Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.166

version 1.41.2.2, 2003/06/13 07:45:28 version 1.166, 2014/12/22 11:40:47
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.166  2014/12/22 11:40:47  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.165  2014/12/16 11:20:36  brouard
   first survey ("cross") where individuals from different ages are    Summary: After compiling on Visual C
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Merging 1.61 to 1.162
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.164  2014/12/16 10:52:11  brouard
   computed from the time spent in each health state according to a    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Module): Merging 1.61 to 1.162
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.163  2014/12/16 10:30:11  brouard
   conditional to be observed in state i at the first wave. Therefore    * imach.c (Module): Merging 1.61 to 1.162
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.162  2014/09/25 11:43:39  brouard
   complex model than "constant and age", you should modify the program    Summary: temporary backup 0.99!
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.1  2014/09/16 11:06:58  brouard
   convergence.    Summary: With some code (wrong) for nlopt
   
   The advantage of this computer programme, compared to a simple    Author:
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.161  2014/09/15 20:41:41  brouard
   intermediate interview, the information is lost, but taken into    Summary: Problem with macro SQR on Intel compiler
   account using an interpolation or extrapolation.    
     Revision 1.160  2014/09/02 09:24:05  brouard
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.159  2014/09/01 10:34:10  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: WIN32
   semester or year) is model as a multinomial logistic.  The hPx    Author: Brouard
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.158  2014/08/27 17:11:51  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.157  2014/08/27 16:26:55  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Preparing windows Visual studio version
      Author: Brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    In order to compile on Visual studio, time.h is now correct and time_t
   This software have been partly granted by Euro-REVES, a concerted action    and tm struct should be used. difftime should be used but sometimes I
   from the European Union.    just make the differences in raw time format (time(&now).
   It is copyrighted identically to a GNU software product, ie programme and    Trying to suppress #ifdef LINUX
   software can be distributed freely for non commercial use. Latest version    Add xdg-open for __linux in order to open default browser.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.156  2014/08/25 20:10:10  brouard
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.155  2014/08/25 18:32:34  brouard
 #include <stdlib.h>    Summary: New compile, minor changes
 #include <unistd.h>    Author: Brouard
   
 #define MAXLINE 256    Revision 1.154  2014/06/20 17:32:08  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    Summary: Outputs now all graphs of convergence to period prevalence
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.153  2014/06/20 16:45:46  brouard
 /*#define DEBUG*/    Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.152  2014/06/18 17:54:09  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.151  2014/06/18 16:43:30  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    *** empty log message ***
   
 #define NINTERVMAX 8    Revision 1.150  2014/06/18 16:42:35  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Author: brouard
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.149  2014/06/18 15:51:14  brouard
 #define YEARM 12. /* Number of months per year */    Summary: Some fixes in parameter files errors
 #define AGESUP 130    Author: Nicolas Brouard
 #define AGEBASE 40  
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
 int erreur; /* Error number */    Author: Brouard
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Just a new packaging for OS/X version 0.98nS
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.147  2014/06/16 10:33:11  brouard
 int ndeath=1; /* Number of dead states */    *** empty log message ***
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
 int *wav; /* Number of waves for this individuual 0 is possible */    Author: Brouard
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Merge, before building revised version.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.145  2014/06/10 21:23:15  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Summary: Debugging with valgrind
 double jmean; /* Mean space between 2 waves */    Author: Nicolas Brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Lot of changes in order to output the results with some covariates
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    After the Edimburgh REVES conference 2014, it seems mandatory to
 FILE *ficgp,*ficresprob,*ficpop;    improve the code.
 FILE *ficreseij;    No more memory valgrind error but a lot has to be done in order to
   char filerese[FILENAMELENGTH];    continue the work of splitting the code into subroutines.
  FILE  *ficresvij;    Also, decodemodel has been improved. Tricode is still not
   char fileresv[FILENAMELENGTH];    optimal. nbcode should be improved. Documentation has been added in
  FILE  *ficresvpl;    the source code.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.143  2014/01/26 09:45:38  brouard
 #define NR_END 1    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #define NRANSI  
 #define ITMAX 200    Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #define TOL 2.0e-4  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.141  2014/01/26 02:42:01  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 #define GOLD 1.618034    Revision 1.140  2011/09/02 10:37:54  brouard
 #define GLIMIT 100.0    Summary: times.h is ok with mingw32 now.
 #define TINY 1.0e-20  
     Revision 1.139  2010/06/14 07:50:17  brouard
 static double maxarg1,maxarg2;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.138  2010/04/30 18:19:40  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    *** empty log message ***
 #define rint(a) floor(a+0.5)  
     Revision 1.137  2010/04/29 18:11:38  brouard
 static double sqrarg;    (Module): Checking covariates for more complex models
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    than V1+V2. A lot of change to be done. Unstable.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.136  2010/04/26 20:30:53  brouard
 int imx;    (Module): merging some libgsl code. Fixing computation
 int stepm;    of likelione (using inter/intrapolation if mle = 0) in order to
 /* Stepm, step in month: minimum step interpolation*/    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.134  2009/10/29 13:18:53  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
 double *weight;  
 int **s; /* Status */    Revision 1.132  2009/07/06 08:22:05  brouard
 double *agedc, **covar, idx;    Many tings
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.131  2009/06/20 16:22:47  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Some dimensions resccaled
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.130  2009/05/26 06:44:34  brouard
 /**************** split *************************/    (Module): Max Covariate is now set to 20 instead of 8. A
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    lot of cleaning with variables initialized to 0. Trying to make
 {    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.128  2006/06/30 13:02:05  brouard
 #ifdef windows    (Module): Clarifications on computing e.j
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.127  2006/04/28 18:11:50  brouard
    s = strrchr( path, '/' );            /* find last / */    (Module): Yes the sum of survivors was wrong since
 #endif    imach-114 because nhstepm was no more computed in the age
    if ( s == NULL ) {                   /* no directory, so use current */    loop. Now we define nhstepma in the age loop.
 #if     defined(__bsd__)                /* get current working directory */    (Module): In order to speed up (in case of numerous covariates) we
       extern char       *getwd( );    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
       if ( getwd( dirc ) == NULL ) {    deviation (needs data from the Hessian matrices) which slows the
 #else    computation.
       extern char       *getcwd( );    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.126  2006/04/28 17:23:28  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): Yes the sum of survivors was wrong since
       }    imach-114 because nhstepm was no more computed in the age
       strcpy( name, path );             /* we've got it */    loop. Now we define nhstepma in the age loop.
    } else {                             /* strip direcotry from path */    Version 0.98h
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.125  2006/04/04 15:20:31  lievre
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Errors in calculation of health expectancies. Age was not initialized.
       strcpy( name, s );                /* save file name */    Forecasting file added.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.124  2006/03/22 17:13:53  lievre
    }    Parameters are printed with %lf instead of %f (more numbers after the comma).
    l1 = strlen( dirc );                 /* length of directory */    The log-likelihood is printed in the log file
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.123  2006/03/20 10:52:43  brouard
 #else    * imach.c (Module): <title> changed, corresponds to .htm file
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    name. <head> headers where missing.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    * imach.c (Module): Weights can have a decimal point as for
    s++;    English (a comma might work with a correct LC_NUMERIC environment,
    strcpy(ext,s);                       /* save extension */    otherwise the weight is truncated).
    l1= strlen( name);    Modification of warning when the covariates values are not 0 or
    l2= strlen( s)+1;    1.
    strncpy( finame, name, l1-l2);    Version 0.98g
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.122  2006/03/20 09:45:41  brouard
 }    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 /******************************************/    Modification of warning when the covariates values are not 0 or
     1.
 void replace(char *s, char*t)    Version 0.98g
 {  
   int i;    Revision 1.121  2006/03/16 17:45:01  lievre
   int lg=20;    * imach.c (Module): Comments concerning covariates added
   i=0;  
   lg=strlen(t);    * imach.c (Module): refinements in the computation of lli if
   for(i=0; i<= lg; i++) {    status=-2 in order to have more reliable computation if stepm is
     (s[i] = t[i]);    not 1 month. Version 0.98f
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.120  2006/03/16 15:10:38  lievre
 }    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 int nbocc(char *s, char occ)    not 1 month. Version 0.98f
 {  
   int i,j=0;    Revision 1.119  2006/03/15 17:42:26  brouard
   int lg=20;    (Module): Bug if status = -2, the loglikelihood was
   i=0;    computed as likelihood omitting the logarithm. Version O.98e
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.118  2006/03/14 18:20:07  brouard
   if  (s[i] == occ ) j++;    (Module): varevsij Comments added explaining the second
   }    table of variances if popbased=1 .
   return j;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 }    (Module): Function pstamp added
     (Module): Version 0.98d
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.117  2006/03/14 17:16:22  brouard
   int i,lg,j,p=0;    (Module): varevsij Comments added explaining the second
   i=0;    table of variances if popbased=1 .
   for(j=0; j<=strlen(t)-1; j++) {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): Function pstamp added
   }    (Module): Version 0.98d
   
   lg=strlen(t);    Revision 1.116  2006/03/06 10:29:27  brouard
   for(j=0; j<p; j++) {    (Module): Variance-covariance wrong links and
     (u[j] = t[j]);    varian-covariance of ej. is needed (Saito).
   }  
      u[p]='\0';    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.114  2006/02/26 12:57:58  brouard
   }    (Module): Some improvements in processing parameter
 }    filename with strsep.
   
 /********************** nrerror ********************/    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 void nrerror(char error_text[])    datafile was not closed, some imatrix were not freed and on matrix
 {    allocation too.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.112  2006/01/30 09:55:26  brouard
   exit(1);    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 }  
 /*********************** vector *******************/    Revision 1.111  2006/01/25 20:38:18  brouard
 double *vector(int nl, int nh)    (Module): Lots of cleaning and bugs added (Gompertz)
 {    (Module): Comments can be added in data file. Missing date values
   double *v;    can be a simple dot '.'.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.110  2006/01/25 00:51:50  brouard
   return v-nl+NR_END;    (Module): Lots of cleaning and bugs added (Gompertz)
 }  
     Revision 1.109  2006/01/24 19:37:15  brouard
 /************************ free vector ******************/    (Module): Comments (lines starting with a #) are allowed in data.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.108  2006/01/19 18:05:42  lievre
   free((FREE_ARG)(v+nl-NR_END));    Gnuplot problem appeared...
 }    To be fixed
   
 /************************ivector *******************************/    Revision 1.107  2006/01/19 16:20:37  brouard
 int *ivector(long nl,long nh)    Test existence of gnuplot in imach path
 {  
   int *v;    Revision 1.106  2006/01/19 13:24:36  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Some cleaning and links added in html output
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.105  2006/01/05 20:23:19  lievre
 }    *** empty log message ***
   
 /******************free ivector **************************/    Revision 1.104  2005/09/30 16:11:43  lievre
 void free_ivector(int *v, long nl, long nh)    (Module): sump fixed, loop imx fixed, and simplifications.
 {    (Module): If the status is missing at the last wave but we know
   free((FREE_ARG)(v+nl-NR_END));    that the person is alive, then we can code his/her status as -2
 }    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 /******************* imatrix *******************************/    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int **imatrix(long nrl, long nrh, long ncl, long nch)    the healthy state at last known wave). Version is 0.98
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.103  2005/09/30 15:54:49  lievre
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): sump fixed, loop imx fixed, and simplifications.
   int **m;  
      Revision 1.102  2004/09/15 17:31:30  brouard
   /* allocate pointers to rows */    Add the possibility to read data file including tab characters.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.101  2004/09/15 10:38:38  brouard
   m += NR_END;    Fix on curr_time
   m -= nrl;  
      Revision 1.100  2004/07/12 18:29:06  brouard
      Add version for Mac OS X. Just define UNIX in Makefile
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.99  2004/06/05 08:57:40  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    *** empty log message ***
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    directly from the data i.e. without the need of knowing the health
      state at each age, but using a Gompertz model: log u =a + b*age .
   /* return pointer to array of pointers to rows */    This is the basic analysis of mortality and should be done before any
   return m;    other analysis, in order to test if the mortality estimated from the
 }    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    The same imach parameter file can be used but the option for mle should be -3.
       int **m;  
       long nch,ncl,nrh,nrl;    Agnès, who wrote this part of the code, tried to keep most of the
      /* free an int matrix allocated by imatrix() */    former routines in order to include the new code within the former code.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    The output is very simple: only an estimate of the intercept and of
   free((FREE_ARG) (m+nrl-NR_END));    the slope with 95% confident intervals.
 }  
     Current limitations:
 /******************* matrix *******************************/    A) Even if you enter covariates, i.e. with the
 double **matrix(long nrl, long nrh, long ncl, long nch)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 {    B) There is no computation of Life Expectancy nor Life Table.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    suppressed.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.96  2003/07/15 15:38:55  brouard
   m -= nrl;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.95  2003/07/08 07:54:34  brouard
   m[nrl] += NR_END;    * imach.c (Repository):
   m[nrl] -= ncl;    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.94  2003/06/27 13:00:02  brouard
 }    Just cleaning
   
 /*************************free matrix ************************/    Revision 1.93  2003/06/25 16:33:55  brouard
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): Version 0.96b
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 /******************* ma3x *******************************/    exist so I changed back to asctime which exists.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    * imach.c (Repository): Duplicated warning errors corrected.
   double ***m;    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    is stamped in powell.  We created a new html file for the graphs
   if (!m) nrerror("allocation failure 1 in matrix()");    concerning matrix of covariance. It has extension -cov.htm.
   m += NR_END;  
   m -= nrl;    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    of the covariance matrix to be input.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Revision 1.88  2003/06/23 17:54:56  brouard
   m[nrl][ncl] += NR_END;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Revision 1.87  2003/06/18 12:26:01  brouard
     m[nrl][j]=m[nrl][j-1]+nlay;    Version 0.96
    
   for (i=nrl+1; i<=nrh; i++) {    Revision 1.86  2003/06/17 20:04:08  brouard
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    (Module): Change position of html and gnuplot routines and added
     for (j=ncl+1; j<=nch; j++)    routine fileappend.
       m[i][j]=m[i][j-1]+nlay;  
   }    Revision 1.85  2003/06/17 13:12:43  brouard
   return m;    * imach.c (Repository): Check when date of death was earlier that
 }    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 /*************************free ma3x ************************/    was wrong (infinity). We still send an "Error" but patch by
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    assuming that the date of death was just one stepm after the
 {    interview.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    (Repository): Because some people have very long ID (first column)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    we changed int to long in num[] and we added a new lvector for
   free((FREE_ARG)(m+nrl-NR_END));    memory allocation. But we also truncated to 8 characters (left
 }    truncation)
     (Repository): No more line truncation errors.
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.84  2003/06/13 21:44:43  brouard
 extern double *pcom,*xicom;    * imach.c (Repository): Replace "freqsummary" at a correct
 extern double (*nrfunc)(double []);    place. It differs from routine "prevalence" which may be called
      many times. Probs is memory consuming and must be used with
 double f1dim(double x)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   int j;  
   double f;    Revision 1.83  2003/06/10 13:39:11  lievre
   double *xt;    *** empty log message ***
    
   xt=vector(1,ncom);    Revision 1.82  2003/06/05 15:57:20  brouard
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Add log in  imach.c and  fullversion number is now printed.
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  */
   return f;  /*
 }     Interpolated Markov Chain
   
 /*****************brent *************************/    Short summary of the programme:
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    
 {    This program computes Healthy Life Expectancies from
   int iter;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   double a,b,d,etemp;    first survey ("cross") where individuals from different ages are
   double fu,fv,fw,fx;    interviewed on their health status or degree of disability (in the
   double ftemp;    case of a health survey which is our main interest) -2- at least a
   double p,q,r,tol1,tol2,u,v,w,x,xm;    second wave of interviews ("longitudinal") which measure each change
   double e=0.0;    (if any) in individual health status.  Health expectancies are
      computed from the time spent in each health state according to a
   a=(ax < cx ? ax : cx);    model. More health states you consider, more time is necessary to reach the
   b=(ax > cx ? ax : cx);    Maximum Likelihood of the parameters involved in the model.  The
   x=w=v=bx;    simplest model is the multinomial logistic model where pij is the
   fw=fv=fx=(*f)(x);    probability to be observed in state j at the second wave
   for (iter=1;iter<=ITMAX;iter++) {    conditional to be observed in state i at the first wave. Therefore
     xm=0.5*(a+b);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    'age' is age and 'sex' is a covariate. If you want to have a more
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    complex model than "constant and age", you should modify the program
     printf(".");fflush(stdout);    where the markup *Covariates have to be included here again* invites
 #ifdef DEBUG    you to do it.  More covariates you add, slower the
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    convergence.
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    The advantage of this computer programme, compared to a simple
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    multinomial logistic model, is clear when the delay between waves is not
       *xmin=x;    identical for each individual. Also, if a individual missed an
       return fx;    intermediate interview, the information is lost, but taken into
     }    account using an interpolation or extrapolation.  
     ftemp=fu;  
     if (fabs(e) > tol1) {    hPijx is the probability to be observed in state i at age x+h
       r=(x-w)*(fx-fv);    conditional to the observed state i at age x. The delay 'h' can be
       q=(x-v)*(fx-fw);    split into an exact number (nh*stepm) of unobserved intermediate
       p=(x-v)*q-(x-w)*r;    states. This elementary transition (by month, quarter,
       q=2.0*(q-r);    semester or year) is modelled as a multinomial logistic.  The hPx
       if (q > 0.0) p = -p;    matrix is simply the matrix product of nh*stepm elementary matrices
       q=fabs(q);    and the contribution of each individual to the likelihood is simply
       etemp=e;    hPijx.
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Also this programme outputs the covariance matrix of the parameters but also
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    of the life expectancies. It also computes the period (stable) prevalence. 
       else {    
         d=p/q;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
         u=x+d;             Institut national d'études démographiques, Paris.
         if (u-a < tol2 || b-u < tol2)    This software have been partly granted by Euro-REVES, a concerted action
           d=SIGN(tol1,xm-x);    from the European Union.
       }    It is copyrighted identically to a GNU software product, ie programme and
     } else {    software can be distributed freely for non commercial use. Latest version
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    can be accessed at http://euroreves.ined.fr/imach .
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     fu=(*f)(u);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;    **********************************************************************/
       SHFT(v,w,x,u)  /*
         SHFT(fv,fw,fx,fu)    main
         } else {    read parameterfile
           if (u < x) a=u; else b=u;    read datafile
           if (fu <= fw || w == x) {    concatwav
             v=w;    freqsummary
             w=u;    if (mle >= 1)
             fv=fw;      mlikeli
             fw=fu;    print results files
           } else if (fu <= fv || v == x || v == w) {    if mle==1 
             v=u;       computes hessian
             fv=fu;    read end of parameter file: agemin, agemax, bage, fage, estepm
           }        begin-prev-date,...
         }    open gnuplot file
   }    open html file
   nrerror("Too many iterations in brent");    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   *xmin=x;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   return fx;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 }      freexexit2 possible for memory heap.
   
 /****************** mnbrak ***********************/    h Pij x                         | pij_nom  ficrestpij
      # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
             double (*func)(double))         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 {  
   double ulim,u,r,q, dum;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   double fu;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
      variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   *fa=(*func)(*ax);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   *fb=(*func)(*bx);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    forecasting if prevfcast==1 prevforecast call prevalence()
       SHFT(dum,*fb,*fa,dum)    health expectancies
       }    Variance-covariance of DFLE
   *cx=(*bx)+GOLD*(*bx-*ax);    prevalence()
   *fc=(*func)(*cx);     movingaverage()
   while (*fb > *fc) {    varevsij() 
     r=(*bx-*ax)*(*fb-*fc);    if popbased==1 varevsij(,popbased)
     q=(*bx-*cx)*(*fb-*fa);    total life expectancies
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    Variance of period (stable) prevalence
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   end
     ulim=(*bx)+GLIMIT*(*cx-*bx);  */
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  #define POWELL /* Instead of NLOPT */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  #include <math.h>
       if (fu < *fc) {  #include <stdio.h>
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #include <stdlib.h>
           SHFT(*fb,*fc,fu,(*func)(u))  #include <string.h>
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #ifdef _WIN32
       u=ulim;  #include <io.h>
       fu=(*func)(u);  #else
     } else {  #include <unistd.h>
       u=(*cx)+GOLD*(*cx-*bx);  #endif
       fu=(*func)(u);  
     }  #include <limits.h>
     SHFT(*ax,*bx,*cx,u)  #include <sys/types.h>
       SHFT(*fa,*fb,*fc,fu)  #include <sys/stat.h>
       }  #include <errno.h>
 }  /* extern int errno; */
   
 /*************** linmin ************************/  /* #ifdef LINUX */
   /* #include <time.h> */
 int ncom;  /* #include "timeval.h" */
 double *pcom,*xicom;  /* #else */
 double (*nrfunc)(double []);  /* #include <sys/time.h> */
    /* #endif */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  #include <time.h>
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  #ifdef GSL
   double f1dim(double x);  #include <gsl/gsl_errno.h>
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #include <gsl/gsl_multimin.h>
               double *fc, double (*func)(double));  #endif
   int j;  
   double xx,xmin,bx,ax;  #ifdef NLOPT
   double fx,fb,fa;  #include <nlopt.h>
    typedef struct {
   ncom=n;    double (* function)(double [] );
   pcom=vector(1,n);  } myfunc_data ;
   xicom=vector(1,n);  #endif
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /* #include <libintl.h> */
     pcom[j]=p[j];  /* #define _(String) gettext (String) */
     xicom[j]=xi[j];  
   }  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   ax=0.0;  
   xx=1.0;  #define GNUPLOTPROGRAM "gnuplot"
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define FILENAMELENGTH 132
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #endif  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     p[j] += xi[j];  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   }  
   free_vector(xicom,1,n);  #define NINTERVMAX 8
   free_vector(pcom,1,n);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 /*************** powell ************************/  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define MAXN 20000
             double (*func)(double []))  #define YEARM 12. /**< Number of months per year */
 {  #define AGESUP 130
   void linmin(double p[], double xi[], int n, double *fret,  #define AGEBASE 40
               double (*func)(double []));  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   int i,ibig,j;  #ifdef _WIN32
   double del,t,*pt,*ptt,*xit;  #define DIRSEPARATOR '\\'
   double fp,fptt;  #define CHARSEPARATOR "\\"
   double *xits;  #define ODIRSEPARATOR '/'
   pt=vector(1,n);  #else
   ptt=vector(1,n);  #define DIRSEPARATOR '/'
   xit=vector(1,n);  #define CHARSEPARATOR "/"
   xits=vector(1,n);  #define ODIRSEPARATOR '\\'
   *fret=(*func)(p);  #endif
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /* $Id$ */
     fp=(*fret);  /* $State$ */
     ibig=0;  
     del=0.0;  char version[]="Imach version 0.99, September 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char fullversion[]="$Revision$ $Date$"; 
     for (i=1;i<=n;i++)  char strstart[80];
       printf(" %d %.12f",i, p[i]);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     printf("\n");  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     for (i=1;i<=n;i++) {  int nvar=0, nforce=0; /* Number of variables, number of forces */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       fptt=(*fret);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 #ifdef DEBUG  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       printf("fret=%lf \n",*fret);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 #endif  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       printf("%d",i);fflush(stdout);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       linmin(p,xit,n,fret,func);  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       if (fabs(fptt-(*fret)) > del) {  int cptcov=0; /* Working variable */
         del=fabs(fptt-(*fret));  int npar=NPARMAX;
         ibig=i;  int nlstate=2; /* Number of live states */
       }  int ndeath=1; /* Number of dead states */
 #ifdef DEBUG  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       printf("%d %.12e",i,(*fret));  int popbased=0;
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  int *wav; /* Number of waves for this individuual 0 is possible */
         printf(" x(%d)=%.12e",j,xit[j]);  int maxwav=0; /* Maxim number of waves */
       }  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       for(j=1;j<=n;j++)  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
         printf(" p=%.12e",p[j]);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       printf("\n");                     to the likelihood and the sum of weights (done by funcone)*/
 #endif  int mle=1, weightopt=0;
     }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #ifdef DEBUG  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       int k[2],l;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       k[0]=1;  int countcallfunc=0;  /* Count the number of calls to func */
       k[1]=-1;  double jmean=1; /* Mean space between 2 waves */
       printf("Max: %.12e",(*func)(p));  double **matprod2(); /* test */
       for (j=1;j<=n;j++)  double **oldm, **newm, **savm; /* Working pointers to matrices */
         printf(" %.12e",p[j]);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       printf("\n");  /*FILE *fic ; */ /* Used in readdata only */
       for(l=0;l<=1;l++) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         for (j=1;j<=n;j++) {  FILE *ficlog, *ficrespow;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int globpr=0; /* Global variable for printing or not */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double fretone; /* Only one call to likelihood */
         }  long ipmx=0; /* Number of contributions */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double sw; /* Sum of weights */
       }  char filerespow[FILENAMELENGTH];
 #endif  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       free_vector(xit,1,n);  FILE *ficresprobmorprev;
       free_vector(xits,1,n);  FILE *fichtm, *fichtmcov; /* Html File */
       free_vector(ptt,1,n);  FILE *ficreseij;
       free_vector(pt,1,n);  char filerese[FILENAMELENGTH];
       return;  FILE *ficresstdeij;
     }  char fileresstde[FILENAMELENGTH];
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  FILE *ficrescveij;
     for (j=1;j<=n;j++) {  char filerescve[FILENAMELENGTH];
       ptt[j]=2.0*p[j]-pt[j];  FILE  *ficresvij;
       xit[j]=p[j]-pt[j];  char fileresv[FILENAMELENGTH];
       pt[j]=p[j];  FILE  *ficresvpl;
     }  char fileresvpl[FILENAMELENGTH];
     fptt=(*func)(ptt);  char title[MAXLINE];
     if (fptt < fp) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       if (t < 0.0) {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         linmin(p,xit,n,fret,func);  char command[FILENAMELENGTH];
         for (j=1;j<=n;j++) {  int  outcmd=0;
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         }  
 #ifdef DEBUG  char filelog[FILENAMELENGTH]; /* Log file */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char filerest[FILENAMELENGTH];
         for(j=1;j<=n;j++)  char fileregp[FILENAMELENGTH];
           printf(" %.12e",xit[j]);  char popfile[FILENAMELENGTH];
         printf("\n");  
 #endif  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       }  
     }  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   }  /* struct timezone tzp; */
 }  /* extern int gettimeofday(); */
   struct tm tml, *gmtime(), *localtime();
 /**** Prevalence limit ****************/  
   extern time_t time();
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
      matrix by transitions matrix until convergence is reached */  struct tm tm;
   
   int i, ii,j,k;  char strcurr[80], strfor[80];
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  char *endptr;
   double **out, cov[NCOVMAX], **pmij();  long lval;
   double **newm;  double dval;
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   #define NR_END 1
   for (ii=1;ii<=nlstate+ndeath;ii++)  #define FREE_ARG char*
     for (j=1;j<=nlstate+ndeath;j++){  #define FTOL 1.0e-10
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  #define NRANSI 
   #define ITMAX 200 
    cov[1]=1.;  
    #define TOL 2.0e-4 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #define CGOLD 0.3819660 
     newm=savm;  #define ZEPS 1.0e-10 
     /* Covariates have to be included here again */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
      cov[2]=agefin;  
    #define GOLD 1.618034 
       for (k=1; k<=cptcovn;k++) {  #define GLIMIT 100.0 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #define TINY 1.0e-20 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  static double maxarg1,maxarg2;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       for (k=1; k<=cptcovprod;k++)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #define rint(a) floor(a+0.5)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /* #define mytinydouble 1.0e-16 */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     savm=oldm;  /* static double dsqrarg; */
     oldm=newm;  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     maxmax=0.;  static double sqrarg;
     for(j=1;j<=nlstate;j++){  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       min=1.;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       max=0.;  int agegomp= AGEGOMP;
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  int imx; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int stepm=1;
         prlim[i][j]= newm[i][j]/(1-sumnew);  /* Stepm, step in month: minimum step interpolation*/
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  int estepm;
       }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  int m,nb;
     }  long *num;
     if(maxmax < ftolpl){  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       return prlim;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     }  double **pmmij, ***probs;
   }  double *ageexmed,*agecens;
 }  double dateintmean=0;
   
 /*************** transition probabilities ***************/  double *weight;
   int **s; /* Status */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double *agedc;
 {  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   double s1, s2;                    * covar=matrix(0,NCOVMAX,1,n); 
   /*double t34;*/                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   int i,j,j1, nc, ii, jj;  double  idx; 
   int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     for(i=1; i<= nlstate; i++){  int *Ndum; /** Freq of modality (tricode */
     for(j=1; j<i;j++){  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         /*s2 += param[i][j][nc]*cov[nc];*/  double *lsurv, *lpop, *tpop;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       }  double ftolhess; /**< Tolerance for computing hessian */
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /**************** split *************************/
     }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     for(j=i+1; j<=nlstate+ndeath;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    */ 
       }    char  *ss;                            /* pointer */
       ps[i][j]=s2;    int   l1, l2;                         /* length counters */
     }  
   }    l1 = strlen(path );                   /* length of path */
     /*ps[3][2]=1;*/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for(i=1; i<= nlstate; i++){    if ( ss == NULL ) {                   /* no directory, so determine current directory */
      s1=0;      strcpy( name, path );               /* we got the fullname name because no directory */
     for(j=1; j<i; j++)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       s1+=exp(ps[i][j]);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     for(j=i+1; j<=nlstate+ndeath; j++)      /* get current working directory */
       s1+=exp(ps[i][j]);      /*    extern  char* getcwd ( char *buf , int len);*/
     ps[i][i]=1./(s1+1.);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     for(j=1; j<i; j++)        return( GLOCK_ERROR_GETCWD );
       ps[i][j]= exp(ps[i][j])*ps[i][i];      }
     for(j=i+1; j<=nlstate+ndeath; j++)      /* got dirc from getcwd*/
       ps[i][j]= exp(ps[i][j])*ps[i][i];      printf(" DIRC = %s \n",dirc);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    } else {                              /* strip direcotry from path */
   } /* end i */      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     for(jj=1; jj<= nlstate+ndeath; jj++){      strcpy( name, ss );         /* save file name */
       ps[ii][jj]=0;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       ps[ii][ii]=1;      dirc[l1-l2] = 0;                    /* add zero */
     }      printf(" DIRC2 = %s \n",dirc);
   }    }
     /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    if( dirc[l1-1] != DIRSEPARATOR ){
     for(jj=1; jj<= nlstate+ndeath; jj++){      dirc[l1] =  DIRSEPARATOR;
      printf("%lf ",ps[ii][jj]);      dirc[l1+1] = 0; 
    }      printf(" DIRC3 = %s \n",dirc);
     printf("\n ");    }
     }    ss = strrchr( name, '.' );            /* find last / */
     printf("\n ");printf("%lf ",cov[2]);*/    if (ss >0){
 /*      ss++;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      strcpy(ext,ss);                     /* save extension */
   goto end;*/      l1= strlen( name);
     return ps;      l2= strlen(ss)+1;
 }      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 /**************** Product of 2 matrices ******************/    }
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return( 0 );                          /* we're done */
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /******************************************/
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  void replace_back_to_slash(char *s, char*t)
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    int i;
     for(k=ncolol; k<=ncoloh; k++)    int lg=0;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    i=0;
         out[i][k] +=in[i][j]*b[j][k];    lg=strlen(t);
     for(i=0; i<= lg; i++) {
   return out;      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
   }
 /************* Higher Matrix Product ***************/  
   char *trimbb(char *out, char *in)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 {    char *s;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    s=out;
      duration (i.e. until    while (*in != '\0'){
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        in++;
      (typically every 2 years instead of every month which is too big).      }
      Model is determined by parameters x and covariates have to be      *out++ = *in++;
      included manually here.    }
     *out='\0';
      */    return s;
   }
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  char *cutl(char *blocc, char *alocc, char *in, char occ)
   double **newm;  {
     /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   /* Hstepm could be zero and should return the unit matrix */       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   for (i=1;i<=nlstate+ndeath;i++)       gives blocc="abcdef2ghi" and alocc="j".
     for (j=1;j<=nlstate+ndeath;j++){       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       oldm[i][j]=(i==j ? 1.0 : 0.0);    */
       po[i][j][0]=(i==j ? 1.0 : 0.0);    char *s, *t;
     }    t=in;s=in;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    while ((*in != occ) && (*in != '\0')){
   for(h=1; h <=nhstepm; h++){      *alocc++ = *in++;
     for(d=1; d <=hstepm; d++){    }
       newm=savm;    if( *in == occ){
       /* Covariates have to be included here again */      *(alocc)='\0';
       cov[1]=1.;      s=++in;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];   
       for (k=1; k<=cptcovage;k++)    if (s == t) {/* occ not found */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      *(alocc-(in-s))='\0';
       for (k=1; k<=cptcovprod;k++)      in=s;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    }
     while ( *in != '\0'){
       *blocc++ = *in++;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    *blocc='\0';
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    return t;
       savm=oldm;  }
       oldm=newm;  char *cutv(char *blocc, char *alocc, char *in, char occ)
     }  {
     for(i=1; i<=nlstate+ndeath; i++)    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       for(j=1;j<=nlstate+ndeath;j++) {       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         po[i][j][h]=newm[i][j];       gives blocc="abcdef2ghi" and alocc="j".
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
          */    */
       }    char *s, *t;
   } /* end h */    t=in;s=in;
   return po;    while (*in != '\0'){
 }      while( *in == occ){
         *blocc++ = *in++;
         s=in;
 /*************** log-likelihood *************/      }
 double func( double *x)      *blocc++ = *in++;
 {    }
   int i, ii, j, k, mi, d, kk;    if (s == t) /* occ not found */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      *(blocc-(in-s))='\0';
   double **out;    else
   double sw; /* Sum of weights */      *(blocc-(in-s)-1)='\0';
   double lli; /* Individual log likelihood */    in=s;
   int s1, s2;    while ( *in != '\0'){
   long ipmx;      *alocc++ = *in++;
   /*extern weight */    }
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    *alocc='\0';
   /*for(i=1;i<imx;i++)    return s;
     printf(" %d\n",s[4][i]);  }
   */  
   cov[1]=1.;  int nbocc(char *s, char occ)
   {
   for(k=1; k<=nlstate; k++) ll[k]=0.;    int i,j=0;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    int lg=20;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    i=0;
     for(mi=1; mi<= wav[i]-1; mi++){    lg=strlen(s);
       for (ii=1;ii<=nlstate+ndeath;ii++)    for(i=0; i<= lg; i++) {
         for (j=1;j<=nlstate+ndeath;j++){    if  (s[i] == occ ) j++;
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
           savm[ii][j]=(ii==j ? 1.0 : 0.0);    return j;
         }  }
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  /* void cutv(char *u,char *v, char*t, char occ) */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /* { */
         for (kk=1; kk<=cptcovage;kk++) {  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
         }  /*      gives u="abcdef2ghi" and v="j" *\/ */
          /*   int i,lg,j,p=0; */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*   i=0; */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*   lg=strlen(t); */
         savm=oldm;  /*   for(j=0; j<=lg-1; j++) { */
         oldm=newm;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
          /*   } */
          
       } /* end mult */  /*   for(j=0; j<p; j++) { */
        /*     (u[j] = t[j]); */
       s1=s[mw[mi][i]][i];  /*   } */
       s2=s[mw[mi+1][i]][i];  /*      u[p]='\0'; */
       if( s2 > nlstate){  
         /* i.e. if s2 is a death state and if the date of death is known then the contribution  /*    for(j=0; j<= lg; j++) { */
            to the likelihood is the probability to die between last step unit time and current  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
            step unit time, which is also the differences between probability to die before dh  /*   } */
            and probability to die before dh-stepm .  /* } */
            In version up to 0.92 likelihood was computed  
            as if date of death was unknown. Death was treated as any other  #ifdef _WIN32
            health state: the date of the interview describes the actual state  char * strsep(char **pp, const char *delim)
            and not the date of a change in health state. The former idea was  {
            to consider that at each interview the state was recorded    char *p, *q;
            (healthy, disable or death) and IMaCh was corrected; but when we           
            introduced the exact date of death then we should have modified    if ((p = *pp) == NULL)
            the contribution of an exact death to the likelihood. This new      return 0;
            contribution is smaller and very dependent of the step unit    if ((q = strpbrk (p, delim)) != NULL)
            stepm. It is no more the probability to die between last interview    {
            and month of death but the probability to survive from last      *pp = q + 1;
            interview up to one month before death multiplied by the      *q = '\0';
            probability to die within a month. Thanks to Chris    }
            Jackson for correcting this bug.  Former versions increased    else
            mortality artificially. The bad side is that we add another loop      *pp = 0;
            which slows down the processing. The difference can be up to 10%    return p;
            lower mortality.  }
         */  #endif
         lli=log(out[s1][s2] - savm[s1][s2]);  
       }else{  /********************** nrerror ********************/
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */  
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  void nrerror(char error_text[])
       }  {
       ipmx +=1;    fprintf(stderr,"ERREUR ...\n");
       sw += weight[i];    fprintf(stderr,"%s\n",error_text);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    exit(EXIT_FAILURE);
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/  }
     } /* end of wave */  /*********************** vector *******************/
   } /* end of individual */  double *vector(int nl, int nh)
   {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double *v;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    if (!v) nrerror("allocation failure in vector");
   /*exit(0);*/    return v-nl+NR_END;
   return -l;  }
 }  
   /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*********** Maximum Likelihood Estimation ***************/  {
     free((FREE_ARG)(v+nl-NR_END));
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  }
 {  
   int i,j, iter;  /************************ivector *******************************/
   double **xi,*delti;  int *ivector(long nl,long nh)
   double fret;  {
   xi=matrix(1,npar,1,npar);    int *v;
   for (i=1;i<=npar;i++)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for (j=1;j<=npar;j++)    if (!v) nrerror("allocation failure in ivector");
       xi[i][j]=(i==j ? 1.0 : 0.0);    return v-nl+NR_END;
   printf("Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   /******************free ivector **************************/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  void free_ivector(int *v, long nl, long nh)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  {
     free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /**** Computes Hessian and covariance matrix ***/  /************************lvector *******************************/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  long *lvector(long nl,long nh)
 {  {
   double  **a,**y,*x,pd;    long *v;
   double **hess;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   int i, j,jk;    if (!v) nrerror("allocation failure in ivector");
   int *indx;    return v-nl+NR_END;
   }
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  /******************free lvector **************************/
   void lubksb(double **a, int npar, int *indx, double b[]) ;  void free_lvector(long *v, long nl, long nh)
   void ludcmp(double **a, int npar, int *indx, double *d) ;  {
     free((FREE_ARG)(v+nl-NR_END));
   hess=matrix(1,npar,1,npar);  }
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  /******************* imatrix *******************************/
   for (i=1;i<=npar;i++){  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     printf("%d",i);fflush(stdout);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     hess[i][i]=hessii(p,ftolhess,i,delti);  { 
     /*printf(" %f ",p[i]);*/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     /*printf(" %lf ",hess[i][i]);*/    int **m; 
   }    
      /* allocate pointers to rows */ 
   for (i=1;i<=npar;i++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     for (j=1;j<=npar;j++)  {    if (!m) nrerror("allocation failure 1 in matrix()"); 
       if (j>i) {    m += NR_END; 
         printf(".%d%d",i,j);fflush(stdout);    m -= nrl; 
         hess[i][j]=hessij(p,delti,i,j);    
         hess[j][i]=hess[i][j];        
         /*printf(" %lf ",hess[i][j]);*/    /* allocate rows and set pointers to them */ 
       }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   }    m[nrl] += NR_END; 
   printf("\n");    m[nrl] -= ncl; 
     
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      
   a=matrix(1,npar,1,npar);    /* return pointer to array of pointers to rows */ 
   y=matrix(1,npar,1,npar);    return m; 
   x=vector(1,npar);  } 
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  /****************** free_imatrix *************************/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  void free_imatrix(m,nrl,nrh,ncl,nch)
   ludcmp(a,npar,indx,&pd);        int **m;
         long nch,ncl,nrh,nrl; 
   for (j=1;j<=npar;j++) {       /* free an int matrix allocated by imatrix() */ 
     for (i=1;i<=npar;i++) x[i]=0;  { 
     x[j]=1;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     lubksb(a,npar,indx,x);    free((FREE_ARG) (m+nrl-NR_END)); 
     for (i=1;i<=npar;i++){  } 
       matcov[i][j]=x[i];  
     }  /******************* matrix *******************************/
   }  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
   printf("\n#Hessian matrix#\n");    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for (i=1;i<=npar;i++) {    double **m;
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     printf("\n");    m += NR_END;
   }    m -= nrl;
   
   /* Recompute Inverse */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (i=1;i<=npar;i++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    m[nrl] += NR_END;
   ludcmp(a,npar,indx,&pd);    m[nrl] -= ncl;
   
   /*  printf("\n#Hessian matrix recomputed#\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
   for (j=1;j<=npar;j++) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     for (i=1;i<=npar;i++) x[i]=0;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
     x[j]=1;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     lubksb(a,npar,indx,x);     */
     for (i=1;i<=npar;i++){  }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     printf("\n");  {
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   */    free((FREE_ARG)(m+nrl-NR_END));
   }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /******************* ma3x *******************************/
   free_vector(x,1,npar);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
   
 }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** hessian matrix ****************/    m += NR_END;
 double hessii( double x[], double delta, int theta, double delti[])    m -= nrl;
 {  
   int i;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int l=1, lmax=20;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double k1,k2;    m[nrl] += NR_END;
   double p2[NPARMAX+1];    m[nrl] -= ncl;
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double fx;  
   int k=0,kmax=10;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double l1;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
   fx=func(x);    m[nrl][ncl] -= nll;
   for (i=1;i<=npar;i++) p2[i]=x[i];    for (j=ncl+1; j<=nch; j++) 
   for(l=0 ; l <=lmax; l++){      m[nrl][j]=m[nrl][j-1]+nlay;
     l1=pow(10,l);    
     delts=delt;    for (i=nrl+1; i<=nrh; i++) {
     for(k=1 ; k <kmax; k=k+1){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       delt = delta*(l1*k);      for (j=ncl+1; j<=nch; j++) 
       p2[theta]=x[theta] +delt;        m[i][j]=m[i][j-1]+nlay;
       k1=func(p2)-fx;    }
       p2[theta]=x[theta]-delt;    return m; 
       k2=func(p2)-fx;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       /*res= (k1-2.0*fx+k2)/delt/delt; */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    */
        }
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  /*************************free ma3x ************************/
 #endif  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         k=kmax;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  }
         k=kmax; l=lmax*10.;  
       }  /*************** function subdirf ***********/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  char *subdirf(char fileres[])
         delts=delt;  {
       }    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/"); /* Add to the right */
   delti[theta]=delts;    strcat(tmpout,fileres);
   return res;    return tmpout;
    }
 }  
   /*************** function subdirf2 ***********/
 double hessij( double x[], double delti[], int thetai,int thetaj)  char *subdirf2(char fileres[], char *preop)
 {  {
   int i;    
   int l=1, l1, lmax=20;    /* Caution optionfilefiname is hidden */
   double k1,k2,k3,k4,res,fx;    strcpy(tmpout,optionfilefiname);
   double p2[NPARMAX+1];    strcat(tmpout,"/");
   int k;    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   fx=func(x);    return tmpout;
   for (k=1; k<=2; k++) {  }
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*************** function subdirf3 ***********/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  char *subdirf3(char fileres[], char *preop, char *preop2)
     k1=func(p2)-fx;  {
      
     p2[thetai]=x[thetai]+delti[thetai]/k;    /* Caution optionfilefiname is hidden */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    strcpy(tmpout,optionfilefiname);
     k2=func(p2)-fx;    strcat(tmpout,"/");
      strcat(tmpout,preop);
     p2[thetai]=x[thetai]-delti[thetai]/k;    strcat(tmpout,preop2);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    strcat(tmpout,fileres);
     k3=func(p2)-fx;    return tmpout;
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  char *asc_diff_time(long time_sec, char ascdiff[])
     k4=func(p2)-fx;  {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    long sec_left, days, hours, minutes;
 #ifdef DEBUG    days = (time_sec) / (60*60*24);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    sec_left = (time_sec) % (60*60*24);
 #endif    hours = (sec_left) / (60*60) ;
   }    sec_left = (sec_left) %(60*60);
   return res;    minutes = (sec_left) /60;
 }    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 /************** Inverse of matrix **************/    return ascdiff;
 void ludcmp(double **a, int n, int *indx, double *d)  }
 {  
   int i,imax,j,k;  /***************** f1dim *************************/
   double big,dum,sum,temp;  extern int ncom; 
   double *vv;  extern double *pcom,*xicom;
    extern double (*nrfunc)(double []); 
   vv=vector(1,n);   
   *d=1.0;  double f1dim(double x) 
   for (i=1;i<=n;i++) {  { 
     big=0.0;    int j; 
     for (j=1;j<=n;j++)    double f;
       if ((temp=fabs(a[i][j])) > big) big=temp;    double *xt; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");   
     vv[i]=1.0/big;    xt=vector(1,ncom); 
   }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for (j=1;j<=n;j++) {    f=(*nrfunc)(xt); 
     for (i=1;i<j;i++) {    free_vector(xt,1,ncom); 
       sum=a[i][j];    return f; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  } 
       a[i][j]=sum;  
     }  /*****************brent *************************/
     big=0.0;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     for (i=j;i<=n;i++) {  { 
       sum=a[i][j];    int iter; 
       for (k=1;k<j;k++)    double a,b,d,etemp;
         sum -= a[i][k]*a[k][j];    double fu=0,fv,fw,fx;
       a[i][j]=sum;    double ftemp=0.;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         big=dum;    double e=0.0; 
         imax=i;   
       }    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
     if (j != imax) {    x=w=v=bx; 
       for (k=1;k<=n;k++) {    fw=fv=fx=(*f)(x); 
         dum=a[imax][k];    for (iter=1;iter<=ITMAX;iter++) { 
         a[imax][k]=a[j][k];      xm=0.5*(a+b); 
         a[j][k]=dum;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       *d = -(*d);      printf(".");fflush(stdout);
       vv[imax]=vv[j];      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUGBRENT
     indx[j]=imax;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     if (a[j][j] == 0.0) a[j][j]=TINY;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     if (j != n) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       dum=1.0/(a[j][j]);  #endif
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
   }        return fx; 
   free_vector(vv,1,n);  /* Doesn't work */      } 
 ;      ftemp=fu;
 }      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
 void lubksb(double **a, int n, int *indx, double b[])        q=(x-v)*(fx-fw); 
 {        p=(x-v)*q-(x-w)*r; 
   int i,ii=0,ip,j;        q=2.0*(q-r); 
   double sum;        if (q > 0.0) p = -p; 
          q=fabs(q); 
   for (i=1;i<=n;i++) {        etemp=e; 
     ip=indx[i];        e=d; 
     sum=b[ip];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     b[ip]=b[i];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if (ii)        else { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          d=p/q; 
     else if (sum) ii=i;          u=x+d; 
     b[i]=sum;          if (u-a < tol2 || b-u < tol2) 
   }            d=SIGN(tol1,xm-x); 
   for (i=n;i>=1;i--) {        } 
     sum=b[i];      } else { 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     b[i]=sum/a[i][i];      } 
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 }      fu=(*f)(u); 
       if (fu <= fx) { 
 /************ Frequencies ********************/        if (u >= x) a=x; else b=x; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        SHFT(v,w,x,u) 
 {  /* Some frequencies */          SHFT(fv,fw,fx,fu) 
            } else { 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            if (u < x) a=u; else b=u; 
   double ***freq; /* Frequencies */            if (fu <= fw || w == x) { 
   double *pp;              v=w; 
   double pos, k2, dateintsum=0,k2cpt=0;              w=u; 
   FILE *ficresp;              fv=fw; 
   char fileresp[FILENAMELENGTH];              fw=fu; 
              } else if (fu <= fv || v == x || v == w) { 
   pp=vector(1,nlstate);              v=u; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              fv=fu; 
   strcpy(fileresp,"p");            } 
   strcat(fileresp,fileres);          } 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    } 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    nrerror("Too many iterations in brent"); 
     exit(0);    *xmin=x; 
   }    return fx; 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  } 
   j1=0;  
    /****************** mnbrak ***********************/
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                double (*func)(double)) 
   for(k1=1; k1<=j;k1++){  { 
     for(i1=1; i1<=ncodemax[k1];i1++){    double ulim,u,r,q, dum;
       j1++;    double fu; 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);   
         scanf("%d", i);*/    *fa=(*func)(*ax); 
       for (i=-1; i<=nlstate+ndeath; i++)      *fb=(*func)(*bx); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      if (*fb > *fa) { 
           for(m=agemin; m <= agemax+3; m++)      SHFT(dum,*ax,*bx,dum) 
             freq[i][jk][m]=0;        SHFT(dum,*fb,*fa,dum) 
              } 
       dateintsum=0;    *cx=(*bx)+GOLD*(*bx-*ax); 
       k2cpt=0;    *fc=(*func)(*cx); 
       for (i=1; i<=imx; i++) {    while (*fb > *fc) { /* Declining fa, fb, fc */
         bool=1;      r=(*bx-*ax)*(*fb-*fc); 
         if  (cptcovn>0) {      q=(*bx-*cx)*(*fb-*fa); 
           for (z1=1; z1<=cptcoveff; z1++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
               bool=0;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
         }      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
         if (bool==1) {        fu=(*func)(u); 
           for(m=firstpass; m<=lastpass; m++){  #ifdef DEBUG
             k2=anint[m][i]+(mint[m][i]/12.);        /* f(x)=A(x-u)**2+f(u) */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        double A, fparabu; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
               if(agev[m][i]==1) agev[m][i]=agemax+2;        fparabu= *fa - A*(*ax-u)*(*ax-u);
               if (m<lastpass) {        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  #endif 
               }      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
                      fu=(*func)(u); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        if (fu < *fc) { 
                 dateintsum=dateintsum+k2;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                 k2cpt++;            SHFT(*fb,*fc,fu,(*func)(u)) 
               }            } 
             }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
           }        u=ulim; 
         }        fu=(*func)(u); 
       }      } else { 
                u=(*cx)+GOLD*(*cx-*bx); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fu=(*func)(u); 
       } 
       if  (cptcovn>0) {      SHFT(*ax,*bx,*cx,u) 
         fprintf(ficresp, "\n#********** Variable ");        SHFT(*fa,*fb,*fc,fu) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        } 
         fprintf(ficresp, "**********\n#");  } 
       }  
       for(i=1; i<=nlstate;i++)  /*************** linmin ************************/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
       fprintf(ficresp, "\n");  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
        and replaces xi by the actual vector displacement that p was moved. Also returns as fret
       for(i=(int)agemin; i <= (int)agemax+3; i++){  the value of func at the returned location p . This is actually all accomplished by calling the
         if(i==(int)agemax+3)  routines mnbrak and brent .*/
           printf("Total");  int ncom; 
         else  double *pcom,*xicom;
           printf("Age %d", i);  double (*nrfunc)(double []); 
         for(jk=1; jk <=nlstate ; jk++){   
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
             pp[jk] += freq[jk][m][i];  { 
         }    double brent(double ax, double bx, double cx, 
         for(jk=1; jk <=nlstate ; jk++){                 double (*f)(double), double tol, double *xmin); 
           for(m=-1, pos=0; m <=0 ; m++)    double f1dim(double x); 
             pos += freq[jk][m][i];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           if(pp[jk]>=1.e-10)                double *fc, double (*func)(double)); 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    int j; 
           else    double xx,xmin,bx,ax; 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double fx,fb,fa;
         }   
     ncom=n; 
         for(jk=1; jk <=nlstate ; jk++){    pcom=vector(1,n); 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    xicom=vector(1,n); 
             pp[jk] += freq[jk][m][i];    nrfunc=func; 
         }    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
         for(jk=1,pos=0; jk <=nlstate ; jk++)      xicom[j]=xi[j]; 
           pos += pp[jk];    } 
         for(jk=1; jk <=nlstate ; jk++){    ax=0.0; 
           if(pos>=1.e-5)    xx=1.0; 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
           else    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  #ifdef DEBUG
           if( i <= (int) agemax){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             if(pos>=1.e-5){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  #endif
               probs[i][jk][j1]= pp[jk]/pos;    for (j=1;j<=n;j++) { 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      xi[j] *= xmin; 
             }      p[j] += xi[j]; 
             else    } 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    free_vector(xicom,1,n); 
           }    free_vector(pcom,1,n); 
         }  } 
          
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)  /*************** powell ************************/
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  /*
         if(i <= (int) agemax)  Minimization of a function func of n variables. Input consists of an initial starting point
           fprintf(ficresp,"\n");  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
         printf("\n");  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
       }  such that failure to decrease by more than this amount on one iteration signals doneness. On
     }  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   }  function value at p , and iter is the number of iterations taken. The routine linmin is used.
   dateintmean=dateintsum/k2cpt;   */
    void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   fclose(ficresp);              double (*func)(double [])) 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  { 
   free_vector(pp,1,nlstate);    void linmin(double p[], double xi[], int n, double *fret, 
                  double (*func)(double [])); 
   /* End of Freq */    int i,ibig,j; 
 }    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
 /************ Prevalence ********************/    double *xits;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    int niterf, itmp;
 {  /* Some frequencies */  
      pt=vector(1,n); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    ptt=vector(1,n); 
   double ***freq; /* Frequencies */    xit=vector(1,n); 
   double *pp;    xits=vector(1,n); 
   double pos, k2;    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   pp=vector(1,nlstate);      rcurr_time = time(NULL);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (*iter=1;;++(*iter)) { 
        fp=(*fret); 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      ibig=0; 
   j1=0;      del=0.0; 
        rlast_time=rcurr_time;
   j=cptcoveff;      /* (void) gettimeofday(&curr_time,&tzp); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      rcurr_time = time(NULL);  
        curr_time = *localtime(&rcurr_time);
  for(k1=1; k1<=j;k1++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
     for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
       j1++;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       for (i=1;i<=n;i++) {
       for (i=-1; i<=nlstate+ndeath; i++)          printf(" %d %.12f",i, p[i]);
         for (jk=-1; jk<=nlstate+ndeath; jk++)          fprintf(ficlog," %d %.12lf",i, p[i]);
           for(m=agemin; m <= agemax+3; m++)        fprintf(ficrespow," %.12lf", p[i]);
             freq[i][jk][m]=0;      }
            printf("\n");
       for (i=1; i<=imx; i++) {      fprintf(ficlog,"\n");
         bool=1;      fprintf(ficrespow,"\n");fflush(ficrespow);
         if  (cptcovn>0) {      if(*iter <=3){
           for (z1=1; z1<=cptcoveff; z1++)        tml = *localtime(&rcurr_time);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        strcpy(strcurr,asctime(&tml));
               bool=0;        rforecast_time=rcurr_time; 
         }        itmp = strlen(strcurr);
         if (bool==1) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           for(m=firstpass; m<=lastpass; m++){          strcurr[itmp-1]='\0';
             k2=anint[m][i]+(mint[m][i]/12.);        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(niterf=10;niterf<=30;niterf+=10){
               if(agev[m][i]==1) agev[m][i]=agemax+2;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
               if (m<lastpass)          forecast_time = *localtime(&rforecast_time);
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          strcpy(strfor,asctime(&forecast_time));
               else          itmp = strlen(strfor);
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          if(strfor[itmp-1]=='\n')
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          strfor[itmp-1]='\0';
             }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         }        }
       }      }
         for(i=(int)agemin; i <= (int)agemax+3; i++){      for (i=1;i<=n;i++) { 
           for(jk=1; jk <=nlstate ; jk++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        fptt=(*fret); 
               pp[jk] += freq[jk][m][i];  #ifdef DEBUG
           }            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           for(jk=1; jk <=nlstate ; jk++){            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
             for(m=-1, pos=0; m <=0 ; m++)  #endif
             pos += freq[jk][m][i];        printf("%d",i);fflush(stdout);
         }        fprintf(ficlog,"%d",i);fflush(ficlog);
                linmin(p,xit,n,fret,func); 
          for(jk=1; jk <=nlstate ; jk++){        if (fabs(fptt-(*fret)) > del) { 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          del=fabs(fptt-(*fret)); 
              pp[jk] += freq[jk][m][i];          ibig=i; 
          }        } 
            #ifdef DEBUG
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
          for(jk=1; jk <=nlstate ; jk++){                  for (j=1;j<=n;j++) {
            if( i <= (int) agemax){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
              if(pos>=1.e-5){          printf(" x(%d)=%.12e",j,xit[j]);
                probs[i][jk][j1]= pp[jk]/pos;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
              }        }
            }        for(j=1;j<=n;j++) {
          }          printf(" p(%d)=%.12e",j,p[j]);
                    fprintf(ficlog," p(%d)=%.12e",j,p[j]);
         }        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
   #endif
        } /* end i */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   free_vector(pp,1,nlstate);  #ifdef DEBUG
          int k[2],l;
 }  /* End of Freq */        k[0]=1;
         k[1]=-1;
 /************* Waves Concatenation ***************/        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for (j=1;j<=n;j++) {
 {          printf(" %.12e",p[j]);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          fprintf(ficlog," %.12e",p[j]);
      Death is a valid wave (if date is known).        }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        printf("\n");
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        fprintf(ficlog,"\n");
      and mw[mi+1][i]. dh depends on stepm.        for(l=0;l<=1;l++) {
      */          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int i, mi, m;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      double sum=0., jmean=0.;*/          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int j, k=0,jk, ju, jl;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double sum=0.;        }
   jmin=1e+5;  #endif
   jmax=-1;  
   jmean=0.;  
   for(i=1; i<=imx; i++){        free_vector(xit,1,n); 
     mi=0;        free_vector(xits,1,n); 
     m=firstpass;        free_vector(ptt,1,n); 
     while(s[m][i] <= nlstate){        free_vector(pt,1,n); 
       if(s[m][i]>=1)        return; 
         mw[++mi][i]=m;      } 
       if(m >=lastpass)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         break;      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
       else        ptt[j]=2.0*p[j]-pt[j]; 
         m++;        xit[j]=p[j]-pt[j]; 
     }/* end while */        pt[j]=p[j]; 
     if (s[m][i] > nlstate){      } 
       mi++;     /* Death is another wave */      fptt=(*func)(ptt); 
       /* if(mi==0)  never been interviewed correctly before death */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
          /* Only death is a correct wave */        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       mw[mi][i]=m;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
     }        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
     wav[i]=mi;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
     if(mi==0)        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        /* Thus we compare delta(2h) with observed f1-f3 */
   }        /* or best gain on one ancient line 'del' with total  */
         /* gain f1-f2 = f1 - f2 - 'del' with del  */
   for(i=1; i<=imx; i++){        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
         dh[mi][i]=1;        t= t- del*SQR(fp-fptt);
       else{        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
         if (s[mw[mi+1][i]][i] > nlstate) {        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
           if (agedc[i] < 2*AGESUP) {  #ifdef DEBUG
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           if(j==0) j=1;  /* Survives at least one month after exam */               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           k=k+1;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           if (j >= jmax) jmax=j;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           if (j <= jmin) jmin=j;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           sum=sum+j;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  #endif
           }        if (t < 0.0) { /* Then we use it for last direction */
         }          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
         else{          for (j=1;j<=n;j++) { 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
           k=k+1;            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
           if (j >= jmax) jmax=j;          }
           else if (j <= jmin)jmin=j;          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
           sum=sum+j;  
         }  #ifdef DEBUG
         jk= j/stepm;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         jl= j -jk*stepm;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         ju= j -(jk+1)*stepm;          for(j=1;j<=n;j++){
         if(jl <= -ju)            printf(" %.12e",xit[j]);
           dh[mi][i]=jk;            fprintf(ficlog," %.12e",xit[j]);
         else          }
           dh[mi][i]=jk+1;          printf("\n");
         if(dh[mi][i]==0)          fprintf(ficlog,"\n");
           dh[mi][i]=1; /* At least one step */  #endif
       }        } /* end of t negative */
     }      } /* end if (fptt < fp)  */
   }    } 
   jmean=sum/k;  } 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }  /**** Prevalence limit (stable or period prevalence)  ****************/
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   int Ndum[20],ij=1, k, j, i;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int cptcode=0;       matrix by transitions matrix until convergence is reached */
   cptcoveff=0;  
      int i, ii,j,k;
   for (k=0; k<19; k++) Ndum[k]=0;    double min, max, maxmin, maxmax,sumnew=0.;
   for (k=1; k<=7; k++) ncodemax[k]=0;    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij();
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double **newm;
     for (i=1; i<=imx; i++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;    for (ii=1;ii<=nlstate+ndeath;ii++)
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      for (j=1;j<=nlstate+ndeath;j++){
       if (ij > cptcode) cptcode=ij;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
   
     for (i=0; i<=cptcode; i++) {     cov[1]=1.;
       if(Ndum[i]!=0) ncodemax[j]++;   
     }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     ij=1;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
       /* Covariates have to be included here again */
     for (i=1; i<=ncodemax[j]; i++) {      cov[2]=agefin;
       for (k=0; k<=19; k++) {      
         if (Ndum[k] != 0) {      for (k=1; k<=cptcovn;k++) {
           nbcode[Tvar[j]][ij]=k;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                  /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
           ij++;      }
         }      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         if (ij > ncodemax[j]) break;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
       }        /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
     }      
   }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
  for (k=0; k<19; k++) Ndum[k]=0;      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
  for (i=1; i<=ncovmodel-2; i++) {      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       ij=Tvar[i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       Ndum[ij]++;      
     }      savm=oldm;
       oldm=newm;
  ij=1;      maxmax=0.;
  for (i=1; i<=10; i++) {      for(j=1;j<=nlstate;j++){
    if((Ndum[i]!=0) && (i<=ncovcol)){        min=1.;
      Tvaraff[ij]=i;        max=0.;
      ij++;        for(i=1; i<=nlstate; i++) {
    }          sumnew=0;
  }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
     cptcoveff=ij-1;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
 }          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
 /*********** Health Expectancies ****************/        }
         maxmin=max-min;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        maxmax=FMAX(maxmax,maxmin);
       }
 {      if(maxmax < ftolpl){
   /* Health expectancies */        return prlim;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      }
   double age, agelim, hf;    }
   double ***p3mat,***varhe;  }
   double **dnewm,**doldm;  
   double *xp;  /*************** transition probabilities ***************/ 
   double **gp, **gm;  
   double ***gradg, ***trgradg;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   int theta;  {
     /* According to parameters values stored in x and the covariate's values stored in cov,
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);       computes the probability to be observed in state j being in state i by appying the
   xp=vector(1,npar);       model to the ncovmodel covariates (including constant and age).
   dnewm=matrix(1,nlstate*2,1,npar);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   doldm=matrix(1,nlstate*2,1,nlstate*2);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         ncth covariate in the global vector x is given by the formula:
   fprintf(ficreseij,"# Health expectancies\n");       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   fprintf(ficreseij,"# Age");       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   for(i=1; i<=nlstate;i++)       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     for(j=1; j<=nlstate;j++)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
       fprintf(ficreseij," %1d-%1d (SE)",i,j);       Outputs ps[i][j] the probability to be observed in j being in j according to
   fprintf(ficreseij,"\n");       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
   if(estepm < stepm){    double s1, lnpijopii;
     printf ("Problem %d lower than %d\n",estepm, stepm);    /*double t34;*/
   }    int i,j, nc, ii, jj;
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months      for(i=1; i<= nlstate; i++){
    * This is mainly to measure the difference between two models: for example        for(j=1; j<i;j++){
    * if stepm=24 months pijx are given only every 2 years and by summing them          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
    * we are calculating an estimate of the Life Expectancy assuming a linear            /*lnpijopii += param[i][j][nc]*cov[nc];*/
    * progression inbetween and thus overestimating or underestimating according            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
    * to the curvature of the survival function. If, for the same date, we  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          }
    * to compare the new estimate of Life expectancy with the same linear          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
    * hypothesis. A more precise result, taking into account a more precise  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
    * curvature will be obtained if estepm is as small as stepm. */        }
         for(j=i+1; j<=nlstate+ndeath;j++){
   /* For example we decided to compute the life expectancy with the smallest unit */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
      nhstepm is the number of hstepm from age to agelim            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
      nstepm is the number of stepm from age to agelin.  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
      Look at hpijx to understand the reason of that which relies in memory size          }
      and note for a fixed period like estepm months */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        }
      survival function given by stepm (the optimization length). Unfortunately it      }
      means that if the survival funtion is printed only each two years of age and if      
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for(i=1; i<= nlstate; i++){
      results. So we changed our mind and took the option of the best precision.        s1=0;
   */        for(j=1; j<i; j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   agelim=AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(j=i+1; j<=nlstate+ndeath; j++){
     /* nhstepm age range expressed in number of stepm */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        }
     /* if (stepm >= YEARM) hstepm=1;*/        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        ps[i][i]=1./(s1+1.);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* Computing other pijs */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        for(j=1; j<i; j++)
     gp=matrix(0,nhstepm,1,nlstate*2);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     gm=matrix(0,nhstepm,1,nlstate*2);        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      } /* end i */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        
        for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          ps[ii][jj]=0;
           ps[ii][ii]=1;
     /* Computing Variances of health expectancies */        }
       }
      for(theta=1; theta <=npar; theta++){      
       for(i=1; i<=npar; i++){      
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
        /*   } */
       cptj=0;      /*   printf("\n "); */
       for(j=1; j<= nlstate; j++){      /* } */
         for(i=1; i<=nlstate; i++){      /* printf("\n ");printf("%lf ",cov[2]);*/
           cptj=cptj+1;      /*
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        goto end;*/
           }      return ps;
         }  }
       }  
        /**************** Product of 2 matrices ******************/
        
       for(i=1; i<=npar; i++)  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       cptj=0;    /* in, b, out are matrice of pointers which should have been initialized 
       for(j=1; j<= nlstate; j++){       before: only the contents of out is modified. The function returns
         for(i=1;i<=nlstate;i++){       a pointer to pointers identical to out */
           cptj=cptj+1;    int i, j, k;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    for(i=nrl; i<= nrh; i++)
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for(k=ncolol; k<=ncoloh; k++){
           }        out[i][k]=0.;
         }        for(j=ncl; j<=nch; j++)
       }          out[i][k] +=in[i][j]*b[j][k];
            }
        return out;
   }
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  /************* Higher Matrix Product ***************/
         }  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
      }  {
        /* Computes the transition matrix starting at age 'age' over 
 /* End theta */       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
      for(h=0; h<=nhstepm-1; h++)       (typically every 2 years instead of every month which is too big 
       for(j=1; j<=nlstate*2;j++)       for the memory).
         for(theta=1; theta <=npar; theta++)       Model is determined by parameters x and covariates have to be 
         trgradg[h][j][theta]=gradg[h][theta][j];       included manually here. 
   
        */
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)    int i, j, d, h, k;
         varhe[i][j][(int)age] =0.;    double **out, cov[NCOVMAX+1];
     double **newm;
     for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){    /* Hstepm could be zero and should return the unit matrix */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    for (i=1;i<=nlstate+ndeath;i++)
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      for (j=1;j<=nlstate+ndeath;j++){
         for(i=1;i<=nlstate*2;i++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
           for(j=1;j<=nlstate*2;j++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      }
       }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
              newm=savm;
     /* Computing expectancies */        /* Covariates have to be included here again */
     for(i=1; i<=nlstate;i++)        cov[1]=1.;
       for(j=1; j<=nlstate;j++)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        for (k=1; k<=cptcovn;k++) 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                  for (k=1; k<=cptcovage;k++)
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for(i=1; i<=nlstate;i++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for(j=1; j<=nlstate;j++){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         cptj++;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        savm=oldm;
       }        oldm=newm;
     fprintf(ficreseij,"\n");      }
          for(i=1; i<=nlstate+ndeath; i++)
     free_matrix(gm,0,nhstepm,1,nlstate*2);        for(j=1;j<=nlstate+ndeath;j++) {
     free_matrix(gp,0,nhstepm,1,nlstate*2);          po[i][j][h]=newm[i][j];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*printf("h=%d ",h);*/
   }    } /* end h */
   free_vector(xp,1,npar);  /*     printf("\n H=%d \n",h); */
   free_matrix(dnewm,1,nlstate*2,1,npar);    return po;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  
 }  #ifdef NLOPT
     double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
 /************ Variance ******************/    double fret;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    double *xt;
 {    int j;
   /* Variance of health expectancies */    myfunc_data *d2 = (myfunc_data *) pd;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  /* xt = (p1-1); */
   double **newm;    xt=vector(1,n); 
   double **dnewm,**doldm;    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
   double *xp;    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   double **gp, **gm;    printf("Function = %.12lf ",fret);
   double ***gradg, ***trgradg;    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   double ***p3mat;    printf("\n");
   double age,agelim, hf;   free_vector(xt,1,n);
   int theta;    return fret;
   }
    fprintf(ficresvij,"# Covariances of life expectancies\n");  #endif
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  /*************** log-likelihood *************/
     for(j=1; j<=nlstate;j++)  double func( double *x)
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  {
   fprintf(ficresvij,"\n");    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   xp=vector(1,npar);    double **out;
   dnewm=matrix(1,nlstate,1,npar);    double sw; /* Sum of weights */
   doldm=matrix(1,nlstate,1,nlstate);    double lli; /* Individual log likelihood */
      int s1, s2;
   if(estepm < stepm){    double bbh, survp;
     printf ("Problem %d lower than %d\n",estepm, stepm);    long ipmx;
   }    /*extern weight */
   else  hstepm=estepm;      /* We are differentiating ll according to initial status */
   /* For example we decided to compute the life expectancy with the smallest unit */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    /*for(i=1;i<imx;i++) 
      nhstepm is the number of hstepm from age to agelim      printf(" %d\n",s[4][i]);
      nstepm is the number of stepm from age to agelin.    */
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    ++countcallfunc;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    cov[1]=1.;
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for(k=1; k<=nlstate; k++) ll[k]=0.;
      results. So we changed our mind and took the option of the best precision.  
   */    if(mle==1){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   agelim = AGESUP;        /* Computes the values of the ncovmodel covariates of the model
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */           to be observed in j being in i according to the model.
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     gp=matrix(0,nhstepm,1,nlstate);          cov[2+k]=covar[Tvar[k]][i];
     gm=matrix(0,nhstepm,1,nlstate);        }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
     for(theta=1; theta <=npar; theta++){           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       for(i=1; i<=npar; i++){ /* Computes gradient */           has been calculated etc */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              for (j=1;j<=nlstate+ndeath;j++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (popbased==1) {            }
         for(i=1; i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
           prlim[i][i]=probs[(int)age][i][ij];            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<= nlstate; j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
         for(h=0; h<=nhstepm; h++){            }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
       }            oldm=newm;
              } /* end mult */
       for(i=1; i<=npar; i++) /* Computes gradient */        
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /* But now since version 0.9 we anticipate for bias at large stepm.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
       if (popbased==1) {           * the nearest (and in case of equal distance, to the lowest) interval but now
         for(i=1; i<=nlstate;i++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           prlim[i][i]=probs[(int)age][i][ij];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       for(j=1; j<= nlstate; j++){           * -stepm/2 to stepm/2 .
         for(h=0; h<=nhstepm; h++){           * For stepm=1 the results are the same as for previous versions of Imach.
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)           * For stepm > 1 the results are less biased than in previous versions. 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];           */
         }          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<= nlstate; j++)          /* bias bh is positive if real duration
         for(h=0; h<=nhstepm; h++){           * is higher than the multiple of stepm and negative otherwise.
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];           */
         }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     } /* End theta */          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);               then the contribution to the likelihood is the probability to 
                die between last step unit time and current  step unit time, 
     for(h=0; h<=nhstepm; h++)               which is also equal to probability to die before dh 
       for(j=1; j<=nlstate;j++)               minus probability to die before dh-stepm . 
         for(theta=1; theta <=npar; theta++)               In version up to 0.92 likelihood was computed
           trgradg[h][j][theta]=gradg[h][theta][j];          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          and not the date of a change in health state. The former idea was
     for(i=1;i<=nlstate;i++)          to consider that at each interview the state was recorded
       for(j=1;j<=nlstate;j++)          (healthy, disable or death) and IMaCh was corrected; but when we
         vareij[i][j][(int)age] =0.;          introduced the exact date of death then we should have modified
           the contribution of an exact death to the likelihood. This new
     for(h=0;h<=nhstepm;h++){          contribution is smaller and very dependent of the step unit
       for(k=0;k<=nhstepm;k++){          stepm. It is no more the probability to die between last interview
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          and month of death but the probability to survive from last
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          interview up to one month before death multiplied by the
         for(i=1;i<=nlstate;i++)          probability to die within a month. Thanks to Chris
           for(j=1;j<=nlstate;j++)          Jackson for correcting this bug.  Former versions increased
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
             */
     fprintf(ficresvij,"%.0f ",age );            lli=log(out[s1][s2] - savm[s1][s2]);
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          } else if  (s2==-2) {
       }            for (j=1,survp=0. ; j<=nlstate; j++) 
     fprintf(ficresvij,"\n");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     free_matrix(gp,0,nhstepm,1,nlstate);            /*survp += out[s1][j]; */
     free_matrix(gm,0,nhstepm,1,nlstate);            lli= log(survp);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          else if  (s2==-4) { 
   } /* End age */            for (j=3,survp=0. ; j<=nlstate; j++)  
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_vector(xp,1,npar);            lli= log(survp); 
   free_matrix(doldm,1,nlstate,1,npar);          } 
   free_matrix(dnewm,1,nlstate,1,nlstate);  
           else if  (s2==-5) { 
 }            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 /************ Variance of prevlim ******************/            lli= log(survp); 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          } 
 {          
   /* Variance of prevalence limit */          else{
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double **newm;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double **dnewm,**doldm;          } 
   int i, j, nhstepm, hstepm;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   int k, cptcode;          /*if(lli ==000.0)*/
   double *xp;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   double *gp, *gm;          ipmx +=1;
   double **gradg, **trgradg;          sw += weight[i];
   double age,agelim;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int theta;        } /* end of wave */
          } /* end of individual */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    }  else if(mle==2){
   fprintf(ficresvpl,"# Age");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresvpl," %1d-%1d",i,i);        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresvpl,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   xp=vector(1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);            }
            for(d=0; d<=dh[mi][i]; d++){
   hstepm=1*YEARM; /* Every year of age */            newm=savm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   agelim = AGESUP;            for (kk=1; kk<=cptcovage;kk++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            }
     if (stepm >= YEARM) hstepm=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gradg=matrix(1,npar,1,nlstate);            savm=oldm;
     gp=vector(1,nlstate);            oldm=newm;
     gm=vector(1,nlstate);          } /* end mult */
         
     for(theta=1; theta <=npar; theta++){          s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          bbh=(double)bh[mi][i]/(double)stepm; 
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ipmx +=1;
       for(i=1;i<=nlstate;i++)          sw += weight[i];
         gp[i] = prlim[i][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
       for(i=1; i<=npar; i++) /* Computes gradient */      } /* end of individual */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }  else if(mle==3){  /* exponential inter-extrapolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         gm[i] = prlim[i][i];        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* End theta */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     trgradg =matrix(1,nlstate,1,npar);          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     for(j=1; j<=nlstate;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(theta=1; theta <=npar; theta++)            for (kk=1; kk<=cptcovage;kk++) {
         trgradg[j][theta]=gradg[theta][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for(i=1;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       varpl[i][(int)age] =0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            savm=oldm;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            oldm=newm;
     for(i=1;i<=nlstate;i++)          } /* end mult */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        
           s1=s[mw[mi][i]][i];
     fprintf(ficresvpl,"%.0f ",age );          s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     fprintf(ficresvpl,"\n");          ipmx +=1;
     free_vector(gp,1,nlstate);          sw += weight[i];
     free_vector(gm,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(gradg,1,npar,1,nlstate);        } /* end of wave */
     free_matrix(trgradg,1,nlstate,1,npar);      } /* end of individual */
   } /* End age */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(xp,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_matrix(doldm,1,nlstate,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   free_matrix(dnewm,1,nlstate,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Variance of one-step probabilities  ******************/            }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   int i, j, i1, k1, j1, z1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int k=0, cptcode;            for (kk=1; kk<=cptcovage;kk++) {
   double **dnewm,**doldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double *xp;            }
   double *gp, *gm;          
   double **gradg, **trgradg;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double age,agelim, cov[NCOVMAX];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int theta;            savm=oldm;
   char fileresprob[FILENAMELENGTH];            oldm=newm;
           } /* end mult */
   strcpy(fileresprob,"prob");        
   strcat(fileresprob,fileres);          s1=s[mw[mi][i]][i];
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          s2=s[mw[mi+1][i]][i];
     printf("Problem with resultfile: %s\n", fileresprob);          if( s2 > nlstate){ 
   }            lli=log(out[s1][s2] - savm[s1][s2]);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          }else{
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");          }
   fprintf(ficresprob,"# Age");          ipmx +=1;
   for(i=1; i<=nlstate;i++)          sw += weight[i];
     for(j=1; j<=(nlstate+ndeath);j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
       } /* end of individual */
   fprintf(ficresprob,"\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   xp=vector(1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   cov[1]=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   j=cptcoveff;            }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for(d=0; d<dh[mi][i]; d++){
   j1=0;            newm=savm;
   for(k1=1; k1<=1;k1++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i1=1; i1<=ncodemax[k1];i1++){            for (kk=1; kk<=cptcovage;kk++) {
     j1++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     if  (cptcovn>0) {          
       fprintf(ficresprob, "\n#********** Variable ");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresprob, "**********\n#");            savm=oldm;
     }            oldm=newm;
              } /* end mult */
       for (age=bage; age<=fage; age ++){        
         cov[2]=age;          s1=s[mw[mi][i]][i];
         for (k=1; k<=cptcovn;k++) {          s2=s[mw[mi+1][i]][i];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                    ipmx +=1;
         }          sw += weight[i];
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (k=1; k<=cptcovprod;k++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        } /* end of wave */
              } /* end of individual */
         gradg=matrix(1,npar,1,9);    } /* End of if */
         trgradg=matrix(1,9,1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
        return -l;
         for(theta=1; theta <=npar; theta++){  }
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  /*************** log-likelihood *************/
            double funcone( double *x)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  {
              /* Same as likeli but slower because of a lot of printf and if */
           k=0;    int i, ii, j, k, mi, d, kk;
           for(i=1; i<= (nlstate+ndeath); i++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
             for(j=1; j<=(nlstate+ndeath);j++){    double **out;
               k=k+1;    double lli; /* Individual log likelihood */
               gp[k]=pmmij[i][j];    double llt;
             }    int s1, s2;
           }    double bbh, survp;
              /*extern weight */
           for(i=1; i<=npar; i++)    /* We are differentiating ll according to initial status */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
        /*for(i=1;i<imx;i++) 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      printf(" %d\n",s[4][i]);
           k=0;    */
           for(i=1; i<=(nlstate+ndeath); i++){    cov[1]=1.;
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
               gm[k]=pmmij[i][j];  
             }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        for (ii=1;ii<=nlstate+ndeath;ii++)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            for (j=1;j<=nlstate+ndeath;j++){
         }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          }
           for(theta=1; theta <=npar; theta++)        for(d=0; d<dh[mi][i]; d++){
             trgradg[j][theta]=gradg[theta][j];          newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          for (kk=1; kk<=cptcovage;kk++) {
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
         pmij(pmmij,cov,ncovmodel,x,nlstate);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         k=0;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(i=1; i<=(nlstate+ndeath); i++){          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           for(j=1; j<=(nlstate+ndeath);j++){          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
             k=k+1;          savm=oldm;
             gm[k]=pmmij[i][j];          oldm=newm;
           }        } /* end mult */
         }        
              s1=s[mw[mi][i]][i];
      /*printf("\n%d ",(int)age);        s2=s[mw[mi+1][i]][i];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        bbh=(double)bh[mi][i]/(double)stepm; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        /* bias is positive if real duration
      }*/         * is higher than the multiple of stepm and negative otherwise.
          */
         fprintf(ficresprob,"\n%d ",(int)age);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        } else if  (s2==-2) {
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          for (j=1,survp=0. ; j<=nlstate; j++) 
              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }          lli= log(survp);
     }        }else if (mle==1){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        } else if(mle==2){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        } else if(mle==3){  /* exponential inter-extrapolation */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   free_vector(xp,1,npar);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   fclose(ficresprob);          lli=log(out[s1][s2]); /* Original formula */
          } else{  /* mle=0 back to 1 */
 }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*lli=log(out[s1][s2]); */ /* Original formula */
 /******************* Printing html file ***********/        } /* End of if */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        ipmx +=1;
  int lastpass, int stepm, int weightopt, char model[],\        sw += weight[i];
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
  char version[], int popforecast, int estepm ){        if(globpr){
   int jj1, k1, i1, cpt;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   FILE *fichtm;   %11.6f %11.6f %11.6f ", \
   /*char optionfilehtm[FILENAMELENGTH];*/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   strcpy(optionfilehtm,optionfile);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   strcat(optionfilehtm,".htm");            llt +=ll[k]*gipmx/gsw;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     printf("Problem with %s \n",optionfilehtm), exit(0);          }
   }          fprintf(ficresilk," %10.6f\n", -llt);
         }
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      } /* end of wave */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    } /* end of individual */
 \n    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 Total number of observations=%d <br>\n    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 <hr  size=\"2\" color=\"#EC5E5E\">    if(globpr==0){ /* First time we count the contributions and weights */
  <ul><li>Outputs files<br>\n      gipmx=ipmx;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      gsw=sw;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    }
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    return -l;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  }
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
   /*************** function likelione ***********/
  fprintf(fichtm,"\n  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  {
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    /* This routine should help understanding what is done with 
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n       the selection of individuals/waves and
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n       to check the exact contribution to the likelihood.
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       Plotting could be done.
      */
  if(popforecast==1) fprintf(fichtm,"\n    int k;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    if(*globpri !=0){ /* Just counts and sums, no printings */
         <br>",fileres,fileres,fileres,fileres);      strcpy(fileresilk,"ilk"); 
  else      strcat(fileresilk,fileres);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 fprintf(fichtm," <li>Graphs</li><p>");        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
  m=cptcoveff;      }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
  jj1=0;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
  for(k1=1; k1<=m;k1++){      for(k=1; k<=nlstate; k++) 
    for(i1=1; i1<=ncodemax[k1];i1++){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
        jj1++;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
        if (cptcovn > 0) {    }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)    *fretone=(*funcone)(p);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    if(*globpri !=0){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      fclose(ficresilk);
        }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      fflush(fichtm); 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        } 
        for(cpt=1; cpt<nlstate;cpt++){    return;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }  
     for(cpt=1; cpt<=nlstate;cpt++) {  /*********** Maximum Likelihood Estimation ***************/
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.gif <br>  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    {
      }    int i,j, iter=0;
      for(cpt=1; cpt<=nlstate;cpt++) {    double **xi;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    double fret;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double fretone; /* Only one call to likelihood */
      }    /*  char filerespow[FILENAMELENGTH];*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.gif<br>  #ifdef NLOPT
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    int creturn;
 fprintf(fichtm,"\n</body>");    nlopt_opt opt;
    }    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
    }    double *lb;
 fclose(fichtm);    double minf; /* the minimum objective value, upon return */
 }    double * p1; /* Shifted parameters from 0 instead of 1 */
     myfunc_data dinst, *d = &dinst;
 /******************* Gnuplot file **************/  #endif
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   strcpy(optionfilegnuplot,optionfilefiname);      for (j=1;j<=npar;j++)
   strcat(optionfilegnuplot,".gp.txt");        xi[i][j]=(i==j ? 1.0 : 0.0);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     printf("Problem with file %s",optionfilegnuplot);    strcpy(filerespow,"pow"); 
   }    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 #ifdef windows      printf("Problem with resultfile: %s\n", filerespow);
     fprintf(ficgp,"cd \"%s\" \n",pathc);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 #endif    }
 m=pow(2,cptcoveff);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for (i=1;i<=nlstate;i++)
  /* 1eme*/      for(j=1;j<=nlstate+ndeath;j++)
   for (cpt=1; cpt<= nlstate ; cpt ++) {        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
    for (k1=1; k1<= m ; k1 ++) {    fprintf(ficrespow,"\n");
   #ifdef POWELL
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    powell(p,xi,npar,ftol,&iter,&fret,func);
   #endif
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  #ifdef NLOPT
   else fprintf(ficgp," \%%*lf (\%%*lf)");  #ifdef NEWUOA
 }    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  #else
     for (i=1; i<= nlstate ; i ++) {    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  #endif
   else fprintf(ficgp," \%%*lf (\%%*lf)");    lb=vector(0,npar-1);
 }    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    nlopt_set_lower_bounds(opt, lb);
      for (i=1; i<= nlstate ; i ++) {    nlopt_set_initial_step1(opt, 0.1);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
 }      d->function = func;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     nlopt_set_min_objective(opt, myfunc, d);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    nlopt_set_xtol_rel(opt, ftol);
    }    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   }      printf("nlopt failed! %d\n",creturn); 
   /*2 eme*/    }
     else {
   for (k1=1; k1<= m ; k1 ++) {      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
          iter=1; /* not equal */
     for (i=1; i<= nlstate+1 ; i ++) {    }
       k=2*i;    nlopt_destroy(opt);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  #endif
       for (j=1; j<= nlstate+1 ; j ++) {    free_matrix(xi,1,npar,1,npar);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fclose(ficrespow);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 }      fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  }
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /**** Computes Hessian and covariance matrix ***/
         else fprintf(ficgp," \%%*lf (\%%*lf)");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 }    {
       fprintf(ficgp,"\" t\"\" w l 0,");    double  **a,**y,*x,pd;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double **hess;
       for (j=1; j<= nlstate+1 ; j ++) {    int i, j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int *indx;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       else fprintf(ficgp,"\" t\"\" w l 0,");    void lubksb(double **a, int npar, int *indx, double b[]) ;
     }    void ludcmp(double **a, int npar, int *indx, double *d) ;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    double gompertz(double p[]);
   }    hess=matrix(1,npar,1,npar);
    
   /*3eme*/    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   for (k1=1; k1<= m ; k1 ++) {    for (i=1;i<=npar;i++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {      printf("%d",i);fflush(stdout);
       k=2+nlstate*(2*cpt-2);      fprintf(ficlog,"%d",i);fflush(ficlog);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);     
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      /*  printf(" %f ",p[i]);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    
     for (i=1;i<=npar;i++) {
 */      for (j=1;j<=npar;j++)  {
       for (i=1; i< nlstate ; i ++) {        if (j>i) { 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j,func,npar);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          
     }          hess[j][i]=hess[i][j];    
     }          /*printf(" %lf ",hess[i][j]);*/
          }
   /* CV preval stat */      }
     for (k1=1; k1<= m ; k1 ++) {    }
     for (cpt=1; cpt<nlstate ; cpt ++) {    printf("\n");
       k=3;    fprintf(ficlog,"\n");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for (i=1; i< nlstate ; i ++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         fprintf(ficgp,"+$%d",k+i+1);    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    a=matrix(1,npar,1,npar);
          y=matrix(1,npar,1,npar);
       l=3+(nlstate+ndeath)*cpt;    x=vector(1,npar);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    indx=ivector(1,npar);
       for (i=1; i< nlstate ; i ++) {    for (i=1;i<=npar;i++)
         l=3+(nlstate+ndeath)*cpt;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         fprintf(ficgp,"+$%d",l+i+1);    ludcmp(a,npar,indx,&pd);
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      for (j=1;j<=npar;j++) {
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
   }        lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
   /* proba elementaires */        matcov[i][j]=x[i];
    for(i=1,jk=1; i <=nlstate; i++){      }
     for(k=1; k <=(nlstate+ndeath); k++){    }
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){    printf("\n#Hessian matrix#\n");
            fprintf(ficlog,"\n#Hessian matrix#\n");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    for (i=1;i<=npar;i++) { 
           jk++;      for (j=1;j<=npar;j++) { 
           fprintf(ficgp,"\n");        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }      }
     }      printf("\n");
     }      fprintf(ficlog,"\n");
     }
     for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    /* Recompute Inverse */
    i=1;    for (i=1;i<=npar;i++)
    for(k2=1; k2<=nlstate; k2++) {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      k3=i;    ludcmp(a,npar,indx,&pd);
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){    /*  printf("\n#Hessian matrix recomputed#\n");
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;    for (j=1;j<=npar;j++) {
         for(j=3; j <=ncovmodel; j++) {      for (i=1;i<=npar;i++) x[i]=0;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      x[j]=1;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      lubksb(a,npar,indx,x);
             ij++;      for (i=1;i<=npar;i++){ 
           }        y[i][j]=x[i];
           else        printf("%.3e ",y[i][j]);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        fprintf(ficlog,"%.3e ",y[i][j]);
         }      }
           fprintf(ficgp,")/(1");      printf("\n");
              fprintf(ficlog,"\n");
         for(k1=1; k1 <=nlstate; k1++){      }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    */
 ij=1;  
           for(j=3; j <=ncovmodel; j++){    free_matrix(a,1,npar,1,npar);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(y,1,npar,1,npar);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_vector(x,1,npar);
             ij++;    free_ivector(indx,1,npar);
           }    free_matrix(hess,1,npar,1,npar);
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
           }  }
           fprintf(ficgp,")");  
         }  /*************** hessian matrix ****************/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  {
         i=i+ncovmodel;    int i;
        }    int l=1, lmax=20;
      }    double k1,k2;
    }    double p2[MAXPARM+1]; /* identical to x */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    double res;
    }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
        double fx;
   fclose(ficgp);    int k=0,kmax=10;
 }  /* end gnuplot */    double l1;
   
     fx=func(x);
 /*************** Moving average **************/    for (i=1;i<=npar;i++) p2[i]=x[i];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       l1=pow(10,l);
   int i, cpt, cptcod;      delts=delt;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for(k=1 ; k <kmax; k=k+1){
       for (i=1; i<=nlstate;i++)        delt = delta*(l1*k);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        p2[theta]=x[theta] +delt;
           mobaverage[(int)agedeb][i][cptcod]=0.;        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
            p2[theta]=x[theta]-delt;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        k2=func(p2)-fx;
       for (i=1; i<=nlstate;i++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           for (cpt=0;cpt<=4;cpt++){        
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  #ifdef DEBUGHESS
           }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }  #endif
       }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
              k=kmax;
 }        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
 /************** Forecasting ******************/        }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;      }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;    delti[theta]=delts;
   double ***p3mat;    return res; 
   char fileresf[FILENAMELENGTH];    
   }
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int i;
      int l=1, lmax=20;
      double k1,k2,k3,k4,res,fx;
   strcpy(fileresf,"f");    double p2[MAXPARM+1];
   strcat(fileresf,fileres);    int k;
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);    fx=func(x);
   }    for (k=1; k<=2; k++) {
   printf("Computing forecasting: result on file '%s' \n", fileresf);      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      p2[thetai]=x[thetai]+delti[thetai]/k;
     movingaverage(agedeb, fage, ageminpar, mobaverage);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k2=func(p2)-fx;
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;      p2[thetai]=x[thetai]-delti[thetai]/k;
   if (stepm<=12) stepsize=1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k3=func(p2)-fx;
   agelim=AGESUP;    
        p2[thetai]=x[thetai]-delti[thetai]/k;
   hstepm=1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   hstepm=hstepm/stepm;      k4=func(p2)-fx;
   yp1=modf(dateintmean,&yp);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   anprojmean=yp;  #ifdef DEBUG
   yp2=modf((yp1*12),&yp);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   mprojmean=yp;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   yp1=modf((yp2*30.5),&yp);  #endif
   jprojmean=yp;    }
   if(jprojmean==0) jprojmean=1;    return res;
   if(mprojmean==0) jprojmean=1;  }
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  /************** Inverse of matrix **************/
    void ludcmp(double **a, int n, int *indx, double *d) 
   for(cptcov=1;cptcov<=i2;cptcov++){  { 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int i,imax,j,k; 
       k=k+1;    double big,dum,sum,temp; 
       fprintf(ficresf,"\n#******");    double *vv; 
       for(j=1;j<=cptcoveff;j++) {   
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    vv=vector(1,n); 
       }    *d=1.0; 
       fprintf(ficresf,"******\n");    for (i=1;i<=n;i++) { 
       fprintf(ficresf,"# StartingAge FinalAge");      big=0.0; 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      for (j=1;j<=n;j++) 
              if ((temp=fabs(a[i][j])) > big) big=temp; 
            if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      vv[i]=1.0/big; 
         fprintf(ficresf,"\n");    } 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        sum=a[i][j]; 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           nhstepm = nhstepm/hstepm;        a[i][j]=sum; 
                } 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      big=0.0; 
           oldm=oldms;savm=savms;      for (i=j;i<=n;i++) { 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          sum=a[i][j]; 
                for (k=1;k<j;k++) 
           for (h=0; h<=nhstepm; h++){          sum -= a[i][k]*a[k][j]; 
             if (h==(int) (calagedate+YEARM*cpt)) {        a[i][j]=sum; 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
             }          big=dum; 
             for(j=1; j<=nlstate+ndeath;j++) {          imax=i; 
               kk1=0.;kk2=0;        } 
               for(i=1; i<=nlstate;i++) {                    } 
                 if (mobilav==1)      if (j != imax) { 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for (k=1;k<=n;k++) { 
                 else {          dum=a[imax][k]; 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          a[imax][k]=a[j][k]; 
                 }          a[j][k]=dum; 
                        } 
               }        *d = -(*d); 
               if (h==(int)(calagedate+12*cpt)){        vv[imax]=vv[j]; 
                 fprintf(ficresf," %.3f", kk1);      } 
                              indx[j]=imax; 
               }      if (a[j][j] == 0.0) a[j][j]=TINY; 
             }      if (j != n) { 
           }        dum=1.0/(a[j][j]); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         }      } 
       }    } 
     }    free_vector(vv,1,n);  /* Doesn't work */
   }  ;
          } 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   void lubksb(double **a, int n, int *indx, double b[]) 
   fclose(ficresf);  { 
 }    int i,ii=0,ip,j; 
 /************** Forecasting ******************/    double sum; 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){   
      for (i=1;i<=n;i++) { 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      ip=indx[i]; 
   int *popage;      sum=b[ip]; 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      b[ip]=b[i]; 
   double *popeffectif,*popcount;      if (ii) 
   double ***p3mat,***tabpop,***tabpopprev;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   char filerespop[FILENAMELENGTH];      else if (sum) ii=i; 
       b[i]=sum; 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    } 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=n;i>=1;i--) { 
   agelim=AGESUP;      sum=b[i]; 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        b[i]=sum/a[i][i]; 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    } 
    } 
    
   strcpy(filerespop,"pop");  void pstamp(FILE *fichier)
   strcat(filerespop,fileres);  {
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     printf("Problem with forecast resultfile: %s\n", filerespop);  }
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  {  /* Some frequencies */
     
   if (mobilav==1) {    int i, m, jk, j1, bool, z1,j;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int first;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double ***freq; /* Frequencies */
   }    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    char fileresp[FILENAMELENGTH];
   if (stepm<=12) stepsize=1;    
      pp=vector(1,nlstate);
   agelim=AGESUP;    prop=matrix(1,nlstate,iagemin,iagemax+3);
      strcpy(fileresp,"p");
   hstepm=1;    strcat(fileresp,fileres);
   hstepm=hstepm/stepm;    if((ficresp=fopen(fileresp,"w"))==NULL) {
        printf("Problem with prevalence resultfile: %s\n", fileresp);
   if (popforecast==1) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     if((ficpop=fopen(popfile,"r"))==NULL) {      exit(0);
       printf("Problem with population file : %s\n",popfile);exit(0);    }
     }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     popage=ivector(0,AGESUP);    j1=0;
     popeffectif=vector(0,AGESUP);    
     popcount=vector(0,AGESUP);    j=cptcoveff;
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    first=1;
      
     imx=i;    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
   }    /*    j1++;
   */
   for(cptcov=1;cptcov<=i2;cptcov++){    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       k=k+1;          scanf("%d", i);*/
       fprintf(ficrespop,"\n#******");        for (i=-5; i<=nlstate+ndeath; i++)  
       for(j=1;j<=cptcoveff;j++) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
       fprintf(ficrespop,"******\n");        
       fprintf(ficrespop,"# Age");        for (i=1; i<=nlstate; i++)  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(m=iagemin; m <= iagemax+3; m++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");            prop[i][m]=0;
              
       for (cpt=0; cpt<=0;cpt++) {        dateintsum=0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          k2cpt=0;
                for (i=1; i<=imx; i++) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          bool=1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
           nhstepm = nhstepm/hstepm;            for (z1=1; z1<=cptcoveff; z1++)       
                        if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
           oldm=oldms;savm=savms;                bool=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                          bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
           for (h=0; h<=nhstepm; h++){                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
             if (h==(int) (calagedate+YEARM*cpt)) {                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              } 
             }          }
             for(j=1; j<=nlstate+ndeath;j++) {   
               kk1=0.;kk2=0;          if (bool==1){
               for(i=1; i<=nlstate;i++) {                          for(m=firstpass; m<=lastpass; m++){
                 if (mobilav==1)              k2=anint[m][i]+(mint[m][i]/12.);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 else {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               }                if (m<lastpass) {
               if (h==(int)(calagedate+12*cpt)){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                   /*fprintf(ficrespop," %.3f", kk1);                }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                
               }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             }                  dateintsum=dateintsum+k2;
             for(i=1; i<=nlstate;i++){                  k2cpt++;
               kk1=0.;                }
                 for(j=1; j<=nlstate;j++){                /*}*/
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            }
                 }          }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        } /* end i */
             }         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        pstamp(ficresp);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        if  (cptcovn>0) {
           }          fprintf(ficresp, "\n#********** Variable "); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresp, "**********\n#");
       }          fprintf(ficlog, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /******/          fprintf(ficlog, "**********\n#");
         }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        for(i=1; i<=nlstate;i++) 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        fprintf(ficresp, "\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        
           nhstepm = nhstepm/hstepm;        for(i=iagemin; i <= iagemax+3; i++){
                    if(i==iagemax+3){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficlog,"Total");
           oldm=oldms;savm=savms;          }else{
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              if(first==1){
           for (h=0; h<=nhstepm; h++){              first=0;
             if (h==(int) (calagedate+YEARM*cpt)) {              printf("See log file for details...\n");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            }
             }            fprintf(ficlog,"Age %d", i);
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;          for(jk=1; jk <=nlstate ; jk++){
               for(i=1; i<=nlstate;i++) {                          for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                  pp[jk] += freq[jk][m][i]; 
               }          }
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          for(jk=1; jk <=nlstate ; jk++){
             }            for(m=-1, pos=0; m <=0 ; m++)
           }              pos += freq[jk][m][i];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(pp[jk]>=1.e-10){
         }              if(first==1){
       }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    }              }
   }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
              }else{
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if (popforecast==1) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_ivector(popage,0,AGESUP);            }
     free_vector(popeffectif,0,AGESUP);          }
     free_vector(popcount,0,AGESUP);  
   }          for(jk=1; jk <=nlstate ; jk++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              pp[jk] += freq[jk][m][i];
   fclose(ficrespop);          }       
 }          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
 /***********************************************/            posprop += prop[jk][i];
 /**************** Main Program *****************/          }
 /***********************************************/          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
 int main(int argc, char *argv[])              if(first==1)
 {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            }else{
   double agedeb, agefin,hf;              if(first==1)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double fret;            }
   double **xi,tmp,delta;            if( i <= iagemax){
               if(pos>=1.e-5){
   double dum; /* Dummy variable */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   double ***p3mat;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   int *indx;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   char line[MAXLINE], linepar[MAXLINE];              }
   char title[MAXLINE];              else
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            }
            }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
   char filerest[FILENAMELENGTH];            for(m=-1; m <=nlstate+ndeath; m++)
   char fileregp[FILENAMELENGTH];              if(freq[jk][m][i] !=0 ) {
   char popfile[FILENAMELENGTH];              if(first==1)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int firstobs=1, lastobs=10;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   int sdeb, sfin; /* Status at beginning and end */              }
   int c,  h , cpt,l;          if(i <= iagemax)
   int ju,jl, mi;            fprintf(ficresp,"\n");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          if(first==1)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            printf("Others in log...\n");
   int mobilav=0,popforecast=0;          fprintf(ficlog,"\n");
   int hstepm, nhstepm;        }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        /*}*/
     }
   double bage, fage, age, agelim, agebase;    dateintmean=dateintsum/k2cpt; 
   double ftolpl=FTOL;   
   double **prlim;    fclose(ficresp);
   double *severity;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   double ***param; /* Matrix of parameters */    free_vector(pp,1,nlstate);
   double  *p;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   double **matcov; /* Matrix of covariance */    /* End of Freq */
   double ***delti3; /* Scale */  }
   double *delti; /* Scale */  
   double ***eij, ***vareij;  /************ Prevalence ********************/
   double **varpl; /* Variances of prevalence limits by age */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   double *epj, vepp;  {  
   double kk1, kk2;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;       in each health status at the date of interview (if between dateprev1 and dateprev2).
         We still use firstpass and lastpass as another selection.
     */
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";   
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int i, m, jk, j1, bool, z1,j;
   
     double **prop;
   char z[1]="c", occ;    double posprop; 
 #include <sys/time.h>    double  y2; /* in fractional years */
 #include <time.h>    int iagemin, iagemax;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int first; /** to stop verbosity which is redirected to log file */
    
   /* long total_usecs;    iagemin= (int) agemin;
   struct timeval start_time, end_time;    iagemax= (int) agemax;
      /*pp=vector(1,nlstate);*/
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   getcwd(pathcd, size);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
   printf("\n%s",version);    
   if(argc <=1){    /*j=cptcoveff;*/
     printf("\nEnter the parameter file name: ");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     scanf("%s",pathtot);    
   }    first=1;
   else{    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     strcpy(pathtot,argv[1]);      /*for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;*/
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        
   /*cygwin_split_path(pathtot,path,optionfile);        for (i=1; i<=nlstate; i++)  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          for(m=iagemin; m <= iagemax+3; m++)
   /* cutv(path,optionfile,pathtot,'\\');*/            prop[i][m]=0.0;
        
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        for (i=1; i<=imx; i++) { /* Each individual */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          bool=1;
   chdir(path);          if  (cptcovn>0) {
   replace(pathc,path);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 /*-------- arguments in the command line --------*/                bool=0;
           } 
   strcpy(fileres,"r");          if (bool==1) { 
   strcat(fileres, optionfilefiname);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   strcat(fileres,".txt");    /* Other files have txt extension */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   /*---------arguments file --------*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     printf("Problem with optionfile %s\n",optionfile);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     goto end;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
   strcpy(filereso,"o");                } 
   strcat(filereso,fileres);              }
   if((ficparo=fopen(filereso,"w"))==NULL) {            } /* end selection of waves */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          }
   }        }
         for(i=iagemin; i <= iagemax+3; i++){  
   /* Reads comments: lines beginning with '#' */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   while((c=getc(ficpar))=='#' && c!= EOF){            posprop += prop[jk][i]; 
     ungetc(c,ficpar);          } 
     fgets(line, MAXLINE, ficpar);          
     puts(line);          for(jk=1; jk <=nlstate ; jk++){     
     fputs(line,ficparo);            if( i <=  iagemax){ 
   }              if(posprop>=1.e-5){ 
   ungetc(c,ficpar);                probs[i][jk][j1]= prop[jk][i]/posprop;
               } else{
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                if(first==1){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                  first=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);            } 
     puts(line);          }/* end jk */ 
     fputs(line,ficparo);        }/* end i */ 
   }      /*} *//* end i1 */
   ungetc(c,ficpar);    } /* end j1 */
      
        /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   covar=matrix(0,NCOVMAX,1,n);    /*free_vector(pp,1,nlstate);*/
   cptcovn=0;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  }  /* End of prevalence */
   
   ncovmodel=2+cptcovn;  /************* Waves Concatenation ***************/
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   /* Read guess parameters */  {
   /* Reads comments: lines beginning with '#' */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   while((c=getc(ficpar))=='#' && c!= EOF){       Death is a valid wave (if date is known).
     ungetc(c,ficpar);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     fgets(line, MAXLINE, ficpar);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     puts(line);       and mw[mi+1][i]. dh depends on stepm.
     fputs(line,ficparo);       */
   }  
   ungetc(c,ficpar);    int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       double sum=0., jmean=0.;*/
     for(i=1; i <=nlstate; i++)    int first;
     for(j=1; j <=nlstate+ndeath-1; j++){    int j, k=0,jk, ju, jl;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double sum=0.;
       fprintf(ficparo,"%1d%1d",i1,j1);    first=0;
       printf("%1d%1d",i,j);    jmin=100000;
       for(k=1; k<=ncovmodel;k++){    jmax=-1;
         fscanf(ficpar," %lf",&param[i][j][k]);    jmean=0.;
         printf(" %lf",param[i][j][k]);    for(i=1; i<=imx; i++){
         fprintf(ficparo," %lf",param[i][j][k]);      mi=0;
       }      m=firstpass;
       fscanf(ficpar,"\n");      while(s[m][i] <= nlstate){
       printf("\n");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       fprintf(ficparo,"\n");          mw[++mi][i]=m;
     }        if(m >=lastpass)
            break;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        else
           m++;
   p=param[1][1];      }/* end while */
        if (s[m][i] > nlstate){
   /* Reads comments: lines beginning with '#' */        mi++;     /* Death is another wave */
   while((c=getc(ficpar))=='#' && c!= EOF){        /* if(mi==0)  never been interviewed correctly before death */
     ungetc(c,ficpar);           /* Only death is a correct wave */
     fgets(line, MAXLINE, ficpar);        mw[mi][i]=m;
     puts(line);      }
     fputs(line,ficparo);  
   }      wav[i]=mi;
   ungetc(c,ficpar);      if(mi==0){
         nbwarn++;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        if(first==0){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   for(i=1; i <=nlstate; i++){          first=1;
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);        if(first==1){
       printf("%1d%1d",i,j);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       for(k=1; k<=ncovmodel;k++){      } /* end mi==0 */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    } /* End individuals */
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    for(i=1; i<=imx; i++){
       }      for(mi=1; mi<wav[i];mi++){
       fscanf(ficpar,"\n");        if (stepm <=0)
       printf("\n");          dh[mi][i]=1;
       fprintf(ficparo,"\n");        else{
     }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }            if (agedc[i] < 2*AGESUP) {
   delti=delti3[1][1];              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
   /* Reads comments: lines beginning with '#' */              else if(j<0){
   while((c=getc(ficpar))=='#' && c!= EOF){                nberr++;
     ungetc(c,ficpar);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fgets(line, MAXLINE, ficpar);                j=1; /* Temporary Dangerous patch */
     puts(line);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     fputs(line,ficparo);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   ungetc(c,ficpar);              }
                k=k+1;
   matcov=matrix(1,npar,1,npar);              if (j >= jmax){
   for(i=1; i <=npar; i++){                jmax=j;
     fscanf(ficpar,"%s",&str);                ijmax=i;
     printf("%s",str);              }
     fprintf(ficparo,"%s",str);              if (j <= jmin){
     for(j=1; j <=i; j++){                jmin=j;
       fscanf(ficpar," %le",&matcov[i][j]);                ijmin=i;
       printf(" %.5le",matcov[i][j]);              }
       fprintf(ficparo," %.5le",matcov[i][j]);              sum=sum+j;
     }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fscanf(ficpar,"\n");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     printf("\n");            }
     fprintf(ficparo,"\n");          }
   }          else{
   for(i=1; i <=npar; i++)            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for(j=i+1;j<=npar;j++)  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       matcov[i][j]=matcov[j][i];  
                k=k+1;
   printf("\n");            if (j >= jmax) {
               jmax=j;
               ijmax=i;
     /*-------- Rewriting paramater file ----------*/            }
      strcpy(rfileres,"r");    /* "Rparameterfile */            else if (j <= jmin){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/              jmin=j;
      strcat(rfileres,".");    /* */              ijmin=i;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            }
     if((ficres =fopen(rfileres,"w"))==NULL) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     }            if(j<0){
     fprintf(ficres,"#%s\n",version);              nberr++;
                  printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /*-------- data file ----------*/              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     if((fic=fopen(datafile,"r"))==NULL)    {            }
       printf("Problem with datafile: %s\n", datafile);goto end;            sum=sum+j;
     }          }
           jk= j/stepm;
     n= lastobs;          jl= j -jk*stepm;
     severity = vector(1,maxwav);          ju= j -(jk+1)*stepm;
     outcome=imatrix(1,maxwav+1,1,n);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     num=ivector(1,n);            if(jl==0){
     moisnais=vector(1,n);              dh[mi][i]=jk;
     annais=vector(1,n);              bh[mi][i]=0;
     moisdc=vector(1,n);            }else{ /* We want a negative bias in order to only have interpolation ie
     andc=vector(1,n);                    * to avoid the price of an extra matrix product in likelihood */
     agedc=vector(1,n);              dh[mi][i]=jk+1;
     cod=ivector(1,n);              bh[mi][i]=ju;
     weight=vector(1,n);            }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          }else{
     mint=matrix(1,maxwav,1,n);            if(jl <= -ju){
     anint=matrix(1,maxwav,1,n);              dh[mi][i]=jk;
     s=imatrix(1,maxwav+1,1,n);              bh[mi][i]=jl;       /* bias is positive if real duration
     adl=imatrix(1,maxwav+1,1,n);                                       * is higher than the multiple of stepm and negative otherwise.
     tab=ivector(1,NCOVMAX);                                   */
     ncodemax=ivector(1,8);            }
             else{
     i=1;              dh[mi][i]=jk+1;
     while (fgets(line, MAXLINE, fic) != NULL)    {              bh[mi][i]=ju;
       if ((i >= firstobs) && (i <=lastobs)) {            }
                    if(dh[mi][i]==0){
         for (j=maxwav;j>=1;j--){              dh[mi][i]=1; /* At least one step */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              bh[mi][i]=ju; /* At least one step */
           strcpy(line,stra);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          } /* end if mle */
         }        }
              } /* end wave */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);   }
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  /*********** Tricode ****************************/
         for (j=ncovcol;j>=1;j--){  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  {
         }    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
         num[i]=atol(stra);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
            /* Boring subroutine which should only output nbcode[Tvar[j]][k]
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    /* nbcode[Tvar[j]][1]= 
     */
         i=i+1;  
       }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     }    int modmaxcovj=0; /* Modality max of covariates j */
     /* printf("ii=%d", ij);    int cptcode=0; /* Modality max of covariates j */
        scanf("%d",i);*/    int modmincovj=0; /* Modality min of covariates j */
   imx=i-1; /* Number of individuals */  
   
   /* for (i=1; i<=imx; i++){    cptcoveff=0; 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;   
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     }*/  
    /*  for (i=1; i<=imx; i++){    /* Loop on covariates without age and products */
      if (s[4][i]==9)  s[4][i]=-1;    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                                   modality of this covariate Vj*/ 
          ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   /* Calculation of the number of parameter from char model*/                                      * If product of Vn*Vm, still boolean *:
   Tvar=ivector(1,15);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   Tprod=ivector(1,15);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   Tvaraff=ivector(1,15);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   Tvard=imatrix(1,15,1,2);                                        modality of the nth covariate of individual i. */
   Tage=ivector(1,15);              if (ij > modmaxcovj)
              modmaxcovj=ij; 
   if (strlen(model) >1){        else if (ij < modmincovj) 
     j=0, j1=0, k1=1, k2=1;          modmincovj=ij; 
     j=nbocc(model,'+');        if ((ij < -1) && (ij > NCOVMAX)){
     j1=nbocc(model,'*');          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     cptcovn=j+1;          exit(1);
     cptcovprod=j1;        }else
            Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     strcpy(modelsav,model);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       printf("Error. Non available option model=%s ",model);        /* getting the maximum value of the modality of the covariate
       goto end;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     }           female is 1, then modmaxcovj=1.*/
          }
     for(i=(j+1); i>=1;i--){      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       cutv(stra,strb,modelsav,'+');      cptcode=modmaxcovj;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/     /*for (i=0; i<=cptcode; i++) {*/
       /*scanf("%d",i);*/      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
       if (strchr(strb,'*')) {        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
         cutv(strd,strc,strb,'*');        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
         if (strcmp(strc,"age")==0) {          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
           Tvar[i]=atoi(stre);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           cptcovage++;      } /* Ndum[-1] number of undefined modalities */
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
         }      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
         else if (strcmp(strd,"age")==0) {      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
           cptcovprod--;         modmincovj=3; modmaxcovj = 7;
           cutv(strb,stre,strc,'V');         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
           Tvar[i]=atoi(stre);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
           cptcovage++;         variables V1_1 and V1_2.
           Tage[cptcovage]=i;         nbcode[Tvar[j]][ij]=k;
         }         nbcode[Tvar[j]][1]=0;
         else {         nbcode[Tvar[j]][2]=1;
           cutv(strb,stre,strc,'V');         nbcode[Tvar[j]][3]=2;
           Tvar[i]=ncovcol+k1;      */
           cutv(strb,strc,strd,'V');      ij=1; /* ij is similar to i but can jumps over null modalities */
           Tprod[k1]=i;      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
           Tvard[k1][1]=atoi(strc);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           Tvard[k1][2]=atoi(stre);          /*recode from 0 */
           Tvar[cptcovn+k2]=Tvard[k1][1];          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
           for (k=1; k<=lastobs;k++)                                       k is a modality. If we have model=V1+V1*sex 
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           k1++;            ij++;
           k2=k2+2;          }
         }          if (ij > ncodemax[j]) break; 
       }        }  /* end of loop on */
       else {      } /* end of loop on modality */ 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
        /*  scanf("%d",i);*/    
       cutv(strd,strc,strb,'V');   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
       Tvar[i]=atoi(strc);    
       }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       strcpy(modelsav,stra);       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
         scanf("%d",i);*/     Ndum[ij]++; 
     }   } 
 }  
     ij=1;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   printf("cptcovprod=%d ", cptcovprod);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   scanf("%d ",i);*/     if((Ndum[i]!=0) && (i<=ncovcol)){
     fclose(fic);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
     /*  if(mle==1){*/       ij++;
     if (weightopt != 1) { /* Maximisation without weights*/     }else
       for(i=1;i<=n;i++) weight[i]=1.0;         Tvaraff[ij]=0;
     }   }
     /*-calculation of age at interview from date of interview and age at death -*/   ij--;
     agev=matrix(1,maxwav,1,imx);   cptcoveff=ij; /*Number of total covariates*/
   
     for (i=1; i<=imx; i++) {  }
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;  /*********** Health Expectancies ****************/
          s[m][i]=-1;  
        }  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }  {
     }    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm;
     for (i=1; i<=imx; i++)  {    int nhstepma, nstepma; /* Decreasing with age */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double age, agelim, hf;
       for(m=1; (m<= maxwav); m++){    double ***p3mat;
         if(s[m][i] >0){    double eip;
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)    pstamp(ficreseij);
               if(moisdc[i]!=99 && andc[i]!=9999)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                 agev[m][i]=agedc[i];    fprintf(ficreseij,"# Age");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    for(i=1; i<=nlstate;i++){
            else {      for(j=1; j<=nlstate;j++){
               if (andc[i]!=9999){        fprintf(ficreseij," e%1d%1d ",i,j);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      }
               agev[m][i]=-1;      fprintf(ficreseij," e%1d. ",i);
               }    }
             }    fprintf(ficreseij,"\n");
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    if(estepm < stepm){
             if(mint[m][i]==99 || anint[m][i]==9999)      printf ("Problem %d lower than %d\n",estepm, stepm);
               agev[m][i]=1;    }
             else if(agev[m][i] <agemin){    else  hstepm=estepm;   
               agemin=agev[m][i];    /* We compute the life expectancy from trapezoids spaced every estepm months
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/     * This is mainly to measure the difference between two models: for example
             }     * if stepm=24 months pijx are given only every 2 years and by summing them
             else if(agev[m][i] >agemax){     * we are calculating an estimate of the Life Expectancy assuming a linear 
               agemax=agev[m][i];     * progression in between and thus overestimating or underestimating according
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/     * to the curvature of the survival function. If, for the same date, we 
             }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             /*agev[m][i]=anint[m][i]-annais[i];*/     * to compare the new estimate of Life expectancy with the same linear 
             /*   agev[m][i] = age[i]+2*m;*/     * hypothesis. A more precise result, taking into account a more precise
           }     * curvature will be obtained if estepm is as small as stepm. */
           else { /* =9 */  
             agev[m][i]=1;    /* For example we decided to compute the life expectancy with the smallest unit */
             s[m][i]=-1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           }       nhstepm is the number of hstepm from age to agelim 
         }       nstepm is the number of stepm from age to agelin. 
         else /*= 0 Unknown */       Look at hpijx to understand the reason of that which relies in memory size
           agev[m][i]=1;       and note for a fixed period like estepm months */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed only each two years of age and if
     for (i=1; i<=imx; i++)  {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for(m=1; (m<= maxwav); m++){       results. So we changed our mind and took the option of the best precision.
         if (s[m][i] > (nlstate+ndeath)) {    */
           printf("Error: Wrong value in nlstate or ndeath\n");      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           goto end;  
         }    agelim=AGESUP;
       }    /* If stepm=6 months */
     }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      
   /* nhstepm age range expressed in number of stepm */
     free_vector(severity,1,maxwav);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     free_imatrix(outcome,1,maxwav+1,1,n);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(moisnais,1,n);    /* if (stepm >= YEARM) hstepm=1;*/
     free_vector(annais,1,n);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     /* free_matrix(mint,1,maxwav,1,n);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);    for (age=bage; age<=fage; age ++){ 
     free_vector(andc,1,n);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          /* if (stepm >= YEARM) hstepm=1;*/
     wav=ivector(1,imx);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      /* If stepm=6 months */
          /* Computed by stepm unit matrices, product of hstepma matrices, stored
     /* Concatenates waves */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       Tcode=ivector(1,100);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      
       ncodemax[1]=1;      printf("%d|",(int)age);fflush(stdout);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
            
    codtab=imatrix(1,100,1,10);      /* Computing expectancies */
    h=0;      for(i=1; i<=nlstate;i++)
    m=pow(2,cptcoveff);        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
    for(k=1;k<=cptcoveff; k++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
      for(i=1; i <=(m/pow(2,k));i++){            
        for(j=1; j <= ncodemax[k]; j++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;          }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      fprintf(ficreseij,"%3.0f",age );
          }      for(i=1; i<=nlstate;i++){
        }        eip=0;
      }        for(j=1; j<=nlstate;j++){
    }          eip +=eij[i][j][(int)age];
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       codtab[1][2]=1;codtab[2][2]=2; */        }
    /* for(i=1; i <=m ;i++){        fprintf(ficreseij,"%9.4f", eip );
       for(k=1; k <=cptcovn; k++){      }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      fprintf(ficreseij,"\n");
       }      
       printf("\n");    }
       }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       scanf("%d",i);*/    printf("\n");
        fprintf(ficlog,"\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age    
        and prints on file fileres'p'. */  }
   
      void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Covariances of health expectancies eij and of total life expectancies according
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     to initial status i, ei. .
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
          int nhstepma, nstepma; /* Decreasing with age */
     /* For Powell, parameters are in a vector p[] starting at p[1]    double age, agelim, hf;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double ***p3matp, ***p3matm, ***varhe;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double **dnewm,**doldm;
     double *xp, *xm;
     if(mle==1){    double **gp, **gm;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double ***gradg, ***trgradg;
     }    int theta;
      
     /*--------- results files --------------*/    double eip, vip;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
    jk=1;    xm=vector(1,npar);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    dnewm=matrix(1,nlstate*nlstate,1,npar);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
    for(i=1,jk=1; i <=nlstate; i++){    
      for(k=1; k <=(nlstate+ndeath); k++){    pstamp(ficresstdeij);
        if (k != i)    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
          {    fprintf(ficresstdeij,"# Age");
            printf("%d%d ",i,k);    for(i=1; i<=nlstate;i++){
            fprintf(ficres,"%1d%1d ",i,k);      for(j=1; j<=nlstate;j++)
            for(j=1; j <=ncovmodel; j++){        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
              printf("%f ",p[jk]);      fprintf(ficresstdeij," e%1d. ",i);
              fprintf(ficres,"%f ",p[jk]);    }
              jk++;    fprintf(ficresstdeij,"\n");
            }  
            printf("\n");    pstamp(ficrescveij);
            fprintf(ficres,"\n");    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
          }    fprintf(ficrescveij,"# Age");
      }    for(i=1; i<=nlstate;i++)
    }      for(j=1; j<=nlstate;j++){
  if(mle==1){        cptj= (j-1)*nlstate+i;
     /* Computing hessian and covariance matrix */        for(i2=1; i2<=nlstate;i2++)
     ftolhess=ftol; /* Usually correct */          for(j2=1; j2<=nlstate;j2++){
     hesscov(matcov, p, npar, delti, ftolhess, func);            cptj2= (j2-1)*nlstate+i2;
  }            if(cptj2 <= cptj)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     printf("# Scales (for hessian or gradient estimation)\n");          }
      for(i=1,jk=1; i <=nlstate; i++){      }
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficrescveij,"\n");
         if (j!=i) {    
           fprintf(ficres,"%1d%1d",i,j);    if(estepm < stepm){
           printf("%1d%1d",i,j);      printf ("Problem %d lower than %d\n",estepm, stepm);
           for(k=1; k<=ncovmodel;k++){    }
             printf(" %.5e",delti[jk]);    else  hstepm=estepm;   
             fprintf(ficres," %.5e",delti[jk]);    /* We compute the life expectancy from trapezoids spaced every estepm months
             jk++;     * This is mainly to measure the difference between two models: for example
           }     * if stepm=24 months pijx are given only every 2 years and by summing them
           printf("\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
           fprintf(ficres,"\n");     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      }     * to compare the new estimate of Life expectancy with the same linear 
         * hypothesis. A more precise result, taking into account a more precise
     k=1;     * curvature will be obtained if estepm is as small as stepm. */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     for(i=1;i<=npar;i++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       /*  if (k>nlstate) k=1;       nhstepm is the number of hstepm from age to agelim 
       i1=(i-1)/(ncovmodel*nlstate)+1;       nstepm is the number of stepm from age to agelin. 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       Look at hpijx to understand the reason of that which relies in memory size
       printf("%s%d%d",alph[k],i1,tab[i]);*/       and note for a fixed period like estepm months */
       fprintf(ficres,"%3d",i);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       printf("%3d",i);       survival function given by stepm (the optimization length). Unfortunately it
       for(j=1; j<=i;j++){       means that if the survival funtion is printed only each two years of age and if
         fprintf(ficres," %.5e",matcov[i][j]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         printf(" %.5e",matcov[i][j]);       results. So we changed our mind and took the option of the best precision.
       }    */
       fprintf(ficres,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       printf("\n");  
       k++;    /* If stepm=6 months */
     }    /* nhstepm age range expressed in number of stepm */
        agelim=AGESUP;
     while((c=getc(ficpar))=='#' && c!= EOF){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       ungetc(c,ficpar);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fgets(line, MAXLINE, ficpar);    /* if (stepm >= YEARM) hstepm=1;*/
       puts(line);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fputs(line,ficparo);    
     }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     estepm=0;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     if (estepm==0 || estepm < stepm) estepm=stepm;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     if (fage <= 2) {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       bage = ageminpar;  
       fage = agemaxpar;    for (age=bage; age<=fage; age ++){ 
     }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
        /* If stepm=6 months */
     while((c=getc(ficpar))=='#' && c!= EOF){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     ungetc(c,ficpar);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     fgets(line, MAXLINE, ficpar);      
     puts(line);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fputs(line,ficparo);  
   }      /* Computing  Variances of health expectancies */
   ungetc(c,ficpar);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           decrease memory allocation */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      for(theta=1; theta <=npar; theta++){
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(i=1; i<=npar; i++){ 
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                xm[i] = x[i] - (i==theta ?delti[theta]:0);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     fgets(line, MAXLINE, ficpar);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     puts(line);    
     fputs(line,ficparo);        for(j=1; j<= nlstate; j++){
   }          for(i=1; i<=nlstate; i++){
   ungetc(c,ficpar);            for(h=0; h<=nhstepm-1; h++){
                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          }
         }
   fscanf(ficpar,"pop_based=%d\n",&popbased);       
   fprintf(ficparo,"pop_based=%d\n",popbased);          for(ij=1; ij<= nlstate*nlstate; ij++)
   fprintf(ficres,"pop_based=%d\n",popbased);            for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);      }/* End theta */
     fgets(line, MAXLINE, ficpar);      
     puts(line);      
     fputs(line,ficparo);      for(h=0; h<=nhstepm-1; h++)
   }        for(j=1; j<=nlstate*nlstate;j++)
   ungetc(c,ficpar);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);       printf("%d|",(int)age);fflush(stdout);
     fgets(line, MAXLINE, ficpar);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     puts(line);       for(h=0;h<=nhstepm-1;h++){
     fputs(line,ficparo);        for(k=0;k<=nhstepm-1;k++){
   }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   ungetc(c,ficpar);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            for(ji=1;ji<=nlstate*nlstate;ji++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }
       }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
       /* Computing expectancies */
 /*------------ gnuplot -------------*/      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
 /*------------ free_vector  -------------*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  chdir(path);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
              
  free_ivector(wav,1,imx);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            }
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);      fprintf(ficresstdeij,"%3.0f",age );
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      for(i=1; i<=nlstate;i++){
  fclose(ficparo);        eip=0.;
  fclose(ficres);        vip=0.;
         for(j=1; j<=nlstate;j++){
 /*--------- index.htm --------*/          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
          }
   /*--------------- Prevalence limit --------------*/        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        }
   strcpy(filerespl,"pl");      fprintf(ficresstdeij,"\n");
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      fprintf(ficrescveij,"%3.0f",age );
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          cptj= (j-1)*nlstate+i;
   fprintf(ficrespl,"#Prevalence limit\n");          for(i2=1; i2<=nlstate;i2++)
   fprintf(ficrespl,"#Age ");            for(j2=1; j2<=nlstate;j2++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              cptj2= (j2-1)*nlstate+i2;
   fprintf(ficrespl,"\n");              if(cptj2 <= cptj)
                  fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   prlim=matrix(1,nlstate,1,nlstate);            }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficrescveij,"\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   k=0;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   agebase=ageminpar;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   agelim=agemaxpar;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   ftolpl=1.e-10;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   i1=cptcoveff;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (cptcovn < 1){i1=1;}    printf("\n");
     fprintf(ficlog,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_vector(xm,1,npar);
         k=k+1;    free_vector(xp,1,npar);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         fprintf(ficrespl,"\n#******");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         for(j=1;j<=cptcoveff;j++)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
         fprintf(ficrespl,"******\n");  
          /************ Variance ******************/
         for (age=agebase; age<=agelim; age++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  {
           fprintf(ficrespl,"%.0f",age );    /* Variance of health expectancies */
           for(i=1; i<=nlstate;i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           fprintf(ficrespl," %.5f", prlim[i][i]);    /* double **newm;*/
           fprintf(ficrespl,"\n");    double **dnewm,**doldm;
         }    double **dnewmp,**doldmp;
       }    int i, j, nhstepm, hstepm, h, nstepm ;
     }    int k;
   fclose(ficrespl);    double *xp;
     double **gp, **gm;  /* for var eij */
   /*------------- h Pij x at various ages ------------*/    double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double *gpp, *gmp; /* for var p point j */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double ***p3mat;
   }    double age,agelim, hf;
   printf("Computing pij: result on file '%s' \n", filerespij);    double ***mobaverage;
      int theta;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    char digit[4];
   /*if (stepm<=24) stepsize=2;*/    char digitp[25];
   
   agelim=AGESUP;    char fileresprobmorprev[FILENAMELENGTH];
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    if(popbased==1){
        if(mobilav!=0)
   k=0;        strcpy(digitp,"-populbased-mobilav-");
   for(cptcov=1;cptcov<=i1;cptcov++){      else strcpy(digitp,"-populbased-nomobil-");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    else 
         fprintf(ficrespij,"\n#****** ");      strcpy(digitp,"-stablbased-");
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (mobilav!=0) {
         fprintf(ficrespij,"******\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
              if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      strcpy(fileresprobmorprev,"prmorprev"); 
           fprintf(ficrespij,"# Age");    sprintf(digit,"%-d",ij);
           for(i=1; i<=nlstate;i++)    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
             for(j=1; j<=nlstate+ndeath;j++)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
               fprintf(ficrespij," %1d-%1d",i,j);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
           fprintf(ficrespij,"\n");    strcat(fileresprobmorprev,fileres);
            for (h=0; h<=nhstepm; h++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      printf("Problem with resultfile: %s\n", fileresprobmorprev);
             for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
               for(j=1; j<=nlstate+ndeath;j++)    }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             fprintf(ficrespij,"\n");   
              }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    pstamp(ficresprobmorprev);
           fprintf(ficrespij,"\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
   fclose(ficrespij);    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   /*---------- Forecasting ------------------*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   if((stepm == 1) && (strcmp(model,".")==0)){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  /*   } */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    pstamp(ficresvij);
   else{    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     erreur=108;    if(popbased==1)
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   }    else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
   /*---------- Health expectancies and variances ------------*/    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   strcpy(filerest,"t");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   strcat(filerest,fileres);    fprintf(ficresvij,"\n");
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(filerese,"e");  
   strcat(filerese,fileres);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    gpp=vector(nlstate+1,nlstate+ndeath);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    gmp=vector(nlstate+1,nlstate+ndeath);
   }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    
     if(estepm < stepm){
  strcpy(fileresv,"v");      printf ("Problem %d lower than %d\n",estepm, stepm);
   strcat(fileresv,fileres);    }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    else  hstepm=estepm;   
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       nhstepm is the number of hstepm from age to agelim 
   calagedate=-1;       nstepm is the number of stepm from age to agelin. 
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   k=0;       survival function given by stepm (the optimization length). Unfortunately it
   for(cptcov=1;cptcov<=i1;cptcov++){       means that if the survival funtion is printed every two years of age and if
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       k=k+1;       results. So we changed our mind and took the option of the best precision.
       fprintf(ficrest,"\n#****** ");    */
       for(j=1;j<=cptcoveff;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim = AGESUP;
       fprintf(ficrest,"******\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficreseij,"\n#****** ");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1;j<=cptcoveff;j++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficreseij,"******\n");      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(theta=1; theta <=npar; theta++){
       fprintf(ficresvij,"******\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        if (popbased==1) {
       oldm=oldms;savm=savms;          if(mobilav ==0){
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");              prlim[i][i]=mobaverage[(int)age][i][ij];
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          }
       fprintf(ficrest,"\n");        }
     
       epj=vector(1,nlstate+1);        for(j=1; j<= nlstate; j++){
       for(age=bage; age <=fage ;age++){          for(h=0; h<=nhstepm; h++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         if (popbased==1) {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           for(i=1; i<=nlstate;i++)          }
             prlim[i][i]=probs[(int)age][i][k];        }
         }        /* This for computing probability of death (h=1 means
                   computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficrest," %4.0f",age);           as a weighted average of prlim.
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           }        }    
           epj[nlstate+1] +=epj[j];        /* end probability of death */
         }  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         for(i=1, vepp=0.;i <=nlstate;i++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           for(j=1;j <=nlstate;j++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             vepp += vareij[i][j][(int)age];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));   
         for(j=1;j <=nlstate;j++){        if (popbased==1) {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          if(mobilav ==0){
         }            for(i=1; i<=nlstate;i++)
         fprintf(ficrest,"\n");              prlim[i][i]=probs[(int)age][i][ij];
       }          }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
 free_matrix(mint,1,maxwav,1,n);          }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        }
     free_vector(weight,1,n);  
   fclose(ficreseij);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   fclose(ficresvij);          for(h=0; h<=nhstepm; h++){
   fclose(ficrest);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   fclose(ficpar);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   free_vector(epj,1,nlstate+1);          }
          }
   /*------- Variance limit prevalence------*/          /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   strcpy(fileresvpl,"vpl");           as a weighted average of prlim.
   strcat(fileresvpl,fileres);        */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     exit(0);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        /* end probability of death */
   
   k=0;        for(j=1; j<= nlstate; j++) /* vareij */
   for(cptcov=1;cptcov<=i1;cptcov++){          for(h=0; h<=nhstepm; h++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       k=k+1;          }
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       fprintf(ficresvpl,"******\n");        }
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      } /* End theta */
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     }  
  }      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
   fclose(ficresvpl);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          for(theta=1; theta <=npar; theta++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          trgradgp[j][theta]=gradgp[theta][j];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    
    
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      for(i=1;i<=nlstate;i++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(j=1;j<=nlstate;j++)
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          vareij[i][j][(int)age] =0.;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
        for(h=0;h<=nhstepm;h++){
   free_matrix(matcov,1,npar,1,npar);        for(k=0;k<=nhstepm;k++){
   free_vector(delti,1,npar);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   free_matrix(agev,1,maxwav,1,imx);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
   if(erreur >0)              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     printf("End of Imach with error or warning %d\n",erreur);        }
   else   printf("End of Imach\n");      }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    
        /* pptj */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   /*------ End -----------*/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
  end:      /* end ppptj */
   /* chdir(pathcd);*/      /*  x centered again */
  /*system("wgnuplot graph.plt");*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
  /*system("../gp37mgw/wgnuplot graph.plt");*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  /*system("cd ../gp37mgw");*/   
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      if (popbased==1) {
  strcpy(plotcmd,GNUPLOTPROGRAM);        if(mobilav ==0){
  strcat(plotcmd," ");          for(i=1; i<=nlstate;i++)
  strcat(plotcmd,optionfilegnuplot);            prlim[i][i]=probs[(int)age][i][ij];
  system(plotcmd);        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
  /*#ifdef windows*/            prlim[i][i]=mobaverage[(int)age][i][ij];
   while (z[0] != 'q') {        }
     /* chdir(path); */      }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");               
     scanf("%s",z);      /* This for computing probability of death (h=1 means
     if (z[0] == 'c') system("./imach");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     else if (z[0] == 'e') system(optionfilehtm);         as a weighted average of prlim.
     else if (z[0] == 'g') system(plotcmd);      */
     else if (z[0] == 'q') exit(0);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   /*#endif */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 }      }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.41.2.2  
changed lines
  Added in v.1.166


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>