Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.131

version 1.41.2.2, 2003/06/13 07:45:28 version 1.131, 2009/06/20 16:22:47
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.131  2009/06/20 16:22:47  brouard
      Some dimensions resccaled
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.130  2009/05/26 06:44:34  brouard
   first survey ("cross") where individuals from different ages are    (Module): Max Covariate is now set to 20 instead of 8. A
   interviewed on their health status or degree of disability (in the    lot of cleaning with variables initialized to 0. Trying to make
   case of a health survey which is our main interest) -2- at least a    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.129  2007/08/31 13:49:27  lievre
   computed from the time spent in each health state according to a    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.128  2006/06/30 13:02:05  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Clarifications on computing e.j
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.127  2006/04/28 18:11:50  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Yes the sum of survivors was wrong since
   'age' is age and 'sex' is a covariate. If you want to have a more    imach-114 because nhstepm was no more computed in the age
   complex model than "constant and age", you should modify the program    loop. Now we define nhstepma in the age loop.
   where the markup *Covariates have to be included here again* invites    (Module): In order to speed up (in case of numerous covariates) we
   you to do it.  More covariates you add, slower the    compute health expectancies (without variances) in a first step
   convergence.    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
   The advantage of this computer programme, compared to a simple    computation.
   multinomial logistic model, is clear when the delay between waves is not    In the future we should be able to stop the program is only health
   identical for each individual. Also, if a individual missed an    expectancies and graph are needed without standard deviations.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
   hPijx is the probability to be observed in state i at age x+h    imach-114 because nhstepm was no more computed in the age
   conditional to the observed state i at age x. The delay 'h' can be    loop. Now we define nhstepma in the age loop.
   split into an exact number (nh*stepm) of unobserved intermediate    Version 0.98h
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.125  2006/04/04 15:20:31  lievre
   matrix is simply the matrix product of nh*stepm elementary matrices    Errors in calculation of health expectancies. Age was not initialized.
   and the contribution of each individual to the likelihood is simply    Forecasting file added.
   hPijx.  
     Revision 1.124  2006/03/22 17:13:53  lievre
   Also this programme outputs the covariance matrix of the parameters but also    Parameters are printed with %lf instead of %f (more numbers after the comma).
   of the life expectancies. It also computes the prevalence limits.    The log-likelihood is printed in the log file
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.123  2006/03/20 10:52:43  brouard
            Institut national d'études démographiques, Paris.    * imach.c (Module): <title> changed, corresponds to .htm file
   This software have been partly granted by Euro-REVES, a concerted action    name. <head> headers where missing.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Module): Weights can have a decimal point as for
   software can be distributed freely for non commercial use. Latest version    English (a comma might work with a correct LC_NUMERIC environment,
   can be accessed at http://euroreves.ined.fr/imach .    otherwise the weight is truncated).
   **********************************************************************/    Modification of warning when the covariates values are not 0 or
      1.
 #include <math.h>    Version 0.98g
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.122  2006/03/20 09:45:41  brouard
 #include <unistd.h>    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define MAXLINE 256    otherwise the weight is truncated).
 #define GNUPLOTPROGRAM "wgnuplot"    Modification of warning when the covariates values are not 0 or
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    1.
 #define FILENAMELENGTH 80    Version 0.98g
 /*#define DEBUG*/  
     Revision 1.121  2006/03/16 17:45:01  lievre
 /*#define windows*/    * imach.c (Module): Comments concerning covariates added
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    not 1 month. Version 0.98f
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.120  2006/03/16 15:10:38  lievre
 #define NINTERVMAX 8    (Module): refinements in the computation of lli if
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    status=-2 in order to have more reliable computation if stepm is
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    not 1 month. Version 0.98f
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.119  2006/03/15 17:42:26  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Bug if status = -2, the loglikelihood was
 #define AGESUP 130    computed as likelihood omitting the logarithm. Version O.98e
 #define AGEBASE 40  
     Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 int erreur; /* Error number */    table of variances if popbased=1 .
 int nvar;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Function pstamp added
 int npar=NPARMAX;    (Module): Version 0.98d
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.117  2006/03/14 17:16:22  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): varevsij Comments added explaining the second
 int popbased=0;    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): Function pstamp added
 int maxwav; /* Maxim number of waves */    (Module): Version 0.98d
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.116  2006/03/06 10:29:27  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Variance-covariance wrong links and
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    varian-covariance of ej. is needed (Saito).
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.115  2006/02/27 12:17:45  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): One freematrix added in mlikeli! 0.98c
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.114  2006/02/26 12:57:58  brouard
 FILE *ficreseij;    (Module): Some improvements in processing parameter
   char filerese[FILENAMELENGTH];    filename with strsep.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.113  2006/02/24 14:20:24  brouard
  FILE  *ficresvpl;    (Module): Memory leaks checks with valgrind and:
   char fileresvpl[FILENAMELENGTH];    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.112  2006/01/30 09:55:26  brouard
 #define FTOL 1.0e-10    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 #define NRANSI    Revision 1.111  2006/01/25 20:38:18  brouard
 #define ITMAX 200    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 #define TOL 2.0e-4    can be a simple dot '.'.
   
 #define CGOLD 0.3819660    Revision 1.110  2006/01/25 00:51:50  brouard
 #define ZEPS 1.0e-10    (Module): Lots of cleaning and bugs added (Gompertz)
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.109  2006/01/24 19:37:15  brouard
 #define GOLD 1.618034    (Module): Comments (lines starting with a #) are allowed in data.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 static double maxarg1,maxarg2;    To be fixed
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.107  2006/01/19 16:20:37  brouard
      Test existence of gnuplot in imach path
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.105  2006/01/05 20:23:19  lievre
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    *** empty log message ***
   
 int imx;    Revision 1.104  2005/09/30 16:11:43  lievre
 int stepm;    (Module): sump fixed, loop imx fixed, and simplifications.
 /* Stepm, step in month: minimum step interpolation*/    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 int estepm;    (instead of missing=-1 in earlier versions) and his/her
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int m,nb;    the healthy state at last known wave). Version is 0.98
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.103  2005/09/30 15:54:49  lievre
 double **pmmij, ***probs, ***mobaverage;    (Module): sump fixed, loop imx fixed, and simplifications.
 double dateintmean=0;  
     Revision 1.102  2004/09/15 17:31:30  brouard
 double *weight;    Add the possibility to read data file including tab characters.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.101  2004/09/15 10:38:38  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Fix on curr_time
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.100  2004/07/12 18:29:06  brouard
 double ftolhess; /* Tolerance for computing hessian */    Add version for Mac OS X. Just define UNIX in Makefile
   
 /**************** split *************************/    Revision 1.99  2004/06/05 08:57:40  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    *** empty log message ***
 {  
    char *s;                             /* pointer */    Revision 1.98  2004/05/16 15:05:56  brouard
    int  l1, l2;                         /* length counters */    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
    l1 = strlen( path );                 /* length of path */    state at each age, but using a Gompertz model: log u =a + b*age .
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    This is the basic analysis of mortality and should be done before any
 #ifdef windows    other analysis, in order to test if the mortality estimated from the
    s = strrchr( path, '\\' );           /* find last / */    cross-longitudinal survey is different from the mortality estimated
 #else    from other sources like vital statistic data.
    s = strrchr( path, '/' );            /* find last / */  
 #endif    The same imach parameter file can be used but the option for mle should be -3.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Agnès, who wrote this part of the code, tried to keep most of the
       extern char       *getwd( );    former routines in order to include the new code within the former code.
   
       if ( getwd( dirc ) == NULL ) {    The output is very simple: only an estimate of the intercept and of
 #else    the slope with 95% confident intervals.
       extern char       *getcwd( );  
     Current limitations:
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    A) Even if you enter covariates, i.e. with the
 #endif    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
          return( GLOCK_ERROR_GETCWD );    B) There is no computation of Life Expectancy nor Life Table.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.97  2004/02/20 13:25:42  lievre
    } else {                             /* strip direcotry from path */    Version 0.96d. Population forecasting command line is (temporarily)
       s++;                              /* after this, the filename */    suppressed.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.96  2003/07/15 15:38:55  brouard
       strcpy( name, s );                /* save file name */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    rewritten within the same printf. Workaround: many printfs.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.95  2003/07/08 07:54:34  brouard
    l1 = strlen( dirc );                 /* length of directory */    * imach.c (Repository):
 #ifdef windows    (Repository): Using imachwizard code to output a more meaningful covariance
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    matrix (cov(a12,c31) instead of numbers.
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.94  2003/06/27 13:00:02  brouard
 #endif    Just cleaning
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.93  2003/06/25 16:33:55  brouard
    strcpy(ext,s);                       /* save extension */    (Module): On windows (cygwin) function asctime_r doesn't
    l1= strlen( name);    exist so I changed back to asctime which exists.
    l2= strlen( s)+1;    (Module): Version 0.96b
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.92  2003/06/25 16:30:45  brouard
    return( 0 );                         /* we're done */    (Module): On windows (cygwin) function asctime_r doesn't
 }    exist so I changed back to asctime which exists.
   
     Revision 1.91  2003/06/25 15:30:29  brouard
 /******************************************/    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 void replace(char *s, char*t)    helps to forecast when convergence will be reached. Elapsed time
 {    is stamped in powell.  We created a new html file for the graphs
   int i;    concerning matrix of covariance. It has extension -cov.htm.
   int lg=20;  
   i=0;    Revision 1.90  2003/06/24 12:34:15  brouard
   lg=strlen(t);    (Module): Some bugs corrected for windows. Also, when
   for(i=0; i<= lg; i++) {    mle=-1 a template is output in file "or"mypar.txt with the design
     (s[i] = t[i]);    of the covariance matrix to be input.
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.89  2003/06/24 12:30:52  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int nbocc(char *s, char occ)    of the covariance matrix to be input.
 {  
   int i,j=0;    Revision 1.88  2003/06/23 17:54:56  brouard
   int lg=20;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   i=0;  
   lg=strlen(s);    Revision 1.87  2003/06/18 12:26:01  brouard
   for(i=0; i<= lg; i++) {    Version 0.96
   if  (s[i] == occ ) j++;  
   }    Revision 1.86  2003/06/17 20:04:08  brouard
   return j;    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   int i,lg,j,p=0;    current date of interview. It may happen when the death was just
   i=0;    prior to the death. In this case, dh was negative and likelihood
   for(j=0; j<=strlen(t)-1; j++) {    was wrong (infinity). We still send an "Error" but patch by
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    assuming that the date of death was just one stepm after the
   }    interview.
     (Repository): Because some people have very long ID (first column)
   lg=strlen(t);    we changed int to long in num[] and we added a new lvector for
   for(j=0; j<p; j++) {    memory allocation. But we also truncated to 8 characters (left
     (u[j] = t[j]);    truncation)
   }    (Repository): No more line truncation errors.
      u[p]='\0';  
     Revision 1.84  2003/06/13 21:44:43  brouard
    for(j=0; j<= lg; j++) {    * imach.c (Repository): Replace "freqsummary" at a correct
     if (j>=(p+1))(v[j-p-1] = t[j]);    place. It differs from routine "prevalence" which may be called
   }    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /********************** nrerror ********************/  
     Revision 1.83  2003/06/10 13:39:11  lievre
 void nrerror(char error_text[])    *** empty log message ***
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.82  2003/06/05 15:57:20  brouard
   fprintf(stderr,"%s\n",error_text);    Add log in  imach.c and  fullversion number is now printed.
   exit(1);  
 }  */
 /*********************** vector *******************/  /*
 double *vector(int nl, int nh)     Interpolated Markov Chain
 {  
   double *v;    Short summary of the programme:
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    
   if (!v) nrerror("allocation failure in vector");    This program computes Healthy Life Expectancies from
   return v-nl+NR_END;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 }    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 /************************ free vector ******************/    case of a health survey which is our main interest) -2- at least a
 void free_vector(double*v, int nl, int nh)    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
   free((FREE_ARG)(v+nl-NR_END));    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 /************************ivector *******************************/    simplest model is the multinomial logistic model where pij is the
 int *ivector(long nl,long nh)    probability to be observed in state j at the second wave
 {    conditional to be observed in state i at the first wave. Therefore
   int *v;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    'age' is age and 'sex' is a covariate. If you want to have a more
   if (!v) nrerror("allocation failure in ivector");    complex model than "constant and age", you should modify the program
   return v-nl+NR_END;    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    The advantage of this computer programme, compared to a simple
 {    multinomial logistic model, is clear when the delay between waves is not
   free((FREE_ARG)(v+nl-NR_END));    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    hPijx is the probability to be observed in state i at age x+h
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    states. This elementary transition (by month, quarter,
   int **m;    semester or year) is modelled as a multinomial logistic.  The hPx
      matrix is simply the matrix product of nh*stepm elementary matrices
   /* allocate pointers to rows */    and the contribution of each individual to the likelihood is simply
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    hPijx.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Also this programme outputs the covariance matrix of the parameters but also
   m -= nrl;    of the life expectancies. It also computes the period (stable) prevalence. 
      
      Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   /* allocate rows and set pointers to them */             Institut national d'études démographiques, Paris.
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    This software have been partly granted by Euro-REVES, a concerted action
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    from the European Union.
   m[nrl] += NR_END;    It is copyrighted identically to a GNU software product, ie programme and
   m[nrl] -= ncl;    software can be distributed freely for non commercial use. Latest version
      can be accessed at http://euroreves.ined.fr/imach .
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   /* return pointer to array of pointers to rows */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   return m;    
 }    **********************************************************************/
   /*
 /****************** free_imatrix *************************/    main
 void free_imatrix(m,nrl,nrh,ncl,nch)    read parameterfile
       int **m;    read datafile
       long nch,ncl,nrh,nrl;    concatwav
      /* free an int matrix allocated by imatrix() */    freqsummary
 {    if (mle >= 1)
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      mlikeli
   free((FREE_ARG) (m+nrl-NR_END));    print results files
 }    if mle==1 
        computes hessian
 /******************* matrix *******************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 double **matrix(long nrl, long nrh, long ncl, long nch)        begin-prev-date,...
 {    open gnuplot file
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    open html file
   double **m;    period (stable) prevalence
      for age prevalim()
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    h Pij x
   if (!m) nrerror("allocation failure 1 in matrix()");    variance of p varprob
   m += NR_END;    forecasting if prevfcast==1 prevforecast call prevalence()
   m -= nrl;    health expectancies
     Variance-covariance of DFLE
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    prevalence()
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     movingaverage()
   m[nrl] += NR_END;    varevsij() 
   m[nrl] -= ncl;    if popbased==1 varevsij(,popbased)
     total life expectancies
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Variance of period (stable) prevalence
   return m;   end
 }  */
   
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {   
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <math.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 /******************* ma3x *******************************/  #include <unistd.h>
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  #include <limits.h>
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #include <sys/types.h>
   double ***m;  #include <sys/stat.h>
   #include <errno.h>
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  extern int errno;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /* #include <sys/time.h> */
   m -= nrl;  #include <time.h>
   #include "timeval.h"
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* #include <libintl.h> */
   m[nrl] += NR_END;  /* #define _(String) gettext (String) */
   m[nrl] -= ncl;  
   #define MAXLINE 256
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   #define GNUPLOTPROGRAM "gnuplot"
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define FILENAMELENGTH 132
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for (j=ncl+1; j<=nch; j++)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   for (i=nrl+1; i<=nrh; i++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define NINTERVMAX 8
       m[i][j]=m[i][j-1]+nlay;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   return m;  #define NCOVMAX 20 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /*************************free ma3x ************************/  #define AGESUP 130
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #ifdef UNIX
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define DIRSEPARATOR '/'
   free((FREE_ARG)(m+nrl-NR_END));  #define CHARSEPARATOR "/"
 }  #define ODIRSEPARATOR '\\'
   #else
 /***************** f1dim *************************/  #define DIRSEPARATOR '\\'
 extern int ncom;  #define CHARSEPARATOR "\\"
 extern double *pcom,*xicom;  #define ODIRSEPARATOR '/'
 extern double (*nrfunc)(double []);  #endif
    
 double f1dim(double x)  /* $Id$ */
 {  /* $State$ */
   int j;  
   double f;  char version[]="Imach version 0.98k, June 2006, INED-EUROREVES-Institut de longevite ";
   double *xt;  char fullversion[]="$Revision$ $Date$"; 
    char strstart[80];
   xt=vector(1,ncom);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   f=(*nrfunc)(xt);  int nvar=0;
   free_vector(xt,1,ncom);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
   return f;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /*****************brent *************************/  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int popbased=0;
 {  
   int iter;  int *wav; /* Number of waves for this individuual 0 is possible */
   double a,b,d,etemp;  int maxwav=0; /* Maxim number of waves */
   double fu,fv,fw,fx;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   double ftemp;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double e=0.0;                     to the likelihood and the sum of weights (done by funcone)*/
    int mle=1, weightopt=0;
   a=(ax < cx ? ax : cx);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   b=(ax > cx ? ax : cx);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   x=w=v=bx;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   fw=fv=fx=(*f)(x);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for (iter=1;iter<=ITMAX;iter++) {  double jmean=1; /* Mean space between 2 waves */
     xm=0.5*(a+b);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     printf(".");fflush(stdout);  FILE *ficlog, *ficrespow;
 #ifdef DEBUG  int globpr=0; /* Global variable for printing or not */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double fretone; /* Only one call to likelihood */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  long ipmx=0; /* Number of contributions */
 #endif  double sw; /* Sum of weights */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char filerespow[FILENAMELENGTH];
       *xmin=x;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       return fx;  FILE *ficresilk;
     }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     ftemp=fu;  FILE *ficresprobmorprev;
     if (fabs(e) > tol1) {  FILE *fichtm, *fichtmcov; /* Html File */
       r=(x-w)*(fx-fv);  FILE *ficreseij;
       q=(x-v)*(fx-fw);  char filerese[FILENAMELENGTH];
       p=(x-v)*q-(x-w)*r;  FILE *ficresstdeij;
       q=2.0*(q-r);  char fileresstde[FILENAMELENGTH];
       if (q > 0.0) p = -p;  FILE *ficrescveij;
       q=fabs(q);  char filerescve[FILENAMELENGTH];
       etemp=e;  FILE  *ficresvij;
       e=d;  char fileresv[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  FILE  *ficresvpl;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fileresvpl[FILENAMELENGTH];
       else {  char title[MAXLINE];
         d=p/q;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         u=x+d;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         if (u-a < tol2 || b-u < tol2)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
           d=SIGN(tol1,xm-x);  char command[FILENAMELENGTH];
       }  int  outcmd=0;
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char filelog[FILENAMELENGTH]; /* Log file */
     fu=(*f)(u);  char filerest[FILENAMELENGTH];
     if (fu <= fx) {  char fileregp[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  char popfile[FILENAMELENGTH];
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         } else {  
           if (u < x) a=u; else b=u;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
           if (fu <= fw || w == x) {  struct timezone tzp;
             v=w;  extern int gettimeofday();
             w=u;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
             fv=fw;  long time_value;
             fw=fu;  extern long time();
           } else if (fu <= fv || v == x || v == w) {  char strcurr[80], strfor[80];
             v=u;  
             fv=fu;  char *endptr;
           }  long lval;
         }  double dval;
   }  
   nrerror("Too many iterations in brent");  #define NR_END 1
   *xmin=x;  #define FREE_ARG char*
   return fx;  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /****************** mnbrak ***********************/  #define ITMAX 200 
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define TOL 2.0e-4 
             double (*func)(double))  
 {  #define CGOLD 0.3819660 
   double ulim,u,r,q, dum;  #define ZEPS 1.0e-10 
   double fu;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    
   *fa=(*func)(*ax);  #define GOLD 1.618034 
   *fb=(*func)(*bx);  #define GLIMIT 100.0 
   if (*fb > *fa) {  #define TINY 1.0e-20 
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  static double maxarg1,maxarg2;
       }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   *cx=(*bx)+GOLD*(*bx-*ax);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   *fc=(*func)(*cx);    
   while (*fb > *fc) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     r=(*bx-*ax)*(*fb-*fc);  #define rint(a) floor(a+0.5)
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  static double sqrarg;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     if ((*bx-u)*(u-*cx) > 0.0) {  int agegomp= AGEGOMP;
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int imx; 
       fu=(*func)(u);  int stepm=1;
       if (fu < *fc) {  /* Stepm, step in month: minimum step interpolation*/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  int estepm;
           }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  int m,nb;
       fu=(*func)(u);  long *num;
     } else {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       u=(*cx)+GOLD*(*cx-*bx);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       fu=(*func)(u);  double **pmmij, ***probs;
     }  double *ageexmed,*agecens;
     SHFT(*ax,*bx,*cx,u)  double dateintmean=0;
       SHFT(*fa,*fb,*fc,fu)  
       }  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /*************** linmin ************************/  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 int ncom;  
 double *pcom,*xicom;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double (*nrfunc)(double []);  double ftolhess; /* Tolerance for computing hessian */
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   double f1dim(double x);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    */ 
               double *fc, double (*func)(double));    char  *ss;                            /* pointer */
   int j;    int   l1, l2;                         /* length counters */
   double xx,xmin,bx,ax;  
   double fx,fb,fa;    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   ncom=n;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   pcom=vector(1,n);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   xicom=vector(1,n);      strcpy( name, path );               /* we got the fullname name because no directory */
   nrfunc=func;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   for (j=1;j<=n;j++) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     pcom[j]=p[j];      /* get current working directory */
     xicom[j]=xi[j];      /*    extern  char* getcwd ( char *buf , int len);*/
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   ax=0.0;        return( GLOCK_ERROR_GETCWD );
   xx=1.0;      }
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      /* got dirc from getcwd*/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      printf(" DIRC = %s \n",dirc);
 #ifdef DEBUG    } else {                              /* strip direcotry from path */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      ss++;                               /* after this, the filename */
 #endif      l2 = strlen( ss );                  /* length of filename */
   for (j=1;j<=n;j++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     xi[j] *= xmin;      strcpy( name, ss );         /* save file name */
     p[j] += xi[j];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
   free_vector(xicom,1,n);      printf(" DIRC2 = %s \n",dirc);
   free_vector(pcom,1,n);    }
 }    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
 /*************** powell ************************/    if( dirc[l1-1] != DIRSEPARATOR ){
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      dirc[l1] =  DIRSEPARATOR;
             double (*func)(double []))      dirc[l1+1] = 0; 
 {      printf(" DIRC3 = %s \n",dirc);
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));    ss = strrchr( name, '.' );            /* find last / */
   int i,ibig,j;    if (ss >0){
   double del,t,*pt,*ptt,*xit;      ss++;
   double fp,fptt;      strcpy(ext,ss);                     /* save extension */
   double *xits;      l1= strlen( name);
   pt=vector(1,n);      l2= strlen(ss)+1;
   ptt=vector(1,n);      strncpy( finame, name, l1-l2);
   xit=vector(1,n);      finame[l1-l2]= 0;
   xits=vector(1,n);    }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    return( 0 );                          /* we're done */
   for (*iter=1;;++(*iter)) {  }
     fp=(*fret);  
     ibig=0;  
     del=0.0;  /******************************************/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  void replace_back_to_slash(char *s, char*t)
       printf(" %d %.12f",i, p[i]);  {
     printf("\n");    int i;
     for (i=1;i<=n;i++) {    int lg=0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    i=0;
       fptt=(*fret);    lg=strlen(t);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
       printf("fret=%lf \n",*fret);      (s[i] = t[i]);
 #endif      if (t[i]== '\\') s[i]='/';
       printf("%d",i);fflush(stdout);    }
       linmin(p,xit,n,fret,func);  }
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  int nbocc(char *s, char occ)
         ibig=i;  {
       }    int i,j=0;
 #ifdef DEBUG    int lg=20;
       printf("%d %.12e",i,(*fret));    i=0;
       for (j=1;j<=n;j++) {    lg=strlen(s);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for(i=0; i<= lg; i++) {
         printf(" x(%d)=%.12e",j,xit[j]);    if  (s[i] == occ ) j++;
       }    }
       for(j=1;j<=n;j++)    return j;
         printf(" p=%.12e",p[j]);  }
       printf("\n");  
 #endif  void cutv(char *u,char *v, char*t, char occ)
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 #ifdef DEBUG       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       int k[2],l;       gives u="abcedf" and v="ghi2j" */
       k[0]=1;    int i,lg,j,p=0;
       k[1]=-1;    i=0;
       printf("Max: %.12e",(*func)(p));    for(j=0; j<=strlen(t)-1; j++) {
       for (j=1;j<=n;j++)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
         printf(" %.12e",p[j]);    }
       printf("\n");  
       for(l=0;l<=1;l++) {    lg=strlen(t);
         for (j=1;j<=n;j++) {    for(j=0; j<p; j++) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      (u[j] = t[j]);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    }
         }       u[p]='\0';
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }     for(j=0; j<= lg; j++) {
 #endif      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /********************** nrerror ********************/
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  void nrerror(char error_text[])
       return;  {
     }    fprintf(stderr,"ERREUR ...\n");
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    fprintf(stderr,"%s\n",error_text);
     for (j=1;j<=n;j++) {    exit(EXIT_FAILURE);
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  /*********************** vector *******************/
       pt[j]=p[j];  double *vector(int nl, int nh)
     }  {
     fptt=(*func)(ptt);    double *v;
     if (fptt < fp) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    if (!v) nrerror("allocation failure in vector");
       if (t < 0.0) {    return v-nl+NR_END;
         linmin(p,xit,n,fret,func);  }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /************************ free vector ******************/
           xi[j][n]=xit[j];  void free_vector(double*v, int nl, int nh)
         }  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /************************ivector *******************************/
         printf("\n");  int *ivector(long nl,long nh)
 #endif  {
       }    int *v;
     }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   }    if (!v) nrerror("allocation failure in ivector");
 }    return v-nl+NR_END;
   }
 /**** Prevalence limit ****************/  
   /******************free ivector **************************/
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  void free_ivector(int *v, long nl, long nh)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free((FREE_ARG)(v+nl-NR_END));
      matrix by transitions matrix until convergence is reached */  }
   
   int i, ii,j,k;  /************************lvector *******************************/
   double min, max, maxmin, maxmax,sumnew=0.;  long *lvector(long nl,long nh)
   double **matprod2();  {
   double **out, cov[NCOVMAX], **pmij();    long *v;
   double **newm;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double agefin, delaymax=50 ; /* Max number of years to converge */    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   for (ii=1;ii<=nlstate+ndeath;ii++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /******************free lvector **************************/
     }  void free_lvector(long *v, long nl, long nh)
   {
    cov[1]=1.;    free((FREE_ARG)(v+nl-NR_END));
    }
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /******************* imatrix *******************************/
     newm=savm;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     /* Covariates have to be included here again */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
      cov[2]=agefin;  { 
      long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for (k=1; k<=cptcovn;k++) {    int **m; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    /* allocate pointers to rows */ 
       }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if (!m) nrerror("allocation failure 1 in matrix()"); 
       for (k=1; k<=cptcovprod;k++)    m += NR_END; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m -= nrl; 
     
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    /* allocate rows and set pointers to them */ 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
     savm=oldm;    m[nrl] -= ncl; 
     oldm=newm;    
     maxmax=0.;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for(j=1;j<=nlstate;j++){    
       min=1.;    /* return pointer to array of pointers to rows */ 
       max=0.;    return m; 
       for(i=1; i<=nlstate; i++) {  } 
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /****************** free_imatrix *************************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  void free_imatrix(m,nrl,nrh,ncl,nch)
         max=FMAX(max,prlim[i][j]);        int **m;
         min=FMIN(min,prlim[i][j]);        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
       maxmin=max-min;  { 
       maxmax=FMAX(maxmax,maxmin);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     if(maxmax < ftolpl){  } 
       return prlim;  
     }  /******************* matrix *******************************/
   }  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*************** transition probabilities ***************/    double **m;
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   double s1, s2;    m += NR_END;
   /*double t34;*/    m -= nrl;
   int i,j,j1, nc, ii, jj;  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(i=1; i<= nlstate; i++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(j=1; j<i;j++){    m[nrl] += NR_END;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl] -= ncl;
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    return m;
       }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       ps[i][j]=s2;     */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  }
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /*************************free matrix ************************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       ps[i][j]=s2;  }
     }  
   }  /******************* ma3x *******************************/
     /*ps[3][2]=1;*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
   for(i=1; i<= nlstate; i++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      s1=0;    double ***m;
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(j=i+1; j<=nlstate+ndeath; j++)    if (!m) nrerror("allocation failure 1 in matrix()");
       s1+=exp(ps[i][j]);    m += NR_END;
     ps[i][i]=1./(s1+1.);    m -= nrl;
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(j=i+1; j<=nlstate+ndeath; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl] += NR_END;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    m[nrl] -= ncl;
   } /* end i */  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       ps[ii][jj]=0;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       ps[ii][ii]=1;    m[nrl][ncl] += NR_END;
     }    m[nrl][ncl] -= nll;
   }    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
     
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    for (i=nrl+1; i<=nrh; i++) {
     for(jj=1; jj<= nlstate+ndeath; jj++){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
      printf("%lf ",ps[ii][jj]);      for (j=ncl+1; j<=nch; j++) 
    }        m[i][j]=m[i][j-1]+nlay;
     printf("\n ");    }
     }    return m; 
     printf("\n ");printf("%lf ",cov[2]);*/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 /*             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    */
   goto end;*/  }
     return ps;  
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /**************** Product of 2 matrices ******************/  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /*************** function subdirf ***********/
      before: only the contents of out is modified. The function returns  char *subdirf(char fileres[])
      a pointer to pointers identical to out */  {
   long i, j, k;    /* Caution optionfilefiname is hidden */
   for(i=nrl; i<= nrh; i++)    strcpy(tmpout,optionfilefiname);
     for(k=ncolol; k<=ncoloh; k++)    strcat(tmpout,"/"); /* Add to the right */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    strcat(tmpout,fileres);
         out[i][k] +=in[i][j]*b[j][k];    return tmpout;
   }
   return out;  
 }  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   {
 /************* Higher Matrix Product ***************/    
     /* Caution optionfilefiname is hidden */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/");
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    strcat(tmpout,preop);
      duration (i.e. until    strcat(tmpout,fileres);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    return tmpout;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  }
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /*************** function subdirf3 ***********/
      included manually here.  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
      */    
     /* Caution optionfilefiname is hidden */
   int i, j, d, h, k;    strcpy(tmpout,optionfilefiname);
   double **out, cov[NCOVMAX];    strcat(tmpout,"/");
   double **newm;    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   /* Hstepm could be zero and should return the unit matrix */    strcat(tmpout,fileres);
   for (i=1;i<=nlstate+ndeath;i++)    return tmpout;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /***************** f1dim *************************/
     }  extern int ncom; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  extern double *pcom,*xicom;
   for(h=1; h <=nhstepm; h++){  extern double (*nrfunc)(double []); 
     for(d=1; d <=hstepm; d++){   
       newm=savm;  double f1dim(double x) 
       /* Covariates have to be included here again */  { 
       cov[1]=1.;    int j; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double f;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double *xt; 
       for (k=1; k<=cptcovage;k++)   
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    xt=vector(1,ncom); 
       for (k=1; k<=cptcovprod;k++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
     return f; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*****************brent *************************/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       savm=oldm;  { 
       oldm=newm;    int iter; 
     }    double a,b,d,etemp;
     for(i=1; i<=nlstate+ndeath; i++)    double fu,fv,fw,fx;
       for(j=1;j<=nlstate+ndeath;j++) {    double ftemp;
         po[i][j][h]=newm[i][j];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double e=0.0; 
          */   
       }    a=(ax < cx ? ax : cx); 
   } /* end h */    b=(ax > cx ? ax : cx); 
   return po;    x=w=v=bx; 
 }    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 /*************** log-likelihood *************/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 double func( double *x)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 {      printf(".");fflush(stdout);
   int i, ii, j, k, mi, d, kk;      fprintf(ficlog,".");fflush(ficlog);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #ifdef DEBUG
   double **out;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double sw; /* Sum of weights */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double lli; /* Individual log likelihood */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   int s1, s2;  #endif
   long ipmx;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   /*extern weight */        *xmin=x; 
   /* We are differentiating ll according to initial status */        return fx; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } 
   /*for(i=1;i<imx;i++)      ftemp=fu;
     printf(" %d\n",s[4][i]);      if (fabs(e) > tol1) { 
   */        r=(x-w)*(fx-fv); 
   cov[1]=1.;        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        q=2.0*(q-r); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        if (q > 0.0) p = -p; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        q=fabs(q); 
     for(mi=1; mi<= wav[i]-1; mi++){        etemp=e; 
       for (ii=1;ii<=nlstate+ndeath;ii++)        e=d; 
         for (j=1;j<=nlstate+ndeath;j++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        else { 
         }          d=p/q; 
       for(d=0; d<dh[mi][i]; d++){          u=x+d; 
         newm=savm;          if (u-a < tol2 || b-u < tol2) 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            d=SIGN(tol1,xm-x); 
         for (kk=1; kk<=cptcovage;kk++) {        } 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      } else { 
         }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
              } 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      fu=(*f)(u); 
         savm=oldm;      if (fu <= fx) { 
         oldm=newm;        if (u >= x) a=x; else b=x; 
                SHFT(v,w,x,u) 
                  SHFT(fv,fw,fx,fu) 
       } /* end mult */          } else { 
                  if (u < x) a=u; else b=u; 
       s1=s[mw[mi][i]][i];            if (fu <= fw || w == x) { 
       s2=s[mw[mi+1][i]][i];              v=w; 
       if( s2 > nlstate){              w=u; 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution              fv=fw; 
            to the likelihood is the probability to die between last step unit time and current              fw=fu; 
            step unit time, which is also the differences between probability to die before dh            } else if (fu <= fv || v == x || v == w) { 
            and probability to die before dh-stepm .              v=u; 
            In version up to 0.92 likelihood was computed              fv=fu; 
            as if date of death was unknown. Death was treated as any other            } 
            health state: the date of the interview describes the actual state          } 
            and not the date of a change in health state. The former idea was    } 
            to consider that at each interview the state was recorded    nrerror("Too many iterations in brent"); 
            (healthy, disable or death) and IMaCh was corrected; but when we    *xmin=x; 
            introduced the exact date of death then we should have modified    return fx; 
            the contribution of an exact death to the likelihood. This new  } 
            contribution is smaller and very dependent of the step unit  
            stepm. It is no more the probability to die between last interview  /****************** mnbrak ***********************/
            and month of death but the probability to survive from last  
            interview up to one month before death multiplied by the  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
            probability to die within a month. Thanks to Chris              double (*func)(double)) 
            Jackson for correcting this bug.  Former versions increased  { 
            mortality artificially. The bad side is that we add another loop    double ulim,u,r,q, dum;
            which slows down the processing. The difference can be up to 10%    double fu; 
            lower mortality.   
         */    *fa=(*func)(*ax); 
         lli=log(out[s1][s2] - savm[s1][s2]);    *fb=(*func)(*bx); 
       }else{    if (*fb > *fa) { 
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */      SHFT(dum,*ax,*bx,dum) 
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        SHFT(dum,*fb,*fa,dum) 
       }        } 
       ipmx +=1;    *cx=(*bx)+GOLD*(*bx-*ax); 
       sw += weight[i];    *fc=(*func)(*cx); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    while (*fb > *fc) { 
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/      r=(*bx-*ax)*(*fb-*fc); 
     } /* end of wave */      q=(*bx-*cx)*(*fb-*fa); 
   } /* end of individual */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      if ((*bx-u)*(u-*cx) > 0.0) { 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        fu=(*func)(u); 
   /*exit(0);*/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   return -l;        fu=(*func)(u); 
 }        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 /*********** Maximum Likelihood Estimation ***************/            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        u=ulim; 
 {        fu=(*func)(u); 
   int i,j, iter;      } else { 
   double **xi,*delti;        u=(*cx)+GOLD*(*cx-*bx); 
   double fret;        fu=(*func)(u); 
   xi=matrix(1,npar,1,npar);      } 
   for (i=1;i<=npar;i++)      SHFT(*ax,*bx,*cx,u) 
     for (j=1;j<=npar;j++)        SHFT(*fa,*fb,*fc,fu) 
       xi[i][j]=(i==j ? 1.0 : 0.0);        } 
   printf("Powell\n");  } 
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   /*************** linmin ************************/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  int ncom; 
   double *pcom,*xicom;
 }  double (*nrfunc)(double []); 
    
 /**** Computes Hessian and covariance matrix ***/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  { 
 {    double brent(double ax, double bx, double cx, 
   double  **a,**y,*x,pd;                 double (*f)(double), double tol, double *xmin); 
   double **hess;    double f1dim(double x); 
   int i, j,jk;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   int *indx;                double *fc, double (*func)(double)); 
     int j; 
   double hessii(double p[], double delta, int theta, double delti[]);    double xx,xmin,bx,ax; 
   double hessij(double p[], double delti[], int i, int j);    double fx,fb,fa;
   void lubksb(double **a, int npar, int *indx, double b[]) ;   
   void ludcmp(double **a, int npar, int *indx, double *d) ;    ncom=n; 
     pcom=vector(1,n); 
   hess=matrix(1,npar,1,npar);    xicom=vector(1,n); 
     nrfunc=func; 
   printf("\nCalculation of the hessian matrix. Wait...\n");    for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++){      pcom[j]=p[j]; 
     printf("%d",i);fflush(stdout);      xicom[j]=xi[j]; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    } 
     /*printf(" %f ",p[i]);*/    ax=0.0; 
     /*printf(" %lf ",hess[i][i]);*/    xx=1.0; 
   }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for (i=1;i<=npar;i++) {  #ifdef DEBUG
     for (j=1;j<=npar;j++)  {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       if (j>i) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         printf(".%d%d",i,j);fflush(stdout);  #endif
         hess[i][j]=hessij(p,delti,i,j);    for (j=1;j<=n;j++) { 
         hess[j][i]=hess[i][j];          xi[j] *= xmin; 
         /*printf(" %lf ",hess[i][j]);*/      p[j] += xi[j]; 
       }    } 
     }    free_vector(xicom,1,n); 
   }    free_vector(pcom,1,n); 
   printf("\n");  } 
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  char *asc_diff_time(long time_sec, char ascdiff[])
    {
   a=matrix(1,npar,1,npar);    long sec_left, days, hours, minutes;
   y=matrix(1,npar,1,npar);    days = (time_sec) / (60*60*24);
   x=vector(1,npar);    sec_left = (time_sec) % (60*60*24);
   indx=ivector(1,npar);    hours = (sec_left) / (60*60) ;
   for (i=1;i<=npar;i++)    sec_left = (sec_left) %(60*60);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    minutes = (sec_left) /60;
   ludcmp(a,npar,indx,&pd);    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for (j=1;j<=npar;j++) {    return ascdiff;
     for (i=1;i<=npar;i++) x[i]=0;  }
     x[j]=1;  
     lubksb(a,npar,indx,x);  /*************** powell ************************/
     for (i=1;i<=npar;i++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       matcov[i][j]=x[i];              double (*func)(double [])) 
     }  { 
   }    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   printf("\n#Hessian matrix#\n");    int i,ibig,j; 
   for (i=1;i<=npar;i++) {    double del,t,*pt,*ptt,*xit;
     for (j=1;j<=npar;j++) {    double fp,fptt;
       printf("%.3e ",hess[i][j]);    double *xits;
     }    int niterf, itmp;
     printf("\n");  
   }    pt=vector(1,n); 
     ptt=vector(1,n); 
   /* Recompute Inverse */    xit=vector(1,n); 
   for (i=1;i<=npar;i++)    xits=vector(1,n); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    *fret=(*func)(p); 
   ludcmp(a,npar,indx,&pd);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   /*  printf("\n#Hessian matrix recomputed#\n");      fp=(*fret); 
       ibig=0; 
   for (j=1;j<=npar;j++) {      del=0.0; 
     for (i=1;i<=npar;i++) x[i]=0;      last_time=curr_time;
     x[j]=1;      (void) gettimeofday(&curr_time,&tzp);
     lubksb(a,npar,indx,x);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for (i=1;i<=npar;i++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       y[i][j]=x[i];  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       printf("%.3e ",y[i][j]);     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
     printf("\n");        fprintf(ficlog," %d %.12lf",i, p[i]);
   }        fprintf(ficrespow," %.12lf", p[i]);
   */      }
       printf("\n");
   free_matrix(a,1,npar,1,npar);      fprintf(ficlog,"\n");
   free_matrix(y,1,npar,1,npar);      fprintf(ficrespow,"\n");fflush(ficrespow);
   free_vector(x,1,npar);      if(*iter <=3){
   free_ivector(indx,1,npar);        tm = *localtime(&curr_time.tv_sec);
   free_matrix(hess,1,npar,1,npar);        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
 }        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 /*************** hessian matrix ****************/          strcurr[itmp-1]='\0';
 double hessii( double x[], double delta, int theta, double delti[])        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   int i;        for(niterf=10;niterf<=30;niterf+=10){
   int l=1, lmax=20;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   double k1,k2;          tmf = *localtime(&forecast_time.tv_sec);
   double p2[NPARMAX+1];  /*      asctime_r(&tmf,strfor); */
   double res;          strcpy(strfor,asctime(&tmf));
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          itmp = strlen(strfor);
   double fx;          if(strfor[itmp-1]=='\n')
   int k=0,kmax=10;          strfor[itmp-1]='\0';
   double l1;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   fx=func(x);        }
   for (i=1;i<=npar;i++) p2[i]=x[i];      }
   for(l=0 ; l <=lmax; l++){      for (i=1;i<=n;i++) { 
     l1=pow(10,l);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     delts=delt;        fptt=(*fret); 
     for(k=1 ; k <kmax; k=k+1){  #ifdef DEBUG
       delt = delta*(l1*k);        printf("fret=%lf \n",*fret);
       p2[theta]=x[theta] +delt;        fprintf(ficlog,"fret=%lf \n",*fret);
       k1=func(p2)-fx;  #endif
       p2[theta]=x[theta]-delt;        printf("%d",i);fflush(stdout);
       k2=func(p2)-fx;        fprintf(ficlog,"%d",i);fflush(ficlog);
       /*res= (k1-2.0*fx+k2)/delt/delt; */        linmin(p,xit,n,fret,func); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        if (fabs(fptt-(*fret)) > del) { 
                del=fabs(fptt-(*fret)); 
 #ifdef DEBUG          ibig=i; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        } 
 #endif  #ifdef DEBUG
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        printf("%d %.12e",i,(*fret));
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        fprintf(ficlog,"%d %.12e",i,(*fret));
         k=kmax;        for (j=1;j<=n;j++) {
       }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          printf(" x(%d)=%.12e",j,xit[j]);
         k=kmax; l=lmax*10.;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for(j=1;j<=n;j++) {
         delts=delt;          printf(" p=%.12e",p[j]);
       }          fprintf(ficlog," p=%.12e",p[j]);
     }        }
   }        printf("\n");
   delti[theta]=delts;        fprintf(ficlog,"\n");
   return res;  #endif
        } 
 }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
 double hessij( double x[], double delti[], int thetai,int thetaj)        int k[2],l;
 {        k[0]=1;
   int i;        k[1]=-1;
   int l=1, l1, lmax=20;        printf("Max: %.12e",(*func)(p));
   double k1,k2,k3,k4,res,fx;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double p2[NPARMAX+1];        for (j=1;j<=n;j++) {
   int k;          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   fx=func(x);        }
   for (k=1; k<=2; k++) {        printf("\n");
     for (i=1;i<=npar;i++) p2[i]=x[i];        fprintf(ficlog,"\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(l=0;l<=1;l++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for (j=1;j<=n;j++) {
     k1=func(p2)-fx;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
              printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          }
     k2=func(p2)-fx;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #endif
     k3=func(p2)-fx;  
    
     p2[thetai]=x[thetai]-delti[thetai]/k;        free_vector(xit,1,n); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        free_vector(xits,1,n); 
     k4=func(p2)-fx;        free_vector(ptt,1,n); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        free_vector(pt,1,n); 
 #ifdef DEBUG        return; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      } 
 #endif      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { 
   return res;        ptt[j]=2.0*p[j]-pt[j]; 
 }        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
 /************** Inverse of matrix **************/      } 
 void ludcmp(double **a, int n, int *indx, double *d)      fptt=(*func)(ptt); 
 {      if (fptt < fp) { 
   int i,imax,j,k;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double big,dum,sum,temp;        if (t < 0.0) { 
   double *vv;          linmin(p,xit,n,fret,func); 
            for (j=1;j<=n;j++) { 
   vv=vector(1,n);            xi[j][ibig]=xi[j][n]; 
   *d=1.0;            xi[j][n]=xit[j]; 
   for (i=1;i<=n;i++) {          }
     big=0.0;  #ifdef DEBUG
     for (j=1;j<=n;j++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       if ((temp=fabs(a[i][j])) > big) big=temp;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          for(j=1;j<=n;j++){
     vv[i]=1.0/big;            printf(" %.12e",xit[j]);
   }            fprintf(ficlog," %.12e",xit[j]);
   for (j=1;j<=n;j++) {          }
     for (i=1;i<j;i++) {          printf("\n");
       sum=a[i][j];          fprintf(ficlog,"\n");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  #endif
       a[i][j]=sum;        }
     }      } 
     big=0.0;    } 
     for (i=j;i<=n;i++) {  } 
       sum=a[i][j];  
       for (k=1;k<j;k++)  /**** Prevalence limit (stable or period prevalence)  ****************/
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       if ( (dum=vv[i]*fabs(sum)) >= big) {  {
         big=dum;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         imax=i;       matrix by transitions matrix until convergence is reached */
       }  
     }    int i, ii,j,k;
     if (j != imax) {    double min, max, maxmin, maxmax,sumnew=0.;
       for (k=1;k<=n;k++) {    double **matprod2();
         dum=a[imax][k];    double **out, cov[NCOVMAX+1], **pmij();
         a[imax][k]=a[j][k];    double **newm;
         a[j][k]=dum;    double agefin, delaymax=50 ; /* Max number of years to converge */
       }  
       *d = -(*d);    for (ii=1;ii<=nlstate+ndeath;ii++)
       vv[imax]=vv[j];      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     indx[j]=imax;      }
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {     cov[1]=1.;
       dum=1.0/(a[j][j]);   
       for (i=j+1;i<=n;i++) a[i][j] *= dum;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }      newm=savm;
   free_vector(vv,1,n);  /* Doesn't work */      /* Covariates have to be included here again */
 ;       cov[2]=agefin;
 }    
         for (k=1; k<=cptcovn;k++) {
 void lubksb(double **a, int n, int *indx, double b[])          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   int i,ii=0,ip,j;        }
   double sum;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          for (k=1; k<=cptcovprod;k++)
   for (i=1;i<=n;i++) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     ip=indx[i];  
     sum=b[ip];        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     b[ip]=b[i];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     if (ii)        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     else if (sum) ii=i;  
     b[i]=sum;      savm=oldm;
   }      oldm=newm;
   for (i=n;i>=1;i--) {      maxmax=0.;
     sum=b[i];      for(j=1;j<=nlstate;j++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        min=1.;
     b[i]=sum/a[i][i];        max=0.;
   }        for(i=1; i<=nlstate; i++) {
 }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 /************ Frequencies ********************/          prlim[i][j]= newm[i][j]/(1-sumnew);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          max=FMAX(max,prlim[i][j]);
 {  /* Some frequencies */          min=FMIN(min,prlim[i][j]);
          }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        maxmin=max-min;
   double ***freq; /* Frequencies */        maxmax=FMAX(maxmax,maxmin);
   double *pp;      }
   double pos, k2, dateintsum=0,k2cpt=0;      if(maxmax < ftolpl){
   FILE *ficresp;        return prlim;
   char fileresp[FILENAMELENGTH];      }
      }
   pp=vector(1,nlstate);  }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");  /*************** transition probabilities ***************/ 
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     printf("Problem with prevalence resultfile: %s\n", fileresp);  {
     exit(0);    double s1, s2;
   }    /*double t34;*/
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int i,j,j1, nc, ii, jj;
   j1=0;  
        for(i=1; i<= nlstate; i++){
   j=cptcoveff;        for(j=1; j<i;j++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
              /*s2 += param[i][j][nc]*cov[nc];*/
   for(k1=1; k1<=j;k1++){            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for(i1=1; i1<=ncodemax[k1];i1++){  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       j1++;          }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          ps[i][j]=s2;
         scanf("%d", i);*/  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       for (i=-1; i<=nlstate+ndeath; i++)          }
         for (jk=-1; jk<=nlstate+ndeath; jk++)          for(j=i+1; j<=nlstate+ndeath;j++){
           for(m=agemin; m <= agemax+3; m++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             freq[i][jk][m]=0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
        /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       dateintsum=0;          }
       k2cpt=0;          ps[i][j]=s2;
       for (i=1; i<=imx; i++) {        }
         bool=1;      }
         if  (cptcovn>0) {      /*ps[3][2]=1;*/
           for (z1=1; z1<=cptcoveff; z1++)      
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for(i=1; i<= nlstate; i++){
               bool=0;        s1=0;
         }        for(j=1; j<i; j++){
         if (bool==1) {          s1+=exp(ps[i][j]);
           for(m=firstpass; m<=lastpass; m++){          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             k2=anint[m][i]+(mint[m][i]/12.);        }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(j=i+1; j<=nlstate+ndeath; j++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;          s1+=exp(ps[i][j]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               if (m<lastpass) {        }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        ps[i][i]=1./(s1+1.);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for(j=1; j<i; j++)
               }          ps[i][j]= exp(ps[i][j])*ps[i][i];
                      for(j=i+1; j<=nlstate+ndeath; j++)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
                 dateintsum=dateintsum+k2;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                 k2cpt++;      } /* end i */
               }      
             }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           }        for(jj=1; jj<= nlstate+ndeath; jj++){
         }          ps[ii][jj]=0;
       }          ps[ii][ii]=1;
                }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      }
       
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         fprintf(ficresp, "**********\n#");  /*         printf("ddd %lf ",ps[ii][jj]); */
       }  /*       } */
       for(i=1; i<=nlstate;i++)  /*       printf("\n "); */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /*        } */
       fprintf(ficresp, "\n");  /*        printf("\n ");printf("%lf ",cov[2]); */
               /*
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         if(i==(int)agemax+3)        goto end;*/
           printf("Total");      return ps;
         else  }
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){  /**************** Product of 2 matrices ******************/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         }  {
         for(jk=1; jk <=nlstate ; jk++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           for(m=-1, pos=0; m <=0 ; m++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
             pos += freq[jk][m][i];    /* in, b, out are matrice of pointers which should have been initialized 
           if(pp[jk]>=1.e-10)       before: only the contents of out is modified. The function returns
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);       a pointer to pointers identical to out */
           else    long i, j, k;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for(i=nrl; i<= nrh; i++)
         }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
         for(jk=1; jk <=nlstate ; jk++){          out[i][k] +=in[i][j]*b[j][k];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    return out;
         }  }
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];  /************* Higher Matrix Product ***************/
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  {
           else    /* Computes the transition matrix starting at age 'age' over 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       'nhstepm*hstepm*stepm' months (i.e. until
           if( i <= (int) agemax){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
             if(pos>=1.e-5){       nhstepm*hstepm matrices. 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
               probs[i][jk][j1]= pp[jk]/pos;       (typically every 2 years instead of every month which is too big 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/       for the memory).
             }       Model is determined by parameters x and covariates have to be 
             else       included manually here. 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }       */
         }  
            int i, j, d, h, k;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    double **out, cov[NCOVMAX+1];
           for(m=-1; m <=nlstate+ndeath; m++)    double **newm;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)    /* Hstepm could be zero and should return the unit matrix */
           fprintf(ficresp,"\n");    for (i=1;i<=nlstate+ndeath;i++)
         printf("\n");      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[i][j]=(i==j ? 1.0 : 0.0);
     }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   }      }
   dateintmean=dateintsum/k2cpt;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   fclose(ficresp);      for(d=1; d <=hstepm; d++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        newm=savm;
   free_vector(pp,1,nlstate);        /* Covariates have to be included here again */
          cov[1]=1.;
   /* End of Freq */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
 }        for (k=1; k<=cptcovn;k++) 
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /************ Prevalence ********************/        for (k=1; k<=cptcovage;k++)
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {  /* Some frequencies */        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  
   double *pp;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   double pos, k2;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   pp=vector(1,nlstate);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        savm=oldm;
          oldm=newm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      }
   j1=0;      for(i=1; i<=nlstate+ndeath; i++)
          for(j=1;j<=nlstate+ndeath;j++) {
   j=cptcoveff;          po[i][j][h]=newm[i][j];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
          }
  for(k1=1; k1<=j;k1++){      /*printf("h=%d ",h);*/
     for(i1=1; i1<=ncodemax[k1];i1++){    } /* end h */
       j1++;  /*     printf("\n H=%d \n",h); */
      return po;
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  /*************** log-likelihood *************/
        double func( double *x)
       for (i=1; i<=imx; i++) {  {
         bool=1;    int i, ii, j, k, mi, d, kk;
         if  (cptcovn>0) {    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           for (z1=1; z1<=cptcoveff; z1++)    double **out;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double sw; /* Sum of weights */
               bool=0;    double lli; /* Individual log likelihood */
         }    int s1, s2;
         if (bool==1) {    double bbh, survp;
           for(m=firstpass; m<=lastpass; m++){    long ipmx;
             k2=anint[m][i]+(mint[m][i]/12.);    /*extern weight */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    /* We are differentiating ll according to initial status */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /*for(i=1;i<imx;i++) 
               if (m<lastpass)      printf(" %d\n",s[4][i]);
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    */
               else    cov[1]=1.;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
             }  
           }    if(mle==1){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(i=(int)agemin; i <= (int)agemax+3; i++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            for (j=1;j<=nlstate+ndeath;j++){
               pp[jk] += freq[jk][m][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(jk=1; jk <=nlstate ; jk++){            }
             for(m=-1, pos=0; m <=0 ; m++)          for(d=0; d<dh[mi][i]; d++){
             pos += freq[jk][m][i];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
          for(jk=1; jk <=nlstate ; jk++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
              pp[jk] += freq[jk][m][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                      savm=oldm;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            oldm=newm;
           } /* end mult */
          for(jk=1; jk <=nlstate ; jk++){                  
            if( i <= (int) agemax){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
              if(pos>=1.e-5){          /* But now since version 0.9 we anticipate for bias at large stepm.
                probs[i][jk][j1]= pp[jk]/pos;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
              }           * (in months) between two waves is not a multiple of stepm, we rounded to 
            }           * the nearest (and in case of equal distance, to the lowest) interval but now
          }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                     * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         }           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           */
   free_vector(pp,1,nlstate);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
 }  /* End of Freq */          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
 /************* Waves Concatenation ***************/           * is higher than the multiple of stepm and negative otherwise.
            */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 {          if( s2 > nlstate){ 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            /* i.e. if s2 is a death state and if the date of death is known 
      Death is a valid wave (if date is known).               then the contribution to the likelihood is the probability to 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i               die between last step unit time and current  step unit time, 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]               which is also equal to probability to die before dh 
      and mw[mi+1][i]. dh depends on stepm.               minus probability to die before dh-stepm . 
      */               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   int i, mi, m;          health state: the date of the interview describes the actual state
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          and not the date of a change in health state. The former idea was
      double sum=0., jmean=0.;*/          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   int j, k=0,jk, ju, jl;          introduced the exact date of death then we should have modified
   double sum=0.;          the contribution of an exact death to the likelihood. This new
   jmin=1e+5;          contribution is smaller and very dependent of the step unit
   jmax=-1;          stepm. It is no more the probability to die between last interview
   jmean=0.;          and month of death but the probability to survive from last
   for(i=1; i<=imx; i++){          interview up to one month before death multiplied by the
     mi=0;          probability to die within a month. Thanks to Chris
     m=firstpass;          Jackson for correcting this bug.  Former versions increased
     while(s[m][i] <= nlstate){          mortality artificially. The bad side is that we add another loop
       if(s[m][i]>=1)          which slows down the processing. The difference can be up to 10%
         mw[++mi][i]=m;          lower mortality.
       if(m >=lastpass)            */
         break;            lli=log(out[s1][s2] - savm[s1][s2]);
       else  
         m++;  
     }/* end while */          } else if  (s2==-2) {
     if (s[m][i] > nlstate){            for (j=1,survp=0. ; j<=nlstate; j++) 
       mi++;     /* Death is another wave */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       /* if(mi==0)  never been interviewed correctly before death */            /*survp += out[s1][j]; */
          /* Only death is a correct wave */            lli= log(survp);
       mw[mi][i]=m;          }
     }          
           else if  (s2==-4) { 
     wav[i]=mi;            for (j=3,survp=0. ; j<=nlstate; j++)  
     if(mi==0)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            lli= log(survp); 
   }          } 
   
   for(i=1; i<=imx; i++){          else if  (s2==-5) { 
     for(mi=1; mi<wav[i];mi++){            for (j=1,survp=0. ; j<=2; j++)  
       if (stepm <=0)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         dh[mi][i]=1;            lli= log(survp); 
       else{          } 
         if (s[mw[mi+1][i]][i] > nlstate) {          
           if (agedc[i] < 2*AGESUP) {          else{
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           if(j==0) j=1;  /* Survives at least one month after exam */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           k=k+1;          } 
           if (j >= jmax) jmax=j;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           if (j <= jmin) jmin=j;          /*if(lli ==000.0)*/
           sum=sum+j;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else{        } /* end of wave */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      } /* end of individual */
           k=k+1;    }  else if(mle==2){
           if (j >= jmax) jmax=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           else if (j <= jmin)jmin=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for(mi=1; mi<= wav[i]-1; mi++){
           sum=sum+j;          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         jk= j/stepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         jl= j -jk*stepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         ju= j -(jk+1)*stepm;            }
         if(jl <= -ju)          for(d=0; d<=dh[mi][i]; d++){
           dh[mi][i]=jk;            newm=savm;
         else            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=jk+1;            for (kk=1; kk<=cptcovage;kk++) {
         if(dh[mi][i]==0)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           dh[mi][i]=1; /* At least one step */            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   jmean=sum/k;            oldm=newm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          } /* end mult */
  }        
 /*********** Tricode ****************************/          s1=s[mw[mi][i]][i];
 void tricode(int *Tvar, int **nbcode, int imx)          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   int Ndum[20],ij=1, k, j, i;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int cptcode=0;          ipmx +=1;
   cptcoveff=0;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (k=0; k<19; k++) Ndum[k]=0;        } /* end of wave */
   for (k=1; k<=7; k++) ncodemax[k]=0;      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       ij=(int)(covar[Tvar[j]][i]);        for(mi=1; mi<= wav[i]-1; mi++){
       Ndum[ij]++;          for (ii=1;ii<=nlstate+ndeath;ii++)
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            for (j=1;j<=nlstate+ndeath;j++){
       if (ij > cptcode) cptcode=ij;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for (i=0; i<=cptcode; i++) {          for(d=0; d<dh[mi][i]; d++){
       if(Ndum[i]!=0) ncodemax[j]++;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     ij=1;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for (i=1; i<=ncodemax[j]; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (k=0; k<=19; k++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if (Ndum[k] != 0) {            savm=oldm;
           nbcode[Tvar[j]][ij]=k;            oldm=newm;
                    } /* end mult */
           ij++;        
         }          s1=s[mw[mi][i]][i];
         if (ij > ncodemax[j]) break;          s2=s[mw[mi+1][i]][i];
       }            bbh=(double)bh[mi][i]/(double)stepm; 
     }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }            ipmx +=1;
           sw += weight[i];
  for (k=0; k<19; k++) Ndum[k]=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
  for (i=1; i<=ncovmodel-2; i++) {      } /* end of individual */
       ij=Tvar[i];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       Ndum[ij]++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
  ij=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
  for (i=1; i<=10; i++) {            for (j=1;j<=nlstate+ndeath;j++){
    if((Ndum[i]!=0) && (i<=ncovcol)){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Tvaraff[ij]=i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      ij++;            }
    }          for(d=0; d<dh[mi][i]; d++){
  }            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     cptcoveff=ij-1;            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /*********** Health Expectancies ****************/          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 {            oldm=newm;
   /* Health expectancies */          } /* end mult */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        
   double age, agelim, hf;          s1=s[mw[mi][i]][i];
   double ***p3mat,***varhe;          s2=s[mw[mi+1][i]][i];
   double **dnewm,**doldm;          if( s2 > nlstate){ 
   double *xp;            lli=log(out[s1][s2] - savm[s1][s2]);
   double **gp, **gm;          }else{
   double ***gradg, ***trgradg;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int theta;          }
           ipmx +=1;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          sw += weight[i];
   xp=vector(1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   dnewm=matrix(1,nlstate*2,1,npar);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   doldm=matrix(1,nlstate*2,1,nlstate*2);        } /* end of wave */
        } /* end of individual */
   fprintf(ficreseij,"# Health expectancies\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficreseij,"# Age");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(j=1; j<=nlstate;j++)        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficreseij,"\n");            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(estepm < stepm){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf ("Problem %d lower than %d\n",estepm, stepm);            }
   }          for(d=0; d<dh[mi][i]; d++){
   else  hstepm=estepm;              newm=savm;
   /* We compute the life expectancy from trapezoids spaced every estepm months            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    * This is mainly to measure the difference between two models: for example            for (kk=1; kk<=cptcovage;kk++) {
    * if stepm=24 months pijx are given only every 2 years and by summing them              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    * we are calculating an estimate of the Life Expectancy assuming a linear            }
    * progression inbetween and thus overestimating or underestimating according          
    * to the curvature of the survival function. If, for the same date, we            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    * to compare the new estimate of Life expectancy with the same linear            savm=oldm;
    * hypothesis. A more precise result, taking into account a more precise            oldm=newm;
    * curvature will be obtained if estepm is as small as stepm. */          } /* end mult */
         
   /* For example we decided to compute the life expectancy with the smallest unit */          s1=s[mw[mi][i]][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          s2=s[mw[mi+1][i]][i];
      nhstepm is the number of hstepm from age to agelim          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      nstepm is the number of stepm from age to agelin.          ipmx +=1;
      Look at hpijx to understand the reason of that which relies in memory size          sw += weight[i];
      and note for a fixed period like estepm months */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      survival function given by stepm (the optimization length). Unfortunately it        } /* end of wave */
      means that if the survival funtion is printed only each two years of age and if      } /* end of individual */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    } /* End of if */
      results. So we changed our mind and took the option of the best precision.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
   agelim=AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  /*************** log-likelihood *************/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  double funcone( double *x)
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  {
     /* if (stepm >= YEARM) hstepm=1;*/    /* Same as likeli but slower because of a lot of printf and if */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int i, ii, j, k, mi, d, kk;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    double **out;
     gp=matrix(0,nhstepm,1,nlstate*2);    double lli; /* Individual log likelihood */
     gm=matrix(0,nhstepm,1,nlstate*2);    double llt;
     int s1, s2;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double bbh, survp;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /*extern weight */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      printf(" %d\n",s[4][i]);
     */
     /* Computing Variances of health expectancies */    cov[1]=1.;
   
      for(theta=1; theta <=npar; theta++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(mi=1; mi<= wav[i]-1; mi++){
          for (ii=1;ii<=nlstate+ndeath;ii++)
       cptj=0;          for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate; j++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate; i++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           cptj=cptj+1;          }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        for(d=0; d<dh[mi][i]; d++){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          newm=savm;
           }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }          for (kk=1; kk<=cptcovage;kk++) {
       }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                }
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          savm=oldm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            oldm=newm;
              } /* end mult */
       cptj=0;        
       for(j=1; j<= nlstate; j++){        s1=s[mw[mi][i]][i];
         for(i=1;i<=nlstate;i++){        s2=s[mw[mi+1][i]][i];
           cptj=cptj+1;        bbh=(double)bh[mi][i]/(double)stepm; 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        /* bias is positive if real duration
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;         * is higher than the multiple of stepm and negative otherwise.
           }         */
         }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       }          lli=log(out[s1][s2] - savm[s1][s2]);
              } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1; j<= nlstate*2; j++)          lli= log(survp);
         for(h=0; h<=nhstepm-1; h++){        }else if (mle==1){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      }        } else if(mle==3){  /* exponential inter-extrapolation */
              lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 /* End theta */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
      for(h=0; h<=nhstepm-1; h++)        } /* End of if */
       for(j=1; j<=nlstate*2;j++)        ipmx +=1;
         for(theta=1; theta <=npar; theta++)        sw += weight[i];
         trgradg[h][j][theta]=gradg[h][theta][j];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); 
         if(globpr){
      for(i=1;i<=nlstate*2;i++)          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(j=1;j<=nlstate*2;j++)   %11.6f %11.6f %11.6f ", \
         varhe[i][j][(int)age] =0.;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     for(h=0;h<=nhstepm-1;h++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(k=0;k<=nhstepm-1;k++){            llt +=ll[k]*gipmx/gsw;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          }
         for(i=1;i<=nlstate*2;i++)          fprintf(ficresilk," %10.6f\n", -llt);
           for(j=1;j<=nlstate*2;j++)        }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      } /* end of wave */
       }    } /* end of individual */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
          l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     /* Computing expectancies */    if(globpr==0){ /* First time we count the contributions and weights */
     for(i=1; i<=nlstate;i++)      gipmx=ipmx;
       for(j=1; j<=nlstate;j++)      gsw=sw;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    return -l;
            }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
   
         }  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     fprintf(ficreseij,"%3.0f",age );  {
     cptj=0;    /* This routine should help understanding what is done with 
     for(i=1; i<=nlstate;i++)       the selection of individuals/waves and
       for(j=1; j<=nlstate;j++){       to check the exact contribution to the likelihood.
         cptj++;       Plotting could be done.
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );     */
       }    int k;
     fprintf(ficreseij,"\n");  
        if(*globpri !=0){ /* Just counts and sums, no printings */
     free_matrix(gm,0,nhstepm,1,nlstate*2);      strcpy(fileresilk,"ilk"); 
     free_matrix(gp,0,nhstepm,1,nlstate*2);      strcat(fileresilk,fileres);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   }      }
   free_vector(xp,1,npar);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   free_matrix(dnewm,1,nlstate*2,1,npar);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      for(k=1; k<=nlstate; k++) 
 }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 /************ Variance ******************/    }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  
 {    *fretone=(*funcone)(p);
   /* Variance of health expectancies */    if(*globpri !=0){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      fclose(ficresilk);
   double **newm;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double **dnewm,**doldm;      fflush(fichtm); 
   int i, j, nhstepm, hstepm, h, nstepm ;    } 
   int k, cptcode;    return;
   double *xp;  }
   double **gp, **gm;  
   double ***gradg, ***trgradg;  
   double ***p3mat;  /*********** Maximum Likelihood Estimation ***************/
   double age,agelim, hf;  
   int theta;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
    fprintf(ficresvij,"# Covariances of life expectancies\n");    int i,j, iter;
   fprintf(ficresvij,"# Age");    double **xi;
   for(i=1; i<=nlstate;i++)    double fret;
     for(j=1; j<=nlstate;j++)    double fretone; /* Only one call to likelihood */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /*  char filerespow[FILENAMELENGTH];*/
   fprintf(ficresvij,"\n");    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   xp=vector(1,npar);      for (j=1;j<=npar;j++)
   dnewm=matrix(1,nlstate,1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      strcpy(filerespow,"pow"); 
   if(estepm < stepm){    strcat(filerespow,fileres);
     printf ("Problem %d lower than %d\n",estepm, stepm);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", filerespow);
   else  hstepm=estepm;        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   /* For example we decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      nhstepm is the number of hstepm from age to agelim    for (i=1;i<=nlstate;i++)
      nstepm is the number of stepm from age to agelin.      for(j=1;j<=nlstate+ndeath;j++)
      Look at hpijx to understand the reason of that which relies in memory size        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      and note for a fixed period like k years */    fprintf(ficrespow,"\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    powell(p,xi,npar,ftol,&iter,&fret,func);
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    free_matrix(xi,1,npar,1,npar);
      results. So we changed our mind and took the option of the best precision.    fclose(ficrespow);
   */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   agelim = AGESUP;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /**** Computes Hessian and covariance matrix ***/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     gp=matrix(0,nhstepm,1,nlstate);  {
     gm=matrix(0,nhstepm,1,nlstate);    double  **a,**y,*x,pd;
     double **hess;
     for(theta=1; theta <=npar; theta++){    int i, j,jk;
       for(i=1; i<=npar; i++){ /* Computes gradient */    int *indx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
       if (popbased==1) {    double gompertz(double p[]);
         for(i=1; i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];  
       }    printf("\nCalculation of the hessian matrix. Wait...\n");
      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++){
         for(h=0; h<=nhstepm; h++){      printf("%d",i);fflush(stdout);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      fprintf(ficlog,"%d",i);fflush(ficlog);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];     
         }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       }      
          /*  printf(" %f ",p[i]);
       for(i=1; i<=npar; i++) /* Computes gradient */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++) {
        for (j=1;j<=npar;j++)  {
       if (popbased==1) {        if (j>i) { 
         for(i=1; i<=nlstate;i++)          printf(".%d%d",i,j);fflush(stdout);
           prlim[i][i]=probs[(int)age][i][ij];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
       for(j=1; j<= nlstate; j++){          hess[j][i]=hess[i][j];    
         for(h=0; h<=nhstepm; h++){          /*printf(" %lf ",hess[i][j]);*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }    }
       }    printf("\n");
     fprintf(ficlog,"\n");
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         }    
     } /* End theta */    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    x=vector(1,npar);
     indx=ivector(1,npar);
     for(h=0; h<=nhstepm; h++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for(theta=1; theta <=npar; theta++)    ludcmp(a,npar,indx,&pd);
           trgradg[h][j][theta]=gradg[h][theta][j];  
     for (j=1;j<=npar;j++) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (i=1;i<=npar;i++) x[i]=0;
     for(i=1;i<=nlstate;i++)      x[j]=1;
       for(j=1;j<=nlstate;j++)      lubksb(a,npar,indx,x);
         vareij[i][j][(int)age] =0.;      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     for(h=0;h<=nhstepm;h++){      }
       for(k=0;k<=nhstepm;k++){    }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    printf("\n#Hessian matrix#\n");
         for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
           for(j=1;j<=nlstate;j++)    for (i=1;i<=npar;i++) { 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for (j=1;j<=npar;j++) { 
       }        printf("%.3e ",hess[i][j]);
     }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
     fprintf(ficresvij,"%.0f ",age );      printf("\n");
     for(i=1; i<=nlstate;i++)      fprintf(ficlog,"\n");
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }    /* Recompute Inverse */
     fprintf(ficresvij,"\n");    for (i=1;i<=npar;i++)
     free_matrix(gp,0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     free_matrix(gm,0,nhstepm,1,nlstate);    ludcmp(a,npar,indx,&pd);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
   free_vector(xp,1,npar);      x[j]=1;
   free_matrix(doldm,1,nlstate,1,npar);      lubksb(a,npar,indx,x);
   free_matrix(dnewm,1,nlstate,1,nlstate);      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
 }        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
 /************ Variance of prevlim ******************/      }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      printf("\n");
 {      fprintf(ficlog,"\n");
   /* Variance of prevalence limit */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    */
   double **newm;  
   double **dnewm,**doldm;    free_matrix(a,1,npar,1,npar);
   int i, j, nhstepm, hstepm;    free_matrix(y,1,npar,1,npar);
   int k, cptcode;    free_vector(x,1,npar);
   double *xp;    free_ivector(indx,1,npar);
   double *gp, *gm;    free_matrix(hess,1,npar,1,npar);
   double **gradg, **trgradg;  
   double age,agelim;  
   int theta;  }
      
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  /*************** hessian matrix ****************/
   fprintf(ficresvpl,"# Age");  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %1d-%1d",i,i);    int i;
   fprintf(ficresvpl,"\n");    int l=1, lmax=20;
     double k1,k2;
   xp=vector(1,npar);    double p2[NPARMAX+1];
   dnewm=matrix(1,nlstate,1,npar);    double res;
   doldm=matrix(1,nlstate,1,nlstate);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      double fx;
   hstepm=1*YEARM; /* Every year of age */    int k=0,kmax=10;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double l1;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fx=func(x);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (i=1;i<=npar;i++) p2[i]=x[i];
     if (stepm >= YEARM) hstepm=1;    for(l=0 ; l <=lmax; l++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      l1=pow(10,l);
     gradg=matrix(1,npar,1,nlstate);      delts=delt;
     gp=vector(1,nlstate);      for(k=1 ; k <kmax; k=k+1){
     gm=vector(1,nlstate);        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
     for(theta=1; theta <=npar; theta++){        k1=func(p2)-fx;
       for(i=1; i<=npar; i++){ /* Computes gradient */        p2[theta]=x[theta]-delt;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        k2=func(p2)-fx;
       }        /*res= (k1-2.0*fx+k2)/delt/delt; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       for(i=1;i<=nlstate;i++)        
         gp[i] = prlim[i][i];  #ifdef DEBUG
            printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1; i<=npar; i++) /* Computes gradient */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #endif
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(i=1;i<=nlstate;i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         gm[i] = prlim[i][i];          k=kmax;
         }
       for(i=1;i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          k=kmax; l=lmax*10.;
     } /* End theta */        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     trgradg =matrix(1,nlstate,1,npar);          delts=delt;
         }
     for(j=1; j<=nlstate;j++)      }
       for(theta=1; theta <=npar; theta++)    }
         trgradg[j][theta]=gradg[theta][j];    delti[theta]=delts;
     return res; 
     for(i=1;i<=nlstate;i++)    
       varpl[i][(int)age] =0.;  }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int i;
     int l=1, l1, lmax=20;
     fprintf(ficresvpl,"%.0f ",age );    double k1,k2,k3,k4,res,fx;
     for(i=1; i<=nlstate;i++)    double p2[NPARMAX+1];
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int k;
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    fx=func(x);
     free_vector(gm,1,nlstate);    for (k=1; k<=2; k++) {
     free_matrix(gradg,1,npar,1,nlstate);      for (i=1;i<=npar;i++) p2[i]=x[i];
     free_matrix(trgradg,1,nlstate,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   } /* End age */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   free_matrix(dnewm,1,nlstate,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
 }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
 /************ Variance of one-step probabilities  ******************/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      k3=func(p2)-fx;
 {    
   int i, j, i1, k1, j1, z1;      p2[thetai]=x[thetai]-delti[thetai]/k;
   int k=0, cptcode;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **dnewm,**doldm;      k4=func(p2)-fx;
   double *xp;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double *gp, *gm;  #ifdef DEBUG
   double **gradg, **trgradg;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double age,agelim, cov[NCOVMAX];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int theta;  #endif
   char fileresprob[FILENAMELENGTH];    }
     return res;
   strcpy(fileresprob,"prob");  }
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  /************** Inverse of matrix **************/
     printf("Problem with resultfile: %s\n", fileresprob);  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    int i,imax,j,k; 
      double big,dum,sum,temp; 
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    double *vv; 
   fprintf(ficresprob,"# Age");   
   for(i=1; i<=nlstate;i++)    vv=vector(1,n); 
     for(j=1; j<=(nlstate+ndeath);j++)    *d=1.0; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    for (i=1;i<=n;i++) { 
       big=0.0; 
       for (j=1;j<=n;j++) 
   fprintf(ficresprob,"\n");        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
   xp=vector(1,npar);    } 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (j=1;j<=n;j++) { 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<j;i++) { 
          sum=a[i][j]; 
   cov[1]=1;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   j=cptcoveff;        a[i][j]=sum; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      } 
   j1=0;      big=0.0; 
   for(k1=1; k1<=1;k1++){      for (i=j;i<=n;i++) { 
     for(i1=1; i1<=ncodemax[k1];i1++){        sum=a[i][j]; 
     j1++;        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
     if  (cptcovn>0) {        a[i][j]=sum; 
       fprintf(ficresprob, "\n#********** Variable ");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          big=dum; 
       fprintf(ficresprob, "**********\n#");          imax=i; 
     }        } 
          } 
       for (age=bage; age<=fage; age ++){      if (j != imax) { 
         cov[2]=age;        for (k=1;k<=n;k++) { 
         for (k=1; k<=cptcovn;k++) {          dum=a[imax][k]; 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          a[imax][k]=a[j][k]; 
                    a[j][k]=dum; 
         }        } 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        *d = -(*d); 
         for (k=1; k<=cptcovprod;k++)        vv[imax]=vv[j]; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } 
              indx[j]=imax; 
         gradg=matrix(1,npar,1,9);      if (a[j][j] == 0.0) a[j][j]=TINY; 
         trgradg=matrix(1,9,1,npar);      if (j != n) { 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        dum=1.0/(a[j][j]); 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
          } 
         for(theta=1; theta <=npar; theta++){    } 
           for(i=1; i<=npar; i++)    free_vector(vv,1,n);  /* Doesn't work */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  ;
            } 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
            void lubksb(double **a, int n, int *indx, double b[]) 
           k=0;  { 
           for(i=1; i<= (nlstate+ndeath); i++){    int i,ii=0,ip,j; 
             for(j=1; j<=(nlstate+ndeath);j++){    double sum; 
               k=k+1;   
               gp[k]=pmmij[i][j];    for (i=1;i<=n;i++) { 
             }      ip=indx[i]; 
           }      sum=b[ip]; 
                b[ip]=b[i]; 
           for(i=1; i<=npar; i++)      if (ii) 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
          else if (sum) ii=i; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      b[i]=sum; 
           k=0;    } 
           for(i=1; i<=(nlstate+ndeath); i++){    for (i=n;i>=1;i--) { 
             for(j=1; j<=(nlstate+ndeath);j++){      sum=b[i]; 
               k=k+1;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
               gm[k]=pmmij[i][j];      b[i]=sum/a[i][i]; 
             }    } 
           }  } 
        
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  void pstamp(FILE *fichier)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    {
         }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)  /************ Frequencies ********************/
             trgradg[j][theta]=gradg[theta][j];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
          {  /* Some frequencies */
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    int i, m, jk, k1,i1, j1, bool, z1,j;
            int first;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    double ***freq; /* Frequencies */
            double *pp, **prop;
         k=0;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(i=1; i<=(nlstate+ndeath); i++){    char fileresp[FILENAMELENGTH];
           for(j=1; j<=(nlstate+ndeath);j++){    
             k=k+1;    pp=vector(1,nlstate);
             gm[k]=pmmij[i][j];    prop=matrix(1,nlstate,iagemin,iagemax+3);
           }    strcpy(fileresp,"p");
         }    strcat(fileresp,fileres);
          if((ficresp=fopen(fileresp,"w"))==NULL) {
      /*printf("\n%d ",(int)age);      printf("Problem with prevalence resultfile: %s\n", fileresp);
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      exit(0);
      }*/    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         fprintf(ficresprob,"\n%d ",(int)age);    j1=0;
     
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    j=cptcoveff;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
       }    first=1;
     }  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for(k1=1; k1<=j;k1++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      for(i1=1; i1<=ncodemax[k1];i1++){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        j1++;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   }          scanf("%d", i);*/
   free_vector(xp,1,npar);        for (i=-5; i<=nlstate+ndeath; i++)  
   fclose(ficresprob);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
              for(m=iagemin; m <= iagemax+3; m++)
 }              freq[i][jk][m]=0;
   
 /******************* Printing html file ***********/      for (i=1; i<=nlstate; i++)  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        for(m=iagemin; m <= iagemax+3; m++)
  int lastpass, int stepm, int weightopt, char model[],\          prop[i][m]=0;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        dateintsum=0;
  char version[], int popforecast, int estepm ){        k2cpt=0;
   int jj1, k1, i1, cpt;        for (i=1; i<=imx; i++) {
   FILE *fichtm;          bool=1;
   /*char optionfilehtm[FILENAMELENGTH];*/          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   strcpy(optionfilehtm,optionfile);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   strcat(optionfilehtm,".htm");                bool=0;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);          if (bool==1){
   }            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 \n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 Total number of observations=%d <br>\n                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                if (m<lastpass) {
 <hr  size=\"2\" color=\"#EC5E5E\">                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
  <ul><li>Outputs files<br>\n                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n                
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n                  dateintsum=dateintsum+k2;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n                  k2cpt++;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                }
                 /*}*/
  fprintf(fichtm,"\n            }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          }
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        }
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n         
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        pstamp(ficresp);
         if  (cptcovn>0) {
  if(popforecast==1) fprintf(fichtm,"\n          fprintf(ficresp, "\n#********** Variable "); 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          fprintf(ficresp, "**********\n#");
         <br>",fileres,fileres,fileres,fileres);        }
  else        for(i=1; i<=nlstate;i++) 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 fprintf(fichtm," <li>Graphs</li><p>");        fprintf(ficresp, "\n");
         
  m=cptcoveff;        for(i=iagemin; i <= iagemax+3; i++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          if(i==iagemax+3){
             fprintf(ficlog,"Total");
  jj1=0;          }else{
  for(k1=1; k1<=m;k1++){            if(first==1){
    for(i1=1; i1<=ncodemax[k1];i1++){              first=0;
        jj1++;              printf("See log file for details...\n");
        if (cptcovn > 0) {            }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            fprintf(ficlog,"Age %d", i);
          for (cpt=1; cpt<=cptcoveff;cpt++)          }
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          for(jk=1; jk <=nlstate ; jk++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
        }              pp[jk] += freq[jk][m][i]; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              for(jk=1; jk <=nlstate ; jk++){
        for(cpt=1; cpt<nlstate;cpt++){            for(m=-1, pos=0; m <=0 ; m++)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              pos += freq[jk][m][i];
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if(pp[jk]>=1.e-10){
        }              if(first==1){
     for(cpt=1; cpt<=nlstate;cpt++) {              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              }
 interval) in state (%d): v%s%d%d.gif <br>              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              }else{
      }              if(first==1)
      for(cpt=1; cpt<=nlstate;cpt++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }
      }          }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.gif<br>          for(jk=1; jk <=nlstate ; jk++){
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 fprintf(fichtm,"\n</body>");              pp[jk] += freq[jk][m][i];
    }          }       
    }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 fclose(fichtm);            pos += pp[jk];
 }            posprop += prop[jk][i];
           }
 /******************* Gnuplot file **************/          for(jk=1; jk <=nlstate ; jk++){
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            if(pos>=1.e-5){
               if(first==1)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcpy(optionfilegnuplot,optionfilefiname);            }else{
   strcat(optionfilegnuplot,".gp.txt");              if(first==1)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     printf("Problem with file %s",optionfilegnuplot);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   }            }
             if( i <= iagemax){
 #ifdef windows              if(pos>=1.e-5){
     fprintf(ficgp,"cd \"%s\" \n",pathc);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 #endif                /*probs[i][jk][j1]= pp[jk]/pos;*/
 m=pow(2,cptcoveff);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                }
  /* 1eme*/              else
   for (cpt=1; cpt<= nlstate ; cpt ++) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
    for (k1=1; k1<= m ; k1 ++) {            }
           }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
 for (i=1; i<= nlstate ; i ++) {            for(m=-1; m <=nlstate+ndeath; m++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(freq[jk][m][i] !=0 ) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(first==1)
 }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if(i <= iagemax)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            fprintf(ficresp,"\n");
 }          if(first==1)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            printf("Others in log...\n");
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficlog,"\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }      }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    dateintmean=dateintsum/k2cpt; 
    
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fclose(ficresp);
    }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   }    free_vector(pp,1,nlstate);
   /*2 eme*/    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   for (k1=1; k1<= m ; k1 ++) {  }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);  
      /************ Prevalence ********************/
     for (i=1; i<= nlstate+1 ; i ++) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       k=2*i;  {  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       for (j=1; j<= nlstate+1 ; j ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       We still use firstpass and lastpass as another selection.
   else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }     
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int i, m, jk, k1, i1, j1, bool, z1,j;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double ***freq; /* Frequencies */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    double *pp, **prop;
       for (j=1; j<= nlstate+1 ; j ++) {    double pos,posprop; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double  y2; /* in fractional years */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int iagemin, iagemax;
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");    iagemin= (int) agemin;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    iagemax= (int) agemax;
       for (j=1; j<= nlstate+1 ; j ++) {    /*pp=vector(1,nlstate);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 }      j1=0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    
       else fprintf(ficgp,"\" t\"\" w l 0,");    j=cptcoveff;
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    
   }    for(k1=1; k1<=j;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   /*3eme*/        j1++;
         
   for (k1=1; k1<= m ; k1 ++) {        for (i=1; i<=nlstate; i++)  
     for (cpt=1; cpt<= nlstate ; cpt ++) {          for(m=iagemin; m <= iagemax+3; m++)
       k=2+nlstate*(2*cpt-2);            prop[i][m]=0.0;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);       
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for (i=1; i<=imx; i++) { /* Each individual */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          bool=1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          if  (cptcovn>0) {
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            for (z1=1; z1<=cptcoveff; z1++) 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                bool=0;
           } 
 */          if (bool==1) { 
       for (i=1; i< nlstate ; i ++) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   /* CV preval stat */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for (k1=1; k1<= m ; k1 ++) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
     for (cpt=1; cpt<nlstate ; cpt ++) {                } 
       k=3;              }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            } /* end selection of waves */
           }
       for (i=1; i< nlstate ; i ++)        }
         fprintf(ficgp,"+$%d",k+i+1);        for(i=iagemin; i <= iagemax+3; i++){  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          
                for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       l=3+(nlstate+ndeath)*cpt;            posprop += prop[jk][i]; 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          } 
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;          for(jk=1; jk <=nlstate ; jk++){     
         fprintf(ficgp,"+$%d",l+i+1);            if( i <=  iagemax){ 
       }              if(posprop>=1.e-5){ 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  probs[i][jk][j1]= prop[jk][i]/posprop;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              } else
     }                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   }              } 
            }/* end jk */ 
   /* proba elementaires */        }/* end i */ 
    for(i=1,jk=1; i <=nlstate; i++){      } /* end i1 */
     for(k=1; k <=(nlstate+ndeath); k++){    } /* end k1 */
       if (k != i) {    
         for(j=1; j <=ncovmodel; j++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
            /*free_vector(pp,1,nlstate);*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           jk++;  }  /* End of prevalence */
           fprintf(ficgp,"\n");  
         }  /************* Waves Concatenation ***************/
       }  
     }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     for(jk=1; jk <=m; jk++) {       Death is a valid wave (if date is known).
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
    i=1;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    for(k2=1; k2<=nlstate; k2++) {       and mw[mi+1][i]. dh depends on stepm.
      k3=i;       */
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){    int i, mi, m;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 ij=1;       double sum=0., jmean=0.;*/
         for(j=3; j <=ncovmodel; j++) {    int first;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int j, k=0,jk, ju, jl;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double sum=0.;
             ij++;    first=0;
           }    jmin=1e+5;
           else    jmax=-1;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    jmean=0.;
         }    for(i=1; i<=imx; i++){
           fprintf(ficgp,")/(1");      mi=0;
              m=firstpass;
         for(k1=1; k1 <=nlstate; k1++){        while(s[m][i] <= nlstate){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 ij=1;          mw[++mi][i]=m;
           for(j=3; j <=ncovmodel; j++){        if(m >=lastpass)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          break;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        else
             ij++;          m++;
           }      }/* end while */
           else      if (s[m][i] > nlstate){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        mi++;     /* Death is another wave */
           }        /* if(mi==0)  never been interviewed correctly before death */
           fprintf(ficgp,")");           /* Only death is a correct wave */
         }        mw[mi][i]=m;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;      wav[i]=mi;
        }      if(mi==0){
      }        nbwarn++;
    }        if(first==0){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    }          first=1;
            }
   fclose(ficgp);        if(first==1){
 }  /* end gnuplot */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
       } /* end mi==0 */
 /*************** Moving average **************/    } /* End individuals */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
     for(i=1; i<=imx; i++){
   int i, cpt, cptcod;      for(mi=1; mi<wav[i];mi++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        if (stepm <=0)
       for (i=1; i<=nlstate;i++)          dh[mi][i]=1;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        else{
           mobaverage[(int)agedeb][i][cptcod]=0.;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                if (agedc[i] < 2*AGESUP) {
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for (i=1; i<=nlstate;i++){              if(j==0) j=1;  /* Survives at least one month after exam */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              else if(j<0){
           for (cpt=0;cpt<=4;cpt++){                nberr++;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                j=1; /* Temporary Dangerous patch */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }              }
                  k=k+1;
 }              if (j >= jmax){
                 jmax=j;
                 ijmax=i;
 /************** Forecasting ******************/              }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              if (j <= jmin){
                  jmin=j;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                ijmin=i;
   int *popage;              }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              sum=sum+j;
   double *popeffectif,*popcount;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   double ***p3mat;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   char fileresf[FILENAMELENGTH];            }
           }
  agelim=AGESUP;          else{
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
              k=k+1;
              if (j >= jmax) {
   strcpy(fileresf,"f");              jmax=j;
   strcat(fileresf,fileres);              ijmax=i;
   if((ficresf=fopen(fileresf,"w"))==NULL) {            }
     printf("Problem with forecast resultfile: %s\n", fileresf);            else if (j <= jmin){
   }              jmin=j;
   printf("Computing forecasting: result on file '%s' \n", fileresf);              ijmin=i;
             }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   if (mobilav==1) {            if(j<0){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              nberr++;
     movingaverage(agedeb, fage, ageminpar, mobaverage);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
   stepsize=(int) (stepm+YEARM-1)/YEARM;            sum=sum+j;
   if (stepm<=12) stepsize=1;          }
            jk= j/stepm;
   agelim=AGESUP;          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
   hstepm=1;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   hstepm=hstepm/stepm;            if(jl==0){
   yp1=modf(dateintmean,&yp);              dh[mi][i]=jk;
   anprojmean=yp;              bh[mi][i]=0;
   yp2=modf((yp1*12),&yp);            }else{ /* We want a negative bias in order to only have interpolation ie
   mprojmean=yp;                    * at the price of an extra matrix product in likelihood */
   yp1=modf((yp2*30.5),&yp);              dh[mi][i]=jk+1;
   jprojmean=yp;              bh[mi][i]=ju;
   if(jprojmean==0) jprojmean=1;            }
   if(mprojmean==0) jprojmean=1;          }else{
              if(jl <= -ju){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              dh[mi][i]=jk;
                bh[mi][i]=jl;       /* bias is positive if real duration
   for(cptcov=1;cptcov<=i2;cptcov++){                                   * is higher than the multiple of stepm and negative otherwise.
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                   */
       k=k+1;            }
       fprintf(ficresf,"\n#******");            else{
       for(j=1;j<=cptcoveff;j++) {              dh[mi][i]=jk+1;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              bh[mi][i]=ju;
       }            }
       fprintf(ficresf,"******\n");            if(dh[mi][i]==0){
       fprintf(ficresf,"# StartingAge FinalAge");              dh[mi][i]=1; /* At least one step */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              bh[mi][i]=ju; /* At least one step */
                    /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                  }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          } /* end if mle */
         fprintf(ficresf,"\n");        }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        } /* end wave */
     }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    jmean=sum/k;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           nhstepm = nhstepm/hstepm;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
             }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  /*********** Tricode ****************************/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    void tricode(int *Tvar, int **nbcode, int imx)
          {
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
             for(j=1; j<=nlstate+ndeath;j++) {    int cptcode=0;
               kk1=0.;kk2=0;    cptcoveff=0; 
               for(i=1; i<=nlstate;i++) {                 
                 if (mobilav==1)    for (k=0; k<maxncov; k++) Ndum[k]=0;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
                 }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                                 modality*/ 
               }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
               if (h==(int)(calagedate+12*cpt)){        Ndum[ij]++; /*counts the occurence of this modality */
                 fprintf(ficresf," %.3f", kk1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                                if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
               }                                         Tvar[j]. If V=sex and male is 0 and 
             }                                         female is 1, then  cptcode=1.*/
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
       }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariate. In fact ncodemax[j]=2 (dichotom. variables only) but it can be more */
     }      } /* Ndum[-1] number of undefined modalities */
   }  
              ij=1; 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
         for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
   fclose(ficresf);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 /************** Forecasting ******************/                                       k is a modality. If we have model=V1+V1*sex 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              ij++;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          }
   int *popage;          if (ij > ncodemax[j]) break; 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }  
   double *popeffectif,*popcount;      } 
   double ***p3mat,***tabpop,***tabpopprev;    }  
   char filerespop[FILENAMELENGTH];  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   agelim=AGESUP;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
       Ndum[ij]++;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   }
    
     ij=1;
   strcpy(filerespop,"pop");   for (i=1; i<= maxncov; i++) {
   strcat(filerespop,fileres);     if((Ndum[i]!=0) && (i<=ncovcol)){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       Tvaraff[ij]=i; /*For printing */
     printf("Problem with forecast resultfile: %s\n", filerespop);       ij++;
   }     }
   printf("Computing forecasting: result on file '%s' \n", filerespop);   }
    ij--;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   cptcoveff=ij; /*Number of simple covariates*/
   }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*********** Health Expectancies ****************/
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  {
   if (stepm<=12) stepsize=1;    /* Health expectancies, no variances */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   agelim=AGESUP;    int nhstepma, nstepma; /* Decreasing with age */
      double age, agelim, hf;
   hstepm=1;    double ***p3mat;
   hstepm=hstepm/stepm;    double eip;
    
   if (popforecast==1) {    pstamp(ficreseij);
     if((ficpop=fopen(popfile,"r"))==NULL) {    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       printf("Problem with population file : %s\n",popfile);exit(0);    fprintf(ficreseij,"# Age");
     }    for(i=1; i<=nlstate;i++){
     popage=ivector(0,AGESUP);      for(j=1; j<=nlstate;j++){
     popeffectif=vector(0,AGESUP);        fprintf(ficreseij," e%1d%1d ",i,j);
     popcount=vector(0,AGESUP);      }
          fprintf(ficreseij," e%1d. ",i);
     i=1;      }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fprintf(ficreseij,"\n");
      
     imx=i;    
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   for(cptcov=1;cptcov<=i2;cptcov++){    else  hstepm=estepm;   
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* We compute the life expectancy from trapezoids spaced every estepm months
       k=k+1;     * This is mainly to measure the difference between two models: for example
       fprintf(ficrespop,"\n#******");     * if stepm=24 months pijx are given only every 2 years and by summing them
       for(j=1;j<=cptcoveff;j++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficrespop,"******\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficrespop,"# Age");     * to compare the new estimate of Life expectancy with the same linear 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);     * hypothesis. A more precise result, taking into account a more precise
       if (popforecast==1)  fprintf(ficrespop," [Population]");     * curvature will be obtained if estepm is as small as stepm. */
        
       for (cpt=0; cpt<=0;cpt++) {    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               nhstepm is the number of hstepm from age to agelim 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       nstepm is the number of stepm from age to agelin. 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       Look at hpijx to understand the reason of that which relies in memory size
           nhstepm = nhstepm/hstepm;       and note for a fixed period like estepm months */
              /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       survival function given by stepm (the optimization length). Unfortunately it
           oldm=oldms;savm=savms;       means that if the survival funtion is printed only each two years of age and if
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               results. So we changed our mind and took the option of the best precision.
           for (h=0; h<=nhstepm; h++){    */
             if (h==(int) (calagedate+YEARM*cpt)) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    agelim=AGESUP;
             for(j=1; j<=nlstate+ndeath;j++) {    /* If stepm=6 months */
               kk1=0.;kk2=0;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               for(i=1; i<=nlstate;i++) {                       in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                 if (mobilav==1)      
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  /* nhstepm age range expressed in number of stepm */
                 else {    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                 }    /* if (stepm >= YEARM) hstepm=1;*/
               }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               if (h==(int)(calagedate+12*cpt)){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);    for (age=bage; age<=fage; age ++){ 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             }      /* if (stepm >= YEARM) hstepm=1;*/
             for(i=1; i<=nlstate;i++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){      /* If stepm=6 months */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                 }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      
             }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      
           }      printf("%d|",(int)age);fflush(stdout);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         }      
       }      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   /******/        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;          }
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficreseij,"%3.0f",age );
           oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          eip=0;
           for (h=0; h<=nhstepm; h++){        for(j=1; j<=nlstate;j++){
             if (h==(int) (calagedate+YEARM*cpt)) {          eip +=eij[i][j][(int)age];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficreseij,"%9.4f", eip );
               kk1=0.;kk2=0;      }
               for(i=1; i<=nlstate;i++) {                    fprintf(ficreseij,"\n");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          
               }    }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    printf("\n");
           }    fprintf(ficlog,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }  }
       }  
    }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
    {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
   if (popforecast==1) {    */
     free_ivector(popage,0,AGESUP);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     free_vector(popeffectif,0,AGESUP);    int nhstepma, nstepma; /* Decreasing with age */
     free_vector(popcount,0,AGESUP);    double age, agelim, hf;
   }    double ***p3matp, ***p3matm, ***varhe;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **dnewm,**doldm;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double *xp, *xm;
   fclose(ficrespop);    double **gp, **gm;
 }    double ***gradg, ***trgradg;
     int theta;
 /***********************************************/  
 /**************** Main Program *****************/    double eip, vip;
 /***********************************************/  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 int main(int argc, char *argv[])    xp=vector(1,npar);
 {    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   double agedeb, agefin,hf;    
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   double fret;    fprintf(ficresstdeij,"# Age");
   double **xi,tmp,delta;    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
   double dum; /* Dummy variable */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   double ***p3mat;      fprintf(ficresstdeij," e%1d. ",i);
   int *indx;    }
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficresstdeij,"\n");
   char title[MAXLINE];  
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    pstamp(ficrescveij);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficrescveij,"# Age");
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
   char filerest[FILENAMELENGTH];        cptj= (j-1)*nlstate+i;
   char fileregp[FILENAMELENGTH];        for(i2=1; i2<=nlstate;i2++)
   char popfile[FILENAMELENGTH];          for(j2=1; j2<=nlstate;j2++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            cptj2= (j2-1)*nlstate+i2;
   int firstobs=1, lastobs=10;            if(cptj2 <= cptj)
   int sdeb, sfin; /* Status at beginning and end */              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   int c,  h , cpt,l;          }
   int ju,jl, mi;      }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficrescveij,"\n");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    
   int mobilav=0,popforecast=0;    if(estepm < stepm){
   int hstepm, nhstepm;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    }
     else  hstepm=estepm;   
   double bage, fage, age, agelim, agebase;    /* We compute the life expectancy from trapezoids spaced every estepm months
   double ftolpl=FTOL;     * This is mainly to measure the difference between two models: for example
   double **prlim;     * if stepm=24 months pijx are given only every 2 years and by summing them
   double *severity;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double ***param; /* Matrix of parameters */     * progression in between and thus overestimating or underestimating according
   double  *p;     * to the curvature of the survival function. If, for the same date, we 
   double **matcov; /* Matrix of covariance */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double ***delti3; /* Scale */     * to compare the new estimate of Life expectancy with the same linear 
   double *delti; /* Scale */     * hypothesis. A more precise result, taking into account a more precise
   double ***eij, ***vareij;     * curvature will be obtained if estepm is as small as stepm. */
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;    /* For example we decided to compute the life expectancy with the smallest unit */
   double kk1, kk2;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";       and note for a fixed period like estepm months */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   char z[1]="c", occ;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 #include <sys/time.h>       results. So we changed our mind and took the option of the best precision.
 #include <time.h>    */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   /* long total_usecs;    /* If stepm=6 months */
   struct timeval start_time, end_time;    /* nhstepm age range expressed in number of stepm */
      agelim=AGESUP;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   getcwd(pathcd, size);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   printf("\n%s",version);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if(argc <=1){    
     printf("\nEnter the parameter file name: ");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     scanf("%s",pathtot);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   else{    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     strcpy(pathtot,argv[1]);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);    for (age=bage; age<=fage; age ++){ 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /* cutv(path,optionfile,pathtot,'\\');*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);      /* If stepm=6 months */
   replace(pathc,path);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 /*-------- arguments in the command line --------*/      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);      /* Computing  Variances of health expectancies */
   strcat(fileres,".txt");    /* Other files have txt extension */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
   /*---------arguments file --------*/      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("Problem with optionfile %s\n",optionfile);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     goto end;        }
   }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   strcpy(filereso,"o");    
   strcat(filereso,fileres);        for(j=1; j<= nlstate; j++){
   if((ficparo=fopen(filereso,"w"))==NULL) {          for(i=1; i<=nlstate; i++){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            for(h=0; h<=nhstepm-1; h++){
   }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   /* Reads comments: lines beginning with '#' */            }
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);       
     puts(line);        for(ij=1; ij<= nlstate*nlstate; ij++)
     fputs(line,ficparo);          for(h=0; h<=nhstepm-1; h++){
   }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   ungetc(c,ficpar);          }
       }/* End theta */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      for(h=0; h<=nhstepm-1; h++)
 while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate*nlstate;j++)
     ungetc(c,ficpar);          for(theta=1; theta <=npar; theta++)
     fgets(line, MAXLINE, ficpar);            trgradg[h][j][theta]=gradg[h][theta][j];
     puts(line);      
     fputs(line,ficparo);  
   }       for(ij=1;ij<=nlstate*nlstate;ij++)
   ungetc(c,ficpar);        for(ji=1;ji<=nlstate*nlstate;ji++)
            varhe[ij][ji][(int)age] =0.;
      
   covar=matrix(0,NCOVMAX,1,n);       printf("%d|",(int)age);fflush(stdout);
   cptcovn=0;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
   ncovmodel=2+cptcovn;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
            for(ij=1;ij<=nlstate*nlstate;ij++)
   /* Read guess parameters */            for(ji=1;ji<=nlstate*nlstate;ji++)
   /* Reads comments: lines beginning with '#' */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      /* Computing expectancies */
     fputs(line,ficparo);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   }      for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     for(i=1; i <=nlstate; i++)            
     for(j=1; j <=nlstate+ndeath-1; j++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){      fprintf(ficresstdeij,"%3.0f",age );
         fscanf(ficpar," %lf",&param[i][j][k]);      for(i=1; i<=nlstate;i++){
         printf(" %lf",param[i][j][k]);        eip=0.;
         fprintf(ficparo," %lf",param[i][j][k]);        vip=0.;
       }        for(j=1; j<=nlstate;j++){
       fscanf(ficpar,"\n");          eip += eij[i][j][(int)age];
       printf("\n");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       fprintf(ficparo,"\n");            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
          }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
   p=param[1][1];      fprintf(ficresstdeij,"\n");
    
   /* Reads comments: lines beginning with '#' */      fprintf(ficrescveij,"%3.0f",age );
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
     fgets(line, MAXLINE, ficpar);          cptj= (j-1)*nlstate+i;
     puts(line);          for(i2=1; i2<=nlstate;i2++)
     fputs(line,ficparo);            for(j2=1; j2<=nlstate;j2++){
   }              cptj2= (j2-1)*nlstate+i2;
   ungetc(c,ficpar);              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        }
   for(i=1; i <=nlstate; i++){      fprintf(ficrescveij,"\n");
     for(j=1; j <=nlstate+ndeath-1; j++){     
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       printf("%1d%1d",i,j);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficparo,"%1d%1d",i1,j1);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       for(k=1; k<=ncovmodel;k++){    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         printf(" %le",delti3[i][j][k]);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficparo," %le",delti3[i][j][k]);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    printf("\n");
       fscanf(ficpar,"\n");    fprintf(ficlog,"\n");
       printf("\n");  
       fprintf(ficparo,"\n");    free_vector(xm,1,npar);
     }    free_vector(xp,1,npar);
   }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   delti=delti3[1][1];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   /* Reads comments: lines beginning with '#' */  }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance ******************/
     fgets(line, MAXLINE, ficpar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     puts(line);  {
     fputs(line,ficparo);    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   ungetc(c,ficpar);    /* double **newm;*/
      double **dnewm,**doldm;
   matcov=matrix(1,npar,1,npar);    double **dnewmp,**doldmp;
   for(i=1; i <=npar; i++){    int i, j, nhstepm, hstepm, h, nstepm ;
     fscanf(ficpar,"%s",&str);    int k, cptcode;
     printf("%s",str);    double *xp;
     fprintf(ficparo,"%s",str);    double **gp, **gm;  /* for var eij */
     for(j=1; j <=i; j++){    double ***gradg, ***trgradg; /*for var eij */
       fscanf(ficpar," %le",&matcov[i][j]);    double **gradgp, **trgradgp; /* for var p point j */
       printf(" %.5le",matcov[i][j]);    double *gpp, *gmp; /* for var p point j */
       fprintf(ficparo," %.5le",matcov[i][j]);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     }    double ***p3mat;
     fscanf(ficpar,"\n");    double age,agelim, hf;
     printf("\n");    double ***mobaverage;
     fprintf(ficparo,"\n");    int theta;
   }    char digit[4];
   for(i=1; i <=npar; i++)    char digitp[25];
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    char fileresprobmorprev[FILENAMELENGTH];
      
   printf("\n");    if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
     /*-------- Rewriting paramater file ----------*/      else strcpy(digitp,"-populbased-nomobil-");
      strcpy(rfileres,"r");    /* "Rparameterfile */    }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    else 
      strcat(rfileres,".");    /* */      strcpy(digitp,"-stablbased-");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {    if (mobilav!=0) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     fprintf(ficres,"#%s\n",version);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            printf(" Error in movingaverage mobilav=%d\n",mobilav);
     /*-------- data file ----------*/      }
     if((fic=fopen(datafile,"r"))==NULL)    {    }
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     n= lastobs;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     severity = vector(1,maxwav);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     outcome=imatrix(1,maxwav+1,1,n);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     num=ivector(1,n);    strcat(fileresprobmorprev,fileres);
     moisnais=vector(1,n);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     annais=vector(1,n);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     moisdc=vector(1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     andc=vector(1,n);    }
     agedc=vector(1,n);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     cod=ivector(1,n);   
     weight=vector(1,n);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    pstamp(ficresprobmorprev);
     mint=matrix(1,maxwav,1,n);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     anint=matrix(1,maxwav,1,n);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     s=imatrix(1,maxwav+1,1,n);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     adl=imatrix(1,maxwav+1,1,n);          fprintf(ficresprobmorprev," p.%-d SE",j);
     tab=ivector(1,NCOVMAX);      for(i=1; i<=nlstate;i++)
     ncodemax=ivector(1,8);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     i=1;    fprintf(ficresprobmorprev,"\n");
     while (fgets(line, MAXLINE, fic) != NULL)    {    fprintf(ficgp,"\n# Routine varevsij");
       if ((i >= firstobs) && (i <=lastobs)) {    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
            fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         for (j=maxwav;j>=1;j--){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  /*   } */
           strcpy(line,stra);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    pstamp(ficresvij);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         }    if(popbased==1)
              fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    else
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresvij,"\n");
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
         num[i]=atol(stra);    doldm=matrix(1,nlstate,1,nlstate);
            dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         i=i+1;    gpp=vector(nlstate+1,nlstate+ndeath);
       }    gmp=vector(nlstate+1,nlstate+ndeath);
     }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* printf("ii=%d", ij);    
        scanf("%d",i);*/    if(estepm < stepm){
   imx=i-1; /* Number of individuals */      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   /* for (i=1; i<=imx; i++){    else  hstepm=estepm;   
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    /* For example we decided to compute the life expectancy with the smallest unit */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;       nhstepm is the number of hstepm from age to agelim 
     }*/       nstepm is the number of stepm from age to agelin. 
    /*  for (i=1; i<=imx; i++){       Look at function hpijx to understand why (it is linked to memory size questions) */
      if (s[4][i]==9)  s[4][i]=-1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* Calculation of the number of parameter from char model*/       results. So we changed our mind and took the option of the best precision.
   Tvar=ivector(1,15);    */
   Tprod=ivector(1,15);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   Tvaraff=ivector(1,15);    agelim = AGESUP;
   Tvard=imatrix(1,15,1,2);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   Tage=ivector(1,15);            nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (strlen(model) >1){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     j=0, j1=0, k1=1, k2=1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     j=nbocc(model,'+');      gp=matrix(0,nhstepm,1,nlstate);
     j1=nbocc(model,'*');      gm=matrix(0,nhstepm,1,nlstate);
     cptcovn=j+1;  
     cptcovprod=j1;  
          for(theta=1; theta <=npar; theta++){
     strcpy(modelsav,model);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       printf("Error. Non available option model=%s ",model);        }
       goto end;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      
     for(i=(j+1); i>=1;i--){        if (popbased==1) {
       cutv(stra,strb,modelsav,'+');          if(mobilav ==0){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            for(i=1; i<=nlstate;i++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              prlim[i][i]=probs[(int)age][i][ij];
       /*scanf("%d",i);*/          }else{ /* mobilav */ 
       if (strchr(strb,'*')) {            for(i=1; i<=nlstate;i++)
         cutv(strd,strc,strb,'*');              prlim[i][i]=mobaverage[(int)age][i][ij];
         if (strcmp(strc,"age")==0) {          }
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');    
           Tvar[i]=atoi(stre);        for(j=1; j<= nlstate; j++){
           cptcovage++;          for(h=0; h<=nhstepm; h++){
             Tage[cptcovage]=i;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             /*printf("stre=%s ", stre);*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
         else if (strcmp(strd,"age")==0) {        }
           cptcovprod--;        /* This for computing probability of death (h=1 means
           cutv(strb,stre,strc,'V');           computed over hstepm matrices product = hstepm*stepm months) 
           Tvar[i]=atoi(stre);           as a weighted average of prlim.
           cptcovage++;        */
           Tage[cptcovage]=i;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         else {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           cutv(strb,stre,strc,'V');        }    
           Tvar[i]=ncovcol+k1;        /* end probability of death */
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           Tvard[k1][1]=atoi(strc);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           Tvard[k1][2]=atoi(stre);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           Tvar[cptcovn+k2]=Tvard[k1][1];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   
           for (k=1; k<=lastobs;k++)        if (popbased==1) {
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          if(mobilav ==0){
           k1++;            for(i=1; i<=nlstate;i++)
           k2=k2+2;              prlim[i][i]=probs[(int)age][i][ij];
         }          }else{ /* mobilav */ 
       }            for(i=1; i<=nlstate;i++)
       else {              prlim[i][i]=mobaverage[(int)age][i][ij];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          }
        /*  scanf("%d",i);*/        }
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       }          for(h=0; h<=nhstepm; h++){
       strcpy(modelsav,stra);              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         scanf("%d",i);*/          }
     }        }
 }        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);           as a weighted average of prlim.
   printf("cptcovprod=%d ", cptcovprod);        */
   scanf("%d ",i);*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fclose(fic);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
     /*  if(mle==1){*/        }    
     if (weightopt != 1) { /* Maximisation without weights*/        /* end probability of death */
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }        for(j=1; j<= nlstate; j++) /* vareij */
     /*-calculation of age at interview from date of interview and age at death -*/          for(h=0; h<=nhstepm; h++){
     agev=matrix(1,maxwav,1,imx);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          anint[m][i]=9999;        }
          s[m][i]=-1;  
        }      } /* End theta */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     }  
       for(h=0; h<=nhstepm; h++) /* veij */
     for (i=1; i<=imx; i++)  {        for(j=1; j<=nlstate;j++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for(theta=1; theta <=npar; theta++)
       for(m=1; (m<= maxwav); m++){            trgradg[h][j][theta]=gradg[h][theta][j];
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             if(agedc[i]>0)        for(theta=1; theta <=npar; theta++)
               if(moisdc[i]!=99 && andc[i]!=9999)          trgradgp[j][theta]=gradgp[theta][j];
                 agev[m][i]=agedc[i];    
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               if (andc[i]!=9999){      for(i=1;i<=nlstate;i++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        for(j=1;j<=nlstate;j++)
               agev[m][i]=-1;          vareij[i][j][(int)age] =0.;
               }  
             }      for(h=0;h<=nhstepm;h++){
           }        for(k=0;k<=nhstepm;k++){
           else if(s[m][i] !=9){ /* Should no more exist */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
             if(mint[m][i]==99 || anint[m][i]==9999)          for(i=1;i<=nlstate;i++)
               agev[m][i]=1;            for(j=1;j<=nlstate;j++)
             else if(agev[m][i] <agemin){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
               agemin=agev[m][i];        }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      }
             }    
             else if(agev[m][i] >agemax){      /* pptj */
               agemax=agev[m][i];      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
             }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
             /*agev[m][i]=anint[m][i]-annais[i];*/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
             /*   agev[m][i] = age[i]+2*m;*/          varppt[j][i]=doldmp[j][i];
           }      /* end ppptj */
           else { /* =9 */      /*  x centered again */
             agev[m][i]=1;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             s[m][i]=-1;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           }   
         }      if (popbased==1) {
         else /*= 0 Unknown */        if(mobilav ==0){
           agev[m][i]=1;          for(i=1; i<=nlstate;i++)
       }            prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
     }          for(i=1; i<=nlstate;i++)
     for (i=1; i<=imx; i++)  {            prlim[i][i]=mobaverage[(int)age][i][ij];
       for(m=1; (m<= maxwav); m++){        }
         if (s[m][i] > (nlstate+ndeath)) {      }
           printf("Error: Wrong value in nlstate or ndeath\n");                 
           goto end;      /* This for computing probability of death (h=1 means
         }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       }         as a weighted average of prlim.
     }      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     free_vector(severity,1,maxwav);      }    
     free_imatrix(outcome,1,maxwav+1,1,n);      /* end probability of death */
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     /* free_matrix(mint,1,maxwav,1,n);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        free_matrix(anint,1,maxwav,1,n);*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     free_vector(moisdc,1,n);        for(i=1; i<=nlstate;i++){
     free_vector(andc,1,n);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
          } 
     wav=ivector(1,imx);      fprintf(ficresprobmorprev,"\n");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      fprintf(ficresvij,"%.0f ",age );
          for(i=1; i<=nlstate;i++)
     /* Concatenates waves */        for(j=1; j<=nlstate;j++){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       Tcode=ivector(1,100);      free_matrix(gp,0,nhstepm,1,nlstate);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      free_matrix(gm,0,nhstepm,1,nlstate);
       ncodemax[1]=1;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    codtab=imatrix(1,100,1,10);    } /* End age */
    h=0;    free_vector(gpp,nlstate+1,nlstate+ndeath);
    m=pow(2,cptcoveff);    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
    for(k=1;k<=cptcoveff; k++){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      for(i=1; i <=(m/pow(2,k));i++){    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
        for(j=1; j <= ncodemax[k]; j++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
            h++;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
          }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
        }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
    }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       codtab[1][2]=1;codtab[2][2]=2; */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    /* for(i=1; i <=m ;i++){  */
       for(k=1; k <=cptcovn; k++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }  
       printf("\n");    free_vector(xp,1,npar);
       }    free_matrix(doldm,1,nlstate,1,nlstate);
       scanf("%d",i);*/    free_matrix(dnewm,1,nlstate,1,npar);
        free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    /* Calculates basic frequencies. Computes observed prevalence at single age    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
        and prints on file fileres'p'. */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fclose(ficresprobmorprev);
        fflush(ficgp);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fflush(fichtm); 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }  /* end varevsij */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************ Variance of prevlim ******************/
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
        {
     /* For Powell, parameters are in a vector p[] starting at p[1]    /* Variance of prevalence limit */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double **newm;
     double **dnewm,**doldm;
     if(mle==1){    int i, j, nhstepm, hstepm;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    int k, cptcode;
     }    double *xp;
        double *gp, *gm;
     /*--------- results files --------------*/    double **gradg, **trgradg;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double age,agelim;
      int theta;
     
    jk=1;    pstamp(ficresvpl);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficresvpl,"# Age");
    for(i=1,jk=1; i <=nlstate; i++){    for(i=1; i<=nlstate;i++)
      for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficresvpl," %1d-%1d",i,i);
        if (k != i)    fprintf(ficresvpl,"\n");
          {  
            printf("%d%d ",i,k);    xp=vector(1,npar);
            fprintf(ficres,"%1d%1d ",i,k);    dnewm=matrix(1,nlstate,1,npar);
            for(j=1; j <=ncovmodel; j++){    doldm=matrix(1,nlstate,1,nlstate);
              printf("%f ",p[jk]);    
              fprintf(ficres,"%f ",p[jk]);    hstepm=1*YEARM; /* Every year of age */
              jk++;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
            }    agelim = AGESUP;
            printf("\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
            fprintf(ficres,"\n");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          }      if (stepm >= YEARM) hstepm=1;
      }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
    }      gradg=matrix(1,npar,1,nlstate);
  if(mle==1){      gp=vector(1,nlstate);
     /* Computing hessian and covariance matrix */      gm=vector(1,nlstate);
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);      for(theta=1; theta <=npar; theta++){
  }        for(i=1; i<=npar; i++){ /* Computes gradient */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("# Scales (for hessian or gradient estimation)\n");        }
      for(i=1,jk=1; i <=nlstate; i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=1; j <=nlstate+ndeath; j++){        for(i=1;i<=nlstate;i++)
         if (j!=i) {          gp[i] = prlim[i][i];
           fprintf(ficres,"%1d%1d",i,j);      
           printf("%1d%1d",i,j);        for(i=1; i<=npar; i++) /* Computes gradient */
           for(k=1; k<=ncovmodel;k++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             printf(" %.5e",delti[jk]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             fprintf(ficres," %.5e",delti[jk]);        for(i=1;i<=nlstate;i++)
             jk++;          gm[i] = prlim[i][i];
           }  
           printf("\n");        for(i=1;i<=nlstate;i++)
           fprintf(ficres,"\n");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         }      } /* End theta */
       }  
      }      trgradg =matrix(1,nlstate,1,npar);
      
     k=1;      for(j=1; j<=nlstate;j++)
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for(theta=1; theta <=npar; theta++)
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          trgradg[j][theta]=gradg[theta][j];
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;      for(i=1;i<=nlstate;i++)
       i1=(i-1)/(ncovmodel*nlstate)+1;        varpl[i][(int)age] =0.;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       printf("%s%d%d",alph[k],i1,tab[i]);*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       fprintf(ficres,"%3d",i);      for(i=1;i<=nlstate;i++)
       printf("%3d",i);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);      fprintf(ficresvpl,"%.0f ",age );
         printf(" %.5e",matcov[i][j]);      for(i=1; i<=nlstate;i++)
       }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficres,"\n");      fprintf(ficresvpl,"\n");
       printf("\n");      free_vector(gp,1,nlstate);
       k++;      free_vector(gm,1,nlstate);
     }      free_matrix(gradg,1,npar,1,nlstate);
          free_matrix(trgradg,1,nlstate,1,npar);
     while((c=getc(ficpar))=='#' && c!= EOF){    } /* End age */
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    free_vector(xp,1,npar);
       puts(line);    free_matrix(doldm,1,nlstate,1,npar);
       fputs(line,ficparo);    free_matrix(dnewm,1,nlstate,1,nlstate);
     }  
     ungetc(c,ficpar);  }
     estepm=0;  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  /************ Variance of one-step probabilities  ******************/
     if (estepm==0 || estepm < stepm) estepm=stepm;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     if (fage <= 2) {  {
       bage = ageminpar;    int i, j=0,  i1, k1, l1, t, tj;
       fage = agemaxpar;    int k2, l2, j1,  z1;
     }    int k=0,l, cptcode;
        int first=1, first1;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double **dnewm,**doldm;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double *xp;
      double *gp, *gm;
     while((c=getc(ficpar))=='#' && c!= EOF){    double **gradg, **trgradg;
     ungetc(c,ficpar);    double **mu;
     fgets(line, MAXLINE, ficpar);    double age,agelim, cov[NCOVMAX];
     puts(line);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     fputs(line,ficparo);    int theta;
   }    char fileresprob[FILENAMELENGTH];
   ungetc(c,ficpar);    char fileresprobcov[FILENAMELENGTH];
      char fileresprobcor[FILENAMELENGTH];
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double ***varpij;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
          strcpy(fileresprob,"prob"); 
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresprob,fileres);
     ungetc(c,ficpar);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with resultfile: %s\n", fileresprob);
     puts(line);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     fputs(line,ficparo);    }
   }    strcpy(fileresprobcov,"probcov"); 
   ungetc(c,ficpar);    strcat(fileresprobcov,fileres);
      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    }
     strcpy(fileresprobcor,"probcor"); 
   fscanf(ficpar,"pop_based=%d\n",&popbased);    strcat(fileresprobcor,fileres);
   fprintf(ficparo,"pop_based=%d\n",popbased);      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   fprintf(ficres,"pop_based=%d\n",popbased);        printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     puts(line);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fputs(line,ficparo);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   ungetc(c,ficpar);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fprintf(ficresprob,"# Age");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
 while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficresprobcor);
     ungetc(c,ficpar);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcor,"# Age");
     puts(line);  
     fputs(line,ficparo);  
   }    for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      }  
    /* fprintf(ficresprob,"\n");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
 /*------------ gnuplot -------------*/   */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 /*------------ free_vector  -------------*/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  chdir(path);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
  free_ivector(wav,1,imx);    first=1;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    fprintf(ficgp,"\n# Routine varprob");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
  free_ivector(num,1,n);    fprintf(fichtm,"\n");
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
  fclose(ficparo);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
  fclose(ficres);    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 /*--------- index.htm --------*/  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   /*--------------- Prevalence limit --------------*/  standard deviations wide on each axis. <br>\
     Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   strcpy(filerespl,"pl");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   strcat(filerespl,fileres);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    cov[1]=1;
   }    tj=cptcoveff;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   fprintf(ficrespl,"#Prevalence limit\n");    j1=0;
   fprintf(ficrespl,"#Age ");    for(t=1; t<=tj;t++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      for(i1=1; i1<=ncodemax[t];i1++){ 
   fprintf(ficrespl,"\n");        j1++;
          if  (cptcovn>0) {
   prlim=matrix(1,nlstate,1,nlstate);          fprintf(ficresprob, "\n#********** Variable "); 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprob, "**********\n#\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprobcov, "\n#********** Variable "); 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficresprobcov, "**********\n#\n");
   k=0;          
   agebase=ageminpar;          fprintf(ficgp, "\n#********** Variable "); 
   agelim=agemaxpar;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   ftolpl=1.e-10;          fprintf(ficgp, "**********\n#\n");
   i1=cptcoveff;          
   if (cptcovn < 1){i1=1;}          
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   for(cptcov=1;cptcov<=i1;cptcov++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         k=k+1;          
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficresprobcor, "\n#********** Variable ");    
         fprintf(ficrespl,"\n#******");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobcor, "**********\n#");    
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         fprintf(ficrespl,"******\n");        
                for (age=bage; age<=fage; age ++){ 
         for (age=agebase; age<=agelim; age++){          cov[2]=age;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for (k=1; k<=cptcovn;k++) {
           fprintf(ficrespl,"%.0f",age );            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           for(i=1; i<=nlstate;i++)          }
           fprintf(ficrespl," %.5f", prlim[i][i]);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           fprintf(ficrespl,"\n");          for (k=1; k<=cptcovprod;k++)
         }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }          
     }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   fclose(ficrespl);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
   /*------------- h Pij x at various ages ------------*/          gm=vector(1,(nlstate)*(nlstate+ndeath));
        
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          for(theta=1; theta <=npar; theta++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            for(i=1; i<=npar; i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   }            
   printf("Computing pij: result on file '%s' \n", filerespij);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              
   stepsize=(int) (stepm+YEARM-1)/YEARM;            k=0;
   /*if (stepm<=24) stepsize=2;*/            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   agelim=AGESUP;                k=k+1;
   hstepm=stepsize*YEARM; /* Every year of age */                gp[k]=pmmij[i][j];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              }
              }
   k=0;            
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=npar; i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       k=k+1;      
         fprintf(ficrespij,"\n#****** ");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         for(j=1;j<=cptcoveff;j++)            k=0;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(i=1; i<=(nlstate); i++){
         fprintf(ficrespij,"******\n");              for(j=1; j<=(nlstate+ndeath);j++){
                        k=k+1;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                gm[k]=pmmij[i][j];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
           oldm=oldms;savm=savms;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           fprintf(ficrespij,"# Age");          }
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
               fprintf(ficrespij," %1d-%1d",i,j);            for(theta=1; theta <=npar; theta++)
           fprintf(ficrespij,"\n");              trgradg[j][theta]=gradg[theta][j];
            for (h=0; h<=nhstepm; h++){          
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
             for(i=1; i<=nlstate;i++)          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
               for(j=1; j<=nlstate+ndeath;j++)          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
             fprintf(ficrespij,"\n");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
              }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
         }          
     }          k=0;
   }          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
   fclose(ficrespij);            }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   /*---------- Forecasting ------------------*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   if((stepm == 1) && (strcmp(model,".")==0)){              varpij[i][j][(int)age] = doldm[i][j];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          /*printf("\n%d ",(int)age);
   }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   else{            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     erreur=108;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            }*/
   }  
            fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
   /*---------- Health expectancies and variances ------------*/          fprintf(ficresprobcor,"\n%d ",(int)age);
   
   strcpy(filerest,"t");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   strcat(filerest,fileres);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   if((ficrest=fopen(filerest,"w"))==NULL) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          }
           i=0;
           for (k=1; k<=(nlstate);k++){
   strcpy(filerese,"e");            for (l=1; l<=(nlstate+ndeath);l++){ 
   strcat(filerese,fileres);              i=i++;
   if((ficreseij=fopen(filerese,"w"))==NULL) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   }              for (j=1; j<=i;j++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
  strcpy(fileresv,"v");              }
   strcat(fileresv,fileres);            }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          }/* end of loop for state */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        } /* end of loop for age */
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        /* Confidence intervalle of pij  */
   calagedate=-1;        /*
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   k=0;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       k=k+1;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       fprintf(ficrest,"\n#****** ");          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       for(j=1;j<=cptcoveff;j++)        */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
       fprintf(ficreseij,"\n#****** ");        for (k2=1; k2<=(nlstate);k2++){
       for(j=1;j<=cptcoveff;j++)          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(l2==k2) continue;
       fprintf(ficreseij,"******\n");            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
       fprintf(ficresvij,"\n#****** ");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       for(j=1;j<=cptcoveff;j++)                if(l1==k1) continue;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                i=(k1-1)*(nlstate+ndeath)+l1;
       fprintf(ficresvij,"******\n");                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                  if ((int)age %5==0){
       oldm=oldms;savm=savms;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                    mu1=mu[i][(int) age]/stepm*YEARM ;
       oldm=oldms;savm=savms;                    mu2=mu[j][(int) age]/stepm*YEARM;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                    c12=cv12/sqrt(v1*v2);
                        /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                    /* Eigen vectors */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       fprintf(ficrest,"\n");                    /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
       epj=vector(1,nlstate+1);                    v12=-v21;
       for(age=bage; age <=fage ;age++){                    v22=v11;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    tnalp=v21/v11;
         if (popbased==1) {                    if(first1==1){
           for(i=1; i<=nlstate;i++)                      first1=0;
             prlim[i][i]=probs[(int)age][i][k];                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         }                    }
                            fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         fprintf(ficrest," %4.0f",age);                    /*printf(fignu*/
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                    if(first==1){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                      first=0;
           }                      fprintf(ficgp,"\nset parametric;unset label");
           epj[nlstate+1] +=epj[j];                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         for(i=1, vepp=0.;i <=nlstate;i++)   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           for(j=1;j <=nlstate;j++)  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
             vepp += vareij[i][j][(int)age];                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         for(j=1;j <=nlstate;j++){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficrest,"\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 free_matrix(mint,1,maxwav,1,n);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                    }else{
     free_vector(weight,1,n);                      first=0;
   fclose(ficreseij);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   fclose(ficresvij);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   fclose(ficrest);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fclose(ficpar);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   free_vector(epj,1,nlstate+1);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /*------- Variance limit prevalence------*/                      }/* if first */
                   } /* age mod 5 */
   strcpy(fileresvpl,"vpl");                } /* end loop age */
   strcat(fileresvpl,fileres);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                first=1;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              } /*l12 */
     exit(0);            } /* k12 */
   }          } /*l1 */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        }/* k1 */
       } /* loop covariates */
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       k=k+1;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fprintf(ficresvpl,"\n#****** ");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)    free_vector(xp,1,npar);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(ficresprob);
       fprintf(ficresvpl,"******\n");    fclose(ficresprobcov);
          fclose(ficresprobcor);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    fflush(ficgp);
       oldm=oldms;savm=savms;    fflush(fichtmcov);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  }
     }  
  }  
   /******************* Printing html file ***********/
   fclose(ficresvpl);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   /*---------- End : free ----------------*/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                    int popforecast, int estepm ,\
                      double jprev1, double mprev1,double anprev1, \
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    double jprev2, double mprev2,double anprev2){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int jj1, k1, i1, cpt;
    
       fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  </ul>");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
               jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   free_matrix(matcov,1,npar,1,npar);     fprintf(fichtm,"\
   free_vector(delti,1,npar);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   free_matrix(agev,1,maxwav,1,imx);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   if(erreur >0)             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     printf("End of Imach with error or warning %d\n",erreur);     fprintf(fichtm,"\
   else   printf("End of Imach\n");   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */     <a href=\"%s\">%s</a> <br>\n",
               estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/     fprintf(fichtm,"\
   /*printf("Total time was %d uSec.\n", total_usecs);*/   - Population projections by age and states: \
   /*------ End -----------*/     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
  end:  
   /* chdir(pathcd);*/   m=cptcoveff;
  /*system("wgnuplot graph.plt");*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/   jj1=0;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/   for(k1=1; k1<=m;k1++){
  strcpy(plotcmd,GNUPLOTPROGRAM);     for(i1=1; i1<=ncodemax[k1];i1++){
  strcat(plotcmd," ");       jj1++;
  strcat(plotcmd,optionfilegnuplot);       if (cptcovn > 0) {
  system(plotcmd);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
  /*#ifdef windows*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   while (z[0] != 'q') {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     /* chdir(path); */       }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");       /* Pij */
     scanf("%s",z);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     if (z[0] == 'c') system("./imach");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
     else if (z[0] == 'e') system(optionfilehtm);       /* Quasi-incidences */
     else if (z[0] == 'g') system(plotcmd);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     else if (z[0] == 'q') exit(0);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   /*#endif */         /* Period (stable) prevalence in each health state */
 }         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
           goto end;
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sum the number of covariates including ages as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=1;/* debug */
       /*    likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone);*/ /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.131


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>