,"%.3e ",y[i][j]);
       }
          for(jk=1; jk <=nlstate ; jk++){                printf("\n");
            if( i <= (int) agemax){      fprintf(ficlog,"\n");
              if(pos>=1.e-5){    }
                probs[i][jk][j1]= pp[jk]/pos;    */
              }  
            }    free_matrix(a,1,npar,1,npar);
          }    free_matrix(y,1,npar,1,npar);
              free_vector(x,1,npar);
         }    free_ivector(indx,1,npar);
     }    free_matrix(hess,1,npar,1,npar);
   }  
   
    }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  /*************** hessian matrix ****************/
    double hessii( double x[], double delta, int theta, double delti[])
 }  /* End of Freq */  {
     int i;
 /************* Waves Concatenation ***************/    int l=1, lmax=20;
     double k1,k2;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double p2[NPARMAX+1];
 {    double res;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      Death is a valid wave (if date is known).    double fx;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    int k=0,kmax=10;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    double l1;
      and mw[mi+1][i]. dh depends on stepm.  
      */    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   int i, mi, m;    for(l=0 ; l <=lmax; l++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      l1=pow(10,l);
      double sum=0., jmean=0.;*/      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
   int j, k=0,jk, ju, jl;        delt = delta*(l1*k);
   double sum=0.;        p2[theta]=x[theta] +delt;
   jmin=1e+5;        k1=func(p2)-fx;
   jmax=-1;        p2[theta]=x[theta]-delt;
   jmean=0.;        k2=func(p2)-fx;
   for(i=1; i<=imx; i++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
     mi=0;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     m=firstpass;        
     while(s[m][i] <= nlstate){  #ifdef DEBUG
       if(s[m][i]>=1)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         mw[++mi][i]=m;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       if(m >=lastpass)  #endif
         break;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       else        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         m++;          k=kmax;
     }/* end while */        }
     if (s[m][i] > nlstate){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       mi++;     /* Death is another wave */          k=kmax; l=lmax*10.;
       /* if(mi==0)  never been interviewed correctly before death */        }
          /* Only death is a correct wave */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       mw[mi][i]=m;          delts=delt;
     }        }
       }
     wav[i]=mi;    }
     if(mi==0)    delti[theta]=delts;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    return res; 
   }    
   }
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  double hessij( double x[], double delti[], int thetai,int thetaj)
       if (stepm <=0)  {
         dh[mi][i]=1;    int i;
       else{    int l=1, l1, lmax=20;
         if (s[mw[mi+1][i]][i] > nlstate) {    double k1,k2,k3,k4,res,fx;
           if (agedc[i] < 2*AGESUP) {    double p2[NPARMAX+1];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    int k;
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;    fx=func(x);
           if (j >= jmax) jmax=j;    for (k=1; k<=2; k++) {
           if (j <= jmin) jmin=j;      for (i=1;i<=npar;i++) p2[i]=x[i];
           sum=sum+j;      p2[thetai]=x[thetai]+delti[thetai]/k;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           }      k1=func(p2)-fx;
         }    
         else{      p2[thetai]=x[thetai]+delti[thetai]/k;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           k=k+1;      k2=func(p2)-fx;
           if (j >= jmax) jmax=j;    
           else if (j <= jmin)jmin=j;      p2[thetai]=x[thetai]-delti[thetai]/k;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           sum=sum+j;      k3=func(p2)-fx;
         }    
         jk= j/stepm;      p2[thetai]=x[thetai]-delti[thetai]/k;
         jl= j -jk*stepm;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         ju= j -(jk+1)*stepm;      k4=func(p2)-fx;
         if(jl <= -ju)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           dh[mi][i]=jk;  #ifdef DEBUG
         else      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           dh[mi][i]=jk+1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         if(dh[mi][i]==0)  #endif
           dh[mi][i]=1; /* At least one step */    }
       }    return res;
     }  }
   }  
   jmean=sum/k;  /************** Inverse of matrix **************/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  void ludcmp(double **a, int n, int *indx, double *d) 
  }  { 
 /*********** Tricode ****************************/    int i,imax,j,k; 
 void tricode(int *Tvar, int **nbcode, int imx)    double big,dum,sum,temp; 
 {    double *vv; 
   int Ndum[20],ij=1, k, j, i;   
   int cptcode=0;    vv=vector(1,n); 
   cptcoveff=0;    *d=1.0; 
      for (i=1;i<=n;i++) { 
   for (k=0; k<19; k++) Ndum[k]=0;      big=0.0; 
   for (k=1; k<=7; k++) ncodemax[k]=0;      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     for (i=1; i<=imx; i++) {      vv[i]=1.0/big; 
       ij=(int)(covar[Tvar[j]][i]);    } 
       Ndum[ij]++;    for (j=1;j<=n;j++) { 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for (i=1;i<j;i++) { 
       if (ij > cptcode) cptcode=ij;        sum=a[i][j]; 
     }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     for (i=0; i<=cptcode; i++) {      } 
       if(Ndum[i]!=0) ncodemax[j]++;      big=0.0; 
     }      for (i=j;i<=n;i++) { 
     ij=1;        sum=a[i][j]; 
         for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
     for (i=1; i<=ncodemax[j]; i++) {        a[i][j]=sum; 
       for (k=0; k<=19; k++) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         if (Ndum[k] != 0) {          big=dum; 
           nbcode[Tvar[j]][ij]=k;          imax=i; 
                  } 
           ij++;      } 
         }      if (j != imax) { 
         if (ij > ncodemax[j]) break;        for (k=1;k<=n;k++) { 
       }            dum=a[imax][k]; 
     }          a[imax][k]=a[j][k]; 
   }            a[j][k]=dum; 
         } 
  for (k=0; k<19; k++) Ndum[k]=0;        *d = -(*d); 
         vv[imax]=vv[j]; 
  for (i=1; i<=ncovmodel-2; i++) {      } 
       ij=Tvar[i];      indx[j]=imax; 
       Ndum[ij]++;      if (a[j][j] == 0.0) a[j][j]=TINY; 
     }      if (j != n) { 
         dum=1.0/(a[j][j]); 
  ij=1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
  for (i=1; i<=10; i++) {      } 
    if((Ndum[i]!=0) && (i<=ncovcol)){    } 
      Tvaraff[ij]=i;    free_vector(vv,1,n);  /* Doesn't work */
      ij++;  ;
    }  } 
  }  
    void lubksb(double **a, int n, int *indx, double b[]) 
     cptcoveff=ij-1;  { 
 }    int i,ii=0,ip,j; 
     double sum; 
 /*********** Health Expectancies ****************/   
     for (i=1;i<=n;i++) { 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      ip=indx[i]; 
       sum=b[ip]; 
 {      b[ip]=b[i]; 
   /* Health expectancies */      if (ii) 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   double age, agelim, hf;      else if (sum) ii=i; 
   double ***p3mat,***varhe;      b[i]=sum; 
   double **dnewm,**doldm;    } 
   double *xp;    for (i=n;i>=1;i--) { 
   double **gp, **gm;      sum=b[i]; 
   double ***gradg, ***trgradg;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   int theta;      b[i]=sum/a[i][i]; 
     } 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  } 
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);  /************ Frequencies ********************/
   doldm=matrix(1,nlstate*2,1,nlstate*2);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
    {  /* Some frequencies */
   fprintf(ficreseij,"# Health expectancies\n");    
   fprintf(ficreseij,"# Age");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   for(i=1; i<=nlstate;i++)    int first;
     for(j=1; j<=nlstate;j++)    double ***freq; /* Frequencies */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    double *pp, **prop;
   fprintf(ficreseij,"\n");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
   if(estepm < stepm){    char fileresp[FILENAMELENGTH];
     printf ("Problem %d lower than %d\n",estepm, stepm);    
   }    pp=vector(1,nlstate);
   else  hstepm=estepm;      prop=matrix(1,nlstate,iagemin,iagemax+3);
   /* We compute the life expectancy from trapezoids spaced every estepm months    strcpy(fileresp,"p");
    * This is mainly to measure the difference between two models: for example    strcat(fileresp,fileres);
    * if stepm=24 months pijx are given only every 2 years and by summing them    if((ficresp=fopen(fileresp,"w"))==NULL) {
    * we are calculating an estimate of the Life Expectancy assuming a linear      printf("Problem with prevalence resultfile: %s\n", fileresp);
    * progression inbetween and thus overestimating or underestimating according      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
    * to the curvature of the survival function. If, for the same date, we      exit(0);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    }
    * to compare the new estimate of Life expectancy with the same linear    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
    * hypothesis. A more precise result, taking into account a more precise    j1=0;
    * curvature will be obtained if estepm is as small as stepm. */    
     j=cptcoveff;
   /* For example we decided to compute the life expectancy with the smallest unit */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    first=1;
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    for(k1=1; k1<=j;k1++){
      and note for a fixed period like estepm months */      for(i1=1; i1<=ncodemax[k1];i1++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        j1++;
      survival function given by stepm (the optimization length). Unfortunately it        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      means that if the survival funtion is printed only each two years of age and if          scanf("%d", i);*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        for (i=-1; i<=nlstate+ndeath; i++)  
      results. So we changed our mind and took the option of the best precision.          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   */            for(m=iagemin; m <= iagemax+3; m++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */              freq[i][jk][m]=0;
   
   agelim=AGESUP;      for (i=1; i<=nlstate; i++)  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(m=iagemin; m <= iagemax+3; m++)
     /* nhstepm age range expressed in number of stepm */          prop[i][m]=0;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        dateintsum=0;
     /* if (stepm >= YEARM) hstepm=1;*/        k2cpt=0;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for (i=1; i<=imx; i++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          bool=1;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          if  (cptcovn>0) {
     gp=matrix(0,nhstepm,1,nlstate*2);            for (z1=1; z1<=cptcoveff; z1++) 
     gm=matrix(0,nhstepm,1,nlstate*2);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          if (bool==1){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              for(m=firstpass; m<=lastpass; m++){
                k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
     /* Computing Variances of health expectancies */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
      for(theta=1; theta <=npar; theta++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       for(i=1; i<=npar; i++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                }
       }                
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                    dateintsum=dateintsum+k2;
       cptj=0;                  k2cpt++;
       for(j=1; j<= nlstate; j++){                }
         for(i=1; i<=nlstate; i++){                /*}*/
           cptj=cptj+1;            }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        }
           }         
         }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }  
              if  (cptcovn>0) {
                fprintf(ficresp, "\n#********** Variable "); 
       for(i=1; i<=npar; i++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficresp, "**********\n#");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
              for(i=1; i<=nlstate;i++) 
       cptj=0;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for(j=1; j<= nlstate; j++){        fprintf(ficresp, "\n");
         for(i=1;i<=nlstate;i++){        
           cptj=cptj+1;        for(i=iagemin; i <= iagemax+3; i++){
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          if(i==iagemax+3){
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            fprintf(ficlog,"Total");
           }          }else{
         }            if(first==1){
       }              first=0;
                    printf("See log file for details...\n");
                }
             fprintf(ficlog,"Age %d", i);
       for(j=1; j<= nlstate*2; j++)          }
         for(h=0; h<=nhstepm-1; h++){          for(jk=1; jk <=nlstate ; jk++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         }              pp[jk] += freq[jk][m][i]; 
           }
      }          for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pos=0; m <=0 ; m++)
 /* End theta */              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      for(h=0; h<=nhstepm-1; h++)              }
       for(j=1; j<=nlstate*2;j++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for(theta=1; theta <=npar; theta++)            }else{
         trgradg[h][j][theta]=gradg[h][theta][j];              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      for(i=1;i<=nlstate*2;i++)            }
       for(j=1;j<=nlstate*2;j++)          }
         varhe[i][j][(int)age] =0.;  
           for(jk=1; jk <=nlstate ; jk++){
     for(h=0;h<=nhstepm-1;h++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       for(k=0;k<=nhstepm-1;k++){              pp[jk] += freq[jk][m][i];
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          }       
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         for(i=1;i<=nlstate*2;i++)            pos += pp[jk];
           for(j=1;j<=nlstate*2;j++)            posprop += prop[jk][i];
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          }
       }          for(jk=1; jk <=nlstate ; jk++){
     }            if(pos>=1.e-5){
               if(first==1)
                      printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     /* Computing expectancies */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for(i=1; i<=nlstate;i++)            }else{
       for(j=1; j<=nlstate;j++)              if(first==1)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                      }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            if( i <= iagemax){
               if(pos>=1.e-5){
         }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
     fprintf(ficreseij,"%3.0f",age );                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     cptj=0;              }
     for(i=1; i<=nlstate;i++)              else
       for(j=1; j<=nlstate;j++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         cptj++;            }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          }
       }          
     fprintf(ficreseij,"\n");          for(jk=-1; jk <=nlstate+ndeath; jk++)
                for(m=-1; m <=nlstate+ndeath; m++)
     free_matrix(gm,0,nhstepm,1,nlstate*2);              if(freq[jk][m][i] !=0 ) {
     free_matrix(gp,0,nhstepm,1,nlstate*2);              if(first==1)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
   }          if(i <= iagemax)
   free_vector(xp,1,npar);            fprintf(ficresp,"\n");
   free_matrix(dnewm,1,nlstate*2,1,npar);          if(first==1)
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            printf("Others in log...\n");
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          fprintf(ficlog,"\n");
 }        }
       }
 /************ Variance ******************/    }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    dateintmean=dateintsum/k2cpt; 
 {   
   /* Variance of health expectancies */    fclose(ficresp);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   double **newm;    free_vector(pp,1,nlstate);
   double **dnewm,**doldm;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   int i, j, nhstepm, hstepm, h, nstepm ;    /* End of Freq */
   int k, cptcode;  }
   double *xp;  
   double **gp, **gm;  /************ Prevalence ********************/
   double ***gradg, ***trgradg;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   double ***p3mat;  {  
   double age,agelim, hf;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   int theta;       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
    fprintf(ficresvij,"# Covariances of life expectancies\n");    */
   fprintf(ficresvij,"# Age");   
   for(i=1; i<=nlstate;i++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     for(j=1; j<=nlstate;j++)    double ***freq; /* Frequencies */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double *pp, **prop;
   fprintf(ficresvij,"\n");    double pos,posprop; 
     double  y2; /* in fractional years */
   xp=vector(1,npar);    int iagemin, iagemax;
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    iagemin= (int) agemin;
      iagemax= (int) agemax;
   if(estepm < stepm){    /*pp=vector(1,nlstate);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   else  hstepm=estepm;      j1=0;
   /* For example we decided to compute the life expectancy with the smallest unit */    
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    j=cptcoveff;
      nhstepm is the number of hstepm from age to agelim    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      nstepm is the number of stepm from age to agelin.    
      Look at hpijx to understand the reason of that which relies in memory size    for(k1=1; k1<=j;k1++){
      and note for a fixed period like k years */      for(i1=1; i1<=ncodemax[k1];i1++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        j1++;
      survival function given by stepm (the optimization length). Unfortunately it        
      means that if the survival funtion is printed only each two years of age and if        for (i=1; i<=nlstate; i++)  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for(m=iagemin; m <= iagemax+3; m++)
      results. So we changed our mind and took the option of the best precision.            prop[i][m]=0.0;
   */       
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        for (i=1; i<=imx; i++) { /* Each individual */
   agelim = AGESUP;          bool=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if  (cptcovn>0) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for (z1=1; z1<=cptcoveff; z1++) 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                bool=0;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          } 
     gp=matrix(0,nhstepm,1,nlstate);          if (bool==1) { 
     gm=matrix(0,nhstepm,1,nlstate);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(theta=1; theta <=npar; theta++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       for(i=1; i<=npar; i++){ /* Computes gradient */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  if (s[m][i]>0 && s[m][i]<=nlstate) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
       if (popbased==1) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
         for(i=1; i<=nlstate;i++)                } 
           prlim[i][i]=probs[(int)age][i][ij];              }
       }            } /* end selection of waves */
            }
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){        for(i=iagemin; i <= iagemax+3; i++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         }            posprop += prop[jk][i]; 
       }          } 
      
       for(i=1; i<=npar; i++) /* Computes gradient */          for(jk=1; jk <=nlstate ; jk++){     
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            if( i <=  iagemax){ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                if(posprop>=1.e-5){ 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                probs[i][jk][j1]= prop[jk][i]/posprop;
                } 
       if (popbased==1) {            } 
         for(i=1; i<=nlstate;i++)          }/* end jk */ 
           prlim[i][i]=probs[(int)age][i][ij];        }/* end i */ 
       }      } /* end i1 */
     } /* end k1 */
       for(j=1; j<= nlstate; j++){    
         for(h=0; h<=nhstepm; h++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    /*free_vector(pp,1,nlstate);*/
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         }  }  /* End of prevalence */
       }  
   /************* Waves Concatenation ***************/
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  {
         }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     } /* End theta */       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     for(h=0; h<=nhstepm; h++)       */
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    int i, mi, m;
           trgradg[h][j][theta]=gradg[h][theta][j];    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    int first;
     for(i=1;i<=nlstate;i++)    int j, k=0,jk, ju, jl;
       for(j=1;j<=nlstate;j++)    double sum=0.;
         vareij[i][j][(int)age] =0.;    first=0;
     jmin=1e+5;
     for(h=0;h<=nhstepm;h++){    jmax=-1;
       for(k=0;k<=nhstepm;k++){    jmean=0.;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for(i=1; i<=imx; i++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      mi=0;
         for(i=1;i<=nlstate;i++)      m=firstpass;
           for(j=1;j<=nlstate;j++)      while(s[m][i] <= nlstate){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        if(s[m][i]>=1)
       }          mw[++mi][i]=m;
     }        if(m >=lastpass)
           break;
     fprintf(ficresvij,"%.0f ",age );        else
     for(i=1; i<=nlstate;i++)          m++;
       for(j=1; j<=nlstate;j++){      }/* end while */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      if (s[m][i] > nlstate){
       }        mi++;     /* Death is another wave */
     fprintf(ficresvij,"\n");        /* if(mi==0)  never been interviewed correctly before death */
     free_matrix(gp,0,nhstepm,1,nlstate);           /* Only death is a correct wave */
     free_matrix(gm,0,nhstepm,1,nlstate);        mw[mi][i]=m;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      wav[i]=mi;
   } /* End age */      if(mi==0){
          if(first==0){
   free_vector(xp,1,npar);          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
   free_matrix(doldm,1,nlstate,1,npar);          first=1;
   free_matrix(dnewm,1,nlstate,1,nlstate);        }
         if(first==1){
 }          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
         }
 /************ Variance of prevlim ******************/      } /* end mi==0 */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    } /* End individuals */
 {  
   /* Variance of prevalence limit */    for(i=1; i<=imx; i++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(mi=1; mi<wav[i];mi++){
   double **newm;        if (stepm <=0)
   double **dnewm,**doldm;          dh[mi][i]=1;
   int i, j, nhstepm, hstepm;        else{
   int k, cptcode;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   double *xp;            if (agedc[i] < 2*AGESUP) {
   double *gp, *gm;            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   double **gradg, **trgradg;            if(j==0) j=1;  /* Survives at least one month after exam */
   double age,agelim;            k=k+1;
   int theta;            if (j >= jmax) jmax=j;
                if (j <= jmin) jmin=j;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            sum=sum+j;
   fprintf(ficresvpl,"# Age");            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   for(i=1; i<=nlstate;i++)            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficresvpl," %1d-%1d",i,i);            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficresvpl,"\n");            }
           }
   xp=vector(1,npar);          else{
   dnewm=matrix(1,nlstate,1,npar);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   doldm=matrix(1,nlstate,1,nlstate);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              k=k+1;
   hstepm=1*YEARM; /* Every year of age */            if (j >= jmax) jmax=j;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            else if (j <= jmin)jmin=j;
   agelim = AGESUP;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     if (stepm >= YEARM) hstepm=1;            sum=sum+j;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     gradg=matrix(1,npar,1,nlstate);          jk= j/stepm;
     gp=vector(1,nlstate);          jl= j -jk*stepm;
     gm=vector(1,nlstate);          ju= j -(jk+1)*stepm;
           if(mle <=1){ 
     for(theta=1; theta <=npar; theta++){            if(jl==0){
       for(i=1; i<=npar; i++){ /* Computes gradient */              dh[mi][i]=jk;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              bh[mi][i]=0;
       }            }else{ /* We want a negative bias in order to only have interpolation ie
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                    * at the price of an extra matrix product in likelihood */
       for(i=1;i<=nlstate;i++)              dh[mi][i]=jk+1;
         gp[i] = prlim[i][i];              bh[mi][i]=ju;
                }
       for(i=1; i<=npar; i++) /* Computes gradient */          }else{
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            if(jl <= -ju){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              dh[mi][i]=jk;
       for(i=1;i<=nlstate;i++)              bh[mi][i]=jl;       /* bias is positive if real duration
         gm[i] = prlim[i][i];                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
       for(i=1;i<=nlstate;i++)            }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            else{
     } /* End theta */              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
     trgradg =matrix(1,nlstate,1,npar);            }
             if(dh[mi][i]==0){
     for(j=1; j<=nlstate;j++)              dh[mi][i]=1; /* At least one step */
       for(theta=1; theta <=npar; theta++)              bh[mi][i]=ju; /* At least one step */
         trgradg[j][theta]=gradg[theta][j];              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] =0.;        } /* end if mle */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      } /* end wave */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    }
     for(i=1;i<=nlstate;i++)    jmean=sum/k;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficresvpl,"%.0f ",age );   }
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  /*********** Tricode ****************************/
     fprintf(ficresvpl,"\n");  void tricode(int *Tvar, int **nbcode, int imx)
     free_vector(gp,1,nlstate);  {
     free_vector(gm,1,nlstate);    
     free_matrix(gradg,1,npar,1,nlstate);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     free_matrix(trgradg,1,nlstate,1,npar);    int cptcode=0;
   } /* End age */    cptcoveff=0; 
    
   free_vector(xp,1,npar);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   free_matrix(doldm,1,nlstate,1,npar);    for (k=1; k<=7; k++) ncodemax[k]=0;
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
 /************ Variance of one-step probabilities  ******************/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        Ndum[ij]++; /*store the modality */
 {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   int i, j, i1, k1, j1, z1;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   int k=0, cptcode;                                         Tvar[j]. If V=sex and male is 0 and 
   double **dnewm,**doldm;                                         female is 1, then  cptcode=1.*/
   double *xp;      }
   double *gp, *gm;  
   double **gradg, **trgradg;      for (i=0; i<=cptcode; i++) {
   double age,agelim, cov[NCOVMAX];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   int theta;      }
   char fileresprob[FILENAMELENGTH];  
       ij=1; 
   strcpy(fileresprob,"prob");      for (i=1; i<=ncodemax[j]; i++) {
   strcat(fileresprob,fileres);        for (k=0; k<= maxncov; k++) {
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          if (Ndum[k] != 0) {
     printf("Problem with resultfile: %s\n", fileresprob);            nbcode[Tvar[j]][ij]=k; 
   }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            
              ij++;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");          }
   fprintf(ficresprob,"# Age");          if (ij > ncodemax[j]) break; 
   for(i=1; i<=nlstate;i++)        }  
     for(j=1; j<=(nlstate+ndeath);j++)      } 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    }  
   
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   fprintf(ficresprob,"\n");  
    for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   xp=vector(1,npar);     ij=Tvar[i];
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     Ndum[ij]++;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));   }
    
   cov[1]=1;   ij=1;
   j=cptcoveff;   for (i=1; i<= maxncov; i++) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}     if((Ndum[i]!=0) && (i<=ncovcol)){
   j1=0;       Tvaraff[ij]=i; /*For printing */
   for(k1=1; k1<=1;k1++){       ij++;
     for(i1=1; i1<=ncodemax[k1];i1++){     }
     j1++;   }
    
     if  (cptcovn>0) {   cptcoveff=ij-1; /*Number of simple covariates*/
       fprintf(ficresprob, "\n#********** Variable ");  }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficresprob, "**********\n#");  /*********** Health Expectancies ****************/
     }  
      void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;  {
         for (k=1; k<=cptcovn;k++) {    /* Health expectancies */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
              double age, agelim, hf;
         }    double ***p3mat,***varhe;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double **dnewm,**doldm;
         for (k=1; k<=cptcovprod;k++)    double *xp;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double **gp, **gm;
            double ***gradg, ***trgradg;
         gradg=matrix(1,npar,1,9);    int theta;
         trgradg=matrix(1,9,1,npar);  
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    xp=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
         for(theta=1; theta <=npar; theta++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           for(i=1; i<=npar; i++)    
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficreseij,"# Health expectancies\n");
              fprintf(ficreseij,"# Age");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++)
           k=0;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
           for(i=1; i<= (nlstate+ndeath); i++){    fprintf(ficreseij,"\n");
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    if(estepm < stepm){
               gp[k]=pmmij[i][j];      printf ("Problem %d lower than %d\n",estepm, stepm);
             }    }
           }    else  hstepm=estepm;   
              /* We compute the life expectancy from trapezoids spaced every estepm months
           for(i=1; i<=npar; i++)     * This is mainly to measure the difference between two models: for example
             xp[i] = x[i] - (i==theta ?delti[theta]:0);     * if stepm=24 months pijx are given only every 2 years and by summing them
         * we are calculating an estimate of the Life Expectancy assuming a linear 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);     * progression in between and thus overestimating or underestimating according
           k=0;     * to the curvature of the survival function. If, for the same date, we 
           for(i=1; i<=(nlstate+ndeath); i++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             for(j=1; j<=(nlstate+ndeath);j++){     * to compare the new estimate of Life expectancy with the same linear 
               k=k+1;     * hypothesis. A more precise result, taking into account a more precise
               gm[k]=pmmij[i][j];     * curvature will be obtained if estepm is as small as stepm. */
             }  
           }    /* For example we decided to compute the life expectancy with the smallest unit */
          /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)       nhstepm is the number of hstepm from age to agelim 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         nstepm is the number of stepm from age to agelin. 
         }       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for(theta=1; theta <=npar; theta++)       survival function given by stepm (the optimization length). Unfortunately it
             trgradg[j][theta]=gradg[theta][j];       means that if the survival funtion is printed only each two years of age and if
               you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);       results. So we changed our mind and took the option of the best precision.
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    */
            hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
            agelim=AGESUP;
         k=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for(i=1; i<=(nlstate+ndeath); i++){      /* nhstepm age range expressed in number of stepm */
           for(j=1; j<=(nlstate+ndeath);j++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             k=k+1;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             gm[k]=pmmij[i][j];      /* if (stepm >= YEARM) hstepm=1;*/
           }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      /*printf("\n%d ",(int)age);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
      }*/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficresprob,"\n%d ",(int)age);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)  
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
       }      /* Computing Variances of health expectancies */
     }  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));       for(theta=1; theta <=npar; theta++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        for(i=1; i<=npar; i++){ 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   free_vector(xp,1,npar);    
   fclose(ficresprob);        cptj=0;
          for(j=1; j<= nlstate; j++){
 }          for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
 /******************* Printing html file ***********/            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
  int lastpass, int stepm, int weightopt, char model[],\            }
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          }
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        }
  char version[], int popforecast, int estepm ){       
   int jj1, k1, i1, cpt;       
   FILE *fichtm;        for(i=1; i<=npar; i++) 
   /*char optionfilehtm[FILENAMELENGTH];*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   strcpy(optionfilehtm,optionfile);        
   strcat(optionfilehtm,".htm");        cptj=0;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        for(j=1; j<= nlstate; j++){
     printf("Problem with %s \n",optionfilehtm), exit(0);          for(i=1;i<=nlstate;i++){
   }            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 \n            }
 Total number of observations=%d <br>\n          }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        }
 <hr  size=\"2\" color=\"#EC5E5E\">        for(j=1; j<= nlstate*nlstate; j++)
  <ul><li>Outputs files<br>\n          for(h=0; h<=nhstepm-1; h++){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          }
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       } 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n     
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  /* End theta */
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
  fprintf(fichtm,"\n  
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n       for(h=0; h<=nhstepm-1; h++)
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        for(j=1; j<=nlstate*nlstate;j++)
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          for(theta=1; theta <=npar; theta++)
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n            trgradg[h][j][theta]=gradg[h][theta][j];
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       
   
  if(popforecast==1) fprintf(fichtm,"\n       for(i=1;i<=nlstate*nlstate;i++)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        for(j=1;j<=nlstate*nlstate;j++)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          varhe[i][j][(int)age] =0.;
         <br>",fileres,fileres,fileres,fileres);  
  else       printf("%d|",(int)age);fflush(stdout);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 fprintf(fichtm," <li>Graphs</li><p>");       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
  m=cptcoveff;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
  jj1=0;            for(j=1;j<=nlstate*nlstate;j++)
  for(k1=1; k1<=m;k1++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
    for(i1=1; i1<=ncodemax[k1];i1++){        }
        jj1++;      }
        if (cptcovn > 0) {      /* Computing expectancies */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for(i=1; i<=nlstate;i++)
          for (cpt=1; cpt<=cptcoveff;cpt++)        for(j=1; j<=nlstate;j++)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        }            
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
        for(cpt=1; cpt<nlstate;cpt++){          }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      fprintf(ficreseij,"%3.0f",age );
        }      cptj=0;
     for(cpt=1; cpt<=nlstate;cpt++) {      for(i=1; i<=nlstate;i++)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for(j=1; j<=nlstate;j++){
 interval) in state (%d): v%s%d%d.gif <br>          cptj++;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
      }        }
      for(cpt=1; cpt<=nlstate;cpt++) {      fprintf(ficreseij,"\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>     
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 health expectancies in states (1) and (2): e%s%d.gif<br>      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(fichtm,"\n</body>");    }
    }    printf("\n");
    }    fprintf(ficlog,"\n");
 fclose(fichtm);  
 }    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 /******************* Gnuplot file **************/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   /************ Variance ******************/
   strcpy(optionfilegnuplot,optionfilefiname);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   strcat(optionfilegnuplot,".gp.txt");  {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    /* Variance of health expectancies */
     printf("Problem with file %s",optionfilegnuplot);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   }    /* double **newm;*/
     double **dnewm,**doldm;
 #ifdef windows    double **dnewmp,**doldmp;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    int i, j, nhstepm, hstepm, h, nstepm ;
 #endif    int k, cptcode;
 m=pow(2,cptcoveff);    double *xp;
      double **gp, **gm;  /* for var eij */
  /* 1eme*/    double ***gradg, ***trgradg; /*for var eij */
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double **gradgp, **trgradgp; /* for var p point j */
    for (k1=1; k1<= m ; k1 ++) {    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    double ***p3mat;
     double age,agelim, hf;
 for (i=1; i<= nlstate ; i ++) {    double ***mobaverage;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int theta;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    char digit[4];
 }    char digitp[25];
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {    char fileresprobmorprev[FILENAMELENGTH];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if(popbased==1){
 }      if(mobilav!=0)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        strcpy(digitp,"-populbased-mobilav-");
      for (i=1; i<= nlstate ; i ++) {      else strcpy(digitp,"-populbased-nomobil-");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    else 
 }        strcpy(digitp,"-stablbased-");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
     if (mobilav!=0) {
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   /*2 eme*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   for (k1=1; k1<= m ; k1 ++) {    }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);  
        strcpy(fileresprobmorprev,"prmorprev"); 
     for (i=1; i<= nlstate+1 ; i ++) {    sprintf(digit,"%-d",ij);
       k=2*i;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for (j=1; j<= nlstate+1 ; j ++) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprobmorprev,fileres);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 }        printf("Problem with resultfile: %s\n", fileresprobmorprev);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficresprobmorprev," p.%-d SE",j);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(i=1; i<=nlstate;i++)
       for (j=1; j<= nlstate+1 ; j ++) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev,"\n");
 }      if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       else fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     }      exit(0);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    }
   }    else{
        fprintf(ficgp,"\n# Routine varevsij");
   /*3eme*/    }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   for (k1=1; k1<= m ; k1 ++) {      printf("Problem with html file: %s\n", optionfilehtm);
     for (cpt=1; cpt<= nlstate ; cpt ++) {      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       k=2+nlstate*(2*cpt-2);      exit(0);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    else{
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 */    fprintf(ficresvij,"# Age");
       for (i=1; i< nlstate ; i ++) {    for(i=1; i<=nlstate;i++)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       }    fprintf(ficresvij,"\n");
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }    xp=vector(1,npar);
     }    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   /* CV preval stat */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     for (k1=1; k1<= m ; k1 ++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
       for (i=1; i< nlstate ; i ++)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    if(estepm < stepm){
            printf ("Problem %d lower than %d\n",estepm, stepm);
       l=3+(nlstate+ndeath)*cpt;    }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    else  hstepm=estepm;   
       for (i=1; i< nlstate ; i ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
         l=3+(nlstate+ndeath)*cpt;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficgp,"+$%d",l+i+1);       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);         Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       and note for a fixed period like k years */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }         survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
   /* proba elementaires */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    for(i=1,jk=1; i <=nlstate; i++){       results. So we changed our mind and took the option of the best precision.
     for(k=1; k <=(nlstate+ndeath); k++){    */
       if (k != i) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for(j=1; j <=ncovmodel; j++){    agelim = AGESUP;
            for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           jk++;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           fprintf(ficgp,"\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       }      gp=matrix(0,nhstepm,1,nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate);
     }  
   
     for(jk=1; jk <=m; jk++) {      for(theta=1; theta <=npar; theta++){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
    i=1;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    for(k2=1; k2<=nlstate; k2++) {        }
      k3=i;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      for(k=1; k<=(nlstate+ndeath); k++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        if (popbased==1) {
 ij=1;          if(mobilav ==0){
         for(j=3; j <=ncovmodel; j++) {            for(i=1; i<=nlstate;i++)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              prlim[i][i]=probs[(int)age][i][ij];
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }else{ /* mobilav */ 
             ij++;            for(i=1; i<=nlstate;i++)
           }              prlim[i][i]=mobaverage[(int)age][i][ij];
           else          }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
         }    
           fprintf(ficgp,")/(1");        for(j=1; j<= nlstate; j++){
                  for(h=0; h<=nhstepm; h++){
         for(k1=1; k1 <=nlstate; k1++){              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
 ij=1;          }
           for(j=3; j <=ncovmodel; j++){        }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        /* This for computing probability of death (h=1 means
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);           computed over hstepm matrices product = hstepm*stepm months) 
             ij++;           as a weighted average of prlim.
           }        */
           else        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           fprintf(ficgp,")");        }    
         }        /* end probability of death */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         i=i+ncovmodel;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    }   
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        if (popbased==1) {
    }          if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
   fclose(ficgp);              prlim[i][i]=probs[(int)age][i][ij];
 }  /* end gnuplot */          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
 /*************** Moving average **************/          }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        }
   
   int i, cpt, cptcod;        for(j=1; j<= nlstate; j++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          for(h=0; h<=nhstepm; h++){
       for (i=1; i<=nlstate;i++)            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           mobaverage[(int)agedeb][i][cptcod]=0.;          }
            }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        /* This for computing probability of death (h=1 means
       for (i=1; i<=nlstate;i++){           computed over hstepm matrices product = hstepm*stepm months) 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){           as a weighted average of prlim.
           for (cpt=0;cpt<=4;cpt++){        */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }        }    
       }        /* end probability of death */
     }  
            for(j=1; j<= nlstate; j++) /* vareij */
 }          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      } /* End theta */
   double *popeffectif,*popcount;  
   double ***p3mat;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   char fileresf[FILENAMELENGTH];  
       for(h=0; h<=nhstepm; h++) /* veij */
  agelim=AGESUP;        for(j=1; j<=nlstate;j++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          for(theta=1; theta <=npar; theta++)
   strcpy(fileresf,"f");          trgradgp[j][theta]=gradgp[theta][j];
   strcat(fileresf,fileres);    
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      for(i=1;i<=nlstate;i++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);        for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
       for(h=0;h<=nhstepm;h++){
   if (mobilav==1) {        for(k=0;k<=nhstepm;k++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     movingaverage(agedeb, fage, ageminpar, mobaverage);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   }          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   if (stepm<=12) stepsize=1;        }
        }
   agelim=AGESUP;    
        /* pptj */
   hstepm=1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   hstepm=hstepm/stepm;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   yp1=modf(dateintmean,&yp);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   anprojmean=yp;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   yp2=modf((yp1*12),&yp);          varppt[j][i]=doldmp[j][i];
   mprojmean=yp;      /* end ppptj */
   yp1=modf((yp2*30.5),&yp);      /*  x centered again */
   jprojmean=yp;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   if(jprojmean==0) jprojmean=1;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   if(mprojmean==0) jprojmean=1;   
        if (popbased==1) {
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i2;cptcov++){            prlim[i][i]=probs[(int)age][i][ij];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }else{ /* mobilav */ 
       k=k+1;          for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"\n#******");            prlim[i][i]=mobaverage[(int)age][i][ij];
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      }
       }               
       fprintf(ficresf,"******\n");      /* This for computing probability of death (h=1 means
       fprintf(ficresf,"# StartingAge FinalAge");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);         as a weighted average of prlim.
            */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         fprintf(ficresf,"\n");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        }    
       /* end probability of death */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           nhstepm = nhstepm/hstepm;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                  fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=nlstate;i++){
           oldm=oldms;savm=savms;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
              } 
           for (h=0; h<=nhstepm; h++){      fprintf(ficresprobmorprev,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      fprintf(ficresvij,"%.0f ",age );
             }      for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1; j<=nlstate;j++){
               kk1=0.;kk2=0;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
               for(i=1; i<=nlstate;i++) {                      }
                 if (mobilav==1)      fprintf(ficresvij,"\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      free_matrix(gp,0,nhstepm,1,nlstate);
                 else {      free_matrix(gm,0,nhstepm,1,nlstate);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                 }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }    } /* End age */
               if (h==(int)(calagedate+12*cpt)){    free_vector(gpp,nlstate+1,nlstate+ndeath);
                 fprintf(ficresf," %.3f", kk1);    free_vector(gmp,nlstate+1,nlstate+ndeath);
                            free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
               }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
            fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
   fclose(ficresf);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
 }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 /************** Forecasting ******************/  */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    free_vector(xp,1,npar);
   int *popage;    free_matrix(doldm,1,nlstate,1,nlstate);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    free_matrix(dnewm,1,nlstate,1,npar);
   double *popeffectif,*popcount;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double ***p3mat,***tabpop,***tabpopprev;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   char filerespop[FILENAMELENGTH];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fclose(ficresprobmorprev);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fclose(ficgp);
   agelim=AGESUP;    fclose(fichtm);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  }  /* end varevsij */
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
    {
   strcpy(filerespop,"pop");    /* Variance of prevalence limit */
   strcat(filerespop,fileres);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    double **newm;
     printf("Problem with forecast resultfile: %s\n", filerespop);    double **dnewm,**doldm;
   }    int i, j, nhstepm, hstepm;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    int k, cptcode;
     double *xp;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double *gp, *gm;
     double **gradg, **trgradg;
   if (mobilav==1) {    double age,agelim;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int theta;
     movingaverage(agedeb, fage, ageminpar, mobaverage);     
   }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;        fprintf(ficresvpl," %1d-%1d",i,i);
      fprintf(ficresvpl,"\n");
   agelim=AGESUP;  
      xp=vector(1,npar);
   hstepm=1;    dnewm=matrix(1,nlstate,1,npar);
   hstepm=hstepm/stepm;    doldm=matrix(1,nlstate,1,nlstate);
      
   if (popforecast==1) {    hstepm=1*YEARM; /* Every year of age */
     if((ficpop=fopen(popfile,"r"))==NULL) {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       printf("Problem with population file : %s\n",popfile);exit(0);    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     popage=ivector(0,AGESUP);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     popeffectif=vector(0,AGESUP);      if (stepm >= YEARM) hstepm=1;
     popcount=vector(0,AGESUP);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
          gradg=matrix(1,npar,1,nlstate);
     i=1;        gp=vector(1,nlstate);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      gm=vector(1,nlstate);
      
     imx=i;      for(theta=1; theta <=npar; theta++){
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(i=1; i<=npar; i++){ /* Computes gradient */
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   for(cptcov=1;cptcov<=i2;cptcov++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(i=1;i<=nlstate;i++)
       k=k+1;          gp[i] = prlim[i][i];
       fprintf(ficrespop,"\n#******");      
       for(j=1;j<=cptcoveff;j++) {        for(i=1; i<=npar; i++) /* Computes gradient */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficrespop,"******\n");        for(i=1;i<=nlstate;i++)
       fprintf(ficrespop,"# Age");          gm[i] = prlim[i][i];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");        for(i=1;i<=nlstate;i++)
                gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       for (cpt=0; cpt<=0;cpt++) {      } /* End theta */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
              trgradg =matrix(1,nlstate,1,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(j=1; j<=nlstate;j++)
           nhstepm = nhstepm/hstepm;        for(theta=1; theta <=npar; theta++)
                    trgradg[j][theta]=gradg[theta][j];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      for(i=1;i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          varpl[i][(int)age] =0.;
              matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           for (h=0; h<=nhstepm; h++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
             if (h==(int) (calagedate+YEARM*cpt)) {      for(i=1;i<=nlstate;i++)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {      fprintf(ficresvpl,"%.0f ",age );
               kk1=0.;kk2=0;      for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                      fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                 if (mobilav==1)      fprintf(ficresvpl,"\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      free_vector(gp,1,nlstate);
                 else {      free_vector(gm,1,nlstate);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      free_matrix(gradg,1,npar,1,nlstate);
                 }      free_matrix(trgradg,1,nlstate,1,npar);
               }    } /* End age */
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    free_vector(xp,1,npar);
                   /*fprintf(ficrespop," %.3f", kk1);    free_matrix(doldm,1,nlstate,1,npar);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    free_matrix(dnewm,1,nlstate,1,nlstate);
               }  
             }  }
             for(i=1; i<=nlstate;i++){  
               kk1=0.;  /************ Variance of one-step probabilities  ******************/
                 for(j=1; j<=nlstate;j++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  {
                 }    int i, j=0,  i1, k1, l1, t, tj;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    int k2, l2, j1,  z1;
             }    int k=0,l, cptcode;
     int first=1, first1;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    double **dnewm,**doldm;
           }    double *xp;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *gp, *gm;
         }    double **gradg, **trgradg;
       }    double **mu;
      double age,agelim, cov[NCOVMAX];
   /******/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    char fileresprob[FILENAMELENGTH];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      char fileresprobcov[FILENAMELENGTH];
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    char fileresprobcor[FILENAMELENGTH];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    double ***varpij;
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcpy(fileresprob,"prob"); 
           oldm=oldms;savm=savms;    strcat(fileresprob,fileres);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           for (h=0; h<=nhstepm; h++){      printf("Problem with resultfile: %s\n", fileresprob);
             if (h==(int) (calagedate+YEARM*cpt)) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    }
             }    strcpy(fileresprobcov,"probcov"); 
             for(j=1; j<=nlstate+ndeath;j++) {    strcat(fileresprobcov,fileres);
               kk1=0.;kk2=0;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               for(i=1; i<=nlstate;i++) {                    printf("Problem with resultfile: %s\n", fileresprobcov);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
               }    }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    strcpy(fileresprobcor,"probcor"); 
             }    strcat(fileresprobcor,fileres);
           }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", fileresprobcor);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       }    }
    }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   if (popforecast==1) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     free_ivector(popage,0,AGESUP);    
     free_vector(popeffectif,0,AGESUP);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     free_vector(popcount,0,AGESUP);    fprintf(ficresprob,"# Age");
   }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobcov,"# Age");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   fclose(ficrespop);    fprintf(ficresprobcov,"# Age");
 }  
   
 /***********************************************/    for(i=1; i<=nlstate;i++)
 /**************** Main Program *****************/      for(j=1; j<=(nlstate+ndeath);j++){
 /***********************************************/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
 int main(int argc, char *argv[])        fprintf(ficresprobcor," p%1d-%1d ",i,j);
 {      }  
    /* fprintf(ficresprob,"\n");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fprintf(ficresprobcov,"\n");
   double agedeb, agefin,hf;    fprintf(ficresprobcor,"\n");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;   */
    xp=vector(1,npar);
   double fret;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   double **xi,tmp,delta;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   double dum; /* Dummy variable */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   double ***p3mat;    first=1;
   int *indx;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   char line[MAXLINE], linepar[MAXLINE];      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   char title[MAXLINE];      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      exit(0);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    }
      else{
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      fprintf(ficgp,"\n# Routine varprob");
     }
   char filerest[FILENAMELENGTH];    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   char fileregp[FILENAMELENGTH];      printf("Problem with html file: %s\n", optionfilehtm);
   char popfile[FILENAMELENGTH];      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      exit(0);
   int firstobs=1, lastobs=10;    }
   int sdeb, sfin; /* Status at beginning and end */    else{
   int c,  h , cpt,l;      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   int ju,jl, mi;      fprintf(fichtm,"\n");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   int mobilav=0,popforecast=0;      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   int hstepm, nhstepm;      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
     }
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    cov[1]=1;
   double **prlim;    tj=cptcoveff;
   double *severity;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   double ***param; /* Matrix of parameters */    j1=0;
   double  *p;    for(t=1; t<=tj;t++){
   double **matcov; /* Matrix of covariance */      for(i1=1; i1<=ncodemax[t];i1++){ 
   double ***delti3; /* Scale */        j1++;
   double *delti; /* Scale */        if  (cptcovn>0) {
   double ***eij, ***vareij;          fprintf(ficresprob, "\n#********** Variable "); 
   double **varpl; /* Variances of prevalence limits by age */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double *epj, vepp;          fprintf(ficresprob, "**********\n#\n");
   double kk1, kk2;          fprintf(ficresprobcov, "\n#********** Variable "); 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcov, "**********\n#\n");
           
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";          fprintf(ficgp, "\n#********** Variable "); 
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
   char z[1]="c", occ;          
 #include <sys/time.h>          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 #include <time.h>          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   /* long total_usecs;          fprintf(ficresprobcor, "\n#********** Variable ");    
   struct timeval start_time, end_time;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcor, "**********\n#");    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        }
   getcwd(pathcd, size);        
         for (age=bage; age<=fage; age ++){ 
   printf("\n%s",version);          cov[2]=age;
   if(argc <=1){          for (k=1; k<=cptcovn;k++) {
     printf("\nEnter the parameter file name: ");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     scanf("%s",pathtot);          }
   }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   else{          for (k=1; k<=cptcovprod;k++)
     strcpy(pathtot,argv[1]);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }          
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   /*cygwin_split_path(pathtot,path,optionfile);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
   /* cutv(path,optionfile,pathtot,'\\');*/          gm=vector(1,(nlstate)*(nlstate+ndeath));
       
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          for(theta=1; theta <=npar; theta++){
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            for(i=1; i<=npar; i++)
   chdir(path);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   replace(pathc,path);            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
 /*-------- arguments in the command line --------*/            
             k=0;
   strcpy(fileres,"r");            for(i=1; i<= (nlstate); i++){
   strcat(fileres, optionfilefiname);              for(j=1; j<=(nlstate+ndeath);j++){
   strcat(fileres,".txt");    /* Other files have txt extension */                k=k+1;
                 gp[k]=pmmij[i][j];
   /*---------arguments file --------*/              }
             }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            
     printf("Problem with optionfile %s\n",optionfile);            for(i=1; i<=npar; i++)
     goto end;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   }      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   strcpy(filereso,"o");            k=0;
   strcat(filereso,fileres);            for(i=1; i<=(nlstate); i++){
   if((ficparo=fopen(filereso,"w"))==NULL) {              for(j=1; j<=(nlstate+ndeath);j++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;                k=k+1;
   }                gm[k]=pmmij[i][j];
               }
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){       
     ungetc(c,ficpar);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     fgets(line, MAXLINE, ficpar);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     puts(line);          }
     fputs(line,ficparo);  
   }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   ungetc(c,ficpar);            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 while((c=getc(ficpar))=='#' && c!= EOF){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     ungetc(c,ficpar);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     puts(line);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fputs(line,ficparo);  
   }          pmij(pmmij,cov,ncovmodel,x,nlstate);
   ungetc(c,ficpar);          
            k=0;
              for(i=1; i<=(nlstate); i++){
   covar=matrix(0,NCOVMAX,1,n);            for(j=1; j<=(nlstate+ndeath);j++){
   cptcovn=0;              k=k+1;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              mu[k][(int) age]=pmmij[i][j];
             }
   ncovmodel=2+cptcovn;          }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
              for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   /* Read guess parameters */              varpij[i][j][(int)age] = doldm[i][j];
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){          /*printf("\n%d ",(int)age);
     ungetc(c,ficpar);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     fgets(line, MAXLINE, ficpar);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     puts(line);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fputs(line,ficparo);            }*/
   }  
   ungetc(c,ficpar);          fprintf(ficresprob,"\n%d ",(int)age);
            fprintf(ficresprobcov,"\n%d ",(int)age);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficresprobcor,"\n%d ",(int)age);
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       fprintf(ficparo,"%1d%1d",i1,j1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       printf("%1d%1d",i,j);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       for(k=1; k<=ncovmodel;k++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         fscanf(ficpar," %lf",&param[i][j][k]);          }
         printf(" %lf",param[i][j][k]);          i=0;
         fprintf(ficparo," %lf",param[i][j][k]);          for (k=1; k<=(nlstate);k++){
       }            for (l=1; l<=(nlstate+ndeath);l++){ 
       fscanf(ficpar,"\n");              i=i++;
       printf("\n");              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       fprintf(ficparo,"\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     }              for (j=1; j<=i;j++){
                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
   p=param[1][1];            }
            }/* end of loop for state */
   /* Reads comments: lines beginning with '#' */        } /* end of loop for age */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);        /* Confidence intervalle of pij  */
     fgets(line, MAXLINE, ficpar);        /*
     puts(line);          fprintf(ficgp,"\nset noparametric;unset label");
     fputs(line,ficparo);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   ungetc(c,ficpar);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   for(i=1; i <=nlstate; i++){        */
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       printf("%1d%1d",i,j);        first1=1;
       fprintf(ficparo,"%1d%1d",i1,j1);        for (k2=1; k2<=(nlstate);k2++){
       for(k=1; k<=ncovmodel;k++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         fscanf(ficpar,"%le",&delti3[i][j][k]);            if(l2==k2) continue;
         printf(" %le",delti3[i][j][k]);            j=(k2-1)*(nlstate+ndeath)+l2;
         fprintf(ficparo," %le",delti3[i][j][k]);            for (k1=1; k1<=(nlstate);k1++){
       }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       fscanf(ficpar,"\n");                if(l1==k1) continue;
       printf("\n");                i=(k1-1)*(nlstate+ndeath)+l1;
       fprintf(ficparo,"\n");                if(i<=j) continue;
     }                for (age=bage; age<=fage; age ++){ 
   }                  if ((int)age %5==0){
   delti=delti3[1][1];                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /* Reads comments: lines beginning with '#' */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   while((c=getc(ficpar))=='#' && c!= EOF){                    mu1=mu[i][(int) age]/stepm*YEARM ;
     ungetc(c,ficpar);                    mu2=mu[j][(int) age]/stepm*YEARM;
     fgets(line, MAXLINE, ficpar);                    c12=cv12/sqrt(v1*v2);
     puts(line);                    /* Computing eigen value of matrix of covariance */
     fputs(line,ficparo);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   ungetc(c,ficpar);                    /* Eigen vectors */
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   matcov=matrix(1,npar,1,npar);                    /*v21=sqrt(1.-v11*v11); *//* error */
   for(i=1; i <=npar; i++){                    v21=(lc1-v1)/cv12*v11;
     fscanf(ficpar,"%s",&str);                    v12=-v21;
     printf("%s",str);                    v22=v11;
     fprintf(ficparo,"%s",str);                    tnalp=v21/v11;
     for(j=1; j <=i; j++){                    if(first1==1){
       fscanf(ficpar," %le",&matcov[i][j]);                      first1=0;
       printf(" %.5le",matcov[i][j]);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fprintf(ficparo," %.5le",matcov[i][j]);                    }
     }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     fscanf(ficpar,"\n");                    /*printf(fignu*/
     printf("\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     fprintf(ficparo,"\n");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   }                    if(first==1){
   for(i=1; i <=npar; i++)                      first=0;
     for(j=i+1;j<=npar;j++)                      fprintf(ficgp,"\nset parametric;unset label");
       matcov[i][j]=matcov[j][i];                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   printf("\n");                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     /*-------- Rewriting paramater file ----------*/                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
      strcpy(rfileres,"r");    /* "Rparameterfile */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
      strcat(rfileres,".");    /* */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     if((ficres =fopen(rfileres,"w"))==NULL) {                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       printf("Problem writing new parameter file: %s\n", fileres);goto end;                    }else{
     }                      first=0;
     fprintf(ficres,"#%s\n",version);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                          fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     /*-------- data file ----------*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     if((fic=fopen(datafile,"r"))==NULL)    {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       printf("Problem with datafile: %s\n", datafile);goto end;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
     n= lastobs;                  } /* age mod 5 */
     severity = vector(1,maxwav);                } /* end loop age */
     outcome=imatrix(1,maxwav+1,1,n);                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
     num=ivector(1,n);                first=1;
     moisnais=vector(1,n);              } /*l12 */
     annais=vector(1,n);            } /* k12 */
     moisdc=vector(1,n);          } /*l1 */
     andc=vector(1,n);        }/* k1 */
     agedc=vector(1,n);      } /* loop covariates */
     cod=ivector(1,n);    }
     weight=vector(1,n);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     mint=matrix(1,maxwav,1,n);    free_vector(xp,1,npar);
     anint=matrix(1,maxwav,1,n);    fclose(ficresprob);
     s=imatrix(1,maxwav+1,1,n);    fclose(ficresprobcov);
     adl=imatrix(1,maxwav+1,1,n);        fclose(ficresprobcor);
     tab=ivector(1,NCOVMAX);    fclose(ficgp);
     ncodemax=ivector(1,8);    fclose(fichtm);
   }
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {  /******************* Printing html file ***********/
          void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         for (j=maxwav;j>=1;j--){                    int lastpass, int stepm, int weightopt, char model[],\
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           strcpy(line,stra);                    int popforecast, int estepm ,\
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                    double jprev1, double mprev1,double anprev1, \
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                    double jprev2, double mprev2,double anprev2){
         }    int jj1, k1, i1, cpt;
            /*char optionfilehtm[FILENAMELENGTH];*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      printf("Problem with %s \n",optionfilehtm), exit(0);
       fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
         for (j=ncovcol;j>=1;j--){   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
         }   - Life expectancies by age and initial health status (estepm=%2d months): 
         num[i]=atol(stra);     <a href=\"e%s\">e%s</a> <br>\n</li>", \
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
         i=i+1;   m=cptcoveff;
       }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     }  
     /* printf("ii=%d", ij);   jj1=0;
        scanf("%d",i);*/   for(k1=1; k1<=m;k1++){
   imx=i-1; /* Number of individuals */     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   /* for (i=1; i<=imx; i++){       if (cptcovn > 0) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;         for (cpt=1; cpt<=cptcoveff;cpt++) 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     }*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    /*  for (i=1; i<=imx; i++){       }
      if (s[4][i]==9)  s[4][i]=-1;       /* Pij */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
    <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
         /* Quasi-incidences */
   /* Calculation of the number of parameter from char model*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
   Tvar=ivector(1,15);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
   Tprod=ivector(1,15);         /* Stable prevalence in each health state */
   Tvaraff=ivector(1,15);         for(cpt=1; cpt<nlstate;cpt++){
   Tvard=imatrix(1,15,1,2);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
   Tage=ivector(1,15);        <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
             }
   if (strlen(model) >1){       for(cpt=1; cpt<=nlstate;cpt++) {
     j=0, j1=0, k1=1, k2=1;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
     j=nbocc(model,'+');  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
     j1=nbocc(model,'*');       }
     cptcovn=j+1;       fprintf(fichtm,"\n<br>- Total life expectancy by age and
     cptcovprod=j1;  health expectancies in states (1) and (2): e%s%d.png<br>
      <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
     strcpy(modelsav,model);     } /* end i1 */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){   }/* End k1 */
       printf("Error. Non available option model=%s ",model);   fprintf(fichtm,"</ul>");
       goto end;  
     }  
       fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
     for(i=(j+1); i>=1;i--){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
       cutv(stra,strb,modelsav,'+');   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
       /*scanf("%d",i);*/   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
       if (strchr(strb,'*')) {   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
         cutv(strd,strc,strb,'*');   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;  /*  if(popforecast==1) fprintf(fichtm,"\n */
           cutv(strb,stre,strd,'V');  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           Tvar[i]=atoi(stre);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
           cptcovage++;  /*      <br>",fileres,fileres,fileres,fileres); */
             Tage[cptcovage]=i;  /*  else  */
             /*printf("stre=%s ", stre);*/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         }  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;   m=cptcoveff;
           cutv(strb,stre,strc,'V');   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           Tvar[i]=atoi(stre);  
           cptcovage++;   jj1=0;
           Tage[cptcovage]=i;   for(k1=1; k1<=m;k1++){
         }     for(i1=1; i1<=ncodemax[k1];i1++){
         else {       jj1++;
           cutv(strb,stre,strc,'V');       if (cptcovn > 0) {
           Tvar[i]=ncovcol+k1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           cutv(strb,strc,strd,'V');         for (cpt=1; cpt<=cptcoveff;cpt++) 
           Tprod[k1]=i;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           Tvard[k1][1]=atoi(strc);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           Tvard[k1][2]=atoi(stre);       }
           Tvar[cptcovn+k2]=Tvard[k1][1];       for(cpt=1; cpt<=nlstate;cpt++) {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
           for (k=1; k<=lastobs;k++)  interval) in state (%d): v%s%d%d.png <br>
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
           k1++;       }
           k2=k2+2;     } /* end i1 */
         }   }/* End k1 */
       }   fprintf(fichtm,"</ul>");
       else {  fclose(fichtm);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  }
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');  /******************* Gnuplot file **************/
       Tvar[i]=atoi(strc);  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       }  
       strcpy(modelsav,stra);      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    int ng;
         scanf("%d",i);*/    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     }      printf("Problem with file %s",optionfilegnuplot);
 }      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
      }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);    /*#ifdef windows */
   scanf("%d ",i);*/      fprintf(ficgp,"cd \"%s\" \n",pathc);
     fclose(fic);      /*#endif */
   m=pow(2,cptcoveff);
     /*  if(mle==1){*/    
     if (weightopt != 1) { /* Maximisation without weights*/   /* 1eme*/
       for(i=1;i<=n;i++) weight[i]=1.0;    for (cpt=1; cpt<= nlstate ; cpt ++) {
     }     for (k1=1; k1<= m ; k1 ++) {
     /*-calculation of age at interview from date of interview and age at death -*/       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     agev=matrix(1,maxwav,1,imx);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
     for (i=1; i<=imx; i++) {       for (i=1; i<= nlstate ; i ++) {
       for(m=2; (m<= maxwav); m++) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){         else fprintf(ficgp," \%%*lf (\%%*lf)");
          anint[m][i]=9999;       }
          s[m][i]=-1;       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        }       for (i=1; i<= nlstate ; i ++) {
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     for (i=1; i<=imx; i++)  {       for (i=1; i<= nlstate ; i ++) {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for(m=1; (m<= maxwav); m++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
         if(s[m][i] >0){       }  
           if (s[m][i] >= nlstate+1) {       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
             if(agedc[i]>0)     }
               if(moisdc[i]!=99 && andc[i]!=9999)    }
                 agev[m][i]=agedc[i];    /*2 eme*/
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    
            else {    for (k1=1; k1<= m ; k1 ++) { 
               if (andc[i]!=9999){      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
               agev[m][i]=-1;      
               }      for (i=1; i<= nlstate+1 ; i ++) {
             }        k=2*i;
           }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
           else if(s[m][i] !=9){ /* Should no more exist */        for (j=1; j<= nlstate+1 ; j ++) {
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             if(mint[m][i]==99 || anint[m][i]==9999)          else fprintf(ficgp," \%%*lf (\%%*lf)");
               agev[m][i]=1;        }   
             else if(agev[m][i] <agemin){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
               agemin=agev[m][i];        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
             }        for (j=1; j<= nlstate+1 ; j ++) {
             else if(agev[m][i] >agemax){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               agemax=agev[m][i];          else fprintf(ficgp," \%%*lf (\%%*lf)");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }   
             }        fprintf(ficgp,"\" t\"\" w l 0,");
             /*agev[m][i]=anint[m][i]-annais[i];*/        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
             /*   agev[m][i] = age[i]+2*m;*/        for (j=1; j<= nlstate+1 ; j ++) {
           }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else { /* =9 */          else fprintf(ficgp," \%%*lf (\%%*lf)");
             agev[m][i]=1;        }   
             s[m][i]=-1;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           }        else fprintf(ficgp,"\" t\"\" w l 0,");
         }      }
         else /*= 0 Unknown */    }
           agev[m][i]=1;    
       }    /*3eme*/
        
     }    for (k1=1; k1<= m ; k1 ++) { 
     for (i=1; i<=imx; i++)  {      for (cpt=1; cpt<= nlstate ; cpt ++) {
       for(m=1; (m<= maxwav); m++){        k=2+nlstate*(2*cpt-2);
         if (s[m][i] > (nlstate+ndeath)) {        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           printf("Error: Wrong value in nlstate or ndeath\n");          fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
           goto end;        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
     free_vector(severity,1,maxwav);        */
     free_imatrix(outcome,1,maxwav+1,1,n);        for (i=1; i< nlstate ; i ++) {
     free_vector(moisnais,1,n);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
     free_vector(annais,1,n);          
     /* free_matrix(mint,1,maxwav,1,n);        } 
        free_matrix(anint,1,maxwav,1,n);*/      }
     free_vector(moisdc,1,n);    }
     free_vector(andc,1,n);    
     /* CV preval stable (period) */
        for (k1=1; k1<= m ; k1 ++) { 
     wav=ivector(1,imx);      for (cpt=1; cpt<=nlstate ; cpt ++) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        k=3;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
            fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
     /* Concatenates waves */        
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       Tcode=ivector(1,100);        
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        l=3+(nlstate+ndeath)*cpt;
       ncodemax[1]=1;        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for (i=1; i< nlstate ; i ++) {
                l=3+(nlstate+ndeath)*cpt;
    codtab=imatrix(1,100,1,10);          fprintf(ficgp,"+$%d",l+i+1);
    h=0;        }
    m=pow(2,cptcoveff);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
        } 
    for(k=1;k<=cptcoveff; k++){    }  
      for(i=1; i <=(m/pow(2,k));i++){    
        for(j=1; j <= ncodemax[k]; j++){    /* proba elementaires */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    for(i=1,jk=1; i <=nlstate; i++){
            h++;      for(k=1; k <=(nlstate+ndeath); k++){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        if (k != i) {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          for(j=1; j <=ncovmodel; j++){
          }            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
        }            jk++; 
      }            fprintf(ficgp,"\n");
    }          }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        }
       codtab[1][2]=1;codtab[2][2]=2; */      }
    /* for(i=1; i <=m ;i++){     }
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       }       for(jk=1; jk <=m; jk++) {
       printf("\n");         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
       }         if (ng==2)
       scanf("%d",i);*/           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
             else
    /* Calculates basic frequencies. Computes observed prevalence at single age           fprintf(ficgp,"\nset title \"Probability\"\n");
        and prints on file fileres'p'. */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
             for(k2=1; k2<=nlstate; k2++) {
               k3=i;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           for(k=1; k<=(nlstate+ndeath); k++) {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */             if (k != k2){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               if(ng==2)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */               else
                       fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     /* For Powell, parameters are in a vector p[] starting at p[1]               ij=1;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */               for(j=3; j <=ncovmodel; j++) {
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     if(mle==1){                   ij++;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                 }
     }                 else
                       fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     /*--------- results files --------------*/               }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);               fprintf(ficgp,")/(1");
                 
                for(k1=1; k1 <=nlstate; k1++){   
    jk=1;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                 ij=1;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                 for(j=3; j <=ncovmodel; j++){
    for(i=1,jk=1; i <=nlstate; i++){                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
      for(k=1; k <=(nlstate+ndeath); k++){                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
        if (k != i)                     ij++;
          {                   }
            printf("%d%d ",i,k);                   else
            fprintf(ficres,"%1d%1d ",i,k);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
            for(j=1; j <=ncovmodel; j++){                 }
              printf("%f ",p[jk]);                 fprintf(ficgp,")");
              fprintf(ficres,"%f ",p[jk]);               }
              jk++;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
            }               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
            printf("\n");               i=i+ncovmodel;
            fprintf(ficres,"\n");             }
          }           } /* end k */
      }         } /* end k2 */
    }       } /* end jk */
  if(mle==1){     } /* end ng */
     /* Computing hessian and covariance matrix */     fclose(ficgp); 
     ftolhess=ftol; /* Usually correct */  }  /* end gnuplot */
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  /*************** Moving average **************/
     printf("# Scales (for hessian or gradient estimation)\n");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){    int i, cpt, cptcod;
         if (j!=i) {    int modcovmax =1;
           fprintf(ficres,"%1d%1d",i,j);    int mobilavrange, mob;
           printf("%1d%1d",i,j);    double age;
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
             fprintf(ficres," %.5e",delti[jk]);                             a covariate has 2 modalities */
             jk++;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
           }  
           printf("\n");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
           fprintf(ficres,"\n");      if(mobilav==1) mobilavrange=5; /* default */
         }      else mobilavrange=mobilav;
       }      for (age=bage; age<=fage; age++)
      }        for (i=1; i<=nlstate;i++)
              for (cptcod=1;cptcod<=modcovmax;cptcod++)
     k=1;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      /* We keep the original values on the extreme ages bage, fage and for 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     for(i=1;i<=npar;i++){         we use a 5 terms etc. until the borders are no more concerned. 
       /*  if (k>nlstate) k=1;      */ 
       i1=(i-1)/(ncovmodel*nlstate)+1;      for (mob=3;mob <=mobilavrange;mob=mob+2){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       printf("%s%d%d",alph[k],i1,tab[i]);*/          for (i=1; i<=nlstate;i++){
       fprintf(ficres,"%3d",i);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       printf("%3d",i);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       for(j=1; j<=i;j++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         fprintf(ficres," %.5e",matcov[i][j]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         printf(" %.5e",matcov[i][j]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       }                }
       fprintf(ficres,"\n");              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       printf("\n");            }
       k++;          }
     }        }/* end age */
          }/* end mob */
     while((c=getc(ficpar))=='#' && c!= EOF){    }else return -1;
       ungetc(c,ficpar);    return 0;
       fgets(line, MAXLINE, ficpar);  }/* End movingaverage */
       puts(line);  
       fputs(line,ficparo);  
     }  /************** Forecasting ******************/
     ungetc(c,ficpar);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     estepm=0;    /* proj1, year, month, day of starting projection 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);       agemin, agemax range of age
     if (estepm==0 || estepm < stepm) estepm=stepm;       dateprev1 dateprev2 range of dates during which prevalence is computed
     if (fage <= 2) {       anproj2 year of en of projection (same day and month as proj1).
       bage = ageminpar;    */
       fage = agemaxpar;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     }    int *popage;
        double agec; /* generic age */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double *popeffectif,*popcount;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double ***p3mat;
      double ***mobaverage;
     while((c=getc(ficpar))=='#' && c!= EOF){    char fileresf[FILENAMELENGTH];
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    agelim=AGESUP;
     puts(line);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     fputs(line,ficparo);   
   }    strcpy(fileresf,"f"); 
   ungetc(c,ficpar);    strcat(fileresf,fileres);
      if((ficresf=fopen(fileresf,"w"))==NULL) {
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      printf("Problem with forecast resultfile: %s\n", fileresf);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
          printf("Computing forecasting: result on file '%s' \n", fileresf);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     puts(line);  
     fputs(line,ficparo);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    }
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   fprintf(ficparo,"pop_based=%d\n",popbased);      if (stepm<=12) stepsize=1;
   fprintf(ficres,"pop_based=%d\n",popbased);      if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else  hstepm=estepm;   
     fgets(line, MAXLINE, ficpar);  
     puts(line);    hstepm=hstepm/stepm; 
     fputs(line,ficparo);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   }                                 fractional in yp1 */
   ungetc(c,ficpar);    anprojmean=yp;
     yp2=modf((yp1*12),&yp);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    mprojmean=yp;
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    yp1=modf((yp2*30.5),&yp);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    i1=cptcoveff;
     fgets(line, MAXLINE, ficpar);    if (cptcovn < 1){i1=1;}
     puts(line);    
     fputs(line,ficparo);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   }    
   ungetc(c,ficpar);    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  /*            if (h==(int)(YEARM*yearp)){ */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
 /*------------ gnuplot -------------*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        }
          fprintf(ficresf,"******\n");
 /*------------ free_vector  -------------*/        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
  chdir(path);        for(j=1; j<=nlstate+ndeath;j++){ 
            for(i=1; i<=nlstate;i++)              
  free_ivector(wav,1,imx);            fprintf(ficresf," p%d%d",i,j);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          fprintf(ficresf," p.%d",j);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          }
  free_ivector(num,1,n);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
  free_vector(agedc,1,n);          fprintf(ficresf,"\n");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
  fclose(ficparo);  
  fclose(ficres);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
 /*--------- index.htm --------*/            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
            
   /*--------------- Prevalence limit --------------*/            for (h=0; h<=nhstepm; h++){
                if (h*hstepm/YEARM*stepm ==yearp) {
   strcpy(filerespl,"pl");                fprintf(ficresf,"\n");
   strcat(filerespl,fileres);                for(j=1;j<=cptcoveff;j++) 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   }              } 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              for(j=1; j<=nlstate+ndeath;j++) {
   fprintf(ficrespl,"#Prevalence limit\n");                ppij=0.;
   fprintf(ficrespl,"#Age ");                for(i=1; i<=nlstate;i++) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                  if (mobilav==1) 
   fprintf(ficrespl,"\n");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                    else {
   prlim=matrix(1,nlstate,1,nlstate);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  if (h*hstepm/YEARM*stepm== yearp) {
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                } /* end i */
   k=0;                if (h*hstepm/YEARM*stepm==yearp) {
   agebase=ageminpar;                  fprintf(ficresf," %.3f", ppij);
   agelim=agemaxpar;                }
   ftolpl=1.e-10;              }/* end j */
   i1=cptcoveff;            } /* end h */
   if (cptcovn < 1){i1=1;}            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
   for(cptcov=1;cptcov<=i1;cptcov++){        } /* end yearp */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } /* end cptcod */
         k=k+1;    } /* end  cptcov */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/         
         fprintf(ficrespl,"\n#******");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresf);
         fprintf(ficrespl,"******\n");  }
          
         for (age=agebase; age<=agelim; age++){  /************** Forecasting *****not tested NB*************/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
           fprintf(ficrespl,"%.0f",age );    
           for(i=1; i<=nlstate;i++)    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
           fprintf(ficrespl," %.5f", prlim[i][i]);    int *popage;
           fprintf(ficrespl,"\n");    double calagedatem, agelim, kk1, kk2;
         }    double *popeffectif,*popcount;
       }    double ***p3mat,***tabpop,***tabpopprev;
     }    double ***mobaverage;
   fclose(ficrespl);    char filerespop[FILENAMELENGTH];
   
   /*------------- h Pij x at various ages ------------*/    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    agelim=AGESUP;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    
   }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   printf("Computing pij: result on file '%s' \n", filerespij);    
      
   stepsize=(int) (stepm+YEARM-1)/YEARM;    strcpy(filerespop,"pop"); 
   /*if (stepm<=24) stepsize=2;*/    strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
   agelim=AGESUP;      printf("Problem with forecast resultfile: %s\n", filerespop);
   hstepm=stepsize*YEARM; /* Every year of age */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    }
      printf("Computing forecasting: result on file '%s' \n", filerespop);
   k=0;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");    if (mobilav!=0) {
         for(j=1;j<=cptcoveff;j++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficrespij,"******\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                printf(" Error in movingaverage mobilav=%d\n",mobilav);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    stepsize=(int) (stepm+YEARM-1)/YEARM;
           oldm=oldms;savm=savms;    if (stepm<=12) stepsize=1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      
           fprintf(ficrespij,"# Age");    agelim=AGESUP;
           for(i=1; i<=nlstate;i++)    
             for(j=1; j<=nlstate+ndeath;j++)    hstepm=1;
               fprintf(ficrespij," %1d-%1d",i,j);    hstepm=hstepm/stepm; 
           fprintf(ficrespij,"\n");    
            for (h=0; h<=nhstepm; h++){    if (popforecast==1) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      if((ficpop=fopen(popfile,"r"))==NULL) {
             for(i=1; i<=nlstate;i++)        printf("Problem with population file : %s\n",popfile);exit(0);
               for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      } 
             fprintf(ficrespij,"\n");      popage=ivector(0,AGESUP);
              }      popeffectif=vector(0,AGESUP);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      popcount=vector(0,AGESUP);
           fprintf(ficrespij,"\n");      
         }      i=1;   
     }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   }     
       imx=i;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   fclose(ficrespij);  
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   /*---------- Forecasting ------------------*/        k=k+1;
   if((stepm == 1) && (strcmp(model,".")==0)){        fprintf(ficrespop,"\n#******");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        for(j=1;j<=cptcoveff;j++) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }        }
   else{        fprintf(ficrespop,"******\n");
     erreur=108;        fprintf(ficrespop,"# Age");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   }        if (popforecast==1)  fprintf(ficrespop," [Population]");
          
         for (cpt=0; cpt<=0;cpt++) { 
   /*---------- Health expectancies and variances ------------*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
   strcpy(filerest,"t");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   strcat(filerest,fileres);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   if((ficrest=fopen(filerest,"w"))==NULL) {            nhstepm = nhstepm/hstepm; 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            
   }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
   strcpy(filerese,"e");            for (h=0; h<=nhstepm; h++){
   strcat(filerese,fileres);              if (h==(int) (calagedatem+YEARM*cpt)) {
   if((ficreseij=fopen(filerese,"w"))==NULL) {                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              } 
   }              for(j=1; j<=nlstate+ndeath;j++) {
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
  strcpy(fileresv,"v");                  if (mobilav==1) 
   strcat(fileresv,fileres);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                  else {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   }                  }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                }
   calagedate=-1;                if (h==(int)(calagedatem+12*cpt)){
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
   k=0;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   for(cptcov=1;cptcov<=i1;cptcov++){                }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              }
       k=k+1;              for(i=1; i<=nlstate;i++){
       fprintf(ficrest,"\n#****** ");                kk1=0.;
       for(j=1;j<=cptcoveff;j++)                  for(j=1; j<=nlstate;j++){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
       fprintf(ficrest,"******\n");                  }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
       fprintf(ficreseij,"\n#****** ");              }
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
       fprintf(ficreseij,"******\n");                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
       fprintf(ficresvij,"\n#****** ");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficresvij,"******\n");   
     /******/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
            for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       oldm=oldms;savm=savms;            nhstepm = nhstepm/hstepm; 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);            
                p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            for (h=0; h<=nhstepm; h++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              if (h==(int) (calagedatem+YEARM*cpt)) {
       fprintf(ficrest,"\n");                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
       epj=vector(1,nlstate+1);              for(j=1; j<=nlstate+ndeath;j++) {
       for(age=bage; age <=fage ;age++){                kk1=0.;kk2=0;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                for(i=1; i<=nlstate;i++) {              
         if (popbased==1) {                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
           for(i=1; i<=nlstate;i++)                }
             prlim[i][i]=probs[(int)age][i][k];                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
         }              }
                    }
         fprintf(ficrest," %4.0f",age);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];     } 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    }
           }   
           epj[nlstate+1] +=epj[j];    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }  
     if (popforecast==1) {
         for(i=1, vepp=0.;i <=nlstate;i++)      free_ivector(popage,0,AGESUP);
           for(j=1;j <=nlstate;j++)      free_vector(popeffectif,0,AGESUP);
             vepp += vareij[i][j][(int)age];      free_vector(popcount,0,AGESUP);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    }
         for(j=1;j <=nlstate;j++){    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }    fclose(ficrespop);
         fprintf(ficrest,"\n");  } /* End of popforecast */
       }  
     }  /***********************************************/
   }  /**************** Main Program *****************/
 free_matrix(mint,1,maxwav,1,n);  /***********************************************/
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);  int main(int argc, char *argv[])
   fclose(ficreseij);  {
   fclose(ficresvij);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   fclose(ficrest);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   fclose(ficpar);    double agedeb, agefin,hf;
   free_vector(epj,1,nlstate+1);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
    
   /*------- Variance limit prevalence------*/      double fret;
     double **xi,tmp,delta;
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);    double dum; /* Dummy variable */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double ***p3mat;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double ***mobaverage;
     exit(0);    int *indx;
   }    char line[MAXLINE], linepar[MAXLINE];
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
   k=0;    int sdeb, sfin; /* Status at beginning and end */
   for(cptcov=1;cptcov<=i1;cptcov++){    int c,  h , cpt,l;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int ju,jl, mi;
       k=k+1;    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
       fprintf(ficresvpl,"\n#****** ");    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
       for(j=1;j<=cptcoveff;j++)    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int mobilav=0,popforecast=0;
       fprintf(ficresvpl,"******\n");    int hstepm, nhstepm;
          double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    double bage, fage, age, agelim, agebase;
     }    double ftolpl=FTOL;
  }    double **prlim;
     double *severity;
   fclose(ficresvpl);    double ***param; /* Matrix of parameters */
     double  *p;
   /*---------- End : free ----------------*/    double **matcov; /* Matrix of covariance */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    double ***delti3; /* Scale */
      double *delti; /* Scale */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double ***eij, ***vareij;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    double **varpl; /* Variances of prevalence limits by age */
      double *epj, vepp;
      double kk1, kk2;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    char *alph[]={"a","a","b","c","d","e"}, str[4];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
    
   free_matrix(matcov,1,npar,1,npar);    char z[1]="c", occ;
   free_vector(delti,1,npar);  #include <sys/time.h>
   free_matrix(agev,1,maxwav,1,imx);  #include <time.h>
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
   if(erreur >0)    /* long total_usecs;
     printf("End of Imach with error or warning %d\n",erreur);       struct timeval start_time, end_time;
   else   printf("End of Imach\n");    
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
      getcwd(pathcd, size);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    printf("\n%s\n%s",version,fullversion);
   /*------ End -----------*/    if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
  end:    }
   /* chdir(pathcd);*/    else{
  /*system("wgnuplot graph.plt");*/      strcpy(pathtot,argv[1]);
  /*system("../gp37mgw/wgnuplot graph.plt");*/    }
  /*system("cd ../gp37mgw");*/    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    /*cygwin_split_path(pathtot,path,optionfile);
  strcpy(plotcmd,GNUPLOTPROGRAM);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
  strcat(plotcmd," ");    /* cutv(path,optionfile,pathtot,'\\');*/
  strcat(plotcmd,optionfilegnuplot);  
  system(plotcmd);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
  /*#ifdef windows*/    chdir(path);
   while (z[0] != 'q') {    replace(pathc,path);
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    /*-------- arguments in the command line --------*/
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");    /* Log file */
     else if (z[0] == 'e') system(optionfilehtm);    strcat(filelog, optionfilefiname);
     else if (z[0] == 'g') system(plotcmd);    strcat(filelog,".log");    /* */
     else if (z[0] == 'q') exit(0);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   }      printf("Problem with logfile %s\n",filelog);
   /*#endif */      goto end;
 }    }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.84


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>