Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.86

version 1.41.2.2, 2003/06/13 07:45:28 version 1.86, 2003/06/17 20:04:08
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.86  2003/06/17 20:04:08  brouard
      (Module): Change position of html and gnuplot routines and added
   This program computes Healthy Life Expectancies from    routine fileappend.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.85  2003/06/17 13:12:43  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Check when date of death was earlier that
   case of a health survey which is our main interest) -2- at least a    current date of interview. It may happen when the death was just
   second wave of interviews ("longitudinal") which measure each change    prior to the death. In this case, dh was negative and likelihood
   (if any) in individual health status.  Health expectancies are    was wrong (infinity). We still send an "Error" but patch by
   computed from the time spent in each health state according to a    assuming that the date of death was just one stepm after the
   model. More health states you consider, more time is necessary to reach the    interview.
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): Because some people have very long ID (first column)
   simplest model is the multinomial logistic model where pij is the    we changed int to long in num[] and we added a new lvector for
   probability to be observed in state j at the second wave    memory allocation. But we also truncated to 8 characters (left
   conditional to be observed in state i at the first wave. Therefore    truncation)
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Repository): No more line truncation errors.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.84  2003/06/13 21:44:43  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Replace "freqsummary" at a correct
   you to do it.  More covariates you add, slower the    place. It differs from routine "prevalence" which may be called
   convergence.    many times. Probs is memory consuming and must be used with
     parcimony.
   The advantage of this computer programme, compared to a simple    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.83  2003/06/10 13:39:11  lievre
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.82  2003/06/05 15:57:20  brouard
   hPijx is the probability to be observed in state i at age x+h    Add log in  imach.c and  fullversion number is now printed.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate  */
   states. This elementary transition (by month or quarter trimester,  /*
   semester or year) is model as a multinomial logistic.  The hPx     Interpolated Markov Chain
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Short summary of the programme:
   hPijx.    
     This program computes Healthy Life Expectancies from
   Also this programme outputs the covariance matrix of the parameters but also    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   of the life expectancies. It also computes the prevalence limits.    first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    case of a health survey which is our main interest) -2- at least a
            Institut national d'études démographiques, Paris.    second wave of interviews ("longitudinal") which measure each change
   This software have been partly granted by Euro-REVES, a concerted action    (if any) in individual health status.  Health expectancies are
   from the European Union.    computed from the time spent in each health state according to a
   It is copyrighted identically to a GNU software product, ie programme and    model. More health states you consider, more time is necessary to reach the
   software can be distributed freely for non commercial use. Latest version    Maximum Likelihood of the parameters involved in the model.  The
   can be accessed at http://euroreves.ined.fr/imach .    simplest model is the multinomial logistic model where pij is the
   **********************************************************************/    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
 #include <math.h>    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #include <stdio.h>    'age' is age and 'sex' is a covariate. If you want to have a more
 #include <stdlib.h>    complex model than "constant and age", you should modify the program
 #include <unistd.h>    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 #define MAXLINE 256    convergence.
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    The advantage of this computer programme, compared to a simple
 #define FILENAMELENGTH 80    multinomial logistic model, is clear when the delay between waves is not
 /*#define DEBUG*/    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /*#define windows*/    account using an interpolation or extrapolation.  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    split into an exact number (nh*stepm) of unobserved intermediate
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define NINTERVMAX 8    matrix is simply the matrix product of nh*stepm elementary matrices
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    and the contribution of each individual to the likelihood is simply
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    hPijx.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Also this programme outputs the covariance matrix of the parameters but also
 #define YEARM 12. /* Number of months per year */    of the life expectancies. It also computes the stable prevalence. 
 #define AGESUP 130    
 #define AGEBASE 40    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 int erreur; /* Error number */    from the European Union.
 int nvar;    It is copyrighted identically to a GNU software product, ie programme and
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    software can be distributed freely for non commercial use. Latest version
 int npar=NPARMAX;    can be accessed at http://euroreves.ined.fr/imach .
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int popbased=0;    
     **********************************************************************/
 int *wav; /* Number of waves for this individuual 0 is possible */  /*
 int maxwav; /* Maxim number of waves */    main
 int jmin, jmax; /* min, max spacing between 2 waves */    read parameterfile
 int mle, weightopt;    read datafile
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    concatwav
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    freqsummary
 double jmean; /* Mean space between 2 waves */    if (mle >= 1)
 double **oldm, **newm, **savm; /* Working pointers to matrices */      mlikeli
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    print results files
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    if mle==1 
 FILE *ficgp,*ficresprob,*ficpop;       computes hessian
 FILE *ficreseij;    read end of parameter file: agemin, agemax, bage, fage, estepm
   char filerese[FILENAMELENGTH];        begin-prev-date,...
  FILE  *ficresvij;    open gnuplot file
   char fileresv[FILENAMELENGTH];    open html file
  FILE  *ficresvpl;    stable prevalence
   char fileresvpl[FILENAMELENGTH];     for age prevalim()
     h Pij x
 #define NR_END 1    variance of p varprob
 #define FREE_ARG char*    forecasting if prevfcast==1 prevforecast call prevalence()
 #define FTOL 1.0e-10    health expectancies
     Variance-covariance of DFLE
 #define NRANSI    prevalence()
 #define ITMAX 200     movingaverage()
     varevsij() 
 #define TOL 2.0e-4    if popbased==1 varevsij(,popbased)
     total life expectancies
 #define CGOLD 0.3819660    Variance of stable prevalence
 #define ZEPS 1.0e-10   end
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  */
   
 #define GOLD 1.618034  
 #define GLIMIT 100.0  
 #define TINY 1.0e-20   
   #include <math.h>
 static double maxarg1,maxarg2;  #include <stdio.h>
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #include <stdlib.h>
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #include <unistd.h>
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #include <sys/time.h>
 #define rint(a) floor(a+0.5)  #include <time.h>
   #include "timeval.h"
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define MAXLINE 256
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int imx;  #define FILENAMELENGTH 132
 int stepm;  /*#define DEBUG*/
 /* Stepm, step in month: minimum step interpolation*/  /*#define windows*/
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int estepm;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int m,nb;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define NINTERVMAX 8
 double **pmmij, ***probs, ***mobaverage;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double dateintmean=0;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 double *weight;  #define MAXN 20000
 int **s; /* Status */  #define YEARM 12. /* Number of months per year */
 double *agedc, **covar, idx;  #define AGESUP 130
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define AGEBASE 40
   #ifdef unix
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define DIRSEPARATOR '/'
 double ftolhess; /* Tolerance for computing hessian */  #define ODIRSEPARATOR '\\'
   #else
 /**************** split *************************/  #define DIRSEPARATOR '\\'
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define ODIRSEPARATOR '/'
 {  #endif
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  /* $Id$ */
   /* $State$ */
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 #ifdef windows  char fullversion[]="$Revision$ $Date$"; 
    s = strrchr( path, '\\' );           /* find last / */  int erreur; /* Error number */
 #else  int nvar;
    s = strrchr( path, '/' );            /* find last / */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #endif  int npar=NPARMAX;
    if ( s == NULL ) {                   /* no directory, so use current */  int nlstate=2; /* Number of live states */
 #if     defined(__bsd__)                /* get current working directory */  int ndeath=1; /* Number of dead states */
       extern char       *getwd( );  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
       if ( getwd( dirc ) == NULL ) {  
 #else  int *wav; /* Number of waves for this individuual 0 is possible */
       extern char       *getcwd( );  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int mle, weightopt;
 #endif  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
          return( GLOCK_ERROR_GETCWD );  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       strcpy( name, path );             /* we've got it */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
    } else {                             /* strip direcotry from path */  double jmean; /* Mean space between 2 waves */
       s++;                              /* after this, the filename */  double **oldm, **newm, **savm; /* Working pointers to matrices */
       l2 = strlen( s );                 /* length of filename */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       strcpy( name, s );                /* save file name */  FILE *ficlog, *ficrespow;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int globpr; /* Global variable for printing or not */
       dirc[l1-l2] = 0;                  /* add zero */  double fretone; /* Only one call to likelihood */
    }  long ipmx; /* Number of contributions */
    l1 = strlen( dirc );                 /* length of directory */  double sw; /* Sum of weights */
 #ifdef windows  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  FILE *ficresilk;
 #else  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  FILE *ficresprobmorprev;
 #endif  FILE *fichtm; /* Html File */
    s = strrchr( name, '.' );            /* find last / */  FILE *ficreseij;
    s++;  char filerese[FILENAMELENGTH];
    strcpy(ext,s);                       /* save extension */  FILE  *ficresvij;
    l1= strlen( name);  char fileresv[FILENAMELENGTH];
    l2= strlen( s)+1;  FILE  *ficresvpl;
    strncpy( finame, name, l1-l2);  char fileresvpl[FILENAMELENGTH];
    finame[l1-l2]= 0;  char title[MAXLINE];
    return( 0 );                         /* we're done */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /******************************************/  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 void replace(char *s, char*t)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   int i;  
   int lg=20;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   i=0;  
   lg=strlen(t);  #define NR_END 1
   for(i=0; i<= lg; i++) {  #define FREE_ARG char*
     (s[i] = t[i]);  #define FTOL 1.0e-10
     if (t[i]== '\\') s[i]='/';  
   }  #define NRANSI 
 }  #define ITMAX 200 
   
 int nbocc(char *s, char occ)  #define TOL 2.0e-4 
 {  
   int i,j=0;  #define CGOLD 0.3819660 
   int lg=20;  #define ZEPS 1.0e-10 
   i=0;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define GOLD 1.618034 
   if  (s[i] == occ ) j++;  #define GLIMIT 100.0 
   }  #define TINY 1.0e-20 
   return j;  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 void cutv(char *u,char *v, char*t, char occ)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   int i,lg,j,p=0;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   i=0;  #define rint(a) floor(a+0.5)
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   lg=strlen(t);  
   for(j=0; j<p; j++) {  int imx; 
     (u[j] = t[j]);  int stepm;
   }  /* Stepm, step in month: minimum step interpolation*/
      u[p]='\0';  
   int estepm;
    for(j=0; j<= lg; j++) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  int m,nb;
 }  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 /********************** nrerror ********************/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 void nrerror(char error_text[])  double dateintmean=0;
 {  
   fprintf(stderr,"ERREUR ...\n");  double *weight;
   fprintf(stderr,"%s\n",error_text);  int **s; /* Status */
   exit(1);  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 {  double ftolhess; /* Tolerance for computing hessian */
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /**************** split *************************/
   if (!v) nrerror("allocation failure in vector");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   return v-nl+NR_END;  {
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG)(v+nl-NR_END));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /************************ivector *******************************/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 int *ivector(long nl,long nh)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   int *v;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));        return( GLOCK_ERROR_GETCWD );
   if (!v) nrerror("allocation failure in ivector");      }
   return v-nl+NR_END;      strcpy( name, path );               /* we've got it */
 }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 /******************free ivector **************************/      l2 = strlen( ss );                  /* length of filename */
 void free_ivector(int *v, long nl, long nh)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 {      strcpy( name, ss );         /* save file name */
   free((FREE_ARG)(v+nl-NR_END));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
     }
 /******************* imatrix *******************************/    l1 = strlen( dirc );                  /* length of directory */
 int **imatrix(long nrl, long nrh, long ncl, long nch)    /*#ifdef windows
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 {  #else
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   int **m;  #endif
      */
   /* allocate pointers to rows */    ss = strrchr( name, '.' );            /* find last / */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    ss++;
   if (!m) nrerror("allocation failure 1 in matrix()");    strcpy(ext,ss);                       /* save extension */
   m += NR_END;    l1= strlen( name);
   m -= nrl;    l2= strlen(ss)+1;
      strncpy( finame, name, l1-l2);
      finame[l1-l2]= 0;
   /* allocate rows and set pointers to them */    return( 0 );                          /* we're done */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /******************************************/
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  void replace(char *s, char*t)
    {
   /* return pointer to array of pointers to rows */    int i;
   return m;    int lg=20;
 }    i=0;
     lg=strlen(t);
 /****************** free_imatrix *************************/    for(i=0; i<= lg; i++) {
 void free_imatrix(m,nrl,nrh,ncl,nch)      (s[i] = t[i]);
       int **m;      if (t[i]== '\\') s[i]='/';
       long nch,ncl,nrh,nrl;    }
      /* free an int matrix allocated by imatrix() */  }
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int nbocc(char *s, char occ)
   free((FREE_ARG) (m+nrl-NR_END));  {
 }    int i,j=0;
     int lg=20;
 /******************* matrix *******************************/    i=0;
 double **matrix(long nrl, long nrh, long ncl, long nch)    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    if  (s[i] == occ ) j++;
   double **m;    }
     return j;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  }
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  void cutv(char *u,char *v, char*t, char occ)
   m -= nrl;  {
     /* cuts string t into u and v where u is ended by char occ excluding it
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       gives u="abcedf" and v="ghi2j" */
   m[nrl] += NR_END;    int i,lg,j,p=0;
   m[nrl] -= ncl;    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   return m;    }
 }  
     lg=strlen(t);
 /*************************free matrix ************************/    for(j=0; j<p; j++) {
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      (u[j] = t[j]);
 {    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));       u[p]='\0';
   free((FREE_ARG)(m+nrl-NR_END));  
 }     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
 /******************* ma3x *******************************/    }
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /********************** nrerror ********************/
   double ***m;  
   void nrerror(char error_text[])
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    fprintf(stderr,"ERREUR ...\n");
   m += NR_END;    fprintf(stderr,"%s\n",error_text);
   m -= nrl;    exit(EXIT_FAILURE);
   }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /*********************** vector *******************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double *vector(int nl, int nh)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /************************ free vector ******************/
   m[nrl][ncl] -= nll;  void free_vector(double*v, int nl, int nh)
   for (j=ncl+1; j<=nch; j++)  {
     m[nrl][j]=m[nrl][j-1]+nlay;    free((FREE_ARG)(v+nl-NR_END));
    }
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /************************ivector *******************************/
     for (j=ncl+1; j<=nch; j++)  int *ivector(long nl,long nh)
       m[i][j]=m[i][j-1]+nlay;  {
   }    int *v;
   return m;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /*************************free ma3x ************************/  }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  /******************free ivector **************************/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  void free_ivector(int *v, long nl, long nh)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /***************** f1dim *************************/  /************************lvector *******************************/
 extern int ncom;  long *lvector(long nl,long nh)
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);    long *v;
      v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 double f1dim(double x)    if (!v) nrerror("allocation failure in ivector");
 {    return v-nl+NR_END;
   int j;  }
   double f;  
   double *xt;  /******************free lvector **************************/
    void free_lvector(long *v, long nl, long nh)
   xt=vector(1,ncom);  {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    free((FREE_ARG)(v+nl-NR_END));
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  /******************* imatrix *******************************/
 }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 /*****************brent *************************/  { 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 {    int **m; 
   int iter;    
   double a,b,d,etemp;    /* allocate pointers to rows */ 
   double fu,fv,fw,fx;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double ftemp;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m += NR_END; 
   double e=0.0;    m -= nrl; 
      
   a=(ax < cx ? ax : cx);    
   b=(ax > cx ? ax : cx);    /* allocate rows and set pointers to them */ 
   x=w=v=bx;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   fw=fv=fx=(*f)(x);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   for (iter=1;iter<=ITMAX;iter++) {    m[nrl] += NR_END; 
     xm=0.5*(a+b);    m[nrl] -= ncl; 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     printf(".");fflush(stdout);    
 #ifdef DEBUG    /* return pointer to array of pointers to rows */ 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    return m; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  } 
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /****************** free_imatrix *************************/
       *xmin=x;  void free_imatrix(m,nrl,nrh,ncl,nch)
       return fx;        int **m;
     }        long nch,ncl,nrh,nrl; 
     ftemp=fu;       /* free an int matrix allocated by imatrix() */ 
     if (fabs(e) > tol1) {  { 
       r=(x-w)*(fx-fv);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       q=(x-v)*(fx-fw);    free((FREE_ARG) (m+nrl-NR_END)); 
       p=(x-v)*q-(x-w)*r;  } 
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  /******************* matrix *******************************/
       q=fabs(q);  double **matrix(long nrl, long nrh, long ncl, long nch)
       etemp=e;  {
       e=d;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    double **m;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         d=p/q;    if (!m) nrerror("allocation failure 1 in matrix()");
         u=x+d;    m += NR_END;
         if (u-a < tol2 || b-u < tol2)    m -= nrl;
           d=SIGN(tol1,xm-x);  
       }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     } else {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     if (fu <= fx) {    return m;
       if (u >= x) a=x; else b=x;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       SHFT(v,w,x,u)     */
         SHFT(fv,fw,fx,fu)  }
         } else {  
           if (u < x) a=u; else b=u;  /*************************free matrix ************************/
           if (fu <= fw || w == x) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
             v=w;  {
             w=u;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             fv=fw;    free((FREE_ARG)(m+nrl-NR_END));
             fw=fu;  }
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  /******************* ma3x *******************************/
             fv=fu;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           }  {
         }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   }    double ***m;
   nrerror("Too many iterations in brent");  
   *xmin=x;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   return fx;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /****************** mnbrak ***********************/  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             double (*func)(double))    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   double ulim,u,r,q, dum;  
   double fu;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    
   *fa=(*func)(*ax);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   *fb=(*func)(*bx);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   if (*fb > *fa) {    m[nrl][ncl] += NR_END;
     SHFT(dum,*ax,*bx,dum)    m[nrl][ncl] -= nll;
       SHFT(dum,*fb,*fa,dum)    for (j=ncl+1; j<=nch; j++) 
       }      m[nrl][j]=m[nrl][j-1]+nlay;
   *cx=(*bx)+GOLD*(*bx-*ax);    
   *fc=(*func)(*cx);    for (i=nrl+1; i<=nrh; i++) {
   while (*fb > *fc) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     r=(*bx-*ax)*(*fb-*fc);      for (j=ncl+1; j<=nch; j++) 
     q=(*bx-*cx)*(*fb-*fa);        m[i][j]=m[i][j-1]+nlay;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    return m; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     if ((*bx-u)*(u-*cx) > 0.0) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       fu=(*func)(u);    */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  }
       fu=(*func)(u);  
       if (fu < *fc) {  /*************************free ma3x ************************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       u=ulim;    free((FREE_ARG)(m+nrl-NR_END));
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /***************** f1dim *************************/
       fu=(*func)(u);  extern int ncom; 
     }  extern double *pcom,*xicom;
     SHFT(*ax,*bx,*cx,u)  extern double (*nrfunc)(double []); 
       SHFT(*fa,*fb,*fc,fu)   
       }  double f1dim(double x) 
 }  { 
     int j; 
 /*************** linmin ************************/    double f;
     double *xt; 
 int ncom;   
 double *pcom,*xicom;    xt=vector(1,ncom); 
 double (*nrfunc)(double []);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      f=(*nrfunc)(xt); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free_vector(xt,1,ncom); 
 {    return f; 
   double brent(double ax, double bx, double cx,  } 
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /*****************brent *************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
               double *fc, double (*func)(double));  { 
   int j;    int iter; 
   double xx,xmin,bx,ax;    double a,b,d,etemp;
   double fx,fb,fa;    double fu,fv,fw,fx;
      double ftemp;
   ncom=n;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   pcom=vector(1,n);    double e=0.0; 
   xicom=vector(1,n);   
   nrfunc=func;    a=(ax < cx ? ax : cx); 
   for (j=1;j<=n;j++) {    b=(ax > cx ? ax : cx); 
     pcom[j]=p[j];    x=w=v=bx; 
     xicom[j]=xi[j];    fw=fv=fx=(*f)(x); 
   }    for (iter=1;iter<=ITMAX;iter++) { 
   ax=0.0;      xm=0.5*(a+b); 
   xx=1.0;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      printf(".");fflush(stdout);
 #ifdef DEBUG      fprintf(ficlog,".");fflush(ficlog);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #ifdef DEBUG
 #endif      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   for (j=1;j<=n;j++) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     xi[j] *= xmin;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     p[j] += xi[j];  #endif
   }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   free_vector(xicom,1,n);        *xmin=x; 
   free_vector(pcom,1,n);        return fx; 
 }      } 
       ftemp=fu;
 /*************** powell ************************/      if (fabs(e) > tol1) { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        r=(x-w)*(fx-fv); 
             double (*func)(double []))        q=(x-v)*(fx-fw); 
 {        p=(x-v)*q-(x-w)*r; 
   void linmin(double p[], double xi[], int n, double *fret,        q=2.0*(q-r); 
               double (*func)(double []));        if (q > 0.0) p = -p; 
   int i,ibig,j;        q=fabs(q); 
   double del,t,*pt,*ptt,*xit;        etemp=e; 
   double fp,fptt;        e=d; 
   double *xits;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   pt=vector(1,n);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   ptt=vector(1,n);        else { 
   xit=vector(1,n);          d=p/q; 
   xits=vector(1,n);          u=x+d; 
   *fret=(*func)(p);          if (u-a < tol2 || b-u < tol2) 
   for (j=1;j<=n;j++) pt[j]=p[j];            d=SIGN(tol1,xm-x); 
   for (*iter=1;;++(*iter)) {        } 
     fp=(*fret);      } else { 
     ibig=0;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     del=0.0;      } 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for (i=1;i<=n;i++)      fu=(*f)(u); 
       printf(" %d %.12f",i, p[i]);      if (fu <= fx) { 
     printf("\n");        if (u >= x) a=x; else b=x; 
     for (i=1;i<=n;i++) {        SHFT(v,w,x,u) 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];          SHFT(fv,fw,fx,fu) 
       fptt=(*fret);          } else { 
 #ifdef DEBUG            if (u < x) a=u; else b=u; 
       printf("fret=%lf \n",*fret);            if (fu <= fw || w == x) { 
 #endif              v=w; 
       printf("%d",i);fflush(stdout);              w=u; 
       linmin(p,xit,n,fret,func);              fv=fw; 
       if (fabs(fptt-(*fret)) > del) {              fw=fu; 
         del=fabs(fptt-(*fret));            } else if (fu <= fv || v == x || v == w) { 
         ibig=i;              v=u; 
       }              fv=fu; 
 #ifdef DEBUG            } 
       printf("%d %.12e",i,(*fret));          } 
       for (j=1;j<=n;j++) {    } 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    nrerror("Too many iterations in brent"); 
         printf(" x(%d)=%.12e",j,xit[j]);    *xmin=x; 
       }    return fx; 
       for(j=1;j<=n;j++)  } 
         printf(" p=%.12e",p[j]);  
       printf("\n");  /****************** mnbrak ***********************/
 #endif  
     }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {              double (*func)(double)) 
 #ifdef DEBUG  { 
       int k[2],l;    double ulim,u,r,q, dum;
       k[0]=1;    double fu; 
       k[1]=-1;   
       printf("Max: %.12e",(*func)(p));    *fa=(*func)(*ax); 
       for (j=1;j<=n;j++)    *fb=(*func)(*bx); 
         printf(" %.12e",p[j]);    if (*fb > *fa) { 
       printf("\n");      SHFT(dum,*ax,*bx,dum) 
       for(l=0;l<=1;l++) {        SHFT(dum,*fb,*fa,dum) 
         for (j=1;j<=n;j++) {        } 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    *cx=(*bx)+GOLD*(*bx-*ax); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    *fc=(*func)(*cx); 
         }    while (*fb > *fc) { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      r=(*bx-*ax)*(*fb-*fc); 
       }      q=(*bx-*cx)*(*fb-*fa); 
 #endif      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
       free_vector(xit,1,n);      if ((*bx-u)*(u-*cx) > 0.0) { 
       free_vector(xits,1,n);        fu=(*func)(u); 
       free_vector(ptt,1,n);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       free_vector(pt,1,n);        fu=(*func)(u); 
       return;        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");            SHFT(*fb,*fc,fu,(*func)(u)) 
     for (j=1;j<=n;j++) {            } 
       ptt[j]=2.0*p[j]-pt[j];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       xit[j]=p[j]-pt[j];        u=ulim; 
       pt[j]=p[j];        fu=(*func)(u); 
     }      } else { 
     fptt=(*func)(ptt);        u=(*cx)+GOLD*(*cx-*bx); 
     if (fptt < fp) {        fu=(*func)(u); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      } 
       if (t < 0.0) {      SHFT(*ax,*bx,*cx,u) 
         linmin(p,xit,n,fret,func);        SHFT(*fa,*fb,*fc,fu) 
         for (j=1;j<=n;j++) {        } 
           xi[j][ibig]=xi[j][n];  } 
           xi[j][n]=xit[j];  
         }  /*************** linmin ************************/
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int ncom; 
         for(j=1;j<=n;j++)  double *pcom,*xicom;
           printf(" %.12e",xit[j]);  double (*nrfunc)(double []); 
         printf("\n");   
 #endif  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       }  { 
     }    double brent(double ax, double bx, double cx, 
   }                 double (*f)(double), double tol, double *xmin); 
 }    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 /**** Prevalence limit ****************/                double *fc, double (*func)(double)); 
     int j; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double xx,xmin,bx,ax; 
 {    double fx,fb,fa;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit   
      matrix by transitions matrix until convergence is reached */    ncom=n; 
     pcom=vector(1,n); 
   int i, ii,j,k;    xicom=vector(1,n); 
   double min, max, maxmin, maxmax,sumnew=0.;    nrfunc=func; 
   double **matprod2();    for (j=1;j<=n;j++) { 
   double **out, cov[NCOVMAX], **pmij();      pcom[j]=p[j]; 
   double **newm;      xicom[j]=xi[j]; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    } 
     ax=0.0; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    xx=1.0; 
     for (j=1;j<=nlstate+ndeath;j++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    cov[1]=1.;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    #endif
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for (j=1;j<=n;j++) { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      xi[j] *= xmin; 
     newm=savm;      p[j] += xi[j]; 
     /* Covariates have to be included here again */    } 
      cov[2]=agefin;    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
       for (k=1; k<=cptcovn;k++) {  } 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /*************** powell ************************/
       }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              double (*func)(double [])) 
       for (k=1; k<=cptcovprod;k++)  { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    int i,ibig,j; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double del,t,*pt,*ptt,*xit;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    double fp,fptt;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    double *xits;
     pt=vector(1,n); 
     savm=oldm;    ptt=vector(1,n); 
     oldm=newm;    xit=vector(1,n); 
     maxmax=0.;    xits=vector(1,n); 
     for(j=1;j<=nlstate;j++){    *fret=(*func)(p); 
       min=1.;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       max=0.;    for (*iter=1;;++(*iter)) { 
       for(i=1; i<=nlstate; i++) {      fp=(*fret); 
         sumnew=0;      ibig=0; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      del=0.0; 
         prlim[i][j]= newm[i][j]/(1-sumnew);      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         max=FMAX(max,prlim[i][j]);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         min=FMIN(min,prlim[i][j]);      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       }      for (i=1;i<=n;i++) {
       maxmin=max-min;        printf(" %d %.12f",i, p[i]);
       maxmax=FMAX(maxmax,maxmin);        fprintf(ficlog," %d %.12lf",i, p[i]);
     }        fprintf(ficrespow," %.12lf", p[i]);
     if(maxmax < ftolpl){      }
       return prlim;      printf("\n");
     }      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");
 }      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 /*************** transition probabilities ***************/        fptt=(*fret); 
   #ifdef DEBUG
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        printf("fret=%lf \n",*fret);
 {        fprintf(ficlog,"fret=%lf \n",*fret);
   double s1, s2;  #endif
   /*double t34;*/        printf("%d",i);fflush(stdout);
   int i,j,j1, nc, ii, jj;        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
     for(i=1; i<= nlstate; i++){        if (fabs(fptt-(*fret)) > del) { 
     for(j=1; j<i;j++){          del=fabs(fptt-(*fret)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          ibig=i; 
         /*s2 += param[i][j][nc]*cov[nc];*/        } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #ifdef DEBUG
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        printf("%d %.12e",i,(*fret));
       }        fprintf(ficlog,"%d %.12e",i,(*fret));
       ps[i][j]=s2;        for (j=1;j<=n;j++) {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     }          printf(" x(%d)=%.12e",j,xit[j]);
     for(j=i+1; j<=nlstate+ndeath;j++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for(j=1;j<=n;j++) {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          printf(" p=%.12e",p[j]);
       }          fprintf(ficlog," p=%.12e",p[j]);
       ps[i][j]=s2;        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
     /*ps[3][2]=1;*/  #endif
       } 
   for(i=1; i<= nlstate; i++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
      s1=0;  #ifdef DEBUG
     for(j=1; j<i; j++)        int k[2],l;
       s1+=exp(ps[i][j]);        k[0]=1;
     for(j=i+1; j<=nlstate+ndeath; j++)        k[1]=-1;
       s1+=exp(ps[i][j]);        printf("Max: %.12e",(*func)(p));
     ps[i][i]=1./(s1+1.);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(j=1; j<i; j++)        for (j=1;j<=n;j++) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];          printf(" %.12e",p[j]);
     for(j=i+1; j<=nlstate+ndeath; j++)          fprintf(ficlog," %.12e",p[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        printf("\n");
   } /* end i */        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          for (j=1;j<=n;j++) {
     for(jj=1; jj<= nlstate+ndeath; jj++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       ps[ii][jj]=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       ps[ii][ii]=1;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
   }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  #endif
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  
    }        free_vector(xit,1,n); 
     printf("\n ");        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
     printf("\n ");printf("%lf ",cov[2]);*/        free_vector(pt,1,n); 
 /*        return; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      } 
   goto end;*/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     return ps;      for (j=1;j<=n;j++) { 
 }        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 /**************** Product of 2 matrices ******************/        pt[j]=p[j]; 
       } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      fptt=(*func)(ptt); 
 {      if (fptt < fp) { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        if (t < 0.0) { 
   /* in, b, out are matrice of pointers which should have been initialized          linmin(p,xit,n,fret,func); 
      before: only the contents of out is modified. The function returns          for (j=1;j<=n;j++) { 
      a pointer to pointers identical to out */            xi[j][ibig]=xi[j][n]; 
   long i, j, k;            xi[j][n]=xit[j]; 
   for(i=nrl; i<= nrh; i++)          }
     for(k=ncolol; k<=ncoloh; k++)  #ifdef DEBUG
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         out[i][k] +=in[i][j]*b[j][k];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   return out;            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
           printf("\n");
 /************* Higher Matrix Product ***************/          fprintf(ficlog,"\n");
   #endif
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        }
 {      } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    } 
      duration (i.e. until  } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /**** Prevalence limit (stable prevalence)  ****************/
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
      included manually here.  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      */       matrix by transitions matrix until convergence is reached */
   
   int i, j, d, h, k;    int i, ii,j,k;
   double **out, cov[NCOVMAX];    double min, max, maxmin, maxmax,sumnew=0.;
   double **newm;    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
   /* Hstepm could be zero and should return the unit matrix */    double **newm;
   for (i=1;i<=nlstate+ndeath;i++)    double agefin, delaymax=50 ; /* Max number of years to converge */
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for (ii=1;ii<=nlstate+ndeath;ii++)
       po[i][j][0]=(i==j ? 1.0 : 0.0);      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      }
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){     cov[1]=1.;
       newm=savm;   
       /* Covariates have to be included here again */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       cov[1]=1.;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      newm=savm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      /* Covariates have to be included here again */
       for (k=1; k<=cptcovage;k++)       cov[2]=agefin;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
       for (k=1; k<=cptcovprod;k++)        for (k=1; k<=cptcovn;k++) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        for (k=1; k<=cptcovprod;k++)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       oldm=newm;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for(i=1; i<=nlstate+ndeath; i++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];      savm=oldm;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      oldm=newm;
          */      maxmax=0.;
       }      for(j=1;j<=nlstate;j++){
   } /* end h */        min=1.;
   return po;        max=0.;
 }        for(i=1; i<=nlstate; i++) {
           sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 /*************** log-likelihood *************/          prlim[i][j]= newm[i][j]/(1-sumnew);
 double func( double *x)          max=FMAX(max,prlim[i][j]);
 {          min=FMIN(min,prlim[i][j]);
   int i, ii, j, k, mi, d, kk;        }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        maxmin=max-min;
   double **out;        maxmax=FMAX(maxmax,maxmin);
   double sw; /* Sum of weights */      }
   double lli; /* Individual log likelihood */      if(maxmax < ftolpl){
   int s1, s2;        return prlim;
   long ipmx;      }
   /*extern weight */    }
   /* We are differentiating ll according to initial status */  }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  /*************** transition probabilities ***************/ 
     printf(" %d\n",s[4][i]);  
   */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   cov[1]=1.;  {
     double s1, s2;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    /*double t34;*/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    int i,j,j1, nc, ii, jj;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){      for(i=1; i<= nlstate; i++){
       for (ii=1;ii<=nlstate+ndeath;ii++)      for(j=1; j<i;j++){
         for (j=1;j<=nlstate+ndeath;j++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          /*s2 += param[i][j][nc]*cov[nc];*/
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         }          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       for(d=0; d<dh[mi][i]; d++){        }
         newm=savm;        ps[i][j]=s2;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
         for (kk=1; kk<=cptcovage;kk++) {      }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for(j=i+1; j<=nlstate+ndeath;j++){
         }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                  s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
         savm=oldm;        ps[i][j]=s2;
         oldm=newm;      }
            }
              /*ps[3][2]=1;*/
       } /* end mult */  
          for(i=1; i<= nlstate; i++){
       s1=s[mw[mi][i]][i];       s1=0;
       s2=s[mw[mi+1][i]][i];      for(j=1; j<i; j++)
       if( s2 > nlstate){        s1+=exp(ps[i][j]);
         /* i.e. if s2 is a death state and if the date of death is known then the contribution      for(j=i+1; j<=nlstate+ndeath; j++)
            to the likelihood is the probability to die between last step unit time and current        s1+=exp(ps[i][j]);
            step unit time, which is also the differences between probability to die before dh      ps[i][i]=1./(s1+1.);
            and probability to die before dh-stepm .      for(j=1; j<i; j++)
            In version up to 0.92 likelihood was computed        ps[i][j]= exp(ps[i][j])*ps[i][i];
            as if date of death was unknown. Death was treated as any other      for(j=i+1; j<=nlstate+ndeath; j++)
            health state: the date of the interview describes the actual state        ps[i][j]= exp(ps[i][j])*ps[i][i];
            and not the date of a change in health state. The former idea was      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
            to consider that at each interview the state was recorded    } /* end i */
            (healthy, disable or death) and IMaCh was corrected; but when we  
            introduced the exact date of death then we should have modified    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
            the contribution of an exact death to the likelihood. This new      for(jj=1; jj<= nlstate+ndeath; jj++){
            contribution is smaller and very dependent of the step unit        ps[ii][jj]=0;
            stepm. It is no more the probability to die between last interview        ps[ii][ii]=1;
            and month of death but the probability to survive from last      }
            interview up to one month before death multiplied by the    }
            probability to die within a month. Thanks to Chris  
            Jackson for correcting this bug.  Former versions increased  
            mortality artificially. The bad side is that we add another loop    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
            which slows down the processing. The difference can be up to 10%      for(jj=1; jj<= nlstate+ndeath; jj++){
            lower mortality.       printf("%lf ",ps[ii][jj]);
         */     }
         lli=log(out[s1][s2] - savm[s1][s2]);      printf("\n ");
       }else{      }
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */      printf("\n ");printf("%lf ",cov[2]);*/
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /*
       }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       ipmx +=1;    goto end;*/
       sw += weight[i];      return ps;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  }
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/  
     } /* end of wave */  /**************** Product of 2 matrices ******************/
   } /* end of individual */  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /*exit(0);*/    /* in, b, out are matrice of pointers which should have been initialized 
   return -l;       before: only the contents of out is modified. The function returns
 }       a pointer to pointers identical to out */
     long i, j, k;
     for(i=nrl; i<= nrh; i++)
 /*********** Maximum Likelihood Estimation ***************/      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          out[i][k] +=in[i][j]*b[j][k];
 {  
   int i,j, iter;    return out;
   double **xi,*delti;  }
   double fret;  
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  /************* Higher Matrix Product ***************/
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   printf("Powell\n");  {
   powell(p,xi,npar,ftol,&iter,&fret,func);    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 }       (typically every 2 years instead of every month which is too big 
        for the memory).
 /**** Computes Hessian and covariance matrix ***/       Model is determined by parameters x and covariates have to be 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))       included manually here. 
 {  
   double  **a,**y,*x,pd;       */
   double **hess;  
   int i, j,jk;    int i, j, d, h, k;
   int *indx;    double **out, cov[NCOVMAX];
     double **newm;
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);    /* Hstepm could be zero and should return the unit matrix */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for (i=1;i<=nlstate+ndeath;i++)
   void ludcmp(double **a, int npar, int *indx, double *d) ;      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
   hess=matrix(1,npar,1,npar);        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for (i=1;i<=npar;i++){    for(h=1; h <=nhstepm; h++){
     printf("%d",i);fflush(stdout);      for(d=1; d <=hstepm; d++){
     hess[i][i]=hessii(p,ftolhess,i,delti);        newm=savm;
     /*printf(" %f ",p[i]);*/        /* Covariates have to be included here again */
     /*printf(" %lf ",hess[i][i]);*/        cov[1]=1.;
   }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
          for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (i=1;i<=npar;i++) {        for (k=1; k<=cptcovage;k++)
     for (j=1;j<=npar;j++)  {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       if (j>i) {        for (k=1; k<=cptcovprod;k++)
         printf(".%d%d",i,j);fflush(stdout);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("\n");        savm=oldm;
         oldm=newm;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      }
        for(i=1; i<=nlstate+ndeath; i++)
   a=matrix(1,npar,1,npar);        for(j=1;j<=nlstate+ndeath;j++) {
   y=matrix(1,npar,1,npar);          po[i][j][h]=newm[i][j];
   x=vector(1,npar);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   indx=ivector(1,npar);           */
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    } /* end h */
   ludcmp(a,npar,indx,&pd);    return po;
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** log-likelihood *************/
     lubksb(a,npar,indx,x);  double func( double *x)
     for (i=1;i<=npar;i++){  {
       matcov[i][j]=x[i];    int i, ii, j, k, mi, d, kk;
     }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   }    double **out;
     double sw; /* Sum of weights */
   printf("\n#Hessian matrix#\n");    double lli; /* Individual log likelihood */
   for (i=1;i<=npar;i++) {    int s1, s2;
     for (j=1;j<=npar;j++) {    double bbh, survp;
       printf("%.3e ",hess[i][j]);    long ipmx;
     }    /*extern weight */
     printf("\n");    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   /* Recompute Inverse */      printf(" %d\n",s[4][i]);
   for (i=1;i<=npar;i++)    */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    cov[1]=1.;
   ludcmp(a,npar,indx,&pd);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   /*  printf("\n#Hessian matrix recomputed#\n");  
     if(mle==1){
   for (j=1;j<=npar;j++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1;i<=npar;i++) x[i]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     x[j]=1;        for(mi=1; mi<= wav[i]-1; mi++){
     lubksb(a,npar,indx,x);          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1;i<=npar;i++){            for (j=1;j<=nlstate+ndeath;j++){
       y[i][j]=x[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("%.3e ",y[i][j]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     printf("\n");          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   free_matrix(a,1,npar,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_matrix(y,1,npar,1,npar);            }
   free_vector(x,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_ivector(indx,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(hess,1,npar,1,npar);            savm=oldm;
             oldm=newm;
           } /* end mult */
 }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 /*************** hessian matrix ****************/          /* But now since version 0.9 we anticipate for bias and large stepm.
 double hessii( double x[], double delta, int theta, double delti[])           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int i;           * the nearest (and in case of equal distance, to the lowest) interval but now
   int l=1, lmax=20;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double k1,k2;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   double p2[NPARMAX+1];           * probability in order to take into account the bias as a fraction of the way
   double res;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           * -stepm/2 to stepm/2 .
   double fx;           * For stepm=1 the results are the same as for previous versions of Imach.
   int k=0,kmax=10;           * For stepm > 1 the results are less biased than in previous versions. 
   double l1;           */
           s1=s[mw[mi][i]][i];
   fx=func(x);          s2=s[mw[mi+1][i]][i];
   for (i=1;i<=npar;i++) p2[i]=x[i];          bbh=(double)bh[mi][i]/(double)stepm; 
   for(l=0 ; l <=lmax; l++){          /* bias is positive if real duration
     l1=pow(10,l);           * is higher than the multiple of stepm and negative otherwise.
     delts=delt;           */
     for(k=1 ; k <kmax; k=k+1){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       delt = delta*(l1*k);          if( s2 > nlstate){ 
       p2[theta]=x[theta] +delt;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       k1=func(p2)-fx;               to the likelihood is the probability to die between last step unit time and current 
       p2[theta]=x[theta]-delt;               step unit time, which is also the differences between probability to die before dh 
       k2=func(p2)-fx;               and probability to die before dh-stepm . 
       /*res= (k1-2.0*fx+k2)/delt/delt; */               In version up to 0.92 likelihood was computed
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          as if date of death was unknown. Death was treated as any other
                health state: the date of the interview describes the actual state
 #ifdef DEBUG          and not the date of a change in health state. The former idea was
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          to consider that at each interview the state was recorded
 #endif          (healthy, disable or death) and IMaCh was corrected; but when we
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          introduced the exact date of death then we should have modified
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          the contribution of an exact death to the likelihood. This new
         k=kmax;          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          and month of death but the probability to survive from last
         k=kmax; l=lmax*10.;          interview up to one month before death multiplied by the
       }          probability to die within a month. Thanks to Chris
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          Jackson for correcting this bug.  Former versions increased
         delts=delt;          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
   }            */
   delti[theta]=delts;            lli=log(out[s1][s2] - savm[s1][s2]);
   return res;          }else{
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
 double hessij( double x[], double delti[], int thetai,int thetaj)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 {          /*if(lli ==000.0)*/
   int i;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int l=1, l1, lmax=20;          ipmx +=1;
   double k1,k2,k3,k4,res,fx;          sw += weight[i];
   double p2[NPARMAX+1];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int k;        } /* end of wave */
       } /* end of individual */
   fx=func(x);    }  else if(mle==2){
   for (k=1; k<=2; k++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1;i<=npar;i++) p2[i]=x[i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     k1=func(p2)-fx;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]+delti[thetai]/k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            }
     k2=func(p2)-fx;          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
     p2[thetai]=x[thetai]-delti[thetai]/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            for (kk=1; kk<=cptcovage;kk++) {
     k3=func(p2)-fx;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
     p2[thetai]=x[thetai]-delti[thetai]/k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     k4=func(p2)-fx;            savm=oldm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            oldm=newm;
 #ifdef DEBUG          } /* end mult */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        
 #endif          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias and large stepm.
   return res;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 }           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 /************** Inverse of matrix **************/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 void ludcmp(double **a, int n, int *indx, double *d)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 {           * probability in order to take into account the bias as a fraction of the way
   int i,imax,j,k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double big,dum,sum,temp;           * -stepm/2 to stepm/2 .
   double *vv;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   vv=vector(1,n);           */
   *d=1.0;          s1=s[mw[mi][i]][i];
   for (i=1;i<=n;i++) {          s2=s[mw[mi+1][i]][i];
     big=0.0;          bbh=(double)bh[mi][i]/(double)stepm; 
     for (j=1;j<=n;j++)          /* bias is positive if real duration
       if ((temp=fabs(a[i][j])) > big) big=temp;           * is higher than the multiple of stepm and negative otherwise.
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           */
     vv[i]=1.0/big;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for (j=1;j<=n;j++) {          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     for (i=1;i<j;i++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       sum=a[i][j];          /*if(lli ==000.0)*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       a[i][j]=sum;          ipmx +=1;
     }          sw += weight[i];
     big=0.0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=j;i<=n;i++) {        } /* end of wave */
       sum=a[i][j];      } /* end of individual */
       for (k=1;k<j;k++)    }  else if(mle==3){  /* exponential inter-extrapolation */
         sum -= a[i][k]*a[k][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       a[i][j]=sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if ( (dum=vv[i]*fabs(sum)) >= big) {        for(mi=1; mi<= wav[i]-1; mi++){
         big=dum;          for (ii=1;ii<=nlstate+ndeath;ii++)
         imax=i;            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (j != imax) {            }
       for (k=1;k<=n;k++) {          for(d=0; d<dh[mi][i]; d++){
         dum=a[imax][k];            newm=savm;
         a[imax][k]=a[j][k];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         a[j][k]=dum;            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       *d = -(*d);            }
       vv[imax]=vv[j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     indx[j]=imax;            savm=oldm;
     if (a[j][j] == 0.0) a[j][j]=TINY;            oldm=newm;
     if (j != n) {          } /* end mult */
       dum=1.0/(a[j][j]);        
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }          /* But now since version 0.9 we anticipate for bias and large stepm.
   }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   free_vector(vv,1,n);  /* Doesn't work */           * (in months) between two waves is not a multiple of stepm, we rounded to 
 ;           * the nearest (and in case of equal distance, to the lowest) interval but now
 }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 void lubksb(double **a, int n, int *indx, double b[])           * probability in order to take into account the bias as a fraction of the way
 {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   int i,ii=0,ip,j;           * -stepm/2 to stepm/2 .
   double sum;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   for (i=1;i<=n;i++) {           */
     ip=indx[i];          s1=s[mw[mi][i]][i];
     sum=b[ip];          s2=s[mw[mi+1][i]][i];
     b[ip]=b[i];          bbh=(double)bh[mi][i]/(double)stepm; 
     if (ii)          /* bias is positive if real duration
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           * is higher than the multiple of stepm and negative otherwise.
     else if (sum) ii=i;           */
     b[i]=sum;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for (i=n;i>=1;i--) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     sum=b[i];          /*if(lli ==000.0)*/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     b[i]=sum/a[i][i];          ipmx +=1;
   }          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 /************ Frequencies ********************/      } /* end of individual */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
 {  /* Some frequencies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for(mi=1; mi<= wav[i]-1; mi++){
   double ***freq; /* Frequencies */          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *pp;            for (j=1;j<=nlstate+ndeath;j++){
   double pos, k2, dateintsum=0,k2cpt=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   FILE *ficresp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileresp[FILENAMELENGTH];            }
            for(d=0; d<dh[mi][i]; d++){
   pp=vector(1,nlstate);            newm=savm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcpy(fileresp,"p");            for (kk=1; kk<=cptcovage;kk++) {
   strcat(fileresp,fileres);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if((ficresp=fopen(fileresp,"w"))==NULL) {            }
     printf("Problem with prevalence resultfile: %s\n", fileresp);          
     exit(0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            savm=oldm;
   j1=0;            oldm=newm;
            } /* end mult */
   j=cptcoveff;        
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   for(k1=1; k1<=j;k1++){          if( s2 > nlstate){ 
     for(i1=1; i1<=ncodemax[k1];i1++){            lli=log(out[s1][s2] - savm[s1][s2]);
       j1++;          }else{
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         scanf("%d", i);*/          }
       for (i=-1; i<=nlstate+ndeath; i++)            ipmx +=1;
         for (jk=-1; jk<=nlstate+ndeath; jk++)            sw += weight[i];
           for(m=agemin; m <= agemax+3; m++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             freq[i][jk][m]=0;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
              } /* end of wave */
       dateintsum=0;      } /* end of individual */
       k2cpt=0;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1; i<=imx; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         bool=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if  (cptcovn>0) {        for(mi=1; mi<= wav[i]-1; mi++){
           for (z1=1; z1<=cptcoveff; z1++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (j=1;j<=nlstate+ndeath;j++){
               bool=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {            }
           for(m=firstpass; m<=lastpass; m++){          for(d=0; d<dh[mi][i]; d++){
             k2=anint[m][i]+(mint[m][i]/12.);            newm=savm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==1) agev[m][i]=agemax+2;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               if (m<lastpass) {            }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                          savm=oldm;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            oldm=newm;
                 dateintsum=dateintsum+k2;          } /* end mult */
                 k2cpt++;        
               }          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
           }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          ipmx +=1;
       }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
       if  (cptcovn>0) {      } /* end of individual */
         fprintf(ficresp, "\n#********** Variable ");    } /* End of if */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         fprintf(ficresp, "**********\n#");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(i=1; i<=nlstate;i++)    return -l;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  }
       fprintf(ficresp, "\n");  
        /*************** log-likelihood *************/
       for(i=(int)agemin; i <= (int)agemax+3; i++){  double funcone( double *x)
         if(i==(int)agemax+3)  {
           printf("Total");    int i, ii, j, k, mi, d, kk;
         else    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           printf("Age %d", i);    double **out;
         for(jk=1; jk <=nlstate ; jk++){    double lli; /* Individual log likelihood */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    int s1, s2;
             pp[jk] += freq[jk][m][i];    double bbh, survp;
         }    /*extern weight */
         for(jk=1; jk <=nlstate ; jk++){    /* We are differentiating ll according to initial status */
           for(m=-1, pos=0; m <=0 ; m++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             pos += freq[jk][m][i];    /*for(i=1;i<imx;i++) 
           if(pp[jk]>=1.e-10)      printf(" %d\n",s[4][i]);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    */
           else    cov[1]=1.;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
         }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
         for(jk=1; jk <=nlstate ; jk++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];      for(mi=1; mi<= wav[i]-1; mi++){
         }        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           pos += pp[jk];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){          }
           if(pos>=1.e-5)        for(d=0; d<dh[mi][i]; d++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          newm=savm;
           else          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for (kk=1; kk<=cptcovage;kk++) {
           if( i <= (int) agemax){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if(pos>=1.e-5){          }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               probs[i][jk][j1]= pp[jk]/pos;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          savm=oldm;
             }          oldm=newm;
             else        } /* end mult */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        
           }        s1=s[mw[mi][i]][i];
         }        s2=s[mw[mi+1][i]][i];
                bbh=(double)bh[mi][i]/(double)stepm; 
         for(jk=-1; jk <=nlstate+ndeath; jk++)        /* bias is positive if real duration
           for(m=-1; m <=nlstate+ndeath; m++)         * is higher than the multiple of stepm and negative otherwise.
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);         */
         if(i <= (int) agemax)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           fprintf(ficresp,"\n");          lli=log(out[s1][s2] - savm[s1][s2]);
         printf("\n");        } else if (mle==1){
       }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }        } else if(mle==2){
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   dateintmean=dateintsum/k2cpt;        } else if(mle==3){  /* exponential inter-extrapolation */
            lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fclose(ficresp);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          lli=log(out[s1][s2]); /* Original formula */
   free_vector(pp,1,nlstate);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
            lli=log(out[s1][s2]); /* Original formula */
   /* End of Freq */        } /* End of if */
 }        ipmx +=1;
         sw += weight[i];
 /************ Prevalence ********************/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 {  /* Some frequencies */        if(globpr){
            fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;   %10.6f %10.6f %10.6f ", \
   double ***freq; /* Frequencies */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   double *pp;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double pos, k2;          for(k=1,l=0.; k<=nlstate; k++) 
             fprintf(ficresilk," %10.6f",ll[k]);
   pp=vector(1,nlstate);          fprintf(ficresilk,"\n");
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
        } /* end of wave */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    } /* end of individual */
   j1=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   j=cptcoveff;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    return -l;
    }
  for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    {
       for (i=-1; i<=nlstate+ndeath; i++)      /* This routine should help understanding what is done with the selection of individuals/waves and
         for (jk=-1; jk<=nlstate+ndeath; jk++)         to check the exact contribution to the likelihood.
           for(m=agemin; m <= agemax+3; m++)       Plotting could be done.
             freq[i][jk][m]=0;     */
          int k;
       for (i=1; i<=imx; i++) {    if(globpr !=0){ /* Just counts and sums no printings */
         bool=1;      strcpy(fileresilk,"ilk"); 
         if  (cptcovn>0) {      strcat(fileresilk,fileres);
           for (z1=1; z1<=cptcoveff; z1++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        printf("Problem with resultfile: %s\n", fileresilk);
               bool=0;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }      }
         if (bool==1) {      fprintf(ficresilk, "#individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state\n");
           for(m=firstpass; m<=lastpass; m++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
             k2=anint[m][i]+(mint[m][i]/12.);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      for(k=1; k<=nlstate; k++) 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        fprintf(ficresilk," ll[%d]",k);
               if(agev[m][i]==1) agev[m][i]=agemax+2;      fprintf(ficresilk,"\n");
               if (m<lastpass)    }
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
               else    *fretone=(*funcone)(p);
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    if(globpr !=0){
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      fclose(ficresilk);
             }      if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
           }        printf("Problem with html file: %s\n", optionfilehtm);
         }        fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       }        exit(0);
         for(i=(int)agemin; i <= (int)agemax+3; i++){      }
           for(jk=1; jk <=nlstate ; jk++){      else{
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk);
               pp[jk] += freq[jk][m][i];        fclose(fichtm);
           }      }
           for(jk=1; jk <=nlstate ; jk++){    }
             for(m=-1, pos=0; m <=0 ; m++)    return;
             pos += freq[jk][m][i];  }
         }  
          /*********** Maximum Likelihood Estimation ***************/
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
              pp[jk] += freq[jk][m][i];  {
          }    int i,j, iter;
              double **xi;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    double fret;
     double fretone; /* Only one call to likelihood */
          for(jk=1; jk <=nlstate ; jk++){              char filerespow[FILENAMELENGTH];
            if( i <= (int) agemax){    xi=matrix(1,npar,1,npar);
              if(pos>=1.e-5){    for (i=1;i<=npar;i++)
                probs[i][jk][j1]= pp[jk]/pos;      for (j=1;j<=npar;j++)
              }        xi[i][j]=(i==j ? 1.0 : 0.0);
            }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
          }    strcpy(filerespow,"pow"); 
              strcat(filerespow,fileres);
         }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for (i=1;i<=nlstate;i++)
   free_vector(pp,1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 }  /* End of Freq */    fprintf(ficrespow,"\n");
   
 /************* Waves Concatenation ***************/    powell(p,xi,npar,ftol,&iter,&fret,func);
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    fclose(ficrespow);
 {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      Death is a valid wave (if date is known).    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  }
      and mw[mi+1][i]. dh depends on stepm.  
      */  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   int i, mi, m;  {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double  **a,**y,*x,pd;
      double sum=0., jmean=0.;*/    double **hess;
     int i, j,jk;
   int j, k=0,jk, ju, jl;    int *indx;
   double sum=0.;  
   jmin=1e+5;    double hessii(double p[], double delta, int theta, double delti[]);
   jmax=-1;    double hessij(double p[], double delti[], int i, int j);
   jmean=0.;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   for(i=1; i<=imx; i++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
     mi=0;  
     m=firstpass;    hess=matrix(1,npar,1,npar);
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    printf("\nCalculation of the hessian matrix. Wait...\n");
         mw[++mi][i]=m;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       if(m >=lastpass)    for (i=1;i<=npar;i++){
         break;      printf("%d",i);fflush(stdout);
       else      fprintf(ficlog,"%d",i);fflush(ficlog);
         m++;      hess[i][i]=hessii(p,ftolhess,i,delti);
     }/* end while */      /*printf(" %f ",p[i]);*/
     if (s[m][i] > nlstate){      /*printf(" %lf ",hess[i][i]);*/
       mi++;     /* Death is another wave */    }
       /* if(mi==0)  never been interviewed correctly before death */    
          /* Only death is a correct wave */    for (i=1;i<=npar;i++) {
       mw[mi][i]=m;      for (j=1;j<=npar;j++)  {
     }        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
     wav[i]=mi;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     if(mi==0)          hess[i][j]=hessij(p,delti,i,j);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          hess[j][i]=hess[i][j];    
   }          /*printf(" %lf ",hess[i][j]);*/
         }
   for(i=1; i<=imx; i++){      }
     for(mi=1; mi<wav[i];mi++){    }
       if (stepm <=0)    printf("\n");
         dh[mi][i]=1;    fprintf(ficlog,"\n");
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           if (agedc[i] < 2*AGESUP) {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    
           if(j==0) j=1;  /* Survives at least one month after exam */    a=matrix(1,npar,1,npar);
           k=k+1;    y=matrix(1,npar,1,npar);
           if (j >= jmax) jmax=j;    x=vector(1,npar);
           if (j <= jmin) jmin=j;    indx=ivector(1,npar);
           sum=sum+j;    for (i=1;i<=npar;i++)
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           }    ludcmp(a,npar,indx,&pd);
         }  
         else{    for (j=1;j<=npar;j++) {
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for (i=1;i<=npar;i++) x[i]=0;
           k=k+1;      x[j]=1;
           if (j >= jmax) jmax=j;      lubksb(a,npar,indx,x);
           else if (j <= jmin)jmin=j;      for (i=1;i<=npar;i++){ 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        matcov[i][j]=x[i];
           sum=sum+j;      }
         }    }
         jk= j/stepm;  
         jl= j -jk*stepm;    printf("\n#Hessian matrix#\n");
         ju= j -(jk+1)*stepm;    fprintf(ficlog,"\n#Hessian matrix#\n");
         if(jl <= -ju)    for (i=1;i<=npar;i++) { 
           dh[mi][i]=jk;      for (j=1;j<=npar;j++) { 
         else        printf("%.3e ",hess[i][j]);
           dh[mi][i]=jk+1;        fprintf(ficlog,"%.3e ",hess[i][j]);
         if(dh[mi][i]==0)      }
           dh[mi][i]=1; /* At least one step */      printf("\n");
       }      fprintf(ficlog,"\n");
     }    }
   }  
   jmean=sum/k;    /* Recompute Inverse */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    for (i=1;i<=npar;i++)
  }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 /*********** Tricode ****************************/    ludcmp(a,npar,indx,&pd);
 void tricode(int *Tvar, int **nbcode, int imx)  
 {    /*  printf("\n#Hessian matrix recomputed#\n");
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;    for (j=1;j<=npar;j++) {
   cptcoveff=0;      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   for (k=0; k<19; k++) Ndum[k]=0;      lubksb(a,npar,indx,x);
   for (k=1; k<=7; k++) ncodemax[k]=0;      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        printf("%.3e ",y[i][j]);
     for (i=1; i<=imx; i++) {        fprintf(ficlog,"%.3e ",y[i][j]);
       ij=(int)(covar[Tvar[j]][i]);      }
       Ndum[ij]++;      printf("\n");
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      fprintf(ficlog,"\n");
       if (ij > cptcode) cptcode=ij;    }
     }    */
   
     for (i=0; i<=cptcode; i++) {    free_matrix(a,1,npar,1,npar);
       if(Ndum[i]!=0) ncodemax[j]++;    free_matrix(y,1,npar,1,npar);
     }    free_vector(x,1,npar);
     ij=1;    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {  }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;  /*************** hessian matrix ****************/
            double hessii( double x[], double delta, int theta, double delti[])
           ij++;  {
         }    int i;
         if (ij > ncodemax[j]) break;    int l=1, lmax=20;
       }      double k1,k2;
     }    double p2[NPARMAX+1];
   }      double res;
     double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
  for (k=0; k<19; k++) Ndum[k]=0;    double fx;
     int k=0,kmax=10;
  for (i=1; i<=ncovmodel-2; i++) {    double l1;
       ij=Tvar[i];  
       Ndum[ij]++;    fx=func(x);
     }    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
  ij=1;      l1=pow(10,l);
  for (i=1; i<=10; i++) {      delts=delt;
    if((Ndum[i]!=0) && (i<=ncovcol)){      for(k=1 ; k <kmax; k=k+1){
      Tvaraff[ij]=i;        delt = delta*(l1*k);
      ij++;        p2[theta]=x[theta] +delt;
    }        k1=func(p2)-fx;
  }        p2[theta]=x[theta]-delt;
          k2=func(p2)-fx;
     cptcoveff=ij-1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
 }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
 /*********** Health Expectancies ****************/  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
 {        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   /* Health expectancies */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          k=kmax;
   double age, agelim, hf;        }
   double ***p3mat,***varhe;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **dnewm,**doldm;          k=kmax; l=lmax*10.;
   double *xp;        }
   double **gp, **gm;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double ***gradg, ***trgradg;          delts=delt;
   int theta;        }
       }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    }
   xp=vector(1,npar);    delti[theta]=delts;
   dnewm=matrix(1,nlstate*2,1,npar);    return res; 
   doldm=matrix(1,nlstate*2,1,nlstate*2);    
    }
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  double hessij( double x[], double delti[], int thetai,int thetaj)
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    int i;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    int l=1, l1, lmax=20;
   fprintf(ficreseij,"\n");    double k1,k2,k3,k4,res,fx;
     double p2[NPARMAX+1];
   if(estepm < stepm){    int k;
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    fx=func(x);
   else  hstepm=estepm;      for (k=1; k<=2; k++) {
   /* We compute the life expectancy from trapezoids spaced every estepm months      for (i=1;i<=npar;i++) p2[i]=x[i];
    * This is mainly to measure the difference between two models: for example      p2[thetai]=x[thetai]+delti[thetai]/k;
    * if stepm=24 months pijx are given only every 2 years and by summing them      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
    * we are calculating an estimate of the Life Expectancy assuming a linear      k1=func(p2)-fx;
    * progression inbetween and thus overestimating or underestimating according    
    * to the curvature of the survival function. If, for the same date, we      p2[thetai]=x[thetai]+delti[thetai]/k;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    * to compare the new estimate of Life expectancy with the same linear      k2=func(p2)-fx;
    * hypothesis. A more precise result, taking into account a more precise    
    * curvature will be obtained if estepm is as small as stepm. */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /* For example we decided to compute the life expectancy with the smallest unit */      k3=func(p2)-fx;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim      p2[thetai]=x[thetai]-delti[thetai]/k;
      nstepm is the number of stepm from age to agelin.      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      Look at hpijx to understand the reason of that which relies in memory size      k4=func(p2)-fx;
      and note for a fixed period like estepm months */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  #ifdef DEBUG
      survival function given by stepm (the optimization length). Unfortunately it      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      means that if the survival funtion is printed only each two years of age and if      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  #endif
      results. So we changed our mind and took the option of the best precision.    }
   */    return res;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  }
   
   agelim=AGESUP;  /************** Inverse of matrix **************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  void ludcmp(double **a, int n, int *indx, double *d) 
     /* nhstepm age range expressed in number of stepm */  { 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    int i,imax,j,k; 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double big,dum,sum,temp; 
     /* if (stepm >= YEARM) hstepm=1;*/    double *vv; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */   
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    vv=vector(1,n); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    *d=1.0; 
     gp=matrix(0,nhstepm,1,nlstate*2);    for (i=1;i<=n;i++) { 
     gm=matrix(0,nhstepm,1,nlstate*2);      big=0.0; 
       for (j=1;j<=n;j++) 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        if ((temp=fabs(a[i][j])) > big) big=temp; 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        vv[i]=1.0/big; 
      } 
     for (j=1;j<=n;j++) { 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
     /* Computing Variances of health expectancies */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
      for(theta=1; theta <=npar; theta++){      } 
       for(i=1; i<=npar; i++){      big=0.0; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=j;i<=n;i++) { 
       }        sum=a[i][j]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
       cptj=0;        a[i][j]=sum; 
       for(j=1; j<= nlstate; j++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         for(i=1; i<=nlstate; i++){          big=dum; 
           cptj=cptj+1;          imax=i; 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        } 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      } 
           }      if (j != imax) { 
         }        for (k=1;k<=n;k++) { 
       }          dum=a[imax][k]; 
                a[imax][k]=a[j][k]; 
                a[j][k]=dum; 
       for(i=1; i<=npar; i++)        } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        *d = -(*d); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          vv[imax]=vv[j]; 
            } 
       cptj=0;      indx[j]=imax; 
       for(j=1; j<= nlstate; j++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
         for(i=1;i<=nlstate;i++){      if (j != n) { 
           cptj=cptj+1;        dum=1.0/(a[j][j]); 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      } 
           }    } 
         }    free_vector(vv,1,n);  /* Doesn't work */
       }  ;
        } 
      
   void lubksb(double **a, int n, int *indx, double b[]) 
       for(j=1; j<= nlstate*2; j++)  { 
         for(h=0; h<=nhstepm-1; h++){    int i,ii=0,ip,j; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double sum; 
         }   
     for (i=1;i<=n;i++) { 
      }      ip=indx[i]; 
          sum=b[ip]; 
 /* End theta */      b[ip]=b[i]; 
       if (ii) 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
      for(h=0; h<=nhstepm-1; h++)      b[i]=sum; 
       for(j=1; j<=nlstate*2;j++)    } 
         for(theta=1; theta <=npar; theta++)    for (i=n;i>=1;i--) { 
         trgradg[h][j][theta]=gradg[h][theta][j];      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
      for(i=1;i<=nlstate*2;i++)    } 
       for(j=1;j<=nlstate*2;j++)  } 
         varhe[i][j][(int)age] =0.;  
   /************ Frequencies ********************/
     for(h=0;h<=nhstepm-1;h++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       for(k=0;k<=nhstepm-1;k++){  {  /* Some frequencies */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for(i=1;i<=nlstate*2;i++)    int first;
           for(j=1;j<=nlstate*2;j++)    double ***freq; /* Frequencies */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double *pp, **prop;
       }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     }    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
          
     /* Computing expectancies */    pp=vector(1,nlstate);
     for(i=1; i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(j=1; j<=nlstate;j++)    strcpy(fileresp,"p");
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    strcat(fileresp,fileres);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    if((ficresp=fopen(fileresp,"w"))==NULL) {
                printf("Problem with prevalence resultfile: %s\n", fileresp);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
         }    }
     freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     fprintf(ficreseij,"%3.0f",age );    j1=0;
     cptj=0;    
     for(i=1; i<=nlstate;i++)    j=cptcoveff;
       for(j=1; j<=nlstate;j++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    first=1;
       }  
     fprintf(ficreseij,"\n");    for(k1=1; k1<=j;k1++){
          for(i1=1; i1<=ncodemax[k1];i1++){
     free_matrix(gm,0,nhstepm,1,nlstate*2);        j1++;
     free_matrix(gp,0,nhstepm,1,nlstate*2);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          scanf("%d", i);*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        for (i=-1; i<=nlstate+ndeath; i++)  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
   free_vector(xp,1,npar);              freq[i][jk][m]=0;
   free_matrix(dnewm,1,nlstate*2,1,npar);  
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      for (i=1; i<=nlstate; i++)  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        for(m=iagemin; m <= iagemax+3; m++)
 }          prop[i][m]=0;
         
 /************ Variance ******************/        dateintsum=0;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        k2cpt=0;
 {        for (i=1; i<=imx; i++) {
   /* Variance of health expectancies */          bool=1;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          if  (cptcovn>0) {
   double **newm;            for (z1=1; z1<=cptcoveff; z1++) 
   double **dnewm,**doldm;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   int i, j, nhstepm, hstepm, h, nstepm ;                bool=0;
   int k, cptcode;          }
   double *xp;          if (bool==1){
   double **gp, **gm;            for(m=firstpass; m<=lastpass; m++){
   double ***gradg, ***trgradg;              k2=anint[m][i]+(mint[m][i]/12.);
   double ***p3mat;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   double age,agelim, hf;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   int theta;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
    fprintf(ficresvij,"# Covariances of life expectancies\n");                if (m<lastpass) {
   fprintf(ficresvij,"# Age");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   for(i=1; i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for(j=1; j<=nlstate;j++)                }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);                
   fprintf(ficresvij,"\n");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
   xp=vector(1,npar);                  k2cpt++;
   dnewm=matrix(1,nlstate,1,npar);                }
   doldm=matrix(1,nlstate,1,nlstate);                /*}*/
              }
   if(estepm < stepm){          }
     printf ("Problem %d lower than %d\n",estepm, stepm);        }
   }         
   else  hstepm=estepm;          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        if  (cptcovn>0) {
      nhstepm is the number of hstepm from age to agelim          fprintf(ficresp, "\n#********** Variable "); 
      nstepm is the number of stepm from age to agelin.          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      Look at hpijx to understand the reason of that which relies in memory size          fprintf(ficresp, "**********\n#");
      and note for a fixed period like k years */        }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for(i=1; i<=nlstate;i++) 
      survival function given by stepm (the optimization length). Unfortunately it          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      means that if the survival funtion is printed only each two years of age and if        fprintf(ficresp, "\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        
      results. So we changed our mind and took the option of the best precision.        for(i=iagemin; i <= iagemax+3; i++){
   */          if(i==iagemax+3){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            fprintf(ficlog,"Total");
   agelim = AGESUP;          }else{
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            if(first==1){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              first=0;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              printf("See log file for details...\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            fprintf(ficlog,"Age %d", i);
     gp=matrix(0,nhstepm,1,nlstate);          }
     gm=matrix(0,nhstepm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(theta=1; theta <=npar; theta++){              pp[jk] += freq[jk][m][i]; 
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pos=0; m <=0 ; m++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                pos += freq[jk][m][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            if(pp[jk]>=1.e-10){
               if(first==1){
       if (popbased==1) {              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for(i=1; i<=nlstate;i++)              }
           prlim[i][i]=probs[(int)age][i][ij];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }            }else{
                if(first==1)
       for(j=1; j<= nlstate; j++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for(h=0; h<=nhstepm; h++){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }  
       }          for(jk=1; jk <=nlstate ; jk++){
                for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       for(i=1; i<=npar; i++) /* Computes gradient */              pp[jk] += freq[jk][m][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }       
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            pos += pp[jk];
              posprop += prop[jk][i];
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
           prlim[i][i]=probs[(int)age][i][ij];            if(pos>=1.e-5){
       }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(j=1; j<= nlstate; j++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         for(h=0; h<=nhstepm; h++){            }else{
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              if(first==1)
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
             if( i <= iagemax){
       for(j=1; j<= nlstate; j++)              if(pos>=1.e-5){
         for(h=0; h<=nhstepm; h++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                /*probs[i][jk][j1]= pp[jk]/pos;*/
         }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     } /* End theta */              }
               else
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
     for(h=0; h<=nhstepm; h++)          }
       for(j=1; j<=nlstate;j++)          
         for(theta=1; theta <=npar; theta++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
           trgradg[h][j][theta]=gradg[h][theta][j];            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              if(first==1)
     for(i=1;i<=nlstate;i++)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(j=1;j<=nlstate;j++)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         vareij[i][j][(int)age] =0.;              }
           if(i <= iagemax)
     for(h=0;h<=nhstepm;h++){            fprintf(ficresp,"\n");
       for(k=0;k<=nhstepm;k++){          if(first==1)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);            printf("Others in log...\n");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          fprintf(ficlog,"\n");
         for(i=1;i<=nlstate;i++)        }
           for(j=1;j<=nlstate;j++)      }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    }
       }    dateintmean=dateintsum/k2cpt; 
     }   
     fclose(ficresp);
     fprintf(ficresvij,"%.0f ",age );    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     for(i=1; i<=nlstate;i++)    free_vector(pp,1,nlstate);
       for(j=1; j<=nlstate;j++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    /* End of Freq */
       }  }
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);  /************ Prevalence ********************/
     free_matrix(gm,0,nhstepm,1,nlstate);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  {  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   } /* End age */       We still use firstpass and lastpass as another selection.
      */
   free_vector(xp,1,npar);   
   free_matrix(doldm,1,nlstate,1,npar);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double ***freq; /* Frequencies */
     double *pp, **prop;
 }    double pos,posprop; 
     double  y2; /* in fractional years */
 /************ Variance of prevlim ******************/    int iagemin, iagemax;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    iagemin= (int) agemin;
   /* Variance of prevalence limit */    iagemax= (int) agemax;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /*pp=vector(1,nlstate);*/
   double **newm;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   double **dnewm,**doldm;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   int i, j, nhstepm, hstepm;    j1=0;
   int k, cptcode;    
   double *xp;    j=cptcoveff;
   double *gp, *gm;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double **gradg, **trgradg;    
   double age,agelim;    for(k1=1; k1<=j;k1++){
   int theta;      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        
   fprintf(ficresvpl,"# Age");        for (i=1; i<=nlstate; i++)  
   for(i=1; i<=nlstate;i++)          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficresvpl," %1d-%1d",i,i);            prop[i][m]=0.0;
   fprintf(ficresvpl,"\n");       
         for (i=1; i<=imx; i++) { /* Each individual */
   xp=vector(1,npar);          bool=1;
   dnewm=matrix(1,nlstate,1,npar);          if  (cptcovn>0) {
   doldm=matrix(1,nlstate,1,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   hstepm=1*YEARM; /* Every year of age */                bool=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          } 
   agelim = AGESUP;          if (bool==1) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     if (stepm >= YEARM) hstepm=1;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     gradg=matrix(1,npar,1,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     gp=vector(1,nlstate);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     gm=vector(1,nlstate);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     for(theta=1; theta <=npar; theta++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=1; i<=npar; i++){ /* Computes gradient */                  prop[s[m][i]][iagemax+3] += weight[i]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                } 
       }              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            } /* end selection of waves */
       for(i=1;i<=nlstate;i++)          }
         gp[i] = prlim[i][i];        }
            for(i=iagemin; i <= iagemax+3; i++){  
       for(i=1; i<=npar; i++) /* Computes gradient */          
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            posprop += prop[jk][i]; 
       for(i=1;i<=nlstate;i++)          } 
         gm[i] = prlim[i][i];  
           for(jk=1; jk <=nlstate ; jk++){     
       for(i=1;i<=nlstate;i++)            if( i <=  iagemax){ 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              if(posprop>=1.e-5){ 
     } /* End theta */                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
     trgradg =matrix(1,nlstate,1,npar);            } 
           }/* end jk */ 
     for(j=1; j<=nlstate;j++)        }/* end i */ 
       for(theta=1; theta <=npar; theta++)      } /* end i1 */
         trgradg[j][theta]=gradg[theta][j];    } /* end k1 */
     
     for(i=1;i<=nlstate;i++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       varpl[i][(int)age] =0.;    /*free_vector(pp,1,nlstate);*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  }  /* End of prevalence */
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  /************* Waves Concatenation ***************/
   
     fprintf(ficresvpl,"%.0f ",age );  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     fprintf(ficresvpl,"\n");       Death is a valid wave (if date is known).
     free_vector(gp,1,nlstate);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     free_vector(gm,1,nlstate);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     free_matrix(gradg,1,npar,1,nlstate);       and mw[mi+1][i]. dh depends on stepm.
     free_matrix(trgradg,1,nlstate,1,npar);       */
   } /* End age */  
     int i, mi, m;
   free_vector(xp,1,npar);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   free_matrix(doldm,1,nlstate,1,npar);       double sum=0., jmean=0.;*/
   free_matrix(dnewm,1,nlstate,1,nlstate);    int first;
     int j, k=0,jk, ju, jl;
 }    double sum=0.;
     first=0;
 /************ Variance of one-step probabilities  ******************/    jmin=1e+5;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    jmax=-1;
 {    jmean=0.;
   int i, j, i1, k1, j1, z1;    for(i=1; i<=imx; i++){
   int k=0, cptcode;      mi=0;
   double **dnewm,**doldm;      m=firstpass;
   double *xp;      while(s[m][i] <= nlstate){
   double *gp, *gm;        if(s[m][i]>=1)
   double **gradg, **trgradg;          mw[++mi][i]=m;
   double age,agelim, cov[NCOVMAX];        if(m >=lastpass)
   int theta;          break;
   char fileresprob[FILENAMELENGTH];        else
           m++;
   strcpy(fileresprob,"prob");      }/* end while */
   strcat(fileresprob,fileres);      if (s[m][i] > nlstate){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        mi++;     /* Death is another wave */
     printf("Problem with resultfile: %s\n", fileresprob);        /* if(mi==0)  never been interviewed correctly before death */
   }           /* Only death is a correct wave */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        mw[mi][i]=m;
        }
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");  
   fprintf(ficresprob,"# Age");      wav[i]=mi;
   for(i=1; i<=nlstate;i++)      if(mi==0){
     for(j=1; j<=(nlstate+ndeath);j++)        if(first==0){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
         }
   fprintf(ficresprob,"\n");        if(first==1){
           fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
   xp=vector(1,npar);      } /* end mi==0 */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    } /* End individuals */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      for(i=1; i<=imx; i++){
   cov[1]=1;      for(mi=1; mi<wav[i];mi++){
   j=cptcoveff;        if (stepm <=0)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          dh[mi][i]=1;
   j1=0;        else{
   for(k1=1; k1<=1;k1++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     for(i1=1; i1<=ncodemax[k1];i1++){            if (agedc[i] < 2*AGESUP) {
     j1++;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
     if  (cptcovn>0) {              else if(j<0){
       fprintf(ficresprob, "\n#********** Variable ");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                j=1; /* Careful Patch */
       fprintf(ficresprob, "**********\n#");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                    fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       for (age=bage; age<=fage; age ++){              }
         cov[2]=age;              k=k+1;
         for (k=1; k<=cptcovn;k++) {              if (j >= jmax) jmax=j;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];              if (j <= jmin) jmin=j;
                        sum=sum+j;
         }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for (k=1; k<=cptcovprod;k++)            }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          }
                  else{
         gradg=matrix(1,npar,1,9);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         trgradg=matrix(1,9,1,npar);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            k=k+1;
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            if (j >= jmax) jmax=j;
                else if (j <= jmin)jmin=j;
         for(theta=1; theta <=npar; theta++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           for(i=1; i<=npar; i++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            if(j<0){
                        printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                      }
           k=0;            sum=sum+j;
           for(i=1; i<= (nlstate+ndeath); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){          jk= j/stepm;
               k=k+1;          jl= j -jk*stepm;
               gp[k]=pmmij[i][j];          ju= j -(jk+1)*stepm;
             }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           }            if(jl==0){
                        dh[mi][i]=jk;
           for(i=1; i<=npar; i++)              bh[mi][i]=0;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            }else{ /* We want a negative bias in order to only have interpolation ie
                        * at the price of an extra matrix product in likelihood */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              dh[mi][i]=jk+1;
           k=0;              bh[mi][i]=ju;
           for(i=1; i<=(nlstate+ndeath); i++){            }
             for(j=1; j<=(nlstate+ndeath);j++){          }else{
               k=k+1;            if(jl <= -ju){
               gm[k]=pmmij[i][j];              dh[mi][i]=jk;
             }              bh[mi][i]=jl;       /* bias is positive if real duration
           }                                   * is higher than the multiple of stepm and negative otherwise.
                                         */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              else{
         }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            }
           for(theta=1; theta <=npar; theta++)            if(dh[mi][i]==0){
             trgradg[j][theta]=gradg[theta][j];              dh[mi][i]=1; /* At least one step */
                      bh[mi][i]=ju; /* At least one step */
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            }
                  } /* end if mle */
         pmij(pmmij,cov,ncovmodel,x,nlstate);        }
              } /* end wave */
         k=0;    }
         for(i=1; i<=(nlstate+ndeath); i++){    jmean=sum/k;
           for(j=1; j<=(nlstate+ndeath);j++){    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
             k=k+1;    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
             gm[k]=pmmij[i][j];   }
           }  
         }  /*********** Tricode ****************************/
        void tricode(int *Tvar, int **nbcode, int imx)
      /*printf("\n%d ",(int)age);  {
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    int Ndum[20],ij=1, k, j, i, maxncov=19;
      }*/    int cptcode=0;
     cptcoveff=0; 
         fprintf(ficresprob,"\n%d ",(int)age);   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    for (k=1; k<=7; k++) ncodemax[k]=0;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));  
      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     }                                 modality*/ 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        Ndum[ij]++; /*store the modality */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   }                                         Tvar[j]. If V=sex and male is 0 and 
   free_vector(xp,1,npar);                                         female is 1, then  cptcode=1.*/
   fclose(ficresprob);      }
    
 }      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 /******************* Printing html file ***********/      }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
  int lastpass, int stepm, int weightopt, char model[],\      ij=1; 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \      for (i=1; i<=ncodemax[j]; i++) {
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        for (k=0; k<= maxncov; k++) {
  char version[], int popforecast, int estepm ){          if (Ndum[k] != 0) {
   int jj1, k1, i1, cpt;            nbcode[Tvar[j]][ij]=k; 
   FILE *fichtm;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   /*char optionfilehtm[FILENAMELENGTH];*/            
             ij++;
   strcpy(optionfilehtm,optionfile);          }
   strcat(optionfilehtm,".htm");          if (ij > ncodemax[j]) break; 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        }  
     printf("Problem with %s \n",optionfilehtm), exit(0);      } 
   }    }  
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n   for (k=0; k< maxncov; k++) Ndum[k]=0;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n   for (i=1; i<=ncovmodel-2; i++) { 
 Total number of observations=%d <br>\n     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n     ij=Tvar[i];
 <hr  size=\"2\" color=\"#EC5E5E\">     Ndum[ij]++;
  <ul><li>Outputs files<br>\n   }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n   ij=1;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n   for (i=1; i<= maxncov; i++) {
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n     if((Ndum[i]!=0) && (i<=ncovcol)){
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n       Tvaraff[ij]=i; /*For printing */
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);       ij++;
      }
  fprintf(fichtm,"\n   }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n   
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n   cptcoveff=ij-1; /*Number of simple covariates*/
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  /*********** Health Expectancies ****************/
   
  if(popforecast==1) fprintf(fichtm,"\n  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  {
         <br>",fileres,fileres,fileres,fileres);    /* Health expectancies */
  else    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    double age, agelim, hf;
 fprintf(fichtm," <li>Graphs</li><p>");    double ***p3mat,***varhe;
     double **dnewm,**doldm;
  m=cptcoveff;    double *xp;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double **gp, **gm;
     double ***gradg, ***trgradg;
  jj1=0;    int theta;
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        jj1++;    xp=vector(1,npar);
        if (cptcovn > 0) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
          for (cpt=1; cpt<=cptcoveff;cpt++)    
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficreseij,"# Health expectancies\n");
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficreseij,"# Age");
        }    for(i=1; i<=nlstate;i++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      for(j=1; j<=nlstate;j++)
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            fprintf(ficreseij," %1d-%1d (SE)",i,j);
        for(cpt=1; cpt<nlstate;cpt++){    fprintf(ficreseij,"\n");
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    if(estepm < stepm){
        }      printf ("Problem %d lower than %d\n",estepm, stepm);
     for(cpt=1; cpt<=nlstate;cpt++) {    }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    else  hstepm=estepm;   
 interval) in state (%d): v%s%d%d.gif <br>    /* We compute the life expectancy from trapezoids spaced every estepm months
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       * This is mainly to measure the difference between two models: for example
      }     * if stepm=24 months pijx are given only every 2 years and by summing them
      for(cpt=1; cpt<=nlstate;cpt++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>     * progression in between and thus overestimating or underestimating according
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);     * to the curvature of the survival function. If, for the same date, we 
      }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      fprintf(fichtm,"\n<br>- Total life expectancy by age and     * to compare the new estimate of Life expectancy with the same linear 
 health expectancies in states (1) and (2): e%s%d.gif<br>     * hypothesis. A more precise result, taking into account a more precise
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     * curvature will be obtained if estepm is as small as stepm. */
 fprintf(fichtm,"\n</body>");  
    }    /* For example we decided to compute the life expectancy with the smallest unit */
    }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 fclose(fichtm);       nhstepm is the number of hstepm from age to agelim 
 }       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
 /******************* Gnuplot file **************/       and note for a fixed period like estepm months */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   strcpy(optionfilegnuplot,optionfilefiname);       results. So we changed our mind and took the option of the best precision.
   strcat(optionfilegnuplot,".gp.txt");    */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("Problem with file %s",optionfilegnuplot);  
   }    agelim=AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 #ifdef windows      /* nhstepm age range expressed in number of stepm */
     fprintf(ficgp,"cd \"%s\" \n",pathc);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 #endif      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 m=pow(2,cptcoveff);      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  /* 1eme*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (cpt=1; cpt<= nlstate ; cpt ++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
    for (k1=1; k1<= m ; k1 ++) {      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
 for (i=1; i<= nlstate ; i ++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      /* Computing Variances of health expectancies */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }       for(theta=1; theta <=npar; theta++){
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(i=1; i<=npar; i++){ 
      for (i=1; i<= nlstate ; i ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 }      
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        cptj=0;
         for(j=1; j<= nlstate; j++){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          for(i=1; i<=nlstate; i++){
    }            cptj=cptj+1;
   }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   /*2 eme*/              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
   for (k1=1; k1<= m ; k1 ++) {          }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        }
           
     for (i=1; i<= nlstate+1 ; i ++) {       
       k=2*i;        for(i=1; i<=npar; i++) 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       for (j=1; j<= nlstate+1 ; j ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        
   else fprintf(ficgp," \%%*lf (\%%*lf)");        cptj=0;
 }          for(j=1; j<= nlstate; j++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          for(i=1;i<=nlstate;i++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            cptj=cptj+1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            }
       fprintf(ficgp,"\" t\"\" w l 0,");        }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate*nlstate; j++)
       for (j=1; j<= nlstate+1 ; j ++) {          for(h=0; h<=nhstepm-1; h++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }         } 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");     
       else fprintf(ficgp,"\" t\"\" w l 0,");  /* End theta */
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   }  
         for(h=0; h<=nhstepm-1; h++)
   /*3eme*/        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   for (k1=1; k1<= m ; k1 ++) {            trgradg[h][j][theta]=gradg[h][theta][j];
     for (cpt=1; cpt<= nlstate ; cpt ++) {       
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);       for(i=1;i<=nlstate*nlstate;i++)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(j=1;j<=nlstate*nlstate;j++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          varhe[i][j][(int)age] =0.;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       printf("%d|",(int)age);fflush(stdout);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
 */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       for (i=1; i< nlstate ; i ++) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          for(i=1;i<=nlstate*nlstate;i++)
             for(j=1;j<=nlstate*nlstate;j++)
       }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }
     }      }
     }      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   /* CV preval stat */        for(j=1; j<=nlstate;j++)
     for (k1=1; k1<= m ; k1 ++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     for (cpt=1; cpt<nlstate ; cpt ++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       k=3;            
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
       for (i=1; i< nlstate ; i ++)          }
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      fprintf(ficreseij,"%3.0f",age );
            cptj=0;
       l=3+(nlstate+ndeath)*cpt;      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        for(j=1; j<=nlstate;j++){
       for (i=1; i< nlstate ; i ++) {          cptj++;
         l=3+(nlstate+ndeath)*cpt;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         fprintf(ficgp,"+$%d",l+i+1);        }
       }      fprintf(ficreseij,"\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);       
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   }        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /* proba elementaires */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(i=1,jk=1; i <=nlstate; i++){    }
     for(k=1; k <=(nlstate+ndeath); k++){    printf("\n");
       if (k != i) {    fprintf(ficlog,"\n");
         for(j=1; j <=ncovmodel; j++){  
            free_vector(xp,1,npar);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           jk++;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           fprintf(ficgp,"\n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         }  }
       }  
     }  /************ Variance ******************/
     }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   {
     for(jk=1; jk <=m; jk++) {    /* Variance of health expectancies */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
    i=1;    /* double **newm;*/
    for(k2=1; k2<=nlstate; k2++) {    double **dnewm,**doldm;
      k3=i;    double **dnewmp,**doldmp;
      for(k=1; k<=(nlstate+ndeath); k++) {    int i, j, nhstepm, hstepm, h, nstepm ;
        if (k != k2){    int k, cptcode;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    double *xp;
 ij=1;    double **gp, **gm;  /* for var eij */
         for(j=3; j <=ncovmodel; j++) {    double ***gradg, ***trgradg; /*for var eij */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    double **gradgp, **trgradgp; /* for var p point j */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double *gpp, *gmp; /* for var p point j */
             ij++;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           }    double ***p3mat;
           else    double age,agelim, hf;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double ***mobaverage;
         }    int theta;
           fprintf(ficgp,")/(1");    char digit[4];
            char digitp[25];
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    char fileresprobmorprev[FILENAMELENGTH];
 ij=1;  
           for(j=3; j <=ncovmodel; j++){    if(popbased==1){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      if(mobilav!=0)
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        strcpy(digitp,"-populbased-mobilav-");
             ij++;      else strcpy(digitp,"-populbased-nomobil-");
           }    }
           else    else 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      strcpy(digitp,"-stablbased-");
           }  
           fprintf(ficgp,")");    if (mobilav!=0) {
         }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         i=i+ncovmodel;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }      }
      }    }
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    strcpy(fileresprobmorprev,"prmorprev"); 
    }    sprintf(digit,"%-d",ij);
        /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fclose(ficgp);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 }  /* end gnuplot */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 /*************** Moving average **************/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   int i, cpt, cptcod;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for (i=1; i<=nlstate;i++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           mobaverage[(int)agedeb][i][cptcod]=0.;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," p.%-d SE",j);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      for(i=1; i<=nlstate;i++)
       for (i=1; i<=nlstate;i++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }  
           for (cpt=0;cpt<=4;cpt++){    fprintf(ficresprobmorprev,"\n");
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           }      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         }      exit(0);
       }    }
     }    else{
          fprintf(ficgp,"\n# Routine varevsij");
 }    }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       printf("Problem with html file: %s\n", optionfilehtm);
 /************** Forecasting ******************/      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      exit(0);
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    else{
   int *popage;      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double *popeffectif,*popcount;    }
   double ***p3mat;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char fileresf[FILENAMELENGTH];  
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
  agelim=AGESUP;    fprintf(ficresvij,"# Age");
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
      fprintf(ficresvij,"\n");
    
   strcpy(fileresf,"f");    xp=vector(1,npar);
   strcat(fileresf,fileres);    dnewm=matrix(1,nlstate,1,npar);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    doldm=matrix(1,nlstate,1,nlstate);
     printf("Problem with forecast resultfile: %s\n", fileresf);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   if (mobilav==1) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     movingaverage(agedeb, fage, ageminpar, mobaverage);    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    else  hstepm=estepm;   
   if (stepm<=12) stepsize=1;    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   agelim=AGESUP;       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   hstepm=1;       Look at hpijx to understand the reason of that which relies in memory size
   hstepm=hstepm/stepm;       and note for a fixed period like k years */
   yp1=modf(dateintmean,&yp);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   anprojmean=yp;       survival function given by stepm (the optimization length). Unfortunately it
   yp2=modf((yp1*12),&yp);       means that if the survival funtion is printed every two years of age and if
   mprojmean=yp;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   yp1=modf((yp2*30.5),&yp);       results. So we changed our mind and took the option of the best precision.
   jprojmean=yp;    */
   if(jprojmean==0) jprojmean=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   if(mprojmean==0) jprojmean=1;    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   for(cptcov=1;cptcov<=i2;cptcov++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       k=k+1;      gp=matrix(0,nhstepm,1,nlstate);
       fprintf(ficresf,"\n#******");      gm=matrix(0,nhstepm,1,nlstate);
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }      for(theta=1; theta <=npar; theta++){
       fprintf(ficresf,"******\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       fprintf(ficresf,"# StartingAge FinalAge");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        }
              hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
              prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");        if (popbased==1) {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              prlim[i][i]=probs[(int)age][i][ij];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }else{ /* mobilav */ 
           nhstepm = nhstepm/hstepm;            for(i=1; i<=nlstate;i++)
                        prlim[i][i]=mobaverage[(int)age][i][ij];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      
                for(j=1; j<= nlstate; j++){
           for (h=0; h<=nhstepm; h++){          for(h=0; h<=nhstepm; h++){
             if (h==(int) (calagedate+YEARM*cpt)) {            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
             }          }
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;        /* This for computing probability of death (h=1 means
               for(i=1; i<=nlstate;i++) {                         computed over hstepm matrices product = hstepm*stepm months) 
                 if (mobilav==1)           as a weighted average of prlim.
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        */
                 else {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                 }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
                        }    
               }        /* end probability of death */
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                                  xp[i] = x[i] - (i==theta ?delti[theta]:0);
               }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           }   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (popbased==1) {
         }          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
                    for(i=1; i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   fclose(ficresf);        }
 }  
 /************** Forecasting ******************/        for(j=1; j<= nlstate; j++){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   int *popage;          }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;        /* This for computing probability of death (h=1 means
   double ***p3mat,***tabpop,***tabpopprev;           computed over hstepm matrices product = hstepm*stepm months) 
   char filerespop[FILENAMELENGTH];           as a weighted average of prlim.
         */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   agelim=AGESUP;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        }    
          /* end probability of death */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
          for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
   strcpy(filerespop,"pop");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   strcat(filerespop,fileres);          }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      } /* End theta */
   
   if (mobilav==1) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);      for(h=0; h<=nhstepm; h++) /* veij */
   }        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            trgradg[h][j][theta]=gradg[h][theta][j];
   if (stepm<=12) stepsize=1;  
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   agelim=AGESUP;        for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
   hstepm=1;    
   hstepm=hstepm/stepm;  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (popforecast==1) {      for(i=1;i<=nlstate;i++)
     if((ficpop=fopen(popfile,"r"))==NULL) {        for(j=1;j<=nlstate;j++)
       printf("Problem with population file : %s\n",popfile);exit(0);          vareij[i][j][(int)age] =0.;
     }  
     popage=ivector(0,AGESUP);      for(h=0;h<=nhstepm;h++){
     popeffectif=vector(0,AGESUP);        for(k=0;k<=nhstepm;k++){
     popcount=vector(0,AGESUP);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
              matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     i=1;            for(i=1;i<=nlstate;i++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     imx=i;        }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      }
   }    
       /* pptj */
   for(cptcov=1;cptcov<=i2;cptcov++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       k=k+1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fprintf(ficrespop,"\n#******");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       for(j=1;j<=cptcoveff;j++) {          varppt[j][i]=doldmp[j][i];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* end ppptj */
       }      /*  x centered again */
       fprintf(ficrespop,"******\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficrespop,"# Age");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);   
       if (popforecast==1)  fprintf(ficrespop," [Population]");      if (popbased==1) {
              if(mobilav ==0){
       for (cpt=0; cpt<=0;cpt++) {          for(i=1; i<=nlstate;i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              prlim[i][i]=probs[(int)age][i][ij];
                }else{ /* mobilav */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(i=1; i<=nlstate;i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            prlim[i][i]=mobaverage[(int)age][i][ij];
           nhstepm = nhstepm/hstepm;        }
                }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               
           oldm=oldms;savm=savms;      /* This for computing probability of death (h=1 means
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                 as a weighted average of prlim.
           for (h=0; h<=nhstepm; h++){      */
             if (h==(int) (calagedate+YEARM*cpt)) {      for(j=nlstate+1;j<=nlstate+ndeath;j++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             for(j=1; j<=nlstate+ndeath;j++) {      }    
               kk1=0.;kk2=0;      /* end probability of death */
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                 else {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(i=1; i<=nlstate;i++){
                 }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               }        }
               if (h==(int)(calagedate+12*cpt)){      } 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      fprintf(ficresprobmorprev,"\n");
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      fprintf(ficresvij,"%.0f ",age );
               }      for(i=1; i<=nlstate;i++)
             }        for(j=1; j<=nlstate;j++){
             for(i=1; i<=nlstate;i++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
               kk1=0.;        }
                 for(j=1; j<=nlstate;j++){      fprintf(ficresvij,"\n");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      free_matrix(gp,0,nhstepm,1,nlstate);
                 }      free_matrix(gm,0,nhstepm,1,nlstate);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
             }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    } /* End age */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    free_vector(gpp,nlstate+1,nlstate+ndeath);
           }    free_vector(gmp,nlstate+1,nlstate+ndeath);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   /******/    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
           nhstepm = nhstepm/hstepm;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
              fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
           oldm=oldms;savm=savms;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    */
           for (h=0; h<=nhstepm; h++){    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    free_vector(xp,1,npar);
             }    free_matrix(doldm,1,nlstate,1,nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {    free_matrix(dnewm,1,nlstate,1,npar);
               kk1=0.;kk2=0;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               for(i=1; i<=nlstate;i++) {                  free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fclose(ficresprobmorprev);
             }    fclose(ficgp);
           }    fclose(fichtm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }  /* end varevsij */
         }  
       }  /************ Variance of prevlim ******************/
    }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   }  {
      /* Variance of prevalence limit */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   if (popforecast==1) {    double **dnewm,**doldm;
     free_ivector(popage,0,AGESUP);    int i, j, nhstepm, hstepm;
     free_vector(popeffectif,0,AGESUP);    int k, cptcode;
     free_vector(popcount,0,AGESUP);    double *xp;
   }    double *gp, *gm;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **gradg, **trgradg;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double age,agelim;
   fclose(ficrespop);    int theta;
 }     
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
 /***********************************************/    fprintf(ficresvpl,"# Age");
 /**************** Main Program *****************/    for(i=1; i<=nlstate;i++)
 /***********************************************/        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
 int main(int argc, char *argv[])  
 {    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    doldm=matrix(1,nlstate,1,nlstate);
   double agedeb, agefin,hf;    
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   double fret;    agelim = AGESUP;
   double **xi,tmp,delta;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   double dum; /* Dummy variable */      if (stepm >= YEARM) hstepm=1;
   double ***p3mat;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   int *indx;      gradg=matrix(1,npar,1,nlstate);
   char line[MAXLINE], linepar[MAXLINE];      gp=vector(1,nlstate);
   char title[MAXLINE];      gm=vector(1,nlstate);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   char filerest[FILENAMELENGTH];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char fileregp[FILENAMELENGTH];        for(i=1;i<=nlstate;i++)
   char popfile[FILENAMELENGTH];          gp[i] = prlim[i][i];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      
   int firstobs=1, lastobs=10;        for(i=1; i<=npar; i++) /* Computes gradient */
   int sdeb, sfin; /* Status at beginning and end */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   int c,  h , cpt,l;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int ju,jl, mi;        for(i=1;i<=nlstate;i++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          gm[i] = prlim[i][i];
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;        for(i=1;i<=nlstate;i++)
   int hstepm, nhstepm;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      } /* End theta */
   
   double bage, fage, age, agelim, agebase;      trgradg =matrix(1,nlstate,1,npar);
   double ftolpl=FTOL;  
   double **prlim;      for(j=1; j<=nlstate;j++)
   double *severity;        for(theta=1; theta <=npar; theta++)
   double ***param; /* Matrix of parameters */          trgradg[j][theta]=gradg[theta][j];
   double  *p;  
   double **matcov; /* Matrix of covariance */      for(i=1;i<=nlstate;i++)
   double ***delti3; /* Scale */        varpl[i][(int)age] =0.;
   double *delti; /* Scale */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   double ***eij, ***vareij;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   double **varpl; /* Variances of prevalence limits by age */      for(i=1;i<=nlstate;i++)
   double *epj, vepp;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      fprintf(ficresvpl,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";      fprintf(ficresvpl,"\n");
   char *alph[]={"a","a","b","c","d","e"}, str[4];      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
   char z[1]="c", occ;      free_matrix(trgradg,1,nlstate,1,npar);
 #include <sys/time.h>    } /* End age */
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   /* long total_usecs;    free_matrix(dnewm,1,nlstate,1,nlstate);
   struct timeval start_time, end_time;  
    }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   printf("\n%s",version);  {
   if(argc <=1){    int i, j=0,  i1, k1, l1, t, tj;
     printf("\nEnter the parameter file name: ");    int k2, l2, j1,  z1;
     scanf("%s",pathtot);    int k=0,l, cptcode;
   }    int first=1, first1;
   else{    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     strcpy(pathtot,argv[1]);    double **dnewm,**doldm;
   }    double *xp;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    double *gp, *gm;
   /*cygwin_split_path(pathtot,path,optionfile);    double **gradg, **trgradg;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double **mu;
   /* cutv(path,optionfile,pathtot,'\\');*/    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    int theta;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    char fileresprob[FILENAMELENGTH];
   chdir(path);    char fileresprobcov[FILENAMELENGTH];
   replace(pathc,path);    char fileresprobcor[FILENAMELENGTH];
   
 /*-------- arguments in the command line --------*/    double ***varpij;
   
   strcpy(fileres,"r");    strcpy(fileresprob,"prob"); 
   strcat(fileres, optionfilefiname);    strcat(fileresprob,fileres);
   strcat(fileres,".txt");    /* Other files have txt extension */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
   /*---------arguments file --------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    strcpy(fileresprobcov,"probcov"); 
     printf("Problem with optionfile %s\n",optionfile);    strcat(fileresprobcov,fileres);
     goto end;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   strcpy(filereso,"o");    }
   strcat(filereso,fileres);    strcpy(fileresprobcor,"probcor"); 
   if((ficparo=fopen(filereso,"w"))==NULL) {    strcat(fileresprobcor,fileres);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     ungetc(c,ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fgets(line, MAXLINE, ficpar);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     puts(line);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fputs(line,ficparo);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   ungetc(c,ficpar);    
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(ficresprob,"# Age");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficresprobcov,"# Age");
 while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     ungetc(c,ficpar);    fprintf(ficresprobcov,"# Age");
     fgets(line, MAXLINE, ficpar);  
     puts(line);  
     fputs(line,ficparo);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
            fprintf(ficresprobcor," p%1d-%1d ",i,j);
   covar=matrix(0,NCOVMAX,1,n);      }  
   cptcovn=0;   /* fprintf(ficresprob,"\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
   ncovmodel=2+cptcovn;   */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */   xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /* Read guess parameters */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /* Reads comments: lines beginning with '#' */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   while((c=getc(ficpar))=='#' && c!= EOF){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     ungetc(c,ficpar);    first=1;
     fgets(line, MAXLINE, ficpar);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     puts(line);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
     fputs(line,ficparo);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   }      exit(0);
   ungetc(c,ficpar);    }
      else{
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficgp,"\n# Routine varprob");
     for(i=1; i <=nlstate; i++)    }
     for(j=1; j <=nlstate+ndeath-1; j++){    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       fscanf(ficpar,"%1d%1d",&i1,&j1);      printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       printf("%1d%1d",i,j);      exit(0);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar," %lf",&param[i][j][k]);    else{
         printf(" %lf",param[i][j][k]);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         fprintf(ficparo," %lf",param[i][j][k]);      fprintf(fichtm,"\n");
       }  
       fscanf(ficpar,"\n");      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       printf("\n");      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(ficparo,"\n");      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
     }  
      }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
     cov[1]=1;
   p=param[1][1];    tj=cptcoveff;
      if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   /* Reads comments: lines beginning with '#' */    j1=0;
   while((c=getc(ficpar))=='#' && c!= EOF){    for(t=1; t<=tj;t++){
     ungetc(c,ficpar);      for(i1=1; i1<=ncodemax[t];i1++){ 
     fgets(line, MAXLINE, ficpar);        j1++;
     puts(line);        if  (cptcovn>0) {
     fputs(line,ficparo);          fprintf(ficresprob, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   ungetc(c,ficpar);          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          fprintf(ficresprobcov, "**********\n#\n");
   for(i=1; i <=nlstate; i++){          
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficgp, "\n#********** Variable "); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%1d%1d",i,j);          fprintf(ficgp, "**********\n#\n");
       fprintf(ficparo,"%1d%1d",i1,j1);          
       for(k=1; k<=ncovmodel;k++){          
         fscanf(ficpar,"%le",&delti3[i][j][k]);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         printf(" %le",delti3[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       }          
       fscanf(ficpar,"\n");          fprintf(ficresprobcor, "\n#********** Variable ");    
       printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficparo,"\n");          fprintf(ficresprobcor, "**********\n#");    
     }        }
   }        
   delti=delti3[1][1];        for (age=bage; age<=fage; age ++){ 
            cov[2]=age;
   /* Reads comments: lines beginning with '#' */          for (k=1; k<=cptcovn;k++) {
   while((c=getc(ficpar))=='#' && c!= EOF){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     puts(line);          for (k=1; k<=cptcovprod;k++)
     fputs(line,ficparo);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }          
   ungetc(c,ficpar);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   matcov=matrix(1,npar,1,npar);          gp=vector(1,(nlstate)*(nlstate+ndeath));
   for(i=1; i <=npar; i++){          gm=vector(1,(nlstate)*(nlstate+ndeath));
     fscanf(ficpar,"%s",&str);      
     printf("%s",str);          for(theta=1; theta <=npar; theta++){
     fprintf(ficparo,"%s",str);            for(i=1; i<=npar; i++)
     for(j=1; j <=i; j++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       fscanf(ficpar," %le",&matcov[i][j]);            
       printf(" %.5le",matcov[i][j]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fprintf(ficparo," %.5le",matcov[i][j]);            
     }            k=0;
     fscanf(ficpar,"\n");            for(i=1; i<= (nlstate); i++){
     printf("\n");              for(j=1; j<=(nlstate+ndeath);j++){
     fprintf(ficparo,"\n");                k=k+1;
   }                gp[k]=pmmij[i][j];
   for(i=1; i <=npar; i++)              }
     for(j=i+1;j<=npar;j++)            }
       matcov[i][j]=matcov[j][i];            
                for(i=1; i<=npar; i++)
   printf("\n");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
     /*-------- Rewriting paramater file ----------*/            k=0;
      strcpy(rfileres,"r");    /* "Rparameterfile */            for(i=1; i<=(nlstate); i++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/              for(j=1; j<=(nlstate+ndeath);j++){
      strcat(rfileres,".");    /* */                k=k+1;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                gm[k]=pmmij[i][j];
     if((ficres =fopen(rfileres,"w"))==NULL) {              }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            }
     }       
     fprintf(ficres,"#%s\n",version);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                  gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     /*-------- data file ----------*/          }
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     }            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
     n= lastobs;          
     severity = vector(1,maxwav);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     outcome=imatrix(1,maxwav+1,1,n);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     num=ivector(1,n);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     moisnais=vector(1,n);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     annais=vector(1,n);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     moisdc=vector(1,n);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     andc=vector(1,n);  
     agedc=vector(1,n);          pmij(pmmij,cov,ncovmodel,x,nlstate);
     cod=ivector(1,n);          
     weight=vector(1,n);          k=0;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          for(i=1; i<=(nlstate); i++){
     mint=matrix(1,maxwav,1,n);            for(j=1; j<=(nlstate+ndeath);j++){
     anint=matrix(1,maxwav,1,n);              k=k+1;
     s=imatrix(1,maxwav+1,1,n);              mu[k][(int) age]=pmmij[i][j];
     adl=imatrix(1,maxwav+1,1,n);                }
     tab=ivector(1,NCOVMAX);          }
     ncodemax=ivector(1,8);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     i=1;              varpij[i][j][(int)age] = doldm[i][j];
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {          /*printf("\n%d ",(int)age);
                    for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         for (j=maxwav;j>=1;j--){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           strcpy(line,stra);            }*/
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprob,"\n%d ",(int)age);
         }          fprintf(ficresprobcov,"\n%d ",(int)age);
                  fprintf(ficresprobcor,"\n%d ",(int)age);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         for (j=ncovcol;j>=1;j--){          i=0;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (k=1; k<=(nlstate);k++){
         }            for (l=1; l<=(nlstate+ndeath);l++){ 
         num[i]=atol(stra);              i=i++;
                      fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         i=i+1;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       }              }
     }            }
     /* printf("ii=%d", ij);          }/* end of loop for state */
        scanf("%d",i);*/        } /* end of loop for age */
   imx=i-1; /* Number of individuals */  
         /* Confidence intervalle of pij  */
   /* for (i=1; i<=imx; i++){        /*
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          fprintf(ficgp,"\nset noparametric;unset label");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     }*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
    /*  for (i=1; i<=imx; i++){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
      if (s[4][i]==9)  s[4][i]=-1;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          */
    
   /* Calculation of the number of parameter from char model*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   Tvar=ivector(1,15);        first1=1;
   Tprod=ivector(1,15);        for (k2=1; k2<=(nlstate);k2++){
   Tvaraff=ivector(1,15);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   Tvard=imatrix(1,15,1,2);            if(l2==k2) continue;
   Tage=ivector(1,15);                  j=(k2-1)*(nlstate+ndeath)+l2;
                for (k1=1; k1<=(nlstate);k1++){
   if (strlen(model) >1){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     j=0, j1=0, k1=1, k2=1;                if(l1==k1) continue;
     j=nbocc(model,'+');                i=(k1-1)*(nlstate+ndeath)+l1;
     j1=nbocc(model,'*');                if(i<=j) continue;
     cptcovn=j+1;                for (age=bage; age<=fage; age ++){ 
     cptcovprod=j1;                  if ((int)age %5==0){
                        v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     strcpy(modelsav,model);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       printf("Error. Non available option model=%s ",model);                    mu1=mu[i][(int) age]/stepm*YEARM ;
       goto end;                    mu2=mu[j][(int) age]/stepm*YEARM;
     }                    c12=cv12/sqrt(v1*v2);
                        /* Computing eigen value of matrix of covariance */
     for(i=(j+1); i>=1;i--){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       cutv(stra,strb,modelsav,'+');                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);                    /* Eigen vectors */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       /*scanf("%d",i);*/                    /*v21=sqrt(1.-v11*v11); *//* error */
       if (strchr(strb,'*')) {                    v21=(lc1-v1)/cv12*v11;
         cutv(strd,strc,strb,'*');                    v12=-v21;
         if (strcmp(strc,"age")==0) {                    v22=v11;
           cptcovprod--;                    tnalp=v21/v11;
           cutv(strb,stre,strd,'V');                    if(first1==1){
           Tvar[i]=atoi(stre);                      first1=0;
           cptcovage++;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             Tage[cptcovage]=i;                    }
             /*printf("stre=%s ", stre);*/                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         }                    /*printf(fignu*/
         else if (strcmp(strd,"age")==0) {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           cptcovprod--;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           cutv(strb,stre,strc,'V');                    if(first==1){
           Tvar[i]=atoi(stre);                      first=0;
           cptcovage++;                      fprintf(ficgp,"\nset parametric;unset label");
           Tage[cptcovage]=i;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         else {                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
           cutv(strb,stre,strc,'V');                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
           Tvar[i]=ncovcol+k1;                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           cutv(strb,strc,strd,'V');                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
           Tprod[k1]=i;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           Tvard[k1][1]=atoi(strc);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           Tvard[k1][2]=atoi(stre);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           Tvar[cptcovn+k2]=Tvard[k1][1];                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           for (k=1; k<=lastobs;k++)                    }else{
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                      first=0;
           k1++;                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
           k2=k2+2;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       else {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
        /*  scanf("%d",i);*/                    }/* if first */
       cutv(strd,strc,strb,'V');                  } /* age mod 5 */
       Tvar[i]=atoi(strc);                } /* end loop age */
       }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
       strcpy(modelsav,stra);                  first=1;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              } /*l12 */
         scanf("%d",i);*/            } /* k12 */
     }          } /*l1 */
 }        }/* k1 */
        } /* loop covariates */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    }
   printf("cptcovprod=%d ", cptcovprod);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   scanf("%d ",i);*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     fclose(fic);    free_vector(xp,1,npar);
     fclose(ficresprob);
     /*  if(mle==1){*/    fclose(ficresprobcov);
     if (weightopt != 1) { /* Maximisation without weights*/    fclose(ficresprobcor);
       for(i=1;i<=n;i++) weight[i]=1.0;    fclose(ficgp);
     }    fclose(fichtm);
     /*-calculation of age at interview from date of interview and age at death -*/  }
     agev=matrix(1,maxwav,1,imx);  
   
     for (i=1; i<=imx; i++) {  /******************* Printing html file ***********/
       for(m=2; (m<= maxwav); m++) {  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){                    int lastpass, int stepm, int weightopt, char model[],\
          anint[m][i]=9999;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
          s[m][i]=-1;                    int popforecast, int estepm ,\
        }                    double jprev1, double mprev1,double anprev1, \
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;                    double jprev2, double mprev2,double anprev2){
       }    int jj1, k1, i1, cpt;
     }    /*char optionfilehtm[FILENAMELENGTH];*/
     if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
     for (i=1; i<=imx; i++)  {      printf("Problem with %s \n",optionfilehtm), exit(0);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
       for(m=1; (m<= maxwav); m++){    }
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
             if(agedc[i]>0)   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
               if(moisdc[i]!=99 && andc[i]!=9999)   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
                 agev[m][i]=agedc[i];   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/   - Life expectancies by age and initial health status (estepm=%2d months): \
            else {     <a href=\"e%s\">e%s</a> <br>\n</li>", \
               if (andc[i]!=9999){    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
               }  
             }   m=cptcoveff;
           }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   jj1=0;
             if(mint[m][i]==99 || anint[m][i]==9999)   for(k1=1; k1<=m;k1++){
               agev[m][i]=1;     for(i1=1; i1<=ncodemax[k1];i1++){
             else if(agev[m][i] <agemin){       jj1++;
               agemin=agev[m][i];       if (cptcovn > 0) {
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             }         for (cpt=1; cpt<=cptcoveff;cpt++) 
             else if(agev[m][i] >agemax){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               agemax=agev[m][i];         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       }
             }       /* Pij */
             /*agev[m][i]=anint[m][i]-annais[i];*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
             /*   agev[m][i] = age[i]+2*m;*/  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
           }       /* Quasi-incidences */
           else { /* =9 */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
             agev[m][i]=1;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
             s[m][i]=-1;  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
           }         /* Stable prevalence in each health state */
         }         for(cpt=1; cpt<nlstate;cpt++){
         else /*= 0 Unknown */           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
           agev[m][i]=1;  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       }         }
           for(cpt=1; cpt<=nlstate;cpt++) {
     }          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
     for (i=1; i<=imx; i++)  {  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       for(m=1; (m<= maxwav); m++){       }
         if (s[m][i] > (nlstate+ndeath)) {       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
           printf("Error: Wrong value in nlstate or ndeath\n");    health expectancies in states (1) and (2): e%s%d.png<br>\
           goto end;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
         }     } /* end i1 */
       }   }/* End k1 */
     }   fprintf(fichtm,"</ul>");
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
     free_vector(severity,1,maxwav);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
     free_imatrix(outcome,1,maxwav+1,1,n);   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
     free_vector(moisnais,1,n);   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
     free_vector(annais,1,n);   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
     /* free_matrix(mint,1,maxwav,1,n);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
        free_matrix(anint,1,maxwav,1,n);*/   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
     free_vector(moisdc,1,n);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
     free_vector(andc,1,n);  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
      /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     wav=ivector(1,imx);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  /*      <br>",fileres,fileres,fileres,fileres); */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  /*  else  */
      /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     /* Concatenates waves */  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   jj1=0;
       ncodemax[1]=1;   for(k1=1; k1<=m;k1++){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);     for(i1=1; i1<=ncodemax[k1];i1++){
             jj1++;
    codtab=imatrix(1,100,1,10);       if (cptcovn > 0) {
    h=0;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    m=pow(2,cptcoveff);         for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    for(k=1;k<=cptcoveff; k++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      for(i=1; i <=(m/pow(2,k));i++){       }
        for(j=1; j <= ncodemax[k]; j++){       for(cpt=1; cpt<=nlstate;cpt++) {
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
            h++;  interval) in state (%d): v%s%d%d.png <br>\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       }
          }     } /* end i1 */
        }   }/* End k1 */
      }   fprintf(fichtm,"</ul>");
    }  fclose(fichtm);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  }
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){  /******************* Gnuplot file **************/
       for(k=1; k <=cptcovn; k++){  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       printf("\n");    int ng;
       }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       scanf("%d",i);*/      printf("Problem with file %s",optionfilegnuplot);
          fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
    /* Calculates basic frequencies. Computes observed prevalence at single age    }
        and prints on file fileres'p'. */  
     /*#ifdef windows */
          fprintf(ficgp,"cd \"%s\" \n",pathc);
          /*#endif */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  m=pow(2,cptcoveff);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   /* 1eme*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (cpt=1; cpt<= nlstate ; cpt ++) {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     for (k1=1; k1<= m ; k1 ++) {
             fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     /* For Powell, parameters are in a vector p[] starting at p[1]       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     if(mle==1){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       }
     }       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
           for (i=1; i<= nlstate ; i ++) {
     /*--------- results files --------------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
    jk=1;       for (i=1; i<= nlstate ; i ++) {
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
    for(i=1,jk=1; i <=nlstate; i++){       }  
      for(k=1; k <=(nlstate+ndeath); k++){       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
        if (k != i)     }
          {    }
            printf("%d%d ",i,k);    /*2 eme*/
            fprintf(ficres,"%1d%1d ",i,k);    
            for(j=1; j <=ncovmodel; j++){    for (k1=1; k1<= m ; k1 ++) { 
              printf("%f ",p[jk]);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
              fprintf(ficres,"%f ",p[jk]);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
              jk++;      
            }      for (i=1; i<= nlstate+1 ; i ++) {
            printf("\n");        k=2*i;
            fprintf(ficres,"\n");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
          }        for (j=1; j<= nlstate+1 ; j ++) {
      }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    }          else fprintf(ficgp," \%%*lf (\%%*lf)");
  if(mle==1){        }   
     /* Computing hessian and covariance matrix */        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     ftolhess=ftol; /* Usually correct */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
  }        for (j=1; j<= nlstate+1 ; j ++) {
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     printf("# Scales (for hessian or gradient estimation)\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
      for(i=1,jk=1; i <=nlstate; i++){        }   
       for(j=1; j <=nlstate+ndeath; j++){        fprintf(ficgp,"\" t\"\" w l 0,");
         if (j!=i) {        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
           fprintf(ficres,"%1d%1d",i,j);        for (j=1; j<= nlstate+1 ; j ++) {
           printf("%1d%1d",i,j);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           for(k=1; k<=ncovmodel;k++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
             printf(" %.5e",delti[jk]);        }   
             fprintf(ficres," %.5e",delti[jk]);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
             jk++;        else fprintf(ficgp,"\" t\"\" w l 0,");
           }      }
           printf("\n");    }
           fprintf(ficres,"\n");    
         }    /*3eme*/
       }    
      }    for (k1=1; k1<= m ; k1 ++) { 
          for (cpt=1; cpt<= nlstate ; cpt ++) {
     k=1;        k=2+nlstate*(2*cpt-2);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
     for(i=1;i<=npar;i++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       /*  if (k>nlstate) k=1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       printf("%s%d%d",alph[k],i1,tab[i]);*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       fprintf(ficres,"%3d",i);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       printf("%3d",i);          
       for(j=1; j<=i;j++){        */
         fprintf(ficres," %.5e",matcov[i][j]);        for (i=1; i< nlstate ; i ++) {
         printf(" %.5e",matcov[i][j]);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
       }          
       fprintf(ficres,"\n");        } 
       printf("\n");      }
       k++;    }
     }    
        /* CV preval stable (period) */
     while((c=getc(ficpar))=='#' && c!= EOF){    for (k1=1; k1<= m ; k1 ++) { 
       ungetc(c,ficpar);      for (cpt=1; cpt<=nlstate ; cpt ++) {
       fgets(line, MAXLINE, ficpar);        k=3;
       puts(line);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       fputs(line,ficparo);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
     }        
     ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++)
     estepm=0;          fprintf(ficgp,"+$%d",k+i+1);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     if (estepm==0 || estepm < stepm) estepm=stepm;        
     if (fage <= 2) {        l=3+(nlstate+ndeath)*cpt;
       bage = ageminpar;        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
       fage = agemaxpar;        for (i=1; i< nlstate ; i ++) {
     }          l=3+(nlstate+ndeath)*cpt;
              fprintf(ficgp,"+$%d",l+i+1);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      } 
      }  
     while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    /* proba elementaires */
     fgets(line, MAXLINE, ficpar);    for(i=1,jk=1; i <=nlstate; i++){
     puts(line);      for(k=1; k <=(nlstate+ndeath); k++){
     fputs(line,ficparo);        if (k != i) {
   }          for(j=1; j <=ncovmodel; j++){
   ungetc(c,ficpar);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
              jk++; 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            fprintf(ficgp,"\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
            }
   while((c=getc(ficpar))=='#' && c!= EOF){     }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     puts(line);       for(jk=1; jk <=m; jk++) {
     fputs(line,ficparo);         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
   }         if (ng==2)
   ungetc(c,ficpar);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           else
            fprintf(ficgp,"\nset title \"Probability\"\n");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;         i=1;
          for(k2=1; k2<=nlstate; k2++) {
   fscanf(ficpar,"pop_based=%d\n",&popbased);           k3=i;
   fprintf(ficparo,"pop_based=%d\n",popbased);             for(k=1; k<=(nlstate+ndeath); k++) {
   fprintf(ficres,"pop_based=%d\n",popbased);               if (k != k2){
                 if(ng==2)
   while((c=getc(ficpar))=='#' && c!= EOF){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     ungetc(c,ficpar);               else
     fgets(line, MAXLINE, ficpar);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     puts(line);               ij=1;
     fputs(line,ficparo);               for(j=3; j <=ncovmodel; j++) {
   }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   ungetc(c,ficpar);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                 }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                 else
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
 while((c=getc(ficpar))=='#' && c!= EOF){               
     ungetc(c,ficpar);               for(k1=1; k1 <=nlstate; k1++){   
     fgets(line, MAXLINE, ficpar);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     puts(line);                 ij=1;
     fputs(line,ficparo);                 for(j=3; j <=ncovmodel; j++){
   }                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   ungetc(c,ficpar);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                   }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                   else
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                 fprintf(ficgp,")");
                }
 /*------------ gnuplot -------------*/               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                 i=i+ncovmodel;
 /*------------ free_vector  -------------*/             }
  chdir(path);           } /* end k */
           } /* end k2 */
  free_ivector(wav,1,imx);       } /* end jk */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);     } /* end ng */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       fclose(ficgp); 
  free_ivector(num,1,n);  }  /* end gnuplot */
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);  /*************** Moving average **************/
  fclose(ficres);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
 /*--------- index.htm --------*/    int i, cpt, cptcod;
     int modcovmax =1;
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    int mobilavrange, mob;
     double age;
    
   /*--------------- Prevalence limit --------------*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                               a covariate has 2 modalities */
   strcpy(filerespl,"pl");    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      if(mobilav==1) mobilavrange=5; /* default */
   }      else mobilavrange=mobilav;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      for (age=bage; age<=fage; age++)
   fprintf(ficrespl,"#Prevalence limit\n");        for (i=1; i<=nlstate;i++)
   fprintf(ficrespl,"#Age ");          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   fprintf(ficrespl,"\n");      /* We keep the original values on the extreme ages bage, fage and for 
           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   prlim=matrix(1,nlstate,1,nlstate);         we use a 5 terms etc. until the borders are no more concerned. 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      */ 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (mob=3;mob <=mobilavrange;mob=mob+2){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (i=1; i<=nlstate;i++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   k=0;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   agebase=ageminpar;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   agelim=agemaxpar;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   ftolpl=1.e-10;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   i1=cptcoveff;                }
   if (cptcovn < 1){i1=1;}              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
   for(cptcov=1;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }/* end age */
         k=k+1;      }/* end mob */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    }else return -1;
         fprintf(ficrespl,"\n#******");    return 0;
         for(j=1;j<=cptcoveff;j++)  }/* End movingaverage */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");  
          /************** Forecasting ******************/
         for (age=agebase; age<=agelim; age++){  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* proj1, year, month, day of starting projection 
           fprintf(ficrespl,"%.0f",age );       agemin, agemax range of age
           for(i=1; i<=nlstate;i++)       dateprev1 dateprev2 range of dates during which prevalence is computed
           fprintf(ficrespl," %.5f", prlim[i][i]);       anproj2 year of en of projection (same day and month as proj1).
           fprintf(ficrespl,"\n");    */
         }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       }    int *popage;
     }    double agec; /* generic age */
   fclose(ficrespl);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
   /*------------- h Pij x at various ages ------------*/    double ***p3mat;
      double ***mobaverage;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    char fileresf[FILENAMELENGTH];
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    agelim=AGESUP;
   }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   printf("Computing pij: result on file '%s' \n", filerespij);   
      strcpy(fileresf,"f"); 
   stepsize=(int) (stepm+YEARM-1)/YEARM;    strcat(fileresf,fileres);
   /*if (stepm<=24) stepsize=2;*/    if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
   agelim=AGESUP;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   hstepm=stepsize*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    printf("Computing forecasting: result on file '%s' \n", fileresf);
      fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    if (mobilav!=0) {
         fprintf(ficrespij,"\n#****** ");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(j=1;j<=cptcoveff;j++)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrespij,"******\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
              }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    stepsize=(int) (stepm+YEARM-1)/YEARM;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if (stepm<=12) stepsize=1;
           oldm=oldms;savm=savms;    if(estepm < stepm){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficrespij,"# Age");    }
           for(i=1; i<=nlstate;i++)    else  hstepm=estepm;   
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    hstepm=hstepm/stepm; 
           fprintf(ficrespij,"\n");    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
            for (h=0; h<=nhstepm; h++){                                 fractional in yp1 */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    anprojmean=yp;
             for(i=1; i<=nlstate;i++)    yp2=modf((yp1*12),&yp);
               for(j=1; j<=nlstate+ndeath;j++)    mprojmean=yp;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    yp1=modf((yp2*30.5),&yp);
             fprintf(ficrespij,"\n");    jprojmean=yp;
              }    if(jprojmean==0) jprojmean=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(mprojmean==0) jprojmean=1;
           fprintf(ficrespij,"\n");  
         }    i1=cptcoveff;
     }    if (cptcovn < 1){i1=1;}
   }    
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   fclose(ficrespij);  
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   /*---------- Forecasting ------------------*/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   if((stepm == 1) && (strcmp(model,".")==0)){        k=k+1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        fprintf(ficresf,"\n#******");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        for(j=1;j<=cptcoveff;j++) {
   }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   else{        }
     erreur=108;        fprintf(ficresf,"******\n");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   }        for(j=1; j<=nlstate+ndeath;j++){ 
            for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
   /*---------- Health expectancies and variances ------------*/          fprintf(ficresf," p.%d",j);
         }
   strcpy(filerest,"t");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   strcat(filerest,fileres);          fprintf(ficresf,"\n");
   if((ficrest=fopen(filerest,"w"))==NULL) {          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(filerese,"e");            oldm=oldms;savm=savms;
   strcat(filerese,fileres);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {          
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            for (h=0; h<=nhstepm; h++){
   }              if (h*hstepm/YEARM*stepm ==yearp) {
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
  strcpy(fileresv,"v");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   strcat(fileresv,fileres);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {              } 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);              for(j=1; j<=nlstate+ndeath;j++) {
   }                ppij=0.;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                for(i=1; i<=nlstate;i++) {
   calagedate=-1;                  if (mobilav==1) 
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
   k=0;                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   for(cptcov=1;cptcov<=i1;cptcov++){                  }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  if (h*hstepm/YEARM*stepm== yearp) {
       k=k+1;                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
       fprintf(ficrest,"\n#****** ");                  }
       for(j=1;j<=cptcoveff;j++)                } /* end i */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if (h*hstepm/YEARM*stepm==yearp) {
       fprintf(ficrest,"******\n");                  fprintf(ficresf," %.3f", ppij);
                 }
       fprintf(ficreseij,"\n#****** ");              }/* end j */
       for(j=1;j<=cptcoveff;j++)            } /* end h */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficreseij,"******\n");          } /* end agec */
         } /* end yearp */
       fprintf(ficresvij,"\n#****** ");      } /* end cptcod */
       for(j=1;j<=cptcoveff;j++)    } /* end  cptcov */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         
       fprintf(ficresvij,"******\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fclose(ficresf);
       oldm=oldms;savm=savms;  }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
    /************** Forecasting *****not tested NB*************/
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       oldm=oldms;savm=savms;    
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
        int *popage;
     double calagedatem, agelim, kk1, kk2;
      double *popeffectif,*popcount;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    double ***p3mat,***tabpop,***tabpopprev;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    double ***mobaverage;
       fprintf(ficrest,"\n");    char filerespop[FILENAMELENGTH];
   
       epj=vector(1,nlstate+1);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(age=bage; age <=fage ;age++){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    agelim=AGESUP;
         if (popbased==1) {    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
           for(i=1; i<=nlstate;i++)    
             prlim[i][i]=probs[(int)age][i][k];    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         }    
            
         fprintf(ficrest," %4.0f",age);    strcpy(filerespop,"pop"); 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    strcat(filerespop,fileres);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    if((ficrespop=fopen(filerespop,"w"))==NULL) {
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      printf("Problem with forecast resultfile: %s\n", filerespop);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
           }    }
           epj[nlstate+1] +=epj[j];    printf("Computing forecasting: result on file '%s' \n", filerespop);
         }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
         for(i=1, vepp=0.;i <=nlstate;i++)    if (cptcoveff==0) ncodemax[cptcoveff]=1;
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];    if (mobilav!=0) {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for(j=1;j <=nlstate;j++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrest,"\n");      }
       }    }
     }  
   }    stepsize=(int) (stepm+YEARM-1)/YEARM;
 free_matrix(mint,1,maxwav,1,n);    if (stepm<=12) stepsize=1;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    
     free_vector(weight,1,n);    agelim=AGESUP;
   fclose(ficreseij);    
   fclose(ficresvij);    hstepm=1;
   fclose(ficrest);    hstepm=hstepm/stepm; 
   fclose(ficpar);    
   free_vector(epj,1,nlstate+1);    if (popforecast==1) {
        if((ficpop=fopen(popfile,"r"))==NULL) {
   /*------- Variance limit prevalence------*/          printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   strcpy(fileresvpl,"vpl");      } 
   strcat(fileresvpl,fileres);      popage=ivector(0,AGESUP);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      popeffectif=vector(0,AGESUP);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      popcount=vector(0,AGESUP);
     exit(0);      
   }      i=1;   
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
   k=0;      imx=i;
   for(cptcov=1;cptcov<=i1;cptcov++){      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       for(j=1;j<=cptcoveff;j++)     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        k=k+1;
       fprintf(ficresvpl,"******\n");        fprintf(ficrespop,"\n#******");
              for(j=1;j<=cptcoveff;j++) {
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       oldm=oldms;savm=savms;        }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficrespop,"******\n");
     }        fprintf(ficrespop,"# Age");
  }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
   fclose(ficresvpl);        
         for (cpt=0; cpt<=0;cpt++) { 
   /*---------- End : free ----------------*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          
            for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            nhstepm = nhstepm/hstepm; 
              
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            oldm=oldms;savm=savms;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            for (h=0; h<=nhstepm; h++){
                if (h==(int) (calagedatem+YEARM*cpt)) {
   free_matrix(matcov,1,npar,1,npar);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   free_vector(delti,1,npar);              } 
   free_matrix(agev,1,maxwav,1,imx);              for(j=1; j<=nlstate+ndeath;j++) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   if(erreur >0)                  if (mobilav==1) 
     printf("End of Imach with error or warning %d\n",erreur);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   else   printf("End of Imach\n");                  else {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                    }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                }
   /*printf("Total time was %d uSec.\n", total_usecs);*/                if (h==(int)(calagedatem+12*cpt)){
   /*------ End -----------*/                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
  end:                }
   /* chdir(pathcd);*/              }
  /*system("wgnuplot graph.plt");*/              for(i=1; i<=nlstate;i++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/                kk1=0.;
  /*system("cd ../gp37mgw");*/                  for(j=1; j<=nlstate;j++){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
  strcpy(plotcmd,GNUPLOTPROGRAM);                  }
  strcat(plotcmd," ");                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
  strcat(plotcmd,optionfilegnuplot);              }
  system(plotcmd);  
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
  /*#ifdef windows*/                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   while (z[0] != 'q') {            }
     /* chdir(path); */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          }
     scanf("%s",z);        }
     if (z[0] == 'c') system("./imach");   
     else if (z[0] == 'e') system(optionfilehtm);    /******/
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   /*#endif */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
 }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfile)
   {
     if((fichier=fopen(optionfile,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfile);
       fprintf(ficlog,"Problem with file: %s\n", optionfile);
       return (1);
     }
   
   }
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj;
     int numlinepar=0; /* Current linenumber of parameter file */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char *strt, *strtend;
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strt=asctime(&tm);
   
   /*  printf("Localtime (at start)=%s",strt); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strt);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strt=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a>\n\
    - Date and time at start: %s</ul>\n",\
             version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     fclose(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     if(fileappend(fichtm, optionfilehtm)){
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
       fclose(fichtm);
     }
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     if(fileappend(fichtm,optionfilehtm)){
       fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
       fclose(fichtm);
     }
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.86


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>