Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.132

version 1.41.2.2, 2003/06/13 07:45:28 version 1.132, 2009/07/06 08:22:05
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.132  2009/07/06 08:22:05  brouard
      Many tings
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.131  2009/06/20 16:22:47  brouard
   first survey ("cross") where individuals from different ages are    Some dimensions resccaled
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.130  2009/05/26 06:44:34  brouard
   second wave of interviews ("longitudinal") which measure each change    (Module): Max Covariate is now set to 20 instead of 8. A
   (if any) in individual health status.  Health expectancies are    lot of cleaning with variables initialized to 0. Trying to make
   computed from the time spent in each health state according to a    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.129  2007/08/31 13:49:27  lievre
   simplest model is the multinomial logistic model where pij is the    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.128  2006/06/30 13:02:05  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Clarifications on computing e.j
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.127  2006/04/28 18:11:50  brouard
   where the markup *Covariates have to be included here again* invites    (Module): Yes the sum of survivors was wrong since
   you to do it.  More covariates you add, slower the    imach-114 because nhstepm was no more computed in the age
   convergence.    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
   The advantage of this computer programme, compared to a simple    compute health expectancies (without variances) in a first step
   multinomial logistic model, is clear when the delay between waves is not    and then all the health expectancies with variances or standard
   identical for each individual. Also, if a individual missed an    deviation (needs data from the Hessian matrices) which slows the
   intermediate interview, the information is lost, but taken into    computation.
   account using an interpolation or extrapolation.      In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.126  2006/04/28 17:23:28  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): Yes the sum of survivors was wrong since
   states. This elementary transition (by month or quarter trimester,    imach-114 because nhstepm was no more computed in the age
   semester or year) is model as a multinomial logistic.  The hPx    loop. Now we define nhstepma in the age loop.
   matrix is simply the matrix product of nh*stepm elementary matrices    Version 0.98h
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
   Also this programme outputs the covariance matrix of the parameters but also    Forecasting file added.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.124  2006/03/22 17:13:53  lievre
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Parameters are printed with %lf instead of %f (more numbers after the comma).
            Institut national d'études démographiques, Paris.    The log-likelihood is printed in the log file
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.123  2006/03/20 10:52:43  brouard
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Module): <title> changed, corresponds to .htm file
   software can be distributed freely for non commercial use. Latest version    name. <head> headers where missing.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    * imach.c (Module): Weights can have a decimal point as for
      English (a comma might work with a correct LC_NUMERIC environment,
 #include <math.h>    otherwise the weight is truncated).
 #include <stdio.h>    Modification of warning when the covariates values are not 0 or
 #include <stdlib.h>    1.
 #include <unistd.h>    Version 0.98g
   
 #define MAXLINE 256    Revision 1.122  2006/03/20 09:45:41  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    (Module): Weights can have a decimal point as for
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    English (a comma might work with a correct LC_NUMERIC environment,
 #define FILENAMELENGTH 80    otherwise the weight is truncated).
 /*#define DEBUG*/    Modification of warning when the covariates values are not 0 or
     1.
 /*#define windows*/    Version 0.98g
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define NINTERVMAX 8    not 1 month. Version 0.98f
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.120  2006/03/16 15:10:38  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): refinements in the computation of lli if
 #define MAXN 20000    status=-2 in order to have more reliable computation if stepm is
 #define YEARM 12. /* Number of months per year */    not 1 month. Version 0.98f
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 int erreur; /* Error number */  
 int nvar;    Revision 1.118  2006/03/14 18:20:07  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): varevsij Comments added explaining the second
 int npar=NPARMAX;    table of variances if popbased=1 .
 int nlstate=2; /* Number of live states */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int ndeath=1; /* Number of dead states */    (Module): Function pstamp added
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Version 0.98d
 int popbased=0;  
     Revision 1.117  2006/03/14 17:16:22  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): varevsij Comments added explaining the second
 int maxwav; /* Maxim number of waves */    table of variances if popbased=1 .
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int mle, weightopt;    (Module): Function pstamp added
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Version 0.98d
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.116  2006/03/06 10:29:27  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Variance-covariance wrong links and
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    varian-covariance of ej. is needed (Saito).
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.115  2006/02/27 12:17:45  brouard
 FILE *ficreseij;    (Module): One freematrix added in mlikeli! 0.98c
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.114  2006/02/26 12:57:58  brouard
   char fileresv[FILENAMELENGTH];    (Module): Some improvements in processing parameter
  FILE  *ficresvpl;    filename with strsep.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.113  2006/02/24 14:20:24  brouard
 #define NR_END 1    (Module): Memory leaks checks with valgrind and:
 #define FREE_ARG char*    datafile was not closed, some imatrix were not freed and on matrix
 #define FTOL 1.0e-10    allocation too.
   
 #define NRANSI    Revision 1.112  2006/01/30 09:55:26  brouard
 #define ITMAX 200    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 #define TOL 2.0e-4    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 #define CGOLD 0.3819660    (Module): Comments can be added in data file. Missing date values
 #define ZEPS 1.0e-10    can be a simple dot '.'.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.110  2006/01/25 00:51:50  brouard
 #define GOLD 1.618034    (Module): Lots of cleaning and bugs added (Gompertz)
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.108  2006/01/19 18:05:42  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Gnuplot problem appeared...
      To be fixed
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.106  2006/01/19 13:24:36  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Some cleaning and links added in html output
   
 int imx;    Revision 1.105  2006/01/05 20:23:19  lievre
 int stepm;    *** empty log message ***
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.104  2005/09/30 16:11:43  lievre
 int estepm;    (Module): sump fixed, loop imx fixed, and simplifications.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 int m,nb;    (instead of missing=-1 in earlier versions) and his/her
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    contributions to the likelihood is 1 - Prob of dying from last
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 double **pmmij, ***probs, ***mobaverage;    the healthy state at last known wave). Version is 0.98
 double dateintmean=0;  
     Revision 1.103  2005/09/30 15:54:49  lievre
 double *weight;    (Module): sump fixed, loop imx fixed, and simplifications.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.102  2004/09/15 17:31:30  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Add the possibility to read data file including tab characters.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.101  2004/09/15 10:38:38  brouard
 double ftolhess; /* Tolerance for computing hessian */    Fix on curr_time
   
 /**************** split *************************/    Revision 1.100  2004/07/12 18:29:06  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Add version for Mac OS X. Just define UNIX in Makefile
 {  
    char *s;                             /* pointer */    Revision 1.99  2004/06/05 08:57:40  brouard
    int  l1, l2;                         /* length counters */    *** empty log message ***
   
    l1 = strlen( path );                 /* length of path */    Revision 1.98  2004/05/16 15:05:56  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    New version 0.97 . First attempt to estimate force of mortality
 #ifdef windows    directly from the data i.e. without the need of knowing the health
    s = strrchr( path, '\\' );           /* find last / */    state at each age, but using a Gompertz model: log u =a + b*age .
 #else    This is the basic analysis of mortality and should be done before any
    s = strrchr( path, '/' );            /* find last / */    other analysis, in order to test if the mortality estimated from the
 #endif    cross-longitudinal survey is different from the mortality estimated
    if ( s == NULL ) {                   /* no directory, so use current */    from other sources like vital statistic data.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    The same imach parameter file can be used but the option for mle should be -3.
   
       if ( getwd( dirc ) == NULL ) {    Agnès, who wrote this part of the code, tried to keep most of the
 #else    former routines in order to include the new code within the former code.
       extern char       *getcwd( );  
     The output is very simple: only an estimate of the intercept and of
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    the slope with 95% confident intervals.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Current limitations:
       }    A) Even if you enter covariates, i.e. with the
       strcpy( name, path );             /* we've got it */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    } else {                             /* strip direcotry from path */    B) There is no computation of Life Expectancy nor Life Table.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.97  2004/02/20 13:25:42  lievre
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Version 0.96d. Population forecasting command line is (temporarily)
       strcpy( name, s );                /* save file name */    suppressed.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.96  2003/07/15 15:38:55  brouard
    }    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
    l1 = strlen( dirc );                 /* length of directory */    rewritten within the same printf. Workaround: many printfs.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.95  2003/07/08 07:54:34  brouard
 #else    * imach.c (Repository):
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Repository): Using imachwizard code to output a more meaningful covariance
 #endif    matrix (cov(a12,c31) instead of numbers.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.94  2003/06/27 13:00:02  brouard
    strcpy(ext,s);                       /* save extension */    Just cleaning
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.93  2003/06/25 16:33:55  brouard
    strncpy( finame, name, l1-l2);    (Module): On windows (cygwin) function asctime_r doesn't
    finame[l1-l2]= 0;    exist so I changed back to asctime which exists.
    return( 0 );                         /* we're done */    (Module): Version 0.96b
 }  
     Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 /******************************************/    exist so I changed back to asctime which exists.
   
 void replace(char *s, char*t)    Revision 1.91  2003/06/25 15:30:29  brouard
 {    * imach.c (Repository): Duplicated warning errors corrected.
   int i;    (Repository): Elapsed time after each iteration is now output. It
   int lg=20;    helps to forecast when convergence will be reached. Elapsed time
   i=0;    is stamped in powell.  We created a new html file for the graphs
   lg=strlen(t);    concerning matrix of covariance. It has extension -cov.htm.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.90  2003/06/24 12:34:15  brouard
     if (t[i]== '\\') s[i]='/';    (Module): Some bugs corrected for windows. Also, when
   }    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
 int nbocc(char *s, char occ)    Revision 1.89  2003/06/24 12:30:52  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   int i,j=0;    mle=-1 a template is output in file "or"mypar.txt with the design
   int lg=20;    of the covariance matrix to be input.
   i=0;  
   lg=strlen(s);    Revision 1.88  2003/06/23 17:54:56  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   if  (s[i] == occ ) j++;  
   }    Revision 1.87  2003/06/18 12:26:01  brouard
   return j;    Version 0.96
 }  
     Revision 1.86  2003/06/17 20:04:08  brouard
 void cutv(char *u,char *v, char*t, char occ)    (Module): Change position of html and gnuplot routines and added
 {    routine fileappend.
   int i,lg,j,p=0;  
   i=0;    Revision 1.85  2003/06/17 13:12:43  brouard
   for(j=0; j<=strlen(t)-1; j++) {    * imach.c (Repository): Check when date of death was earlier that
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    current date of interview. It may happen when the death was just
   }    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
   lg=strlen(t);    assuming that the date of death was just one stepm after the
   for(j=0; j<p; j++) {    interview.
     (u[j] = t[j]);    (Repository): Because some people have very long ID (first column)
   }    we changed int to long in num[] and we added a new lvector for
      u[p]='\0';    memory allocation. But we also truncated to 8 characters (left
     truncation)
    for(j=0; j<= lg; j++) {    (Repository): No more line truncation errors.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /********************** nrerror ********************/    many times. Probs is memory consuming and must be used with
     parcimony.
 void nrerror(char error_text[])    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.83  2003/06/10 13:39:11  lievre
   fprintf(stderr,"%s\n",error_text);    *** empty log message ***
   exit(1);  
 }    Revision 1.82  2003/06/05 15:57:20  brouard
 /*********************** vector *******************/    Add log in  imach.c and  fullversion number is now printed.
 double *vector(int nl, int nh)  
 {  */
   double *v;  /*
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));     Interpolated Markov Chain
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Short summary of the programme:
 }    
     This program computes Healthy Life Expectancies from
 /************************ free vector ******************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 void free_vector(double*v, int nl, int nh)    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   free((FREE_ARG)(v+nl-NR_END));    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /************************ivector *******************************/    computed from the time spent in each health state according to a
 int *ivector(long nl,long nh)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   int *v;    simplest model is the multinomial logistic model where pij is the
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    probability to be observed in state j at the second wave
   if (!v) nrerror("allocation failure in ivector");    conditional to be observed in state i at the first wave. Therefore
   return v-nl+NR_END;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /******************free ivector **************************/    where the markup *Covariates have to be included here again* invites
 void free_ivector(int *v, long nl, long nh)    you to do it.  More covariates you add, slower the
 {    convergence.
   free((FREE_ARG)(v+nl-NR_END));  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 /******************* imatrix *******************************/    identical for each individual. Also, if a individual missed an
 int **imatrix(long nrl, long nrh, long ncl, long nch)    intermediate interview, the information is lost, but taken into
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    account using an interpolation or extrapolation.  
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    hPijx is the probability to be observed in state i at age x+h
   int **m;    conditional to the observed state i at age x. The delay 'h' can be
      split into an exact number (nh*stepm) of unobserved intermediate
   /* allocate pointers to rows */    states. This elementary transition (by month, quarter,
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    semester or year) is modelled as a multinomial logistic.  The hPx
   if (!m) nrerror("allocation failure 1 in matrix()");    matrix is simply the matrix product of nh*stepm elementary matrices
   m += NR_END;    and the contribution of each individual to the likelihood is simply
   m -= nrl;    hPijx.
    
      Also this programme outputs the covariance matrix of the parameters but also
   /* allocate rows and set pointers to them */    of the life expectancies. It also computes the period (stable) prevalence. 
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m[nrl] += NR_END;             Institut national d'études démographiques, Paris.
   m[nrl] -= ncl;    This software have been partly granted by Euro-REVES, a concerted action
      from the European Union.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    It is copyrighted identically to a GNU software product, ie programme and
      software can be distributed freely for non commercial use. Latest version
   /* return pointer to array of pointers to rows */    can be accessed at http://euroreves.ined.fr/imach .
   return m;  
 }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /****************** free_imatrix *************************/    
 void free_imatrix(m,nrl,nrh,ncl,nch)    **********************************************************************/
       int **m;  /*
       long nch,ncl,nrh,nrl;    main
      /* free an int matrix allocated by imatrix() */    read parameterfile
 {    read datafile
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    concatwav
   free((FREE_ARG) (m+nrl-NR_END));    freqsummary
 }    if (mle >= 1)
       mlikeli
 /******************* matrix *******************************/    print results files
 double **matrix(long nrl, long nrh, long ncl, long nch)    if mle==1 
 {       computes hessian
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    read end of parameter file: agemin, agemax, bage, fage, estepm
   double **m;        begin-prev-date,...
     open gnuplot file
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    open html file
   if (!m) nrerror("allocation failure 1 in matrix()");    period (stable) prevalence
   m += NR_END;     for age prevalim()
   m -= nrl;    h Pij x
     variance of p varprob
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    forecasting if prevfcast==1 prevforecast call prevalence()
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    health expectancies
   m[nrl] += NR_END;    Variance-covariance of DFLE
   m[nrl] -= ncl;    prevalence()
      movingaverage()
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    varevsij() 
   return m;    if popbased==1 varevsij(,popbased)
 }    total life expectancies
     Variance of period (stable) prevalence
 /*************************free matrix ************************/   end
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  */
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  
 }   
   #include <math.h>
 /******************* ma3x *******************************/  #include <stdio.h>
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #include <stdlib.h>
 {  #include <string.h>
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #include <unistd.h>
   double ***m;  
   #include <limits.h>
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <sys/types.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <sys/stat.h>
   m += NR_END;  #include <errno.h>
   m -= nrl;  extern int errno;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* #include <sys/time.h> */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <time.h>
   m[nrl] += NR_END;  #include "timeval.h"
   m[nrl] -= ncl;  
   /* #include <libintl.h> */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* #define _(String) gettext (String) */
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define MAXLINE 256
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  #define GNUPLOTPROGRAM "gnuplot"
   m[nrl][ncl] -= nll;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   for (j=ncl+1; j<=nch; j++)  #define FILENAMELENGTH 132
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for (i=nrl+1; i<=nrh; i++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
       m[i][j]=m[i][j-1]+nlay;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   }  
   return m;  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /*************************free ma3x ************************/  #define NCOVMAX 20 /* Maximum number of covariates */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define AGESUP 130
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define AGEBASE 40
   free((FREE_ARG)(m+nrl-NR_END));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /***************** f1dim *************************/  #define CHARSEPARATOR "/"
 extern int ncom;  #define ODIRSEPARATOR '\\'
 extern double *pcom,*xicom;  #else
 extern double (*nrfunc)(double []);  #define DIRSEPARATOR '\\'
    #define CHARSEPARATOR "\\"
 double f1dim(double x)  #define ODIRSEPARATOR '/'
 {  #endif
   int j;  
   double f;  /* $Id$ */
   double *xt;  /* $State$ */
    
   xt=vector(1,ncom);  char version[]="Imach version 0.98k, June 2006, INED-EUROREVES-Institut de longevite ";
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char fullversion[]="$Revision$ $Date$"; 
   f=(*nrfunc)(xt);  char strstart[80];
   free_vector(xt,1,ncom);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   return f;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 }  int nvar=0;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
 /*****************brent *************************/  int npar=NPARMAX;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   int iter;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double a,b,d,etemp;  int popbased=0;
   double fu,fv,fw,fx;  
   double ftemp;  int *wav; /* Number of waves for this individuual 0 is possible */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int maxwav=0; /* Maxim number of waves */
   double e=0.0;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
    int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   a=(ax < cx ? ax : cx);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   b=(ax > cx ? ax : cx);                     to the likelihood and the sum of weights (done by funcone)*/
   x=w=v=bx;  int mle=1, weightopt=0;
   fw=fv=fx=(*f)(x);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   for (iter=1;iter<=ITMAX;iter++) {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     xm=0.5*(a+b);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double jmean=1; /* Mean space between 2 waves */
     printf(".");fflush(stdout);  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #ifdef DEBUG  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  FILE *ficlog, *ficrespow;
 #endif  int globpr=0; /* Global variable for printing or not */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double fretone; /* Only one call to likelihood */
       *xmin=x;  long ipmx=0; /* Number of contributions */
       return fx;  double sw; /* Sum of weights */
     }  char filerespow[FILENAMELENGTH];
     ftemp=fu;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     if (fabs(e) > tol1) {  FILE *ficresilk;
       r=(x-w)*(fx-fv);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       q=(x-v)*(fx-fw);  FILE *ficresprobmorprev;
       p=(x-v)*q-(x-w)*r;  FILE *fichtm, *fichtmcov; /* Html File */
       q=2.0*(q-r);  FILE *ficreseij;
       if (q > 0.0) p = -p;  char filerese[FILENAMELENGTH];
       q=fabs(q);  FILE *ficresstdeij;
       etemp=e;  char fileresstde[FILENAMELENGTH];
       e=d;  FILE *ficrescveij;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char filerescve[FILENAMELENGTH];
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE  *ficresvij;
       else {  char fileresv[FILENAMELENGTH];
         d=p/q;  FILE  *ficresvpl;
         u=x+d;  char fileresvpl[FILENAMELENGTH];
         if (u-a < tol2 || b-u < tol2)  char title[MAXLINE];
           d=SIGN(tol1,xm-x);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     } else {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char command[FILENAMELENGTH];
     }  int  outcmd=0;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  char filelog[FILENAMELENGTH]; /* Log file */
       SHFT(v,w,x,u)  char filerest[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  char fileregp[FILENAMELENGTH];
         } else {  char popfile[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
             v=w;  
             w=u;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
             fv=fw;  struct timezone tzp;
             fw=fu;  extern int gettimeofday();
           } else if (fu <= fv || v == x || v == w) {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
             v=u;  long time_value;
             fv=fu;  extern long time();
           }  char strcurr[80], strfor[80];
         }  
   }  char *endptr;
   nrerror("Too many iterations in brent");  long lval;
   *xmin=x;  double dval;
   return fx;  
 }  #define NR_END 1
   #define FREE_ARG char*
 /****************** mnbrak ***********************/  #define FTOL 1.0e-10
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define NRANSI 
             double (*func)(double))  #define ITMAX 200 
 {  
   double ulim,u,r,q, dum;  #define TOL 2.0e-4 
   double fu;  
    #define CGOLD 0.3819660 
   *fa=(*func)(*ax);  #define ZEPS 1.0e-10 
   *fb=(*func)(*bx);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  #define GOLD 1.618034 
       SHFT(dum,*fb,*fa,dum)  #define GLIMIT 100.0 
       }  #define TINY 1.0e-20 
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  static double maxarg1,maxarg2;
   while (*fb > *fc) {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     r=(*bx-*ax)*(*fb-*fc);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     q=(*bx-*cx)*(*fb-*fa);    
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define rint(a) floor(a+0.5)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  static double sqrarg;
       fu=(*func)(u);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       fu=(*func)(u);  int agegomp= AGEGOMP;
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int imx; 
           SHFT(*fb,*fc,fu,(*func)(u))  int stepm=1;
           }  /* Stepm, step in month: minimum step interpolation*/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  int estepm;
       fu=(*func)(u);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  int m,nb;
       fu=(*func)(u);  long *num;
     }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     SHFT(*ax,*bx,*cx,u)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       SHFT(*fa,*fb,*fc,fu)  double **pmmij, ***probs;
       }  double *ageexmed,*agecens;
 }  double dateintmean=0;
   
 /*************** linmin ************************/  double *weight;
   int **s; /* Status */
 int ncom;  double *agedc, **covar, idx;
 double *pcom,*xicom;  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double (*nrfunc)(double []);  double *lsurv, *lpop, *tpop;
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /**************** split *************************/
   double f1dim(double x);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   int j;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   double xx,xmin,bx,ax;    */ 
   double fx,fb,fa;    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
   ncom=n;  
   pcom=vector(1,n);    l1 = strlen(path );                   /* length of path */
   xicom=vector(1,n);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   nrfunc=func;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for (j=1;j<=n;j++) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     pcom[j]=p[j];      strcpy( name, path );               /* we got the fullname name because no directory */
     xicom[j]=xi[j];      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   ax=0.0;      /* get current working directory */
   xx=1.0;      /*    extern  char* getcwd ( char *buf , int len);*/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        return( GLOCK_ERROR_GETCWD );
 #ifdef DEBUG      }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      /* got dirc from getcwd*/
 #endif      printf(" DIRC = %s \n",dirc);
   for (j=1;j<=n;j++) {    } else {                              /* strip direcotry from path */
     xi[j] *= xmin;      ss++;                               /* after this, the filename */
     p[j] += xi[j];      l2 = strlen( ss );                  /* length of filename */
   }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   free_vector(xicom,1,n);      strcpy( name, ss );         /* save file name */
   free_vector(pcom,1,n);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
 /*************** powell ************************/    }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    /* We add a separator at the end of dirc if not exists */
             double (*func)(double []))    l1 = strlen( dirc );                  /* length of directory */
 {    if( dirc[l1-1] != DIRSEPARATOR ){
   void linmin(double p[], double xi[], int n, double *fret,      dirc[l1] =  DIRSEPARATOR;
               double (*func)(double []));      dirc[l1+1] = 0; 
   int i,ibig,j;      printf(" DIRC3 = %s \n",dirc);
   double del,t,*pt,*ptt,*xit;    }
   double fp,fptt;    ss = strrchr( name, '.' );            /* find last / */
   double *xits;    if (ss >0){
   pt=vector(1,n);      ss++;
   ptt=vector(1,n);      strcpy(ext,ss);                     /* save extension */
   xit=vector(1,n);      l1= strlen( name);
   xits=vector(1,n);      l2= strlen(ss)+1;
   *fret=(*func)(p);      strncpy( finame, name, l1-l2);
   for (j=1;j<=n;j++) pt[j]=p[j];      finame[l1-l2]= 0;
   for (*iter=1;;++(*iter)) {    }
     fp=(*fret);  
     ibig=0;    return( 0 );                          /* we're done */
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /******************************************/
     printf("\n");  
     for (i=1;i<=n;i++) {  void replace_back_to_slash(char *s, char*t)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    int i;
 #ifdef DEBUG    int lg=0;
       printf("fret=%lf \n",*fret);    i=0;
 #endif    lg=strlen(t);
       printf("%d",i);fflush(stdout);    for(i=0; i<= lg; i++) {
       linmin(p,xit,n,fret,func);      (s[i] = t[i]);
       if (fabs(fptt-(*fret)) > del) {      if (t[i]== '\\') s[i]='/';
         del=fabs(fptt-(*fret));    }
         ibig=i;  }
       }  
 #ifdef DEBUG  char *trimbb(char *out, char *in)
       printf("%d %.12e",i,(*fret));  { /* Trim multiple blanks in line */
       for (j=1;j<=n;j++) {    char *s;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    s=out;
         printf(" x(%d)=%.12e",j,xit[j]);    while (*in != '\0'){
       }      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
       for(j=1;j<=n;j++)        in++;
         printf(" p=%.12e",p[j]);      }
       printf("\n");      *out++ = *in++;
 #endif    }
     }    *out='\0';
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    return s;
 #ifdef DEBUG  }
       int k[2],l;  
       k[0]=1;  int nbocc(char *s, char occ)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    int i,j=0;
       for (j=1;j<=n;j++)    int lg=20;
         printf(" %.12e",p[j]);    i=0;
       printf("\n");    lg=strlen(s);
       for(l=0;l<=1;l++) {    for(i=0; i<= lg; i++) {
         for (j=1;j<=n;j++) {    if  (s[i] == occ ) j++;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    }
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return j;
         }  }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  void cutv(char *u,char *v, char*t, char occ)
 #endif  {
     /* cuts string t into u and v where u ends before first occurence of char 'occ' 
        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       free_vector(xit,1,n);       gives u="abcedf" and v="ghi2j" */
       free_vector(xits,1,n);    int i,lg,j,p=0;
       free_vector(ptt,1,n);    i=0;
       free_vector(pt,1,n);    for(j=0; j<=strlen(t)-1; j++) {
       return;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }    }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {    lg=strlen(t);
       ptt[j]=2.0*p[j]-pt[j];    for(j=0; j<p; j++) {
       xit[j]=p[j]-pt[j];      (u[j] = t[j]);
       pt[j]=p[j];    }
     }       u[p]='\0';
     fptt=(*func)(ptt);  
     if (fptt < fp) {     for(j=0; j<= lg; j++) {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      if (j>=(p+1))(v[j-p-1] = t[j]);
       if (t < 0.0) {    }
         linmin(p,xit,n,fret,func);  }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /********************** nrerror ********************/
           xi[j][n]=xit[j];  
         }  void nrerror(char error_text[])
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    fprintf(stderr,"ERREUR ...\n");
         for(j=1;j<=n;j++)    fprintf(stderr,"%s\n",error_text);
           printf(" %.12e",xit[j]);    exit(EXIT_FAILURE);
         printf("\n");  }
 #endif  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
     }  {
   }    double *v;
 }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
 /**** Prevalence limit ****************/    return v-nl+NR_END;
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /************************ free vector ******************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  void free_vector(double*v, int nl, int nh)
      matrix by transitions matrix until convergence is reached */  {
     free((FREE_ARG)(v+nl-NR_END));
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /************************ivector *******************************/
   double **out, cov[NCOVMAX], **pmij();  int *ivector(long nl,long nh)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (ii=1;ii<=nlstate+ndeath;ii++)    if (!v) nrerror("allocation failure in ivector");
     for (j=1;j<=nlstate+ndeath;j++){    return v-nl+NR_END;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /******************free ivector **************************/
    cov[1]=1.;  void free_ivector(int *v, long nl, long nh)
    {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free((FREE_ARG)(v+nl-NR_END));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  /************************lvector *******************************/
      cov[2]=agefin;  long *lvector(long nl,long nh)
    {
       for (k=1; k<=cptcovn;k++) {    long *v;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    free((FREE_ARG)(v+nl-NR_END));
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /******************* imatrix *******************************/
     savm=oldm;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     oldm=newm;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     maxmax=0.;  { 
     for(j=1;j<=nlstate;j++){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       min=1.;    int **m; 
       max=0.;    
       for(i=1; i<=nlstate; i++) {    /* allocate pointers to rows */ 
         sumnew=0;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    if (!m) nrerror("allocation failure 1 in matrix()"); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    m += NR_END; 
         max=FMAX(max,prlim[i][j]);    m -= nrl; 
         min=FMIN(min,prlim[i][j]);    
       }    
       maxmin=max-min;    /* allocate rows and set pointers to them */ 
       maxmax=FMAX(maxmax,maxmin);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     if(maxmax < ftolpl){    m[nrl] += NR_END; 
       return prlim;    m[nrl] -= ncl; 
     }    
   }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 }    
     /* return pointer to array of pointers to rows */ 
 /*************** transition probabilities ***************/    return m; 
   } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  /****************** free_imatrix *************************/
   double s1, s2;  void free_imatrix(m,nrl,nrh,ncl,nch)
   /*double t34;*/        int **m;
   int i,j,j1, nc, ii, jj;        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
     for(i=1; i<= nlstate; i++){  { 
     for(j=1; j<i;j++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG) (m+nrl-NR_END)); 
         /*s2 += param[i][j][nc]*cov[nc];*/  } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /******************* matrix *******************************/
       }  double **matrix(long nrl, long nrh, long ncl, long nch)
       ps[i][j]=s2;  {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     }    double **m;
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    if (!m) nrerror("allocation failure 1 in matrix()");
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    m += NR_END;
       }    m -= nrl;
       ps[i][j]=s2;  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /*ps[3][2]=1;*/    m[nrl] += NR_END;
     m[nrl] -= ncl;
   for(i=1; i<= nlstate; i++){  
      s1=0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(j=1; j<i; j++)    return m;
       s1+=exp(ps[i][j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     for(j=i+1; j<=nlstate+ndeath; j++)     */
       s1+=exp(ps[i][j]);  }
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  /*************************free matrix ************************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for(j=i+1; j<=nlstate+ndeath; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    free((FREE_ARG)(m+nrl-NR_END));
   } /* end i */  }
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /******************* ma3x *******************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       ps[ii][jj]=0;  {
       ps[ii][ii]=1;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
   }  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    m += NR_END;
     for(jj=1; jj<= nlstate+ndeath; jj++){    m -= nrl;
      printf("%lf ",ps[ii][jj]);  
    }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     printf("\n ");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     printf("\n ");printf("%lf ",cov[2]);*/    m[nrl] -= ncl;
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   goto end;*/  
     return ps;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
 /**************** Product of 2 matrices ******************/    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      m[nrl][j]=m[nrl][j-1]+nlay;
 {    
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    for (i=nrl+1; i<=nrh; i++) {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   /* in, b, out are matrice of pointers which should have been initialized      for (j=ncl+1; j<=nch; j++) 
      before: only the contents of out is modified. The function returns        m[i][j]=m[i][j-1]+nlay;
      a pointer to pointers identical to out */    }
   long i, j, k;    return m; 
   for(i=nrl; i<= nrh; i++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(k=ncolol; k<=ncoloh; k++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    */
         out[i][k] +=in[i][j]*b[j][k];  }
   
   return out;  /*************************free ma3x ************************/
 }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 /************* Higher Matrix Product ***************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  }
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /*************** function subdirf ***********/
      duration (i.e. until  char *subdirf(char fileres[])
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    /* Caution optionfilefiname is hidden */
      (typically every 2 years instead of every month which is too big).    strcpy(tmpout,optionfilefiname);
      Model is determined by parameters x and covariates have to be    strcat(tmpout,"/"); /* Add to the right */
      included manually here.    strcat(tmpout,fileres);
     return tmpout;
      */  }
   
   int i, j, d, h, k;  /*************** function subdirf2 ***********/
   double **out, cov[NCOVMAX];  char *subdirf2(char fileres[], char *preop)
   double **newm;  {
     
   /* Hstepm could be zero and should return the unit matrix */    /* Caution optionfilefiname is hidden */
   for (i=1;i<=nlstate+ndeath;i++)    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=nlstate+ndeath;j++){    strcat(tmpout,"/");
       oldm[i][j]=(i==j ? 1.0 : 0.0);    strcat(tmpout,preop);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    strcat(tmpout,fileres);
     }    return tmpout;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  }
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  /*************** function subdirf3 ***********/
       newm=savm;  char *subdirf3(char fileres[], char *preop, char *preop2)
       /* Covariates have to be included here again */  {
       cov[1]=1.;    
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovage;k++)    strcat(tmpout,"/");
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcat(tmpout,preop);
       for (k=1; k<=cptcovprod;k++)    strcat(tmpout,preop2);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,fileres);
     return tmpout;
   }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  /***************** f1dim *************************/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  extern int ncom; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  extern double *pcom,*xicom;
       savm=oldm;  extern double (*nrfunc)(double []); 
       oldm=newm;   
     }  double f1dim(double x) 
     for(i=1; i<=nlstate+ndeath; i++)  { 
       for(j=1;j<=nlstate+ndeath;j++) {    int j; 
         po[i][j][h]=newm[i][j];    double f;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double *xt; 
          */   
       }    xt=vector(1,ncom); 
   } /* end h */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   return po;    f=(*nrfunc)(xt); 
 }    free_vector(xt,1,ncom); 
     return f; 
   } 
 /*************** log-likelihood *************/  
 double func( double *x)  /*****************brent *************************/
 {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   int i, ii, j, k, mi, d, kk;  { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    int iter; 
   double **out;    double a,b,d,etemp;
   double sw; /* Sum of weights */    double fu,fv,fw,fx;
   double lli; /* Individual log likelihood */    double ftemp;
   int s1, s2;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   long ipmx;    double e=0.0; 
   /*extern weight */   
   /* We are differentiating ll according to initial status */    a=(ax < cx ? ax : cx); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    b=(ax > cx ? ax : cx); 
   /*for(i=1;i<imx;i++)    x=w=v=bx; 
     printf(" %d\n",s[4][i]);    fw=fv=fx=(*f)(x); 
   */    for (iter=1;iter<=ITMAX;iter++) { 
   cov[1]=1.;      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      printf(".");fflush(stdout);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      fprintf(ficlog,".");fflush(ficlog);
     for(mi=1; mi<= wav[i]-1; mi++){  #ifdef DEBUG
       for (ii=1;ii<=nlstate+ndeath;ii++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         for (j=1;j<=nlstate+ndeath;j++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
         }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for(d=0; d<dh[mi][i]; d++){        *xmin=x; 
         newm=savm;        return fx; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      } 
         for (kk=1; kk<=cptcovage;kk++) {      ftemp=fu;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      if (fabs(e) > tol1) { 
         }        r=(x-w)*(fx-fv); 
                q=(x-v)*(fx-fw); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        p=(x-v)*q-(x-w)*r; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        q=2.0*(q-r); 
         savm=oldm;        if (q > 0.0) p = -p; 
         oldm=newm;        q=fabs(q); 
                etemp=e; 
                e=d; 
       } /* end mult */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       s1=s[mw[mi][i]][i];        else { 
       s2=s[mw[mi+1][i]][i];          d=p/q; 
       if( s2 > nlstate){          u=x+d; 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution          if (u-a < tol2 || b-u < tol2) 
            to the likelihood is the probability to die between last step unit time and current            d=SIGN(tol1,xm-x); 
            step unit time, which is also the differences between probability to die before dh        } 
            and probability to die before dh-stepm .      } else { 
            In version up to 0.92 likelihood was computed        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
            as if date of death was unknown. Death was treated as any other      } 
            health state: the date of the interview describes the actual state      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
            and not the date of a change in health state. The former idea was      fu=(*f)(u); 
            to consider that at each interview the state was recorded      if (fu <= fx) { 
            (healthy, disable or death) and IMaCh was corrected; but when we        if (u >= x) a=x; else b=x; 
            introduced the exact date of death then we should have modified        SHFT(v,w,x,u) 
            the contribution of an exact death to the likelihood. This new          SHFT(fv,fw,fx,fu) 
            contribution is smaller and very dependent of the step unit          } else { 
            stepm. It is no more the probability to die between last interview            if (u < x) a=u; else b=u; 
            and month of death but the probability to survive from last            if (fu <= fw || w == x) { 
            interview up to one month before death multiplied by the              v=w; 
            probability to die within a month. Thanks to Chris              w=u; 
            Jackson for correcting this bug.  Former versions increased              fv=fw; 
            mortality artificially. The bad side is that we add another loop              fw=fu; 
            which slows down the processing. The difference can be up to 10%            } else if (fu <= fv || v == x || v == w) { 
            lower mortality.              v=u; 
         */              fv=fu; 
         lli=log(out[s1][s2] - savm[s1][s2]);            } 
       }else{          } 
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */    } 
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    nrerror("Too many iterations in brent"); 
       }    *xmin=x; 
       ipmx +=1;    return fx; 
       sw += weight[i];  } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/  /****************** mnbrak ***********************/
     } /* end of wave */  
   } /* end of individual */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double ulim,u,r,q, dum;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double fu; 
   /*exit(0);*/   
   return -l;    *fa=(*func)(*ax); 
 }    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
 /*********** Maximum Likelihood Estimation ***************/        SHFT(dum,*fb,*fa,dum) 
         } 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    *cx=(*bx)+GOLD*(*bx-*ax); 
 {    *fc=(*func)(*cx); 
   int i,j, iter;    while (*fb > *fc) { 
   double **xi,*delti;      r=(*bx-*ax)*(*fb-*fc); 
   double fret;      q=(*bx-*cx)*(*fb-*fa); 
   xi=matrix(1,npar,1,npar);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for (i=1;i<=npar;i++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for (j=1;j<=npar;j++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       xi[i][j]=(i==j ? 1.0 : 0.0);      if ((*bx-u)*(u-*cx) > 0.0) { 
   printf("Powell\n");        fu=(*func)(u); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        if (fu < *fc) { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
 }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 /**** Computes Hessian and covariance matrix ***/        u=ulim; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fu=(*func)(u); 
 {      } else { 
   double  **a,**y,*x,pd;        u=(*cx)+GOLD*(*cx-*bx); 
   double **hess;        fu=(*func)(u); 
   int i, j,jk;      } 
   int *indx;      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   double hessii(double p[], double delta, int theta, double delti[]);        } 
   double hessij(double p[], double delti[], int i, int j);  } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*************** linmin ************************/
   
   hess=matrix(1,npar,1,npar);  int ncom; 
   double *pcom,*xicom;
   printf("\nCalculation of the hessian matrix. Wait...\n");  double (*nrfunc)(double []); 
   for (i=1;i<=npar;i++){   
     printf("%d",i);fflush(stdout);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     hess[i][i]=hessii(p,ftolhess,i,delti);  { 
     /*printf(" %f ",p[i]);*/    double brent(double ax, double bx, double cx, 
     /*printf(" %lf ",hess[i][i]);*/                 double (*f)(double), double tol, double *xmin); 
   }    double f1dim(double x); 
      void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   for (i=1;i<=npar;i++) {                double *fc, double (*func)(double)); 
     for (j=1;j<=npar;j++)  {    int j; 
       if (j>i) {    double xx,xmin,bx,ax; 
         printf(".%d%d",i,j);fflush(stdout);    double fx,fb,fa;
         hess[i][j]=hessij(p,delti,i,j);   
         hess[j][i]=hess[i][j];        ncom=n; 
         /*printf(" %lf ",hess[i][j]);*/    pcom=vector(1,n); 
       }    xicom=vector(1,n); 
     }    nrfunc=func; 
   }    for (j=1;j<=n;j++) { 
   printf("\n");      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    } 
      ax=0.0; 
   a=matrix(1,npar,1,npar);    xx=1.0; 
   y=matrix(1,npar,1,npar);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   x=vector(1,npar);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   indx=ivector(1,npar);  #ifdef DEBUG
   for (i=1;i<=npar;i++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   ludcmp(a,npar,indx,&pd);  #endif
     for (j=1;j<=n;j++) { 
   for (j=1;j<=npar;j++) {      xi[j] *= xmin; 
     for (i=1;i<=npar;i++) x[i]=0;      p[j] += xi[j]; 
     x[j]=1;    } 
     lubksb(a,npar,indx,x);    free_vector(xicom,1,n); 
     for (i=1;i<=npar;i++){    free_vector(pcom,1,n); 
       matcov[i][j]=x[i];  } 
     }  
   }  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   printf("\n#Hessian matrix#\n");    long sec_left, days, hours, minutes;
   for (i=1;i<=npar;i++) {    days = (time_sec) / (60*60*24);
     for (j=1;j<=npar;j++) {    sec_left = (time_sec) % (60*60*24);
       printf("%.3e ",hess[i][j]);    hours = (sec_left) / (60*60) ;
     }    sec_left = (sec_left) %(60*60);
     printf("\n");    minutes = (sec_left) /60;
   }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   /* Recompute Inverse */    return ascdiff;
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   /*  printf("\n#Hessian matrix recomputed#\n");              double (*func)(double [])) 
   { 
   for (j=1;j<=npar;j++) {    void linmin(double p[], double xi[], int n, double *fret, 
     for (i=1;i<=npar;i++) x[i]=0;                double (*func)(double [])); 
     x[j]=1;    int i,ibig,j; 
     lubksb(a,npar,indx,x);    double del,t,*pt,*ptt,*xit;
     for (i=1;i<=npar;i++){    double fp,fptt;
       y[i][j]=x[i];    double *xits;
       printf("%.3e ",y[i][j]);    int niterf, itmp;
     }  
     printf("\n");    pt=vector(1,n); 
   }    ptt=vector(1,n); 
   */    xit=vector(1,n); 
     xits=vector(1,n); 
   free_matrix(a,1,npar,1,npar);    *fret=(*func)(p); 
   free_matrix(y,1,npar,1,npar);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   free_vector(x,1,npar);    for (*iter=1;;++(*iter)) { 
   free_ivector(indx,1,npar);      fp=(*fret); 
   free_matrix(hess,1,npar,1,npar);      ibig=0; 
       del=0.0; 
       last_time=curr_time;
 }      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 /*************** hessian matrix ****************/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 double hessii( double x[], double delta, int theta, double delti[])  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 {     for (i=1;i<=n;i++) {
   int i;        printf(" %d %.12f",i, p[i]);
   int l=1, lmax=20;        fprintf(ficlog," %d %.12lf",i, p[i]);
   double k1,k2;        fprintf(ficrespow," %.12lf", p[i]);
   double p2[NPARMAX+1];      }
   double res;      printf("\n");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      fprintf(ficlog,"\n");
   double fx;      fprintf(ficrespow,"\n");fflush(ficrespow);
   int k=0,kmax=10;      if(*iter <=3){
   double l1;        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   fx=func(x);  /*       asctime_r(&tm,strcurr); */
   for (i=1;i<=npar;i++) p2[i]=x[i];        forecast_time=curr_time; 
   for(l=0 ; l <=lmax; l++){        itmp = strlen(strcurr);
     l1=pow(10,l);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     delts=delt;          strcurr[itmp-1]='\0';
     for(k=1 ; k <kmax; k=k+1){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       delt = delta*(l1*k);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       p2[theta]=x[theta] +delt;        for(niterf=10;niterf<=30;niterf+=10){
       k1=func(p2)-fx;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       p2[theta]=x[theta]-delt;          tmf = *localtime(&forecast_time.tv_sec);
       k2=func(p2)-fx;  /*      asctime_r(&tmf,strfor); */
       /*res= (k1-2.0*fx+k2)/delt/delt; */          strcpy(strfor,asctime(&tmf));
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          itmp = strlen(strfor);
                if(strfor[itmp-1]=='\n')
 #ifdef DEBUG          strfor[itmp-1]='\0';
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 #endif          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      }
         k=kmax;      for (i=1;i<=n;i++) { 
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        fptt=(*fret); 
         k=kmax; l=lmax*10.;  #ifdef DEBUG
       }        printf("fret=%lf \n",*fret);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        fprintf(ficlog,"fret=%lf \n",*fret);
         delts=delt;  #endif
       }        printf("%d",i);fflush(stdout);
     }        fprintf(ficlog,"%d",i);fflush(ficlog);
   }        linmin(p,xit,n,fret,func); 
   delti[theta]=delts;        if (fabs(fptt-(*fret)) > del) { 
   return res;          del=fabs(fptt-(*fret)); 
            ibig=i; 
 }        } 
   #ifdef DEBUG
 double hessij( double x[], double delti[], int thetai,int thetaj)        printf("%d %.12e",i,(*fret));
 {        fprintf(ficlog,"%d %.12e",i,(*fret));
   int i;        for (j=1;j<=n;j++) {
   int l=1, l1, lmax=20;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double k1,k2,k3,k4,res,fx;          printf(" x(%d)=%.12e",j,xit[j]);
   double p2[NPARMAX+1];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   int k;        }
         for(j=1;j<=n;j++) {
   fx=func(x);          printf(" p=%.12e",p[j]);
   for (k=1; k<=2; k++) {          fprintf(ficlog," p=%.12e",p[j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];        }
     p2[thetai]=x[thetai]+delti[thetai]/k;        printf("\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficlog,"\n");
     k1=func(p2)-fx;  #endif
        } 
     p2[thetai]=x[thetai]+delti[thetai]/k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #ifdef DEBUG
     k2=func(p2)-fx;        int k[2],l;
          k[0]=1;
     p2[thetai]=x[thetai]-delti[thetai]/k;        k[1]=-1;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        printf("Max: %.12e",(*func)(p));
     k3=func(p2)-fx;        fprintf(ficlog,"Max: %.12e",(*func)(p));
          for (j=1;j<=n;j++) {
     p2[thetai]=x[thetai]-delti[thetai]/k;          printf(" %.12e",p[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          fprintf(ficlog," %.12e",p[j]);
     k4=func(p2)-fx;        }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        printf("\n");
 #ifdef DEBUG        fprintf(ficlog,"\n");
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(l=0;l<=1;l++) {
 #endif          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   return res;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
 /************** Inverse of matrix **************/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 void ludcmp(double **a, int n, int *indx, double *d)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   int i,imax,j,k;  #endif
   double big,dum,sum,temp;  
   double *vv;  
          free_vector(xit,1,n); 
   vv=vector(1,n);        free_vector(xits,1,n); 
   *d=1.0;        free_vector(ptt,1,n); 
   for (i=1;i<=n;i++) {        free_vector(pt,1,n); 
     big=0.0;        return; 
     for (j=1;j<=n;j++)      } 
       if ((temp=fabs(a[i][j])) > big) big=temp;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for (j=1;j<=n;j++) { 
     vv[i]=1.0/big;        ptt[j]=2.0*p[j]-pt[j]; 
   }        xit[j]=p[j]-pt[j]; 
   for (j=1;j<=n;j++) {        pt[j]=p[j]; 
     for (i=1;i<j;i++) {      } 
       sum=a[i][j];      fptt=(*func)(ptt); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      if (fptt < fp) { 
       a[i][j]=sum;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
     big=0.0;          linmin(p,xit,n,fret,func); 
     for (i=j;i<=n;i++) {          for (j=1;j<=n;j++) { 
       sum=a[i][j];            xi[j][ibig]=xi[j][n]; 
       for (k=1;k<j;k++)            xi[j][n]=xit[j]; 
         sum -= a[i][k]*a[k][j];          }
       a[i][j]=sum;  #ifdef DEBUG
       if ( (dum=vv[i]*fabs(sum)) >= big) {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         big=dum;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         imax=i;          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
     }            fprintf(ficlog," %.12e",xit[j]);
     if (j != imax) {          }
       for (k=1;k<=n;k++) {          printf("\n");
         dum=a[imax][k];          fprintf(ficlog,"\n");
         a[imax][k]=a[j][k];  #endif
         a[j][k]=dum;        }
       }      } 
       *d = -(*d);    } 
       vv[imax]=vv[j];  } 
     }  
     indx[j]=imax;  /**** Prevalence limit (stable or period prevalence)  ****************/
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       dum=1.0/(a[j][j]);  {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
   }  
   free_vector(vv,1,n);  /* Doesn't work */    int i, ii,j,k;
 ;    double min, max, maxmin, maxmax,sumnew=0.;
 }    double **matprod2();
     double **out, cov[NCOVMAX+1], **pmij();
 void lubksb(double **a, int n, int *indx, double b[])    double **newm;
 {    double agefin, delaymax=50 ; /* Max number of years to converge */
   int i,ii=0,ip,j;  
   double sum;    for (ii=1;ii<=nlstate+ndeath;ii++)
        for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=n;i++) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ip=indx[i];      }
     sum=b[ip];  
     b[ip]=b[i];     cov[1]=1.;
     if (ii)   
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     else if (sum) ii=i;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     b[i]=sum;      newm=savm;
   }      /* Covariates have to be included here again */
   for (i=n;i>=1;i--) {       cov[2]=agefin;
     sum=b[i];    
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovn;k++) {
     b[i]=sum/a[i][i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /************ Frequencies ********************/        for (k=1; k<=cptcovprod;k++)
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 {  /* Some frequencies */  
          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double ***freq; /* Frequencies */        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double *pp;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;      savm=oldm;
   char fileresp[FILENAMELENGTH];      oldm=newm;
        maxmax=0.;
   pp=vector(1,nlstate);      for(j=1;j<=nlstate;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        min=1.;
   strcpy(fileresp,"p");        max=0.;
   strcat(fileresp,fileres);        for(i=1; i<=nlstate; i++) {
   if((ficresp=fopen(fileresp,"w"))==NULL) {          sumnew=0;
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     exit(0);          prlim[i][j]= newm[i][j]/(1-sumnew);
   }          max=FMAX(max,prlim[i][j]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          min=FMIN(min,prlim[i][j]);
   j1=0;        }
          maxmin=max-min;
   j=cptcoveff;        maxmax=FMAX(maxmax,maxmin);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
        if(maxmax < ftolpl){
   for(k1=1; k1<=j;k1++){        return prlim;
     for(i1=1; i1<=ncodemax[k1];i1++){      }
       j1++;    }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  }
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)    /*************** transition probabilities ***************/ 
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
             freq[i][jk][m]=0;  {
          double s1, s2;
       dateintsum=0;    /*double t34;*/
       k2cpt=0;    int i,j,j1, nc, ii, jj;
       for (i=1; i<=imx; i++) {  
         bool=1;      for(i=1; i<= nlstate; i++){
         if  (cptcovn>0) {        for(j=1; j<i;j++){
           for (z1=1; z1<=cptcoveff; z1++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            /*s2 += param[i][j][nc]*cov[nc];*/
               bool=0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         if (bool==1) {          }
           for(m=firstpass; m<=lastpass; m++){          ps[i][j]=s2;
             k2=anint[m][i]+(mint[m][i]/12.);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        }
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(j=i+1; j<=nlstate+ndeath;j++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
               if (m<lastpass) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          }
               }          ps[i][j]=s2;
                      }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      }
                 dateintsum=dateintsum+k2;      /*ps[3][2]=1;*/
                 k2cpt++;      
               }      for(i=1; i<= nlstate; i++){
             }        s1=0;
           }        for(j=1; j<i; j++){
         }          s1+=exp(ps[i][j]);
       }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=i+1; j<=nlstate+ndeath; j++){
           s1+=exp(ps[i][j]);
       if  (cptcovn>0) {          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         fprintf(ficresp, "\n#********** Variable ");        }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        ps[i][i]=1./(s1+1.);
         fprintf(ficresp, "**********\n#");        for(j=1; j<i; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(i=1; i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath; j++)
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       fprintf(ficresp, "\n");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
            } /* end i */
       for(i=(int)agemin; i <= (int)agemax+3; i++){      
         if(i==(int)agemax+3)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
           printf("Total");        for(jj=1; jj<= nlstate+ndeath; jj++){
         else          ps[ii][jj]=0;
           printf("Age %d", i);          ps[ii][ii]=1;
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      }
             pp[jk] += freq[jk][m][i];      
         }  
         for(jk=1; jk <=nlstate ; jk++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           for(m=-1, pos=0; m <=0 ; m++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
             pos += freq[jk][m][i];  /*         printf("ddd %lf ",ps[ii][jj]); */
           if(pp[jk]>=1.e-10)  /*       } */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*       printf("\n "); */
           else  /*        } */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*        printf("\n ");printf("%lf ",cov[2]); */
         }         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for(jk=1; jk <=nlstate ; jk++){        goto end;*/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      return ps;
             pp[jk] += freq[jk][m][i];  }
         }  
   /**************** Product of 2 matrices ******************/
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         for(jk=1; jk <=nlstate ; jk++){  {
           if(pos>=1.e-5)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           else    /* in, b, out are matrice of pointers which should have been initialized 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);       before: only the contents of out is modified. The function returns
           if( i <= (int) agemax){       a pointer to pointers identical to out */
             if(pos>=1.e-5){    long i, j, k;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    for(i=nrl; i<= nrh; i++)
               probs[i][jk][j1]= pp[jk]/pos;      for(k=ncolol; k<=ncoloh; k++)
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
             }          out[i][k] +=in[i][j]*b[j][k];
             else  
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    return out;
           }  }
         }  
          
         for(jk=-1; jk <=nlstate+ndeath; jk++)  /************* Higher Matrix Product ***************/
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         if(i <= (int) agemax)  {
           fprintf(ficresp,"\n");    /* Computes the transition matrix starting at age 'age' over 
         printf("\n");       'nhstepm*hstepm*stepm' months (i.e. until
       }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
   }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   dateintmean=dateintsum/k2cpt;       (typically every 2 years instead of every month which is too big 
         for the memory).
   fclose(ficresp);       Model is determined by parameters x and covariates have to be 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       included manually here. 
   free_vector(pp,1,nlstate);  
         */
   /* End of Freq */  
 }    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
 /************ Prevalence ********************/    double **newm;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */    /* Hstepm could be zero and should return the unit matrix */
      for (i=1;i<=nlstate+ndeath;i++)
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      for (j=1;j<=nlstate+ndeath;j++){
   double ***freq; /* Frequencies */        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double *pp;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double pos, k2;      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   pp=vector(1,nlstate);    for(h=1; h <=nhstepm; h++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(d=1; d <=hstepm; d++){
          newm=savm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        /* Covariates have to be included here again */
   j1=0;        cov[1]=1.;
          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   j=cptcoveff;        for (k=1; k<=cptcovn;k++) 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          for (k=1; k<=cptcovage;k++)
  for(k1=1; k1<=j;k1++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovprod;k++)
       j1++;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           for(m=agemin; m <= agemax+3; m++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             freq[i][jk][m]=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                           pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=1; i<=imx; i++) {        savm=oldm;
         bool=1;        oldm=newm;
         if  (cptcovn>0) {      }
           for (z1=1; z1<=cptcoveff; z1++)      for(i=1; i<=nlstate+ndeath; i++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(j=1;j<=nlstate+ndeath;j++) {
               bool=0;          po[i][j][h]=newm[i][j];
         }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         if (bool==1) {        }
           for(m=firstpass; m<=lastpass; m++){      /*printf("h=%d ",h);*/
             k2=anint[m][i]+(mint[m][i]/12.);    } /* end h */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*     printf("\n H=%d \n",h); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;    return po;
               if(agev[m][i]==1) agev[m][i]=agemax+2;  }
               if (m<lastpass)  
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
               else  /*************** log-likelihood *************/
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  double func( double *x)
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  {
             }    int i, ii, j, k, mi, d, kk;
           }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         }    double **out;
       }    double sw; /* Sum of weights */
         for(i=(int)agemin; i <= (int)agemax+3; i++){    double lli; /* Individual log likelihood */
           for(jk=1; jk <=nlstate ; jk++){    int s1, s2;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double bbh, survp;
               pp[jk] += freq[jk][m][i];    long ipmx;
           }    /*extern weight */
           for(jk=1; jk <=nlstate ; jk++){    /* We are differentiating ll according to initial status */
             for(m=-1, pos=0; m <=0 ; m++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             pos += freq[jk][m][i];    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
            */
          for(jk=1; jk <=nlstate ; jk++){    cov[1]=1.;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
              pp[jk] += freq[jk][m][i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
          }  
              if(mle==1){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(jk=1; jk <=nlstate ; jk++){                  for(mi=1; mi<= wav[i]-1; mi++){
            if( i <= (int) agemax){          for (ii=1;ii<=nlstate+ndeath;ii++)
              if(pos>=1.e-5){            for (j=1;j<=nlstate+ndeath;j++){
                probs[i][jk][j1]= pp[jk]/pos;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }            }
          }          for(d=0; d<dh[mi][i]; d++){
                      newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(pp,1,nlstate);            savm=oldm;
              oldm=newm;
 }  /* End of Freq */          } /* end mult */
         
 /************* Waves Concatenation ***************/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {           * (in months) between two waves is not a multiple of stepm, we rounded to 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * the nearest (and in case of equal distance, to the lowest) interval but now
      Death is a valid wave (if date is known).           * we keep into memory the bias bh[mi][i] and also the previous matrix product
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * probability in order to take into account the bias as a fraction of the way
      and mw[mi+1][i]. dh depends on stepm.           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
      */           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
   int i, mi, m;           * For stepm > 1 the results are less biased than in previous versions. 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           */
      double sum=0., jmean=0.;*/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   int j, k=0,jk, ju, jl;          bbh=(double)bh[mi][i]/(double)stepm; 
   double sum=0.;          /* bias bh is positive if real duration
   jmin=1e+5;           * is higher than the multiple of stepm and negative otherwise.
   jmax=-1;           */
   jmean=0.;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for(i=1; i<=imx; i++){          if( s2 > nlstate){ 
     mi=0;            /* i.e. if s2 is a death state and if the date of death is known 
     m=firstpass;               then the contribution to the likelihood is the probability to 
     while(s[m][i] <= nlstate){               die between last step unit time and current  step unit time, 
       if(s[m][i]>=1)               which is also equal to probability to die before dh 
         mw[++mi][i]=m;               minus probability to die before dh-stepm . 
       if(m >=lastpass)               In version up to 0.92 likelihood was computed
         break;          as if date of death was unknown. Death was treated as any other
       else          health state: the date of the interview describes the actual state
         m++;          and not the date of a change in health state. The former idea was
     }/* end while */          to consider that at each interview the state was recorded
     if (s[m][i] > nlstate){          (healthy, disable or death) and IMaCh was corrected; but when we
       mi++;     /* Death is another wave */          introduced the exact date of death then we should have modified
       /* if(mi==0)  never been interviewed correctly before death */          the contribution of an exact death to the likelihood. This new
          /* Only death is a correct wave */          contribution is smaller and very dependent of the step unit
       mw[mi][i]=m;          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
     wav[i]=mi;          probability to die within a month. Thanks to Chris
     if(mi==0)          Jackson for correcting this bug.  Former versions increased
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
           lower mortality.
   for(i=1; i<=imx; i++){            */
     for(mi=1; mi<wav[i];mi++){            lli=log(out[s1][s2] - savm[s1][s2]);
       if (stepm <=0)  
         dh[mi][i]=1;  
       else{          } else if  (s2==-2) {
         if (s[mw[mi+1][i]][i] > nlstate) {            for (j=1,survp=0. ; j<=nlstate; j++) 
           if (agedc[i] < 2*AGESUP) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            /*survp += out[s1][j]; */
           if(j==0) j=1;  /* Survives at least one month after exam */            lli= log(survp);
           k=k+1;          }
           if (j >= jmax) jmax=j;          
           if (j <= jmin) jmin=j;          else if  (s2==-4) { 
           sum=sum+j;            for (j=3,survp=0. ; j<=nlstate; j++)  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           }            lli= log(survp); 
         }          } 
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          else if  (s2==-5) { 
           k=k+1;            for (j=1,survp=0. ; j<=2; j++)  
           if (j >= jmax) jmax=j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           else if (j <= jmin)jmin=j;            lli= log(survp); 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          } 
           sum=sum+j;          
         }          else{
         jk= j/stepm;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         jl= j -jk*stepm;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         ju= j -(jk+1)*stepm;          } 
         if(jl <= -ju)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           dh[mi][i]=jk;          /*if(lli ==000.0)*/
         else          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           dh[mi][i]=jk+1;          ipmx +=1;
         if(dh[mi][i]==0)          sw += weight[i];
           dh[mi][i]=1; /* At least one step */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
   }    }  else if(mle==2){
   jmean=sum/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  }        for(mi=1; mi<= wav[i]-1; mi++){
 /*********** Tricode ****************************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void tricode(int *Tvar, int **nbcode, int imx)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int Ndum[20],ij=1, k, j, i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cptcode=0;            }
   cptcoveff=0;          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
   for (k=0; k<19; k++) Ndum[k]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (k=1; k<=7; k++) ncodemax[k]=0;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            }
     for (i=1; i<=imx; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       ij=(int)(covar[Tvar[j]][i]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       Ndum[ij]++;            savm=oldm;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            oldm=newm;
       if (ij > cptcode) cptcode=ij;          } /* end mult */
     }        
           s1=s[mw[mi][i]][i];
     for (i=0; i<=cptcode; i++) {          s2=s[mw[mi+1][i]][i];
       if(Ndum[i]!=0) ncodemax[j]++;          bbh=(double)bh[mi][i]/(double)stepm; 
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     ij=1;          ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1; i<=ncodemax[j]; i++) {        } /* end of wave */
       for (k=0; k<=19; k++) {      } /* end of individual */
         if (Ndum[k] != 0) {    }  else if(mle==3){  /* exponential inter-extrapolation */
           nbcode[Tvar[j]][ij]=k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                  for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           ij++;        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         if (ij > ncodemax[j]) break;            for (j=1;j<=nlstate+ndeath;j++){
       }                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              }
           for(d=0; d<dh[mi][i]; d++){
  for (k=0; k<19; k++) Ndum[k]=0;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  for (i=1; i<=ncovmodel-2; i++) {            for (kk=1; kk<=cptcovage;kk++) {
       ij=Tvar[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       Ndum[ij]++;            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  ij=1;            savm=oldm;
  for (i=1; i<=10; i++) {            oldm=newm;
    if((Ndum[i]!=0) && (i<=ncovcol)){          } /* end mult */
      Tvaraff[ij]=i;        
      ij++;          s1=s[mw[mi][i]][i];
    }          s2=s[mw[mi+1][i]][i];
  }          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     cptcoveff=ij-1;          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Health Expectancies ****************/        } /* end of wave */
       } /* end of individual */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Health expectancies */        for(mi=1; mi<= wav[i]-1; mi++){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double age, agelim, hf;            for (j=1;j<=nlstate+ndeath;j++){
   double ***p3mat,***varhe;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **dnewm,**doldm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;            }
   double **gp, **gm;          for(d=0; d<dh[mi][i]; d++){
   double ***gradg, ***trgradg;            newm=savm;
   int theta;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   xp=vector(1,npar);            }
   dnewm=matrix(1,nlstate*2,1,npar);          
   doldm=matrix(1,nlstate*2,1,nlstate*2);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficreseij,"# Health expectancies\n");            savm=oldm;
   fprintf(ficreseij,"# Age");            oldm=newm;
   for(i=1; i<=nlstate;i++)          } /* end mult */
     for(j=1; j<=nlstate;j++)        
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"\n");          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
   if(estepm < stepm){            lli=log(out[s1][s2] - savm[s1][s2]);
     printf ("Problem %d lower than %d\n",estepm, stepm);          }else{
   }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   else  hstepm=estepm;            }
   /* We compute the life expectancy from trapezoids spaced every estepm months          ipmx +=1;
    * This is mainly to measure the difference between two models: for example          sw += weight[i];
    * if stepm=24 months pijx are given only every 2 years and by summing them          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * we are calculating an estimate of the Life Expectancy assuming a linear  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    * progression inbetween and thus overestimating or underestimating according        } /* end of wave */
    * to the curvature of the survival function. If, for the same date, we      } /* end of individual */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
    * to compare the new estimate of Life expectancy with the same linear      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * hypothesis. A more precise result, taking into account a more precise        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    * curvature will be obtained if estepm is as small as stepm. */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   /* For example we decided to compute the life expectancy with the smallest unit */            for (j=1;j<=nlstate+ndeath;j++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      nhstepm is the number of hstepm from age to agelim              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      nstepm is the number of stepm from age to agelin.            }
      Look at hpijx to understand the reason of that which relies in memory size          for(d=0; d<dh[mi][i]; d++){
      and note for a fixed period like estepm months */            newm=savm;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      survival function given by stepm (the optimization length). Unfortunately it            for (kk=1; kk<=cptcovage;kk++) {
      means that if the survival funtion is printed only each two years of age and if              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            }
      results. So we changed our mind and took the option of the best precision.          
   */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   agelim=AGESUP;            oldm=newm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          } /* end mult */
     /* nhstepm age range expressed in number of stepm */        
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          s1=s[mw[mi][i]][i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          s2=s[mw[mi+1][i]][i];
     /* if (stepm >= YEARM) hstepm=1;*/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          ipmx +=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          sw += weight[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gp=matrix(0,nhstepm,1,nlstate*2);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     gm=matrix(0,nhstepm,1,nlstate*2);        } /* end of wave */
       } /* end of individual */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    } /* End of if */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  }
   
     /* Computing Variances of health expectancies */  /*************** log-likelihood *************/
   double funcone( double *x)
      for(theta=1; theta <=npar; theta++){  {
       for(i=1; i<=npar; i++){    /* Same as likeli but slower because of a lot of printf and if */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **out;
      double lli; /* Individual log likelihood */
       cptj=0;    double llt;
       for(j=1; j<= nlstate; j++){    int s1, s2;
         for(i=1; i<=nlstate; i++){    double bbh, survp;
           cptj=cptj+1;    /*extern weight */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    /* We are differentiating ll according to initial status */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           }    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
       }    */
          cov[1]=1.;
        
       for(i=1; i<=npar; i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       cptj=0;      for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){        for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=1;i<=nlstate;i++){          for (j=1;j<=nlstate+ndeath;j++){
           cptj=cptj+1;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          }
           }        for(d=0; d<dh[mi][i]; d++){
         }          newm=savm;
       }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
       for(j=1; j<= nlstate*2; j++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm-1; h++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          savm=oldm;
         }          oldm=newm;
         } /* end mult */
      }        
            s1=s[mw[mi][i]][i];
 /* End theta */        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
      for(h=0; h<=nhstepm-1; h++)         */
       for(j=1; j<=nlstate*2;j++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         for(theta=1; theta <=npar; theta++)          lli=log(out[s1][s2] - savm[s1][s2]);
         trgradg[h][j][theta]=gradg[h][theta][j];        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      for(i=1;i<=nlstate*2;i++)          lli= log(survp);
       for(j=1;j<=nlstate*2;j++)        }else if (mle==1){
         varhe[i][j][(int)age] =0.;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
     for(h=0;h<=nhstepm-1;h++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(k=0;k<=nhstepm-1;k++){        } else if(mle==3){  /* exponential inter-extrapolation */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         for(i=1;i<=nlstate*2;i++)          lli=log(out[s1][s2]); /* Original formula */
           for(j=1;j<=nlstate*2;j++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          lli=log(out[s1][s2]); /* Original formula */
       }        } /* End of if */
     }        ipmx +=1;
         sw += weight[i];
              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Computing expectancies */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i=1; i<=nlstate;i++)        if(globpr){
       for(j=1; j<=nlstate;j++)          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){   %11.6f %11.6f %11.6f ", \
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                            2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
         }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
     fprintf(ficreseij,"%3.0f",age );          fprintf(ficresilk," %10.6f\n", -llt);
     cptj=0;        }
     for(i=1; i<=nlstate;i++)      } /* end of wave */
       for(j=1; j<=nlstate;j++){    } /* end of individual */
         cptj++;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficreseij,"\n");    if(globpr==0){ /* First time we count the contributions and weights */
          gipmx=ipmx;
     free_matrix(gm,0,nhstepm,1,nlstate*2);      gsw=sw;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    return -l;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  
   free_vector(xp,1,npar);  /*************** function likelione ***********/
   free_matrix(dnewm,1,nlstate*2,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    /* This routine should help understanding what is done with 
 }       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 /************ Variance ******************/       Plotting could be done.
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)     */
 {    int k;
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    if(*globpri !=0){ /* Just counts and sums, no printings */
   double **newm;      strcpy(fileresilk,"ilk"); 
   double **dnewm,**doldm;      strcat(fileresilk,fileres);
   int i, j, nhstepm, hstepm, h, nstepm ;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int k, cptcode;        printf("Problem with resultfile: %s\n", fileresilk);
   double *xp;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double **gp, **gm;      }
   double ***gradg, ***trgradg;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double ***p3mat;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double age,agelim, hf;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   int theta;      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
    fprintf(ficresvij,"# Covariances of life expectancies\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   fprintf(ficresvij,"# Age");    }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    *fretone=(*funcone)(p);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    if(*globpri !=0){
   fprintf(ficresvij,"\n");      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   xp=vector(1,npar);      fflush(fichtm); 
   dnewm=matrix(1,nlstate,1,npar);    } 
   doldm=matrix(1,nlstate,1,nlstate);    return;
    }
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  /*********** Maximum Likelihood Estimation ***************/
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  {
      nhstepm is the number of hstepm from age to agelim    int i,j, iter;
      nstepm is the number of stepm from age to agelin.    double **xi;
      Look at hpijx to understand the reason of that which relies in memory size    double fret;
      and note for a fixed period like k years */    double fretone; /* Only one call to likelihood */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /*  char filerespow[FILENAMELENGTH];*/
      survival function given by stepm (the optimization length). Unfortunately it    xi=matrix(1,npar,1,npar);
      means that if the survival funtion is printed only each two years of age and if    for (i=1;i<=npar;i++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (j=1;j<=npar;j++)
      results. So we changed our mind and took the option of the best precision.        xi[i][j]=(i==j ? 1.0 : 0.0);
   */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    strcpy(filerespow,"pow"); 
   agelim = AGESUP;    strcat(filerespow,fileres);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      printf("Problem with resultfile: %s\n", filerespow);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     gp=matrix(0,nhstepm,1,nlstate);    for (i=1;i<=nlstate;i++)
     gm=matrix(0,nhstepm,1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(theta=1; theta <=npar; theta++){    fprintf(ficrespow,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(xi,1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       if (popbased==1) {    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(i=1; i<=nlstate;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           prlim[i][i]=probs[(int)age][i][ij];  
       }  }
    
       for(j=1; j<= nlstate; j++){  /**** Computes Hessian and covariance matrix ***/
         for(h=0; h<=nhstepm; h++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double  **a,**y,*x,pd;
         }    double **hess;
       }    int i, j,jk;
        int *indx;
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
       if (popbased==1) {    double gompertz(double p[]);
         for(i=1; i<=nlstate;i++)    hess=matrix(1,npar,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];  
       }    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++){
         for(h=0; h<=nhstepm; h++){      printf("%d",i);fflush(stdout);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      fprintf(ficlog,"%d",i);fflush(ficlog);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];     
         }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       }      
       /*  printf(" %f ",p[i]);
       for(j=1; j<= nlstate; j++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         for(h=0; h<=nhstepm; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    
         }    for (i=1;i<=npar;i++) {
     } /* End theta */      for (j=1;j<=npar;j++)  {
         if (j>i) { 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     for(h=0; h<=nhstepm; h++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
       for(j=1; j<=nlstate;j++)          
         for(theta=1; theta <=npar; theta++)          hess[j][i]=hess[i][j];    
           trgradg[h][j][theta]=gradg[h][theta][j];          /*printf(" %lf ",hess[i][j]);*/
         }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
     for(i=1;i<=nlstate;i++)    }
       for(j=1;j<=nlstate;j++)    printf("\n");
         vareij[i][j][(int)age] =0.;    fprintf(ficlog,"\n");
   
     for(h=0;h<=nhstepm;h++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(k=0;k<=nhstepm;k++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    a=matrix(1,npar,1,npar);
         for(i=1;i<=nlstate;i++)    y=matrix(1,npar,1,npar);
           for(j=1;j<=nlstate;j++)    x=vector(1,npar);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    indx=ivector(1,npar);
       }    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    for (j=1;j<=npar;j++) {
       for(j=1; j<=nlstate;j++){      for (i=1;i<=npar;i++) x[i]=0;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      x[j]=1;
       }      lubksb(a,npar,indx,x);
     fprintf(ficresvij,"\n");      for (i=1;i<=npar;i++){ 
     free_matrix(gp,0,nhstepm,1,nlstate);        matcov[i][j]=x[i];
     free_matrix(gm,0,nhstepm,1,nlstate);      }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\n#Hessian matrix#\n");
   } /* End age */    fprintf(ficlog,"\n#Hessian matrix#\n");
      for (i=1;i<=npar;i++) { 
   free_vector(xp,1,npar);      for (j=1;j<=npar;j++) { 
   free_matrix(doldm,1,nlstate,1,npar);        printf("%.3e ",hess[i][j]);
   free_matrix(dnewm,1,nlstate,1,nlstate);        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
 }      printf("\n");
       fprintf(ficlog,"\n");
 /************ Variance of prevlim ******************/    }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    /* Recompute Inverse */
   /* Variance of prevalence limit */    for (i=1;i<=npar;i++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double **newm;    ludcmp(a,npar,indx,&pd);
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    /*  printf("\n#Hessian matrix recomputed#\n");
   int k, cptcode;  
   double *xp;    for (j=1;j<=npar;j++) {
   double *gp, *gm;      for (i=1;i<=npar;i++) x[i]=0;
   double **gradg, **trgradg;      x[j]=1;
   double age,agelim;      lubksb(a,npar,indx,x);
   int theta;      for (i=1;i<=npar;i++){ 
            y[i][j]=x[i];
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        printf("%.3e ",y[i][j]);
   fprintf(ficresvpl,"# Age");        fprintf(ficlog,"%.3e ",y[i][j]);
   for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %1d-%1d",i,i);      printf("\n");
   fprintf(ficresvpl,"\n");      fprintf(ficlog,"\n");
     }
   xp=vector(1,npar);    */
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    free_matrix(a,1,npar,1,npar);
      free_matrix(y,1,npar,1,npar);
   hstepm=1*YEARM; /* Every year of age */    free_vector(x,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    free_ivector(indx,1,npar);
   agelim = AGESUP;    free_matrix(hess,1,npar,1,npar);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);  /*************** hessian matrix ****************/
     gp=vector(1,nlstate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     gm=vector(1,nlstate);  {
     int i;
     for(theta=1; theta <=npar; theta++){    int l=1, lmax=20;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double k1,k2;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double p2[MAXPARM+1]; /* identical to x */
       }    double res;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(i=1;i<=nlstate;i++)    double fx;
         gp[i] = prlim[i][i];    int k=0,kmax=10;
        double l1;
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fx=func(x);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1;i<=nlstate;i++)    for(l=0 ; l <=lmax; l++){
         gm[i] = prlim[i][i];      l1=pow(10,l);
       delts=delt;
       for(i=1;i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        delt = delta*(l1*k);
     } /* End theta */        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
     trgradg =matrix(1,nlstate,1,npar);        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
     for(j=1; j<=nlstate;j++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(theta=1; theta <=npar; theta++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         trgradg[j][theta]=gradg[theta][j];        
   #ifdef DEBUGHESS
     for(i=1;i<=nlstate;i++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       varpl[i][(int)age] =0.;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  #endif
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     for(i=1;i<=nlstate;i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          k=kmax;
         }
     fprintf(ficresvpl,"%.0f ",age );        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for(i=1; i<=nlstate;i++)          k=kmax; l=lmax*10.;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        }
     fprintf(ficresvpl,"\n");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_vector(gp,1,nlstate);          delts=delt;
     free_vector(gm,1,nlstate);        }
     free_matrix(gradg,1,npar,1,nlstate);      }
     free_matrix(trgradg,1,nlstate,1,npar);    }
   } /* End age */    delti[theta]=delts;
     return res; 
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);  }
   free_matrix(dnewm,1,nlstate,1,nlstate);  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 }  {
     int i;
 /************ Variance of one-step probabilities  ******************/    int l=1, l1, lmax=20;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double k1,k2,k3,k4,res,fx;
 {    double p2[MAXPARM+1];
   int i, j, i1, k1, j1, z1;    int k;
   int k=0, cptcode;  
   double **dnewm,**doldm;    fx=func(x);
   double *xp;    for (k=1; k<=2; k++) {
   double *gp, *gm;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double **gradg, **trgradg;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double age,agelim, cov[NCOVMAX];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int theta;      k1=func(p2)-fx;
   char fileresprob[FILENAMELENGTH];    
       p2[thetai]=x[thetai]+delti[thetai]/k;
   strcpy(fileresprob,"prob");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcat(fileresprob,fileres);      k2=func(p2)-fx;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    
     printf("Problem with resultfile: %s\n", fileresprob);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      k3=func(p2)-fx;
      
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresprob,"# Age");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   for(i=1; i<=nlstate;i++)      k4=func(p2)-fx;
     for(j=1; j<=(nlstate+ndeath);j++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresprob,"\n");  #endif
     }
     return res;
   xp=vector(1,npar);  }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  /************** Inverse of matrix **************/
    void ludcmp(double **a, int n, int *indx, double *d) 
   cov[1]=1;  { 
   j=cptcoveff;    int i,imax,j,k; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double big,dum,sum,temp; 
   j1=0;    double *vv; 
   for(k1=1; k1<=1;k1++){   
     for(i1=1; i1<=ncodemax[k1];i1++){    vv=vector(1,n); 
     j1++;    *d=1.0; 
     for (i=1;i<=n;i++) { 
     if  (cptcovn>0) {      big=0.0; 
       fprintf(ficresprob, "\n#********** Variable ");      for (j=1;j<=n;j++) 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fprintf(ficresprob, "**********\n#");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     }      vv[i]=1.0/big; 
        } 
       for (age=bage; age<=fage; age ++){    for (j=1;j<=n;j++) { 
         cov[2]=age;      for (i=1;i<j;i++) { 
         for (k=1; k<=cptcovn;k++) {        sum=a[i][j]; 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                  a[i][j]=sum; 
         }      } 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      big=0.0; 
         for (k=1; k<=cptcovprod;k++)      for (i=j;i<=n;i++) { 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        sum=a[i][j]; 
                for (k=1;k<j;k++) 
         gradg=matrix(1,npar,1,9);          sum -= a[i][k]*a[k][j]; 
         trgradg=matrix(1,9,1,npar);        a[i][j]=sum; 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          big=dum; 
              imax=i; 
         for(theta=1; theta <=npar; theta++){        } 
           for(i=1; i<=npar; i++)      } 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      if (j != imax) { 
                  for (k=1;k<=n;k++) { 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          dum=a[imax][k]; 
                    a[imax][k]=a[j][k]; 
           k=0;          a[j][k]=dum; 
           for(i=1; i<= (nlstate+ndeath); i++){        } 
             for(j=1; j<=(nlstate+ndeath);j++){        *d = -(*d); 
               k=k+1;        vv[imax]=vv[j]; 
               gp[k]=pmmij[i][j];      } 
             }      indx[j]=imax; 
           }      if (a[j][j] == 0.0) a[j][j]=TINY; 
                if (j != n) { 
           for(i=1; i<=npar; i++)        dum=1.0/(a[j][j]); 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
          } 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    } 
           k=0;    free_vector(vv,1,n);  /* Doesn't work */
           for(i=1; i<=(nlstate+ndeath); i++){  ;
             for(j=1; j<=(nlstate+ndeath);j++){  } 
               k=k+1;  
               gm[k]=pmmij[i][j];  void lubksb(double **a, int n, int *indx, double b[]) 
             }  { 
           }    int i,ii=0,ip,j; 
          double sum; 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)   
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      for (i=1;i<=n;i++) { 
         }      ip=indx[i]; 
       sum=b[ip]; 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      b[ip]=b[i]; 
           for(theta=1; theta <=npar; theta++)      if (ii) 
             trgradg[j][theta]=gradg[theta][j];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
              else if (sum) ii=i; 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      b[i]=sum; 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    } 
            for (i=n;i>=1;i--) { 
         pmij(pmmij,cov,ncovmodel,x,nlstate);      sum=b[i]; 
              for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         k=0;      b[i]=sum/a[i][i]; 
         for(i=1; i<=(nlstate+ndeath); i++){    } 
           for(j=1; j<=(nlstate+ndeath);j++){  } 
             k=k+1;  
             gm[k]=pmmij[i][j];  void pstamp(FILE *fichier)
           }  {
         }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
        }
      /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  /************ Frequencies ********************/
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      }*/  {  /* Some frequencies */
     
         fprintf(ficresprob,"\n%d ",(int)age);    int i, m, jk, k1,i1, j1, bool, z1,j;
     int first;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    double ***freq; /* Frequencies */
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    double *pp, **prop;
      double pos,posprop, k2, dateintsum=0,k2cpt=0;
       }    char fileresp[FILENAMELENGTH];
     }    
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    pp=vector(1,nlstate);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    prop=matrix(1,nlstate,iagemin,iagemax+3);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    strcpy(fileresp,"p");
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    strcat(fileresp,fileres);
   }    if((ficresp=fopen(fileresp,"w"))==NULL) {
   free_vector(xp,1,npar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   fclose(ficresprob);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        exit(0);
 }    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 /******************* Printing html file ***********/    j1=0;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    
  int lastpass, int stepm, int weightopt, char model[],\    j=cptcoveff;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  
  char version[], int popforecast, int estepm ){    first=1;
   int jj1, k1, i1, cpt;  
   FILE *fichtm;    for(k1=1; k1<=j;k1++){
   /*char optionfilehtm[FILENAMELENGTH];*/      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   strcpy(optionfilehtm,optionfile);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   strcat(optionfilehtm,".htm");          scanf("%d", i);*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        for (i=-5; i<=nlstate+ndeath; i++)  
     printf("Problem with %s \n",optionfilehtm), exit(0);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      for (i=1; i<=nlstate; i++)  
 \n        for(m=iagemin; m <= iagemax+3; m++)
 Total number of observations=%d <br>\n          prop[i][m]=0;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        
 <hr  size=\"2\" color=\"#EC5E5E\">        dateintsum=0;
  <ul><li>Outputs files<br>\n        k2cpt=0;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        for (i=1; i<=imx; i++) {
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          bool=1;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          if  (cptcovn>0) {
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n            for (z1=1; z1<=cptcoveff; z1++) 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                bool=0;
           }
  fprintf(fichtm,"\n          if (bool==1){
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n            for(m=firstpass; m<=lastpass; m++){
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              k2=anint[m][i]+(mint[m][i]/12.);
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
  if(popforecast==1) fprintf(fichtm,"\n                if (m<lastpass) {
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         <br>",fileres,fileres,fileres,fileres);                }
  else                
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 fprintf(fichtm," <li>Graphs</li><p>");                  dateintsum=dateintsum+k2;
                   k2cpt++;
  m=cptcoveff;                }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                /*}*/
             }
  jj1=0;          }
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){         
        jj1++;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
        if (cptcovn > 0) {        pstamp(ficresp);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        if  (cptcovn>0) {
          for (cpt=1; cpt<=cptcoveff;cpt++)          fprintf(ficresp, "\n#********** Variable "); 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          fprintf(ficresp, "**********\n#");
        }        }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        for(i=1; i<=nlstate;i++) 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
        for(cpt=1; cpt<nlstate;cpt++){        fprintf(ficresp, "\n");
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(i=iagemin; i <= iagemax+3; i++){
        }          if(i==iagemax+3){
     for(cpt=1; cpt<=nlstate;cpt++) {            fprintf(ficlog,"Total");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          }else{
 interval) in state (%d): v%s%d%d.gif <br>            if(first==1){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                first=0;
      }              printf("See log file for details...\n");
      for(cpt=1; cpt<=nlstate;cpt++) {            }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            fprintf(ficlog,"Age %d", i);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }
      }          for(jk=1; jk <=nlstate ; jk++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 health expectancies in states (1) and (2): e%s%d.gif<br>              pp[jk] += freq[jk][m][i]; 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
 fprintf(fichtm,"\n</body>");          for(jk=1; jk <=nlstate ; jk++){
    }            for(m=-1, pos=0; m <=0 ; m++)
    }              pos += freq[jk][m][i];
 fclose(fichtm);            if(pp[jk]>=1.e-10){
 }              if(first==1){
                 printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 /******************* Gnuplot file **************/              }
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   strcpy(optionfilegnuplot,optionfilefiname);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(optionfilegnuplot,".gp.txt");            }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          }
     printf("Problem with file %s",optionfilegnuplot);  
   }          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 #ifdef windows              pp[jk] += freq[jk][m][i];
     fprintf(ficgp,"cd \"%s\" \n",pathc);          }       
 #endif          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 m=pow(2,cptcoveff);            pos += pp[jk];
              posprop += prop[jk][i];
  /* 1eme*/          }
   for (cpt=1; cpt<= nlstate ; cpt ++) {          for(jk=1; jk <=nlstate ; jk++){
    for (k1=1; k1<= m ; k1 ++) {            if(pos>=1.e-5){
               if(first==1)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 for (i=1; i<= nlstate ; i ++) {            }else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(first==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
     for (i=1; i<= nlstate ; i ++) {            if( i <= iagemax){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(pos>=1.e-5){
   else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 }                /*probs[i][jk][j1]= pp[jk]/pos;*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              else
   else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 }              }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          }
           
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          for(jk=-1; jk <=nlstate+ndeath; jk++)
    }            for(m=-1; m <=nlstate+ndeath; m++)
   }              if(freq[jk][m][i] !=0 ) {
   /*2 eme*/              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   for (k1=1; k1<= m ; k1 ++) {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              }
              if(i <= iagemax)
     for (i=1; i<= nlstate+1 ; i ++) {            fprintf(ficresp,"\n");
       k=2*i;          if(first==1)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            printf("Others in log...\n");
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficlog,"\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }      }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    dateintmean=dateintsum/k2cpt; 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);   
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    fclose(ficresp);
       for (j=1; j<= nlstate+1 ; j ++) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_vector(pp,1,nlstate);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 }      /* End of Freq */
       fprintf(ficgp,"\" t\"\" w l 0,");  }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  /************ Prevalence ********************/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {  
 }      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       in each health status at the date of interview (if between dateprev1 and dateprev2).
       else fprintf(ficgp,"\" t\"\" w l 0,");       We still use firstpass and lastpass as another selection.
     }    */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);   
   }    int i, m, jk, k1, i1, j1, bool, z1,j;
      double ***freq; /* Frequencies */
   /*3eme*/    double *pp, **prop;
     double pos,posprop; 
   for (k1=1; k1<= m ; k1 ++) {    double  y2; /* in fractional years */
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int iagemin, iagemax;
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    iagemin= (int) agemin;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    iagemax= (int) agemax;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /*pp=vector(1,nlstate);*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    j1=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    
     j=cptcoveff;
 */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for (i=1; i< nlstate ; i ++) {    
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
       }        j1++;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        
     }        for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
   /* CV preval stat */       
     for (k1=1; k1<= m ; k1 ++) {        for (i=1; i<=imx; i++) { /* Each individual */
     for (cpt=1; cpt<nlstate ; cpt ++) {          bool=1;
       k=3;          if  (cptcovn>0) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       for (i=1; i< nlstate ; i ++)                bool=0;
         fprintf(ficgp,"+$%d",k+i+1);          } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          if (bool==1) { 
                  for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       l=3+(nlstate+ndeath)*cpt;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       for (i=1; i< nlstate ; i ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         l=3+(nlstate+ndeath)*cpt;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficgp,"+$%d",l+i+1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     }                  prop[s[m][i]][iagemax+3] += weight[i]; 
   }                  } 
                }
   /* proba elementaires */            } /* end selection of waves */
    for(i=1,jk=1; i <=nlstate; i++){          }
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {        for(i=iagemin; i <= iagemax+3; i++){  
         for(j=1; j <=ncovmodel; j++){          
                  for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            posprop += prop[jk][i]; 
           jk++;          } 
           fprintf(ficgp,"\n");  
         }          for(jk=1; jk <=nlstate ; jk++){     
       }            if( i <=  iagemax){ 
     }              if(posprop>=1.e-5){ 
     }                probs[i][jk][j1]= prop[jk][i]/posprop;
               } else
     for(jk=1; jk <=m; jk++) {                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            } 
    i=1;          }/* end jk */ 
    for(k2=1; k2<=nlstate; k2++) {        }/* end i */ 
      k3=i;      } /* end i1 */
      for(k=1; k<=(nlstate+ndeath); k++) {    } /* end k1 */
        if (k != k2){    
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 ij=1;    /*free_vector(pp,1,nlstate);*/
         for(j=3; j <=ncovmodel; j++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  }  /* End of prevalence */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;  /************* Waves Concatenation ***************/
           }  
           else  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  {
         }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           fprintf(ficgp,")/(1");       Death is a valid wave (if date is known).
               mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         for(k1=1; k1 <=nlstate; k1++){         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);       and mw[mi+1][i]. dh depends on stepm.
 ij=1;       */
           for(j=3; j <=ncovmodel; j++){  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int i, mi, m;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             ij++;       double sum=0., jmean=0.;*/
           }    int first;
           else    int j, k=0,jk, ju, jl;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double sum=0.;
           }    first=0;
           fprintf(ficgp,")");    jmin=1e+5;
         }    jmax=-1;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    jmean=0.;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    for(i=1; i<=imx; i++){
         i=i+ncovmodel;      mi=0;
        }      m=firstpass;
      }      while(s[m][i] <= nlstate){
    }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          mw[++mi][i]=m;
    }        if(m >=lastpass)
              break;
   fclose(ficgp);        else
 }  /* end gnuplot */          m++;
       }/* end while */
       if (s[m][i] > nlstate){
 /*************** Moving average **************/        mi++;     /* Death is another wave */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   int i, cpt, cptcod;        mw[mi][i]=m;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      }
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      wav[i]=mi;
           mobaverage[(int)agedeb][i][cptcod]=0.;      if(mi==0){
            nbwarn++;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        if(first==0){
       for (i=1; i<=nlstate;i++){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          first=1;
           for (cpt=0;cpt<=4;cpt++){        }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        if(first==1){
           }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        }
         }      } /* end mi==0 */
       }    } /* End individuals */
     }  
        for(i=1; i<=imx; i++){
 }      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
           dh[mi][i]=1;
 /************** Forecasting ******************/        else{
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   int *popage;              if(j==0) j=1;  /* Survives at least one month after exam */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              else if(j<0){
   double *popeffectif,*popcount;                nberr++;
   double ***p3mat;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char fileresf[FILENAMELENGTH];                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
  agelim=AGESUP;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              k=k+1;
                if (j >= jmax){
                  jmax=j;
   strcpy(fileresf,"f");                ijmax=i;
   strcat(fileresf,fileres);              }
   if((ficresf=fopen(fileresf,"w"))==NULL) {              if (j <= jmin){
     printf("Problem with forecast resultfile: %s\n", fileresf);                jmin=j;
   }                ijmin=i;
   printf("Computing forecasting: result on file '%s' \n", fileresf);              }
               sum=sum+j;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if (mobilav==1) {            }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
     movingaverage(agedeb, fage, ageminpar, mobaverage);          else{
   }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;            k=k+1;
              if (j >= jmax) {
   agelim=AGESUP;              jmax=j;
                ijmax=i;
   hstepm=1;            }
   hstepm=hstepm/stepm;            else if (j <= jmin){
   yp1=modf(dateintmean,&yp);              jmin=j;
   anprojmean=yp;              ijmin=i;
   yp2=modf((yp1*12),&yp);            }
   mprojmean=yp;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   yp1=modf((yp2*30.5),&yp);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   jprojmean=yp;            if(j<0){
   if(jprojmean==0) jprojmean=1;              nberr++;
   if(mprojmean==0) jprojmean=1;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            }
              sum=sum+j;
   for(cptcov=1;cptcov<=i2;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          jk= j/stepm;
       k=k+1;          jl= j -jk*stepm;
       fprintf(ficresf,"\n#******");          ju= j -(jk+1)*stepm;
       for(j=1;j<=cptcoveff;j++) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(jl==0){
       }              dh[mi][i]=jk;
       fprintf(ficresf,"******\n");              bh[mi][i]=0;
       fprintf(ficresf,"# StartingAge FinalAge");            }else{ /* We want a negative bias in order to only have interpolation ie
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                    * at the price of an extra matrix product in likelihood */
                    dh[mi][i]=jk+1;
                    bh[mi][i]=ju;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {            }
         fprintf(ficresf,"\n");          }else{
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              if(jl <= -ju){
               dh[mi][i]=jk;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              bh[mi][i]=jl;       /* bias is positive if real duration
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                                   * is higher than the multiple of stepm and negative otherwise.
           nhstepm = nhstepm/hstepm;                                   */
                      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            else{
           oldm=oldms;savm=savms;              dh[mi][i]=jk+1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                bh[mi][i]=ju;
                    }
           for (h=0; h<=nhstepm; h++){            if(dh[mi][i]==0){
             if (h==(int) (calagedate+YEARM*cpt)) {              dh[mi][i]=1; /* At least one step */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              bh[mi][i]=ju; /* At least one step */
             }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             for(j=1; j<=nlstate+ndeath;j++) {            }
               kk1=0.;kk2=0;          } /* end if mle */
               for(i=1; i<=nlstate;i++) {                      }
                 if (mobilav==1)      } /* end wave */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    }
                 else {    jmean=sum/k;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                 }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                   }
               }  
               if (h==(int)(calagedate+12*cpt)){  /*********** Tricode ****************************/
                 fprintf(ficresf," %.3f", kk1);  void tricode(int *Tvar, int **nbcode, int imx)
                          {
               }    
             }    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
         }    int cptcode=0;
       }    cptcoveff=0; 
     }   
   }    for (k=0; k<maxncov; k++) Ndum[k]=0;
            for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
   fclose(ficresf);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 }                                 modality*/ 
 /************** Forecasting ******************/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        Ndum[ij]++; /*counts the occurence of this modality */
          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
   int *popage;                                         Tvar[j]. If V=sex and male is 0 and 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                                         female is 1, then  cptcode=1.*/
   double *popeffectif,*popcount;      }
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];      for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                         th covariate. In fact
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                         ncodemax[j]=2
   agelim=AGESUP;                                         (dichotom. variables only) but
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;                                         it can be more */
        } /* Ndum[-1] number of undefined modalities */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        ij=1; 
        for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
   strcpy(filerespop,"pop");        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
   strcat(filerespop,fileres);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
     printf("Problem with forecast resultfile: %s\n", filerespop);                                       k is a modality. If we have model=V1+V1*sex 
   }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   printf("Computing forecasting: result on file '%s' \n", filerespop);            ij++;
           }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          if (ij > ncodemax[j]) break; 
         }  
   if (mobilav==1) {      } 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }  
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   if (stepm<=12) stepsize=1;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   agelim=AGESUP;     Ndum[ij]++;
     }
   hstepm=1;  
   hstepm=hstepm/stepm;   ij=1;
     for (i=1; i<= maxncov; i++) {
   if (popforecast==1) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     if((ficpop=fopen(popfile,"r"))==NULL) {       Tvaraff[ij]=i; /*For printing */
       printf("Problem with population file : %s\n",popfile);exit(0);       ij++;
     }     }
     popage=ivector(0,AGESUP);   }
     popeffectif=vector(0,AGESUP);   ij--;
     popcount=vector(0,AGESUP);   cptcoveff=ij; /*Number of simple covariates*/
      }
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  /*********** Health Expectancies ****************/
      
     imx=i;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }  {
     /* Health expectancies, no variances */
   for(cptcov=1;cptcov<=i2;cptcov++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int nhstepma, nstepma; /* Decreasing with age */
       k=k+1;    double age, agelim, hf;
       fprintf(ficrespop,"\n#******");    double ***p3mat;
       for(j=1;j<=cptcoveff;j++) {    double eip;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    pstamp(ficreseij);
       fprintf(ficrespop,"******\n");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       fprintf(ficrespop,"# Age");    fprintf(ficreseij,"# Age");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    for(i=1; i<=nlstate;i++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");      for(j=1; j<=nlstate;j++){
              fprintf(ficreseij," e%1d%1d ",i,j);
       for (cpt=0; cpt<=0;cpt++) {      }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        fprintf(ficreseij," e%1d. ",i);
            }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficreseij,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    
              if(estepm < stepm){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      else  hstepm=estepm;   
            /* We compute the life expectancy from trapezoids spaced every estepm months
           for (h=0; h<=nhstepm; h++){     * This is mainly to measure the difference between two models: for example
             if (h==(int) (calagedate+YEARM*cpt)) {     * if stepm=24 months pijx are given only every 2 years and by summing them
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
             }     * progression in between and thus overestimating or underestimating according
             for(j=1; j<=nlstate+ndeath;j++) {     * to the curvature of the survival function. If, for the same date, we 
               kk1=0.;kk2=0;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               for(i=1; i<=nlstate;i++) {                   * to compare the new estimate of Life expectancy with the same linear 
                 if (mobilav==1)     * hypothesis. A more precise result, taking into account a more precise
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     * curvature will be obtained if estepm is as small as stepm. */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* For example we decided to compute the life expectancy with the smallest unit */
                 }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               }       nhstepm is the number of hstepm from age to agelim 
               if (h==(int)(calagedate+12*cpt)){       nstepm is the number of stepm from age to agelin. 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;       Look at hpijx to understand the reason of that which relies in memory size
                   /*fprintf(ficrespop," %.3f", kk1);       and note for a fixed period like estepm months */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               }       survival function given by stepm (the optimization length). Unfortunately it
             }       means that if the survival funtion is printed only each two years of age and if
             for(i=1; i<=nlstate;i++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               kk1=0.;       results. So we changed our mind and took the option of the best precision.
                 for(j=1; j<=nlstate;j++){    */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    agelim=AGESUP;
             }    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      
           }  /* nhstepm age range expressed in number of stepm */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }    /* if (stepm >= YEARM) hstepm=1;*/
      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /******/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    for (age=bage; age<=fage; age ++){ 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /* if (stepm >= YEARM) hstepm=1;*/
           nhstepm = nhstepm/hstepm;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* If stepm=6 months */
           oldm=oldms;savm=savms;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           for (h=0; h<=nhstepm; h++){      
             if (h==(int) (calagedate+YEARM*cpt)) {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      
             }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             for(j=1; j<=nlstate+ndeath;j++) {      
               kk1=0.;kk2=0;      printf("%d|",(int)age);fflush(stdout);
               for(i=1; i<=nlstate;i++) {                    fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          
               }      /* Computing expectancies */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      for(i=1; i<=nlstate;i++)
             }        for(j=1; j<=nlstate;j++)
           }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         }            
       }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    }  
   }          }
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   if (popforecast==1) {        eip=0;
     free_ivector(popage,0,AGESUP);        for(j=1; j<=nlstate;j++){
     free_vector(popeffectif,0,AGESUP);          eip +=eij[i][j][(int)age];
     free_vector(popcount,0,AGESUP);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   }        }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficreseij,"%9.4f", eip );
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   fclose(ficrespop);      fprintf(ficreseij,"\n");
 }      
     }
 /***********************************************/    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /**************** Main Program *****************/    printf("\n");
 /***********************************************/    fprintf(ficlog,"\n");
     
 int main(int argc, char *argv[])  }
 {  
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;  {
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
   double fret;    */
   double **xi,tmp,delta;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
   double dum; /* Dummy variable */    double age, agelim, hf;
   double ***p3mat;    double ***p3matp, ***p3matm, ***varhe;
   int *indx;    double **dnewm,**doldm;
   char line[MAXLINE], linepar[MAXLINE];    double *xp, *xm;
   char title[MAXLINE];    double **gp, **gm;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    double ***gradg, ***trgradg;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    int theta;
    
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    double eip, vip;
   
   char filerest[FILENAMELENGTH];    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   char fileregp[FILENAMELENGTH];    xp=vector(1,npar);
   char popfile[FILENAMELENGTH];    xm=vector(1,npar);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    dnewm=matrix(1,nlstate*nlstate,1,npar);
   int firstobs=1, lastobs=10;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   int sdeb, sfin; /* Status at beginning and end */    
   int c,  h , cpt,l;    pstamp(ficresstdeij);
   int ju,jl, mi;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficresstdeij,"# Age");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    for(i=1; i<=nlstate;i++){
   int mobilav=0,popforecast=0;      for(j=1; j<=nlstate;j++)
   int hstepm, nhstepm;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      fprintf(ficresstdeij," e%1d. ",i);
     }
   double bage, fage, age, agelim, agebase;    fprintf(ficresstdeij,"\n");
   double ftolpl=FTOL;  
   double **prlim;    pstamp(ficrescveij);
   double *severity;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   double ***param; /* Matrix of parameters */    fprintf(ficrescveij,"# Age");
   double  *p;    for(i=1; i<=nlstate;i++)
   double **matcov; /* Matrix of covariance */      for(j=1; j<=nlstate;j++){
   double ***delti3; /* Scale */        cptj= (j-1)*nlstate+i;
   double *delti; /* Scale */        for(i2=1; i2<=nlstate;i2++)
   double ***eij, ***vareij;          for(j2=1; j2<=nlstate;j2++){
   double **varpl; /* Variances of prevalence limits by age */            cptj2= (j2-1)*nlstate+i2;
   double *epj, vepp;            if(cptj2 <= cptj)
   double kk1, kk2;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          }
        }
     fprintf(ficrescveij,"\n");
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";    
   char *alph[]={"a","a","b","c","d","e"}, str[4];    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   char z[1]="c", occ;    else  hstepm=estepm;   
 #include <sys/time.h>    /* We compute the life expectancy from trapezoids spaced every estepm months
 #include <time.h>     * This is mainly to measure the difference between two models: for example
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];     * if stepm=24 months pijx are given only every 2 years and by summing them
       * we are calculating an estimate of the Life Expectancy assuming a linear 
   /* long total_usecs;     * progression in between and thus overestimating or underestimating according
   struct timeval start_time, end_time;     * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */     * to compare the new estimate of Life expectancy with the same linear 
   getcwd(pathcd, size);     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   printf("\n%s",version);  
   if(argc <=1){    /* For example we decided to compute the life expectancy with the smallest unit */
     printf("\nEnter the parameter file name: ");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     scanf("%s",pathtot);       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
   else{       Look at hpijx to understand the reason of that which relies in memory size
     strcpy(pathtot,argv[1]);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       survival function given by stepm (the optimization length). Unfortunately it
   /*cygwin_split_path(pathtot,path,optionfile);       means that if the survival funtion is printed only each two years of age and if
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* cutv(path,optionfile,pathtot,'\\');*/       results. So we changed our mind and took the option of the best precision.
     */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);    /* If stepm=6 months */
   replace(pathc,path);    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
 /*-------- arguments in the command line --------*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcpy(fileres,"r");    /* if (stepm >= YEARM) hstepm=1;*/
   strcat(fileres, optionfilefiname);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcat(fileres,".txt");    /* Other files have txt extension */    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------arguments file --------*/    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     printf("Problem with optionfile %s\n",optionfile);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     goto end;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   }  
     for (age=bage; age<=fage; age ++){ 
   strcpy(filereso,"o");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   strcat(filereso,fileres);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if((ficparo=fopen(filereso,"w"))==NULL) {      /* if (stepm >= YEARM) hstepm=1;*/
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   }  
       /* If stepm=6 months */
   /* Reads comments: lines beginning with '#' */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   while((c=getc(ficpar))=='#' && c!= EOF){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     puts(line);  
     fputs(line,ficparo);      /* Computing  Variances of health expectancies */
   }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   ungetc(c,ficpar);         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for(i=1; i<=npar; i++){ 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
 while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     fgets(line, MAXLINE, ficpar);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     puts(line);    
     fputs(line,ficparo);        for(j=1; j<= nlstate; j++){
   }          for(i=1; i<=nlstate; i++){
   ungetc(c,ficpar);            for(h=0; h<=nhstepm-1; h++){
                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                  gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   covar=matrix(0,NCOVMAX,1,n);            }
   cptcovn=0;          }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        }
        
   ncovmodel=2+cptcovn;        for(ij=1; ij<= nlstate*nlstate; ij++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   /* Read guess parameters */          }
   /* Reads comments: lines beginning with '#' */      }/* End theta */
   while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);      
     fgets(line, MAXLINE, ficpar);      for(h=0; h<=nhstepm-1; h++)
     puts(line);        for(j=1; j<=nlstate*nlstate;j++)
     fputs(line,ficparo);          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   ungetc(c,ficpar);      
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       for(ij=1;ij<=nlstate*nlstate;ij++)
     for(i=1; i <=nlstate; i++)        for(ji=1;ji<=nlstate*nlstate;ji++)
     for(j=1; j <=nlstate+ndeath-1; j++){          varhe[ij][ji][(int)age] =0.;
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);       printf("%d|",(int)age);fflush(stdout);
       printf("%1d%1d",i,j);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for(k=1; k<=ncovmodel;k++){       for(h=0;h<=nhstepm-1;h++){
         fscanf(ficpar," %lf",&param[i][j][k]);        for(k=0;k<=nhstepm-1;k++){
         printf(" %lf",param[i][j][k]);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         fprintf(ficparo," %lf",param[i][j][k]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       }          for(ij=1;ij<=nlstate*nlstate;ij++)
       fscanf(ficpar,"\n");            for(ji=1;ji<=nlstate*nlstate;ji++)
       printf("\n");              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       fprintf(ficparo,"\n");        }
     }      }
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   p=param[1][1];      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   /* Reads comments: lines beginning with '#' */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   while((c=getc(ficpar))=='#' && c!= EOF){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     ungetc(c,ficpar);            
     fgets(line, MAXLINE, ficpar);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     puts(line);  
     fputs(line,ficparo);          }
   }  
   ungetc(c,ficpar);      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        eip=0.;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        vip=0.;
   for(i=1; i <=nlstate; i++){        for(j=1; j<=nlstate;j++){
     for(j=1; j <=nlstate+ndeath-1; j++){          eip += eij[i][j][(int)age];
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       printf("%1d%1d",i,j);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         printf(" %le",delti3[i][j][k]);      }
         fprintf(ficparo," %le",delti3[i][j][k]);      fprintf(ficresstdeij,"\n");
       }  
       fscanf(ficpar,"\n");      fprintf(ficrescveij,"%3.0f",age );
       printf("\n");      for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"\n");        for(j=1; j<=nlstate;j++){
     }          cptj= (j-1)*nlstate+i;
   }          for(i2=1; i2<=nlstate;i2++)
   delti=delti3[1][1];            for(j2=1; j2<=nlstate;j2++){
                cptj2= (j2-1)*nlstate+i2;
   /* Reads comments: lines beginning with '#' */              if(cptj2 <= cptj)
   while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      fprintf(ficrescveij,"\n");
     fputs(line,ficparo);     
   }    }
   ungetc(c,ficpar);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   matcov=matrix(1,npar,1,npar);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   for(i=1; i <=npar; i++){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     fscanf(ficpar,"%s",&str);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("%s",str);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficparo,"%s",str);    printf("\n");
     for(j=1; j <=i; j++){    fprintf(ficlog,"\n");
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);    free_vector(xm,1,npar);
       fprintf(ficparo," %.5le",matcov[i][j]);    free_vector(xp,1,npar);
     }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     fscanf(ficpar,"\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     printf("\n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     fprintf(ficparo,"\n");  }
   }  
   for(i=1; i <=npar; i++)  /************ Variance ******************/
     for(j=i+1;j<=npar;j++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       matcov[i][j]=matcov[j][i];  {
        /* Variance of health expectancies */
   printf("\n");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     /*-------- Rewriting paramater file ----------*/    double **dnewmp,**doldmp;
      strcpy(rfileres,"r");    /* "Rparameterfile */    int i, j, nhstepm, hstepm, h, nstepm ;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    int k, cptcode;
      strcat(rfileres,".");    /* */    double *xp;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    double **gp, **gm;  /* for var eij */
     if((ficres =fopen(rfileres,"w"))==NULL) {    double ***gradg, ***trgradg; /*for var eij */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    double **gradgp, **trgradgp; /* for var p point j */
     }    double *gpp, *gmp; /* for var p point j */
     fprintf(ficres,"#%s\n",version);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
        double ***p3mat;
     /*-------- data file ----------*/    double age,agelim, hf;
     if((fic=fopen(datafile,"r"))==NULL)    {    double ***mobaverage;
       printf("Problem with datafile: %s\n", datafile);goto end;    int theta;
     }    char digit[4];
     char digitp[25];
     n= lastobs;  
     severity = vector(1,maxwav);    char fileresprobmorprev[FILENAMELENGTH];
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);    if(popbased==1){
     moisnais=vector(1,n);      if(mobilav!=0)
     annais=vector(1,n);        strcpy(digitp,"-populbased-mobilav-");
     moisdc=vector(1,n);      else strcpy(digitp,"-populbased-nomobil-");
     andc=vector(1,n);    }
     agedc=vector(1,n);    else 
     cod=ivector(1,n);      strcpy(digitp,"-stablbased-");
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    if (mobilav!=0) {
     mint=matrix(1,maxwav,1,n);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     anint=matrix(1,maxwav,1,n);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     s=imatrix(1,maxwav+1,1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     adl=imatrix(1,maxwav+1,1,n);            printf(" Error in movingaverage mobilav=%d\n",mobilav);
     tab=ivector(1,NCOVMAX);      }
     ncodemax=ivector(1,8);    }
   
     i=1;    strcpy(fileresprobmorprev,"prmorprev"); 
     while (fgets(line, MAXLINE, fic) != NULL)    {    sprintf(digit,"%-d",ij);
       if ((i >= firstobs) && (i <=lastobs)) {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
            strcat(fileresprobmorprev,digit); /* Tvar to be done */
         for (j=maxwav;j>=1;j--){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    strcat(fileresprobmorprev,fileres);
           strcpy(line,stra);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         }    }
            printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);   
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresprobmorprev," p.%-d SE",j);
         for (j=ncovcol;j>=1;j--){      for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         }    }  
         num[i]=atol(stra);    fprintf(ficresprobmorprev,"\n");
            fprintf(ficgp,"\n# Routine varevsij");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         i=i+1;  /*   } */
       }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }    pstamp(ficresvij);
     /* printf("ii=%d", ij);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
        scanf("%d",i);*/    if(popbased==1)
   imx=i-1; /* Number of individuals */      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
   /* for (i=1; i<=imx; i++){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    fprintf(ficresvij,"# Age");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    for(i=1; i<=nlstate;i++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      for(j=1; j<=nlstate;j++)
     }*/        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
    /*  for (i=1; i<=imx; i++){    fprintf(ficresvij,"\n");
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   /* Calculation of the number of parameter from char model*/    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   Tvar=ivector(1,15);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   Tvard=imatrix(1,15,1,2);    gpp=vector(nlstate+1,nlstate+ndeath);
   Tage=ivector(1,15);          gmp=vector(nlstate+1,nlstate+ndeath);
        trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   if (strlen(model) >1){    
     j=0, j1=0, k1=1, k2=1;    if(estepm < stepm){
     j=nbocc(model,'+');      printf ("Problem %d lower than %d\n",estepm, stepm);
     j1=nbocc(model,'*');    }
     cptcovn=j+1;    else  hstepm=estepm;   
     cptcovprod=j1;    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     strcpy(modelsav,model);       nhstepm is the number of hstepm from age to agelim 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){       nstepm is the number of stepm from age to agelin. 
       printf("Error. Non available option model=%s ",model);       Look at function hpijx to understand why (it is linked to memory size questions) */
       goto end;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     }       survival function given by stepm (the optimization length). Unfortunately it
           means that if the survival funtion is printed every two years of age and if
     for(i=(j+1); i>=1;i--){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       cutv(stra,strb,modelsav,'+');       results. So we changed our mind and took the option of the best precision.
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       /*scanf("%d",i);*/    agelim = AGESUP;
       if (strchr(strb,'*')) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         cutv(strd,strc,strb,'*');      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         if (strcmp(strc,"age")==0) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           cptcovprod--;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cutv(strb,stre,strd,'V');      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           Tvar[i]=atoi(stre);      gp=matrix(0,nhstepm,1,nlstate);
           cptcovage++;      gm=matrix(0,nhstepm,1,nlstate);
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/  
         }      for(theta=1; theta <=npar; theta++){
         else if (strcmp(strd,"age")==0) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           cptcovprod--;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           cutv(strb,stre,strc,'V');        }
           Tvar[i]=atoi(stre);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           cptcovage++;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           Tage[cptcovage]=i;  
         }        if (popbased==1) {
         else {          if(mobilav ==0){
           cutv(strb,stre,strc,'V');            for(i=1; i<=nlstate;i++)
           Tvar[i]=ncovcol+k1;              prlim[i][i]=probs[(int)age][i][ij];
           cutv(strb,strc,strd,'V');          }else{ /* mobilav */ 
           Tprod[k1]=i;            for(i=1; i<=nlstate;i++)
           Tvard[k1][1]=atoi(strc);              prlim[i][i]=mobaverage[(int)age][i][ij];
           Tvard[k1][2]=atoi(stre);          }
           Tvar[cptcovn+k2]=Tvard[k1][1];        }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    
           for (k=1; k<=lastobs;k++)        for(j=1; j<= nlstate; j++){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          for(h=0; h<=nhstepm; h++){
           k1++;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           k2=k2+2;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
       }        }
       else {        /* This for computing probability of death (h=1 means
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/           computed over hstepm matrices product = hstepm*stepm months) 
        /*  scanf("%d",i);*/           as a weighted average of prlim.
       cutv(strd,strc,strb,'V');        */
       Tvar[i]=atoi(strc);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       strcpy(modelsav,stra);              gpp[j] += prlim[i][i]*p3mat[i][j][1];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        }    
         scanf("%d",i);*/        /* end probability of death */
     }  
 }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   printf("cptcovprod=%d ", cptcovprod);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   scanf("%d ",i);*/   
     fclose(fic);        if (popbased==1) {
           if(mobilav ==0){
     /*  if(mle==1){*/            for(i=1; i<=nlstate;i++)
     if (weightopt != 1) { /* Maximisation without weights*/              prlim[i][i]=probs[(int)age][i][ij];
       for(i=1;i<=n;i++) weight[i]=1.0;          }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
     /*-calculation of age at interview from date of interview and age at death -*/              prlim[i][i]=mobaverage[(int)age][i][ij];
     agev=matrix(1,maxwav,1,imx);          }
         }
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          for(h=0; h<=nhstepm; h++){
          anint[m][i]=9999;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
          s[m][i]=-1;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
        }          }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        }
       }        /* This for computing probability of death (h=1 means
     }           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
     for (i=1; i<=imx; i++)  {        */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(m=1; (m<= maxwav); m++){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         if(s[m][i] >0){           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           if (s[m][i] >= nlstate+1) {        }    
             if(agedc[i]>0)        /* end probability of death */
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];        for(j=1; j<= nlstate; j++) /* vareij */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          for(h=0; h<=nhstepm; h++){
            else {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               if (andc[i]!=9999){          }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             }        }
           }  
           else if(s[m][i] !=9){ /* Should no more exist */      } /* End theta */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){      for(h=0; h<=nhstepm; h++) /* veij */
               agemin=agev[m][i];        for(j=1; j<=nlstate;j++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          for(theta=1; theta <=npar; theta++)
             }            trgradg[h][j][theta]=gradg[h][theta][j];
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        for(theta=1; theta <=npar; theta++)
             }          trgradgp[j][theta]=gradgp[theta][j];
             /*agev[m][i]=anint[m][i]-annais[i];*/    
             /*   agev[m][i] = age[i]+2*m;*/  
           }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           else { /* =9 */      for(i=1;i<=nlstate;i++)
             agev[m][i]=1;        for(j=1;j<=nlstate;j++)
             s[m][i]=-1;          vareij[i][j][(int)age] =0.;
           }  
         }      for(h=0;h<=nhstepm;h++){
         else /*= 0 Unknown */        for(k=0;k<=nhstepm;k++){
           agev[m][i]=1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
              for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
     for (i=1; i<=imx; i++)  {              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       for(m=1; (m<= maxwav); m++){        }
         if (s[m][i] > (nlstate+ndeath)) {      }
           printf("Error: Wrong value in nlstate or ndeath\n");      
           goto end;      /* pptj */
         }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
     free_vector(severity,1,maxwav);      /*  x centered again */
     free_imatrix(outcome,1,maxwav+1,1,n);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     free_vector(moisnais,1,n);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     free_vector(annais,1,n);   
     /* free_matrix(mint,1,maxwav,1,n);      if (popbased==1) {
        free_matrix(anint,1,maxwav,1,n);*/        if(mobilav ==0){
     free_vector(moisdc,1,n);          for(i=1; i<=nlstate;i++)
     free_vector(andc,1,n);            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
     wav=ivector(1,imx);            prlim[i][i]=mobaverage[(int)age][i][ij];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      }
                   
     /* Concatenates waves */      /* This for computing probability of death (h=1 means
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       Tcode=ivector(1,100);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       ncodemax[1]=1;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      }    
            /* end probability of death */
    codtab=imatrix(1,100,1,10);  
    h=0;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
    m=pow(2,cptcoveff);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
    for(k=1;k<=cptcoveff; k++){        for(i=1; i<=nlstate;i++){
      for(i=1; i <=(m/pow(2,k));i++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
        for(j=1; j <= ncodemax[k]; j++){        }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      } 
            h++;      fprintf(ficresprobmorprev,"\n");
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      fprintf(ficresvij,"%.0f ",age );
          }      for(i=1; i<=nlstate;i++)
        }        for(j=1; j<=nlstate;j++){
      }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
    }        }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      fprintf(ficresvij,"\n");
       codtab[1][2]=1;codtab[2][2]=2; */      free_matrix(gp,0,nhstepm,1,nlstate);
    /* for(i=1; i <=m ;i++){      free_matrix(gm,0,nhstepm,1,nlstate);
       for(k=1; k <=cptcovn; k++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("\n");    } /* End age */
       }    free_vector(gpp,nlstate+1,nlstate+ndeath);
       scanf("%d",i);*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
        free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
    /* Calculates basic frequencies. Computes observed prevalence at single age    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        and prints on file fileres'p'. */    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
        fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
          fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     if(mle==1){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }    free_vector(xp,1,npar);
        free_matrix(doldm,1,nlstate,1,nlstate);
     /*--------- results files --------------*/    free_matrix(dnewm,1,nlstate,1,npar);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    jk=1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fclose(ficresprobmorprev);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fflush(ficgp);
    for(i=1,jk=1; i <=nlstate; i++){    fflush(fichtm); 
      for(k=1; k <=(nlstate+ndeath); k++){  }  /* end varevsij */
        if (k != i)  
          {  /************ Variance of prevlim ******************/
            printf("%d%d ",i,k);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
            fprintf(ficres,"%1d%1d ",i,k);  {
            for(j=1; j <=ncovmodel; j++){    /* Variance of prevalence limit */
              printf("%f ",p[jk]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
              fprintf(ficres,"%f ",p[jk]);    double **newm;
              jk++;    double **dnewm,**doldm;
            }    int i, j, nhstepm, hstepm;
            printf("\n");    int k, cptcode;
            fprintf(ficres,"\n");    double *xp;
          }    double *gp, *gm;
      }    double **gradg, **trgradg;
    }    double age,agelim;
  if(mle==1){    int theta;
     /* Computing hessian and covariance matrix */    
     ftolhess=ftol; /* Usually correct */    pstamp(ficresvpl);
     hesscov(matcov, p, npar, delti, ftolhess, func);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
  }    fprintf(ficresvpl,"# Age");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    for(i=1; i<=nlstate;i++)
     printf("# Scales (for hessian or gradient estimation)\n");        fprintf(ficresvpl," %1d-%1d",i,i);
      for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresvpl,"\n");
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {    xp=vector(1,npar);
           fprintf(ficres,"%1d%1d",i,j);    dnewm=matrix(1,nlstate,1,npar);
           printf("%1d%1d",i,j);    doldm=matrix(1,nlstate,1,nlstate);
           for(k=1; k<=ncovmodel;k++){    
             printf(" %.5e",delti[jk]);    hstepm=1*YEARM; /* Every year of age */
             fprintf(ficres," %.5e",delti[jk]);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
             jk++;    agelim = AGESUP;
           }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           printf("\n");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           fprintf(ficres,"\n");      if (stepm >= YEARM) hstepm=1;
         }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       }      gradg=matrix(1,npar,1,nlstate);
      }      gp=vector(1,nlstate);
          gm=vector(1,nlstate);
     k=1;  
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for(theta=1; theta <=npar; theta++){
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for(i=1; i<=npar; i++){ /* Computes gradient */
     for(i=1;i<=npar;i++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       /*  if (k>nlstate) k=1;        }
       i1=(i-1)/(ncovmodel*nlstate)+1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for(i=1;i<=nlstate;i++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/          gp[i] = prlim[i][i];
       fprintf(ficres,"%3d",i);      
       printf("%3d",i);        for(i=1; i<=npar; i++) /* Computes gradient */
       for(j=1; j<=i;j++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficres," %.5e",matcov[i][j]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         printf(" %.5e",matcov[i][j]);        for(i=1;i<=nlstate;i++)
       }          gm[i] = prlim[i][i];
       fprintf(ficres,"\n");  
       printf("\n");        for(i=1;i<=nlstate;i++)
       k++;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     }      } /* End theta */
      
     while((c=getc(ficpar))=='#' && c!= EOF){      trgradg =matrix(1,nlstate,1,npar);
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);      for(j=1; j<=nlstate;j++)
       puts(line);        for(theta=1; theta <=npar; theta++)
       fputs(line,ficparo);          trgradg[j][theta]=gradg[theta][j];
     }  
     ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
     estepm=0;        varpl[i][(int)age] =0.;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     if (estepm==0 || estepm < stepm) estepm=stepm;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     if (fage <= 2) {      for(i=1;i<=nlstate;i++)
       bage = ageminpar;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       fage = agemaxpar;  
     }      fprintf(ficresvpl,"%.0f ",age );
          for(i=1; i<=nlstate;i++)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficresvpl,"\n");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
     while((c=getc(ficpar))=='#' && c!= EOF){      free_matrix(gradg,1,npar,1,nlstate);
     ungetc(c,ficpar);      free_matrix(trgradg,1,nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);    } /* End age */
     puts(line);  
     fputs(line,ficparo);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
   ungetc(c,ficpar);    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /************ Variance of one-step probabilities  ******************/
        void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    int i, j=0,  i1, k1, l1, t, tj;
     fgets(line, MAXLINE, ficpar);    int k2, l2, j1,  z1;
     puts(line);    int k=0,l, cptcode;
     fputs(line,ficparo);    int first=1, first1;
   }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   ungetc(c,ficpar);    double **dnewm,**doldm;
      double *xp;
     double *gp, *gm;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    double **gradg, **trgradg;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    double **mu;
     double age,agelim, cov[NCOVMAX];
   fscanf(ficpar,"pop_based=%d\n",&popbased);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   fprintf(ficparo,"pop_based=%d\n",popbased);      int theta;
   fprintf(ficres,"pop_based=%d\n",popbased);      char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
   while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprobcor[FILENAMELENGTH];
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    double ***varpij;
     puts(line);  
     fputs(line,ficparo);    strcpy(fileresprob,"prob"); 
   }    strcat(fileresprob,fileres);
   ungetc(c,ficpar);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with resultfile: %s\n", fileresprobcov);
     ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    strcpy(fileresprobcor,"probcor"); 
     fputs(line,ficparo);    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 /*------------ gnuplot -------------*/    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    pstamp(ficresprob);
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 /*------------ free_vector  -------------*/    fprintf(ficresprob,"# Age");
  chdir(path);    pstamp(ficresprobcov);
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
  free_ivector(wav,1,imx);    fprintf(ficresprobcov,"# Age");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    pstamp(ficresprobcor);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  free_ivector(num,1,n);    fprintf(ficresprobcor,"# Age");
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);    for(i=1; i<=nlstate;i++)
  fclose(ficres);      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 /*--------- index.htm --------*/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);      }  
    /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
   /*--------------- Prevalence limit --------------*/    fprintf(ficresprobcor,"\n");
     */
   strcpy(filerespl,"pl");    xp=vector(1,npar);
   strcat(filerespl,fileres);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    first=1;
   fprintf(ficrespl,"#Prevalence limit\n");    fprintf(ficgp,"\n# Routine varprob");
   fprintf(ficrespl,"#Age ");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(fichtm,"\n");
   fprintf(ficrespl,"\n");  
      fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   prlim=matrix(1,nlstate,1,nlstate);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    file %s<br>\n",optionfilehtmcov);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  and drawn. It helps understanding how is the covariance between two incidences.\
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   k=0;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   agebase=ageminpar;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   agelim=agemaxpar;  standard deviations wide on each axis. <br>\
   ftolpl=1.e-10;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   i1=cptcoveff;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   if (cptcovn < 1){i1=1;}  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
   for(cptcov=1;cptcov<=i1;cptcov++){    cov[1]=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    tj=cptcoveff;
         k=k+1;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    j1=0;
         fprintf(ficrespl,"\n#******");    for(t=1; t<=tj;t++){
         for(j=1;j<=cptcoveff;j++)      for(i1=1; i1<=ncodemax[t];i1++){ 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        j1++;
         fprintf(ficrespl,"******\n");        if  (cptcovn>0) {
                  fprintf(ficresprob, "\n#********** Variable "); 
         for (age=agebase; age<=agelim; age++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficrespl,"%.0f",age );          fprintf(ficresprobcov, "\n#********** Variable "); 
           for(i=1; i<=nlstate;i++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficrespl," %.5f", prlim[i][i]);          fprintf(ficresprobcov, "**********\n#\n");
           fprintf(ficrespl,"\n");          
         }          fprintf(ficgp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficgp, "**********\n#\n");
   fclose(ficrespl);          
           
   /*------------- h Pij x at various ages ------------*/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficresprobcor, "\n#********** Variable ");    
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficresprobcor, "**********\n#");    
          }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        
   /*if (stepm<=24) stepsize=2;*/        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
   agelim=AGESUP;          for (k=1; k<=cptcovn;k++) {
   hstepm=stepsize*YEARM; /* Every year of age */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          }
            for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   k=0;          for (k=1; k<=cptcovprod;k++)
   for(cptcov=1;cptcov<=i1;cptcov++){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          
       k=k+1;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         fprintf(ficrespij,"\n#****** ");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         for(j=1;j<=cptcoveff;j++)          gp=vector(1,(nlstate)*(nlstate+ndeath));
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          gm=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficrespij,"******\n");      
                  for(theta=1; theta <=npar; theta++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            for(i=1; i<=npar; i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           oldm=oldms;savm=savms;            
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              k=0;
           fprintf(ficrespij,"# Age");            for(i=1; i<= (nlstate); i++){
           for(i=1; i<=nlstate;i++)              for(j=1; j<=(nlstate+ndeath);j++){
             for(j=1; j<=nlstate+ndeath;j++)                k=k+1;
               fprintf(ficrespij," %1d-%1d",i,j);                gp[k]=pmmij[i][j];
           fprintf(ficrespij,"\n");              }
            for (h=0; h<=nhstepm; h++){            }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            
             for(i=1; i<=nlstate;i++)            for(i=1; i<=npar; i++)
               for(j=1; j<=nlstate+ndeath;j++)              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      
             fprintf(ficrespij,"\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              }            k=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=(nlstate); i++){
           fprintf(ficrespij,"\n");              for(j=1; j<=(nlstate+ndeath);j++){
         }                k=k+1;
     }                gm[k]=pmmij[i][j];
   }              }
             }
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   fclose(ficrespij);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
   /*---------- Forecasting ------------------*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   if((stepm == 1) && (strcmp(model,".")==0)){            for(theta=1; theta <=npar; theta++)
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);              trgradg[j][theta]=gradg[theta][j];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          
   }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   else{          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     erreur=108;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   /*---------- Health expectancies and variances ------------*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
   strcpy(filerest,"t");          k=0;
   strcat(filerest,fileres);          for(i=1; i<=(nlstate); i++){
   if((ficrest=fopen(filerest,"w"))==NULL) {            for(j=1; j<=(nlstate+ndeath);j++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              k=k+1;
   }              mu[k][(int) age]=pmmij[i][j];
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   strcpy(filerese,"e");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   strcat(filerese,fileres);              varpij[i][j][(int)age] = doldm[i][j];
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          /*printf("\n%d ",(int)age);
   }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  strcpy(fileresv,"v");            }*/
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          fprintf(ficresprob,"\n%d ",(int)age);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficresprobcov,"\n%d ",(int)age);
   }          fprintf(ficresprobcor,"\n%d ",(int)age);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   k=0;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   for(cptcov=1;cptcov<=i1;cptcov++){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
       k=k+1;          i=0;
       fprintf(ficrest,"\n#****** ");          for (k=1; k<=(nlstate);k++){
       for(j=1;j<=cptcoveff;j++)            for (l=1; l<=(nlstate+ndeath);l++){ 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              i=i++;
       fprintf(ficrest,"******\n");              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
       fprintf(ficreseij,"\n#****** ");              for (j=1; j<=i;j++){
       for(j=1;j<=cptcoveff;j++)                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       fprintf(ficreseij,"******\n");              }
             }
       fprintf(ficresvij,"\n#****** ");          }/* end of loop for state */
       for(j=1;j<=cptcoveff;j++)        } /* end of loop for age */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");        /* Confidence intervalle of pij  */
         /*
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficgp,"\nunset parametric;unset label");
       oldm=oldms;savm=savms;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
            fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       oldm=oldms;savm=savms;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
            */
   
          /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        first1=1;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        for (k2=1; k2<=(nlstate);k2++){
       fprintf(ficrest,"\n");          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
       epj=vector(1,nlstate+1);            j=(k2-1)*(nlstate+ndeath)+l2;
       for(age=bage; age <=fage ;age++){            for (k1=1; k1<=(nlstate);k1++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         if (popbased==1) {                if(l1==k1) continue;
           for(i=1; i<=nlstate;i++)                i=(k1-1)*(nlstate+ndeath)+l1;
             prlim[i][i]=probs[(int)age][i][k];                if(i<=j) continue;
         }                for (age=bage; age<=fage; age ++){ 
                          if ((int)age %5==0){
         fprintf(ficrest," %4.0f",age);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                    mu1=mu[i][(int) age]/stepm*YEARM ;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                    mu2=mu[j][(int) age]/stepm*YEARM;
           }                    c12=cv12/sqrt(v1*v2);
           epj[nlstate+1] +=epj[j];                    /* Computing eigen value of matrix of covariance */
         }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         for(i=1, vepp=0.;i <=nlstate;i++)                    /* Eigen vectors */
           for(j=1;j <=nlstate;j++)                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
             vepp += vareij[i][j][(int)age];                    /*v21=sqrt(1.-v11*v11); *//* error */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                    v21=(lc1-v1)/cv12*v11;
         for(j=1;j <=nlstate;j++){                    v12=-v21;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                    v22=v11;
         }                    tnalp=v21/v11;
         fprintf(ficrest,"\n");                    if(first1==1){
       }                      first1=0;
     }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    }
 free_matrix(mint,1,maxwav,1,n);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                    /*printf(fignu*/
     free_vector(weight,1,n);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   fclose(ficreseij);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   fclose(ficresvij);                    if(first==1){
   fclose(ficrest);                      first=0;
   fclose(ficpar);                      fprintf(ficgp,"\nset parametric;unset label");
   free_vector(epj,1,nlstate+1);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /*------- Variance limit prevalence------*/                        fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   strcpy(fileresvpl,"vpl");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   strcat(fileresvpl,fileres);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     exit(0);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   k=0;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   for(cptcov=1;cptcov<=i1;cptcov++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       k=k+1;                    }else{
       fprintf(ficresvpl,"\n#****** ");                      first=0;
       for(j=1;j<=cptcoveff;j++)                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficresvpl,"******\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                            fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       oldm=oldms;savm=savms;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    }/* if first */
     }                  } /* age mod 5 */
  }                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fclose(ficresvpl);                first=1;
               } /*l12 */
   /*---------- End : free ----------------*/            } /* k12 */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          } /*l1 */
          }/* k1 */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      } /* loop covariates */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_vector(xp,1,npar);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fclose(ficresprob);
      fclose(ficresprobcov);
   free_matrix(matcov,1,npar,1,npar);    fclose(ficresprobcor);
   free_vector(delti,1,npar);    fflush(ficgp);
   free_matrix(agev,1,maxwav,1,imx);    fflush(fichtmcov);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  }
   
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);  /******************* Printing html file ***********/
   else   printf("End of Imach\n");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                    int lastpass, int stepm, int weightopt, char model[],\
                      int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                    int popforecast, int estepm ,\
   /*printf("Total time was %d uSec.\n", total_usecs);*/                    double jprev1, double mprev1,double anprev1, \
   /*------ End -----------*/                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
  end:     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   /* chdir(pathcd);*/     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
  /*system("wgnuplot graph.plt");*/  </ul>");
  /*system("../gp37mgw/wgnuplot graph.plt");*/     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
  /*system("cd ../gp37mgw");*/   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
  strcpy(plotcmd,GNUPLOTPROGRAM);     fprintf(fichtm,"\
  strcat(plotcmd," ");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
  strcat(plotcmd,optionfilegnuplot);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
  system(plotcmd);     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
  /*#ifdef windows*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   while (z[0] != 'q') {     fprintf(fichtm,"\
     /* chdir(path); */   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");     <a href=\"%s\">%s</a> <br>\n",
     scanf("%s",z);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     if (z[0] == 'c') system("./imach");     fprintf(fichtm,"\
     else if (z[0] == 'e') system(optionfilehtm);   - Population projections by age and states: \
     else if (z[0] == 'g') system(plotcmd);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
     else if (z[0] == 'q') exit(0);  
   }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   /*#endif */  
 }   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforces= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);fflush(ficlog);
           goto end;
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.132


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>