Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.92

version 1.41.2.2, 2003/06/13 07:45:28 version 1.92, 2003/06/25 16:30:45
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.92  2003/06/25 16:30:45  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   This program computes Healthy Life Expectancies from    exist so I changed back to asctime which exists.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.91  2003/06/25 15:30:29  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Duplicated warning errors corrected.
   case of a health survey which is our main interest) -2- at least a    (Repository): Elapsed time after each iteration is now output. It
   second wave of interviews ("longitudinal") which measure each change    helps to forecast when convergence will be reached. Elapsed time
   (if any) in individual health status.  Health expectancies are    is stamped in powell.  We created a new html file for the graphs
   computed from the time spent in each health state according to a    concerning matrix of covariance. It has extension -cov.htm.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.90  2003/06/24 12:34:15  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Some bugs corrected for windows. Also, when
   probability to be observed in state j at the second wave    mle=-1 a template is output in file "or"mypar.txt with the design
   conditional to be observed in state i at the first wave. Therefore    of the covariance matrix to be input.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.89  2003/06/24 12:30:52  brouard
   complex model than "constant and age", you should modify the program    (Module): Some bugs corrected for windows. Also, when
   where the markup *Covariates have to be included here again* invites    mle=-1 a template is output in file "or"mypar.txt with the design
   you to do it.  More covariates you add, slower the    of the covariance matrix to be input.
   convergence.  
     Revision 1.88  2003/06/23 17:54:56  brouard
   The advantage of this computer programme, compared to a simple    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.87  2003/06/18 12:26:01  brouard
   intermediate interview, the information is lost, but taken into    Version 0.96
   account using an interpolation or extrapolation.    
     Revision 1.86  2003/06/17 20:04:08  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Change position of html and gnuplot routines and added
   conditional to the observed state i at age x. The delay 'h' can be    routine fileappend.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.85  2003/06/17 13:12:43  brouard
   semester or year) is model as a multinomial logistic.  The hPx    * imach.c (Repository): Check when date of death was earlier that
   matrix is simply the matrix product of nh*stepm elementary matrices    current date of interview. It may happen when the death was just
   and the contribution of each individual to the likelihood is simply    prior to the death. In this case, dh was negative and likelihood
   hPijx.    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
   Also this programme outputs the covariance matrix of the parameters but also    interview.
   of the life expectancies. It also computes the prevalence limits.    (Repository): Because some people have very long ID (first column)
      we changed int to long in num[] and we added a new lvector for
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    memory allocation. But we also truncated to 8 characters (left
            Institut national d'études démographiques, Paris.    truncation)
   This software have been partly granted by Euro-REVES, a concerted action    (Repository): No more line truncation errors.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.84  2003/06/13 21:44:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Replace "freqsummary" at a correct
   can be accessed at http://euroreves.ined.fr/imach .    place. It differs from routine "prevalence" which may be called
   **********************************************************************/    many times. Probs is memory consuming and must be used with
      parcimony.
 #include <math.h>    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.83  2003/06/10 13:39:11  lievre
 #include <unistd.h>    *** empty log message ***
   
 #define MAXLINE 256    Revision 1.82  2003/06/05 15:57:20  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    Add log in  imach.c and  fullversion number is now printed.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80  */
 /*#define DEBUG*/  /*
      Interpolated Markov Chain
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Short summary of the programme:
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    
     This program computes Healthy Life Expectancies from
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 #define NINTERVMAX 8    case of a health survey which is our main interest) -2- at least a
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    second wave of interviews ("longitudinal") which measure each change
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (if any) in individual health status.  Health expectancies are
 #define NCOVMAX 8 /* Maximum number of covariates */    computed from the time spent in each health state according to a
 #define MAXN 20000    model. More health states you consider, more time is necessary to reach the
 #define YEARM 12. /* Number of months per year */    Maximum Likelihood of the parameters involved in the model.  The
 #define AGESUP 130    simplest model is the multinomial logistic model where pij is the
 #define AGEBASE 40    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int erreur; /* Error number */    'age' is age and 'sex' is a covariate. If you want to have a more
 int nvar;    complex model than "constant and age", you should modify the program
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    where the markup *Covariates have to be included here again* invites
 int npar=NPARMAX;    you to do it.  More covariates you add, slower the
 int nlstate=2; /* Number of live states */    convergence.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    The advantage of this computer programme, compared to a simple
 int popbased=0;    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 int *wav; /* Number of waves for this individuual 0 is possible */    intermediate interview, the information is lost, but taken into
 int maxwav; /* Maxim number of waves */    account using an interpolation or extrapolation.  
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    hPijx is the probability to be observed in state i at age x+h
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    conditional to the observed state i at age x. The delay 'h' can be
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    split into an exact number (nh*stepm) of unobserved intermediate
 double jmean; /* Mean space between 2 waves */    states. This elementary transition (by month, quarter,
 double **oldm, **newm, **savm; /* Working pointers to matrices */    semester or year) is modelled as a multinomial logistic.  The hPx
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    matrix is simply the matrix product of nh*stepm elementary matrices
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    and the contribution of each individual to the likelihood is simply
 FILE *ficgp,*ficresprob,*ficpop;    hPijx.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Also this programme outputs the covariance matrix of the parameters but also
  FILE  *ficresvij;    of the life expectancies. It also computes the stable prevalence. 
   char fileresv[FILENAMELENGTH];    
  FILE  *ficresvpl;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   char fileresvpl[FILENAMELENGTH];             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 #define NR_END 1    from the European Union.
 #define FREE_ARG char*    It is copyrighted identically to a GNU software product, ie programme and
 #define FTOL 1.0e-10    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define NRANSI  
 #define ITMAX 200    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define TOL 2.0e-4    
     **********************************************************************/
 #define CGOLD 0.3819660  /*
 #define ZEPS 1.0e-10    main
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    read parameterfile
     read datafile
 #define GOLD 1.618034    concatwav
 #define GLIMIT 100.0    freqsummary
 #define TINY 1.0e-20    if (mle >= 1)
       mlikeli
 static double maxarg1,maxarg2;    print results files
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    if mle==1 
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))       computes hessian
      read end of parameter file: agemin, agemax, bage, fage, estepm
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))        begin-prev-date,...
 #define rint(a) floor(a+0.5)    open gnuplot file
     open html file
 static double sqrarg;    stable prevalence
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)     for age prevalim()
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    h Pij x
     variance of p varprob
 int imx;    forecasting if prevfcast==1 prevforecast call prevalence()
 int stepm;    health expectancies
 /* Stepm, step in month: minimum step interpolation*/    Variance-covariance of DFLE
     prevalence()
 int estepm;     movingaverage()
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    varevsij() 
     if popbased==1 varevsij(,popbased)
 int m,nb;    total life expectancies
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Variance of stable prevalence
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;   end
 double **pmmij, ***probs, ***mobaverage;  */
 double dateintmean=0;  
   
 double *weight;  
 int **s; /* Status */   
 double *agedc, **covar, idx;  #include <math.h>
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #include <stdio.h>
   #include <stdlib.h>
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #include <unistd.h>
 double ftolhess; /* Tolerance for computing hessian */  
   #include <sys/time.h>
 /**************** split *************************/  #include <time.h>
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #include "timeval.h"
 {  
    char *s;                             /* pointer */  #define MAXLINE 256
    int  l1, l2;                         /* length counters */  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    l1 = strlen( path );                 /* length of path */  #define FILENAMELENGTH 132
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  /*#define DEBUG*/
 #ifdef windows  /*#define windows*/
    s = strrchr( path, '\\' );           /* find last / */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #else  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    s = strrchr( path, '/' );            /* find last / */  
 #endif  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    if ( s == NULL ) {                   /* no directory, so use current */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       if ( getwd( dirc ) == NULL ) {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #else  #define NCOVMAX 8 /* Maximum number of covariates */
       extern char       *getcwd( );  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define AGESUP 130
 #endif  #define AGEBASE 40
          return( GLOCK_ERROR_GETCWD );  #ifdef unix
       }  #define DIRSEPARATOR '/'
       strcpy( name, path );             /* we've got it */  #define ODIRSEPARATOR '\\'
    } else {                             /* strip direcotry from path */  #else
       s++;                              /* after this, the filename */  #define DIRSEPARATOR '\\'
       l2 = strlen( s );                 /* length of filename */  #define ODIRSEPARATOR '/'
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #endif
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  /* $Id$ */
       dirc[l1-l2] = 0;                  /* add zero */  /* $State$ */
    }  
    l1 = strlen( dirc );                 /* length of directory */  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
 #ifdef windows  char fullversion[]="$Revision$ $Date$"; 
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 #else  int nvar;
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #endif  int npar=NPARMAX;
    s = strrchr( name, '.' );            /* find last / */  int nlstate=2; /* Number of live states */
    s++;  int ndeath=1; /* Number of dead states */
    strcpy(ext,s);                       /* save extension */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    l1= strlen( name);  int popbased=0;
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  int *wav; /* Number of waves for this individuual 0 is possible */
    finame[l1-l2]= 0;  int maxwav; /* Maxim number of waves */
    return( 0 );                         /* we're done */  int jmin, jmax; /* min, max spacing between 2 waves */
 }  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /******************************************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 void replace(char *s, char*t)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int i;  double jmean; /* Mean space between 2 waves */
   int lg=20;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   i=0;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   lg=strlen(t);  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   for(i=0; i<= lg; i++) {  FILE *ficlog, *ficrespow;
     (s[i] = t[i]);  int globpr; /* Global variable for printing or not */
     if (t[i]== '\\') s[i]='/';  double fretone; /* Only one call to likelihood */
   }  long ipmx; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 int nbocc(char *s, char occ)  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int i,j=0;  FILE *ficresprobmorprev;
   int lg=20;  FILE *fichtm, *fichtmcov; /* Html File */
   i=0;  FILE *ficreseij;
   lg=strlen(s);  char filerese[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  FILE  *ficresvij;
   if  (s[i] == occ ) j++;  char fileresv[FILENAMELENGTH];
   }  FILE  *ficresvpl;
   return j;  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 void cutv(char *u,char *v, char*t, char occ)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH]; 
   int i,lg,j,p=0;  char command[FILENAMELENGTH];
   i=0;  int  outcmd=0;
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   }  char lfileres[FILENAMELENGTH];
   char filelog[FILENAMELENGTH]; /* Log file */
   lg=strlen(t);  char filerest[FILENAMELENGTH];
   for(j=0; j<p; j++) {  char fileregp[FILENAMELENGTH];
     (u[j] = t[j]);  char popfile[FILENAMELENGTH];
   }  
      u[p]='\0';  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
    for(j=0; j<= lg; j++) {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     if (j>=(p+1))(v[j-p-1] = t[j]);  struct timezone tzp;
   }  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /********************** nrerror ********************/  extern long time();
   char strcurr[80], strfor[80];
 void nrerror(char error_text[])  
 {  #define NR_END 1
   fprintf(stderr,"ERREUR ...\n");  #define FREE_ARG char*
   fprintf(stderr,"%s\n",error_text);  #define FTOL 1.0e-10
   exit(1);  
 }  #define NRANSI 
 /*********************** vector *******************/  #define ITMAX 200 
 double *vector(int nl, int nh)  
 {  #define TOL 2.0e-4 
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define CGOLD 0.3819660 
   if (!v) nrerror("allocation failure in vector");  #define ZEPS 1.0e-10 
   return v-nl+NR_END;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 }  
   #define GOLD 1.618034 
 /************************ free vector ******************/  #define GLIMIT 100.0 
 void free_vector(double*v, int nl, int nh)  #define TINY 1.0e-20 
 {  
   free((FREE_ARG)(v+nl-NR_END));  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /************************ivector *******************************/    
 int *ivector(long nl,long nh)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  static double sqrarg;
   if (!v) nrerror("allocation failure in ivector");  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   return v-nl+NR_END;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  
   int imx; 
 /******************free ivector **************************/  int stepm;
 void free_ivector(int *v, long nl, long nh)  /* Stepm, step in month: minimum step interpolation*/
 {  
   free((FREE_ARG)(v+nl-NR_END));  int estepm;
 }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 /******************* imatrix *******************************/  int m,nb;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  long *num;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double **pmmij, ***probs;
   int **m;  double dateintmean=0;
    
   /* allocate pointers to rows */  double *weight;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int **s; /* Status */
   if (!m) nrerror("allocation failure 1 in matrix()");  double *agedc, **covar, idx;
   m += NR_END;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m -= nrl;  
    double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    double ftolhess; /* Tolerance for computing hessian */
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /**************** split *************************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    char  *ss;                            /* pointer */
      int   l1, l2;                         /* length counters */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      l1 = strlen(path );                   /* length of path */
   /* return pointer to array of pointers to rows */    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   return m;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /****************** free_imatrix *************************/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 void free_imatrix(m,nrl,nrh,ncl,nch)      /* get current working directory */
       int **m;      /*    extern  char* getcwd ( char *buf , int len);*/
       long nch,ncl,nrh,nrl;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
      /* free an int matrix allocated by imatrix() */        return( GLOCK_ERROR_GETCWD );
 {      }
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      strcpy( name, path );               /* we've got it */
   free((FREE_ARG) (m+nrl-NR_END));    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /******************* matrix *******************************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 double **matrix(long nrl, long nrh, long ncl, long nch)      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      dirc[l1-l2] = 0;                    /* add zero */
   double **m;    }
     l1 = strlen( dirc );                  /* length of directory */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    /*#ifdef windows
   if (!m) nrerror("allocation failure 1 in matrix()");    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   m += NR_END;  #else
   m -= nrl;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    ss = strrchr( name, '.' );            /* find last / */
   m[nrl] += NR_END;    ss++;
   m[nrl] -= ncl;    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    l2= strlen(ss)+1;
   return m;    strncpy( finame, name, l1-l2);
 }    finame[l1-l2]= 0;
     return( 0 );                          /* we're done */
 /*************************free matrix ************************/  }
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /******************************************/
   free((FREE_ARG)(m+nrl-NR_END));  
 }  void replace_back_to_slash(char *s, char*t)
   {
 /******************* ma3x *******************************/    int i;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    int lg=0;
 {    i=0;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    lg=strlen(t);
   double ***m;    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      if (t[i]== '\\') s[i]='/';
   if (!m) nrerror("allocation failure 1 in matrix()");    }
   m += NR_END;  }
   m -= nrl;  
   int nbocc(char *s, char occ)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int i,j=0;
   m[nrl] += NR_END;    int lg=20;
   m[nrl] -= ncl;    i=0;
     lg=strlen(s);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    return j;
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  void cutv(char *u,char *v, char*t, char occ)
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      /* cuts string t into u and v where u is ended by char occ excluding it
   for (i=nrl+1; i<=nrh; i++) {       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;       gives u="abcedf" and v="ghi2j" */
     for (j=ncl+1; j<=nch; j++)    int i,lg,j,p=0;
       m[i][j]=m[i][j-1]+nlay;    i=0;
   }    for(j=0; j<=strlen(t)-1; j++) {
   return m;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 }    }
   
 /*************************free ma3x ************************/    lg=strlen(t);
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    for(j=0; j<p; j++) {
 {      (u[j] = t[j]);
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));       u[p]='\0';
   free((FREE_ARG)(m+nrl-NR_END));  
 }     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
 /***************** f1dim *************************/    }
 extern int ncom;  }
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  /********************** nrerror ********************/
    
 double f1dim(double x)  void nrerror(char error_text[])
 {  {
   int j;    fprintf(stderr,"ERREUR ...\n");
   double f;    fprintf(stderr,"%s\n",error_text);
   double *xt;    exit(EXIT_FAILURE);
    }
   xt=vector(1,ncom);  /*********************** vector *******************/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double *vector(int nl, int nh)
   f=(*nrfunc)(xt);  {
   free_vector(xt,1,ncom);    double *v;
   return f;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 }    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 /*****************brent *************************/  }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  /************************ free vector ******************/
   int iter;  void free_vector(double*v, int nl, int nh)
   double a,b,d,etemp;  {
   double fu,fv,fw,fx;    free((FREE_ARG)(v+nl-NR_END));
   double ftemp;  }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  /************************ivector *******************************/
    int *ivector(long nl,long nh)
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    int *v;
   x=w=v=bx;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   fw=fv=fx=(*f)(x);    if (!v) nrerror("allocation failure in ivector");
   for (iter=1;iter<=ITMAX;iter++) {    return v-nl+NR_END;
     xm=0.5*(a+b);  }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /******************free ivector **************************/
     printf(".");fflush(stdout);  void free_ivector(int *v, long nl, long nh)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    free((FREE_ARG)(v+nl-NR_END));
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  }
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /************************lvector *******************************/
       *xmin=x;  long *lvector(long nl,long nh)
       return fx;  {
     }    long *v;
     ftemp=fu;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (fabs(e) > tol1) {    if (!v) nrerror("allocation failure in ivector");
       r=(x-w)*(fx-fv);    return v-nl+NR_END;
       q=(x-v)*(fx-fw);  }
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /******************free lvector **************************/
       if (q > 0.0) p = -p;  void free_lvector(long *v, long nl, long nh)
       q=fabs(q);  {
       etemp=e;    free((FREE_ARG)(v+nl-NR_END));
       e=d;  }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /******************* imatrix *******************************/
       else {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         d=p/q;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         u=x+d;  { 
         if (u-a < tol2 || b-u < tol2)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           d=SIGN(tol1,xm-x);    int **m; 
       }    
     } else {    /* allocate pointers to rows */ 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m += NR_END; 
     fu=(*f)(u);    m -= nrl; 
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;    
       SHFT(v,w,x,u)    /* allocate rows and set pointers to them */ 
         SHFT(fv,fw,fx,fu)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         } else {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           if (u < x) a=u; else b=u;    m[nrl] += NR_END; 
           if (fu <= fw || w == x) {    m[nrl] -= ncl; 
             v=w;    
             w=u;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
             fv=fw;    
             fw=fu;    /* return pointer to array of pointers to rows */ 
           } else if (fu <= fv || v == x || v == w) {    return m; 
             v=u;  } 
             fv=fu;  
           }  /****************** free_imatrix *************************/
         }  void free_imatrix(m,nrl,nrh,ncl,nch)
   }        int **m;
   nrerror("Too many iterations in brent");        long nch,ncl,nrh,nrl; 
   *xmin=x;       /* free an int matrix allocated by imatrix() */ 
   return fx;  { 
 }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
 /****************** mnbrak ***********************/  } 
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /******************* matrix *******************************/
             double (*func)(double))  double **matrix(long nrl, long nrh, long ncl, long nch)
 {  {
   double ulim,u,r,q, dum;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double fu;    double **m;
    
   *fa=(*func)(*ax);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fb=(*func)(*bx);    if (!m) nrerror("allocation failure 1 in matrix()");
   if (*fb > *fa) {    m += NR_END;
     SHFT(dum,*ax,*bx,dum)    m -= nrl;
       SHFT(dum,*fb,*fa,dum)  
       }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *cx=(*bx)+GOLD*(*bx-*ax);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   *fc=(*func)(*cx);    m[nrl] += NR_END;
   while (*fb > *fc) {    m[nrl] -= ncl;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    return m;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     ulim=(*bx)+GLIMIT*(*cx-*bx);     */
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /*************************free matrix ************************/
       fu=(*func)(u);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       if (fu < *fc) {  {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           SHFT(*fb,*fc,fu,(*func)(u))    free((FREE_ARG)(m+nrl-NR_END));
           }  }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  /******************* ma3x *******************************/
       fu=(*func)(u);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       fu=(*func)(u);    double ***m;
     }  
     SHFT(*ax,*bx,*cx,u)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       SHFT(*fa,*fb,*fc,fu)    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
 }    m -= nrl;
   
 /*************** linmin ************************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 int ncom;    m[nrl] += NR_END;
 double *pcom,*xicom;    m[nrl] -= ncl;
 double (*nrfunc)(double []);  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double brent(double ax, double bx, double cx,    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
                double (*f)(double), double tol, double *xmin);    m[nrl][ncl] += NR_END;
   double f1dim(double x);    m[nrl][ncl] -= nll;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    for (j=ncl+1; j<=nch; j++) 
               double *fc, double (*func)(double));      m[nrl][j]=m[nrl][j-1]+nlay;
   int j;    
   double xx,xmin,bx,ax;    for (i=nrl+1; i<=nrh; i++) {
   double fx,fb,fa;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
        for (j=ncl+1; j<=nch; j++) 
   ncom=n;        m[i][j]=m[i][j-1]+nlay;
   pcom=vector(1,n);    }
   xicom=vector(1,n);    return m; 
   nrfunc=func;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   for (j=1;j<=n;j++) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     pcom[j]=p[j];    */
     xicom[j]=xi[j];  }
   }  
   ax=0.0;  /*************************free ma3x ************************/
   xx=1.0;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    free((FREE_ARG)(m+nrl-NR_END));
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /***************** f1dim *************************/
     p[j] += xi[j];  extern int ncom; 
   }  extern double *pcom,*xicom;
   free_vector(xicom,1,n);  extern double (*nrfunc)(double []); 
   free_vector(pcom,1,n);   
 }  double f1dim(double x) 
   { 
 /*************** powell ************************/    int j; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    double f;
             double (*func)(double []))    double *xt; 
 {   
   void linmin(double p[], double xi[], int n, double *fret,    xt=vector(1,ncom); 
               double (*func)(double []));    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   int i,ibig,j;    f=(*nrfunc)(xt); 
   double del,t,*pt,*ptt,*xit;    free_vector(xt,1,ncom); 
   double fp,fptt;    return f; 
   double *xits;  } 
   pt=vector(1,n);  
   ptt=vector(1,n);  /*****************brent *************************/
   xit=vector(1,n);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   xits=vector(1,n);  { 
   *fret=(*func)(p);    int iter; 
   for (j=1;j<=n;j++) pt[j]=p[j];    double a,b,d,etemp;
   for (*iter=1;;++(*iter)) {    double fu,fv,fw,fx;
     fp=(*fret);    double ftemp;
     ibig=0;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     del=0.0;    double e=0.0; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);   
     for (i=1;i<=n;i++)    a=(ax < cx ? ax : cx); 
       printf(" %d %.12f",i, p[i]);    b=(ax > cx ? ax : cx); 
     printf("\n");    x=w=v=bx; 
     for (i=1;i<=n;i++) {    fw=fv=fx=(*f)(x); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for (iter=1;iter<=ITMAX;iter++) { 
       fptt=(*fret);      xm=0.5*(a+b); 
 #ifdef DEBUG      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       printf("fret=%lf \n",*fret);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 #endif      printf(".");fflush(stdout);
       printf("%d",i);fflush(stdout);      fprintf(ficlog,".");fflush(ficlog);
       linmin(p,xit,n,fret,func);  #ifdef DEBUG
       if (fabs(fptt-(*fret)) > del) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         del=fabs(fptt-(*fret));      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         ibig=i;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
 #ifdef DEBUG      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       printf("%d %.12e",i,(*fret));        *xmin=x; 
       for (j=1;j<=n;j++) {        return fx; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      } 
         printf(" x(%d)=%.12e",j,xit[j]);      ftemp=fu;
       }      if (fabs(e) > tol1) { 
       for(j=1;j<=n;j++)        r=(x-w)*(fx-fv); 
         printf(" p=%.12e",p[j]);        q=(x-v)*(fx-fw); 
       printf("\n");        p=(x-v)*q-(x-w)*r; 
 #endif        q=2.0*(q-r); 
     }        if (q > 0.0) p = -p; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        q=fabs(q); 
 #ifdef DEBUG        etemp=e; 
       int k[2],l;        e=d; 
       k[0]=1;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       k[1]=-1;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       printf("Max: %.12e",(*func)(p));        else { 
       for (j=1;j<=n;j++)          d=p/q; 
         printf(" %.12e",p[j]);          u=x+d; 
       printf("\n");          if (u-a < tol2 || b-u < tol2) 
       for(l=0;l<=1;l++) {            d=SIGN(tol1,xm-x); 
         for (j=1;j<=n;j++) {        } 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      } else { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         }      } 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       }      fu=(*f)(u); 
 #endif      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
       free_vector(xit,1,n);          SHFT(fv,fw,fx,fu) 
       free_vector(xits,1,n);          } else { 
       free_vector(ptt,1,n);            if (u < x) a=u; else b=u; 
       free_vector(pt,1,n);            if (fu <= fw || w == x) { 
       return;              v=w; 
     }              w=u; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");              fv=fw; 
     for (j=1;j<=n;j++) {              fw=fu; 
       ptt[j]=2.0*p[j]-pt[j];            } else if (fu <= fv || v == x || v == w) { 
       xit[j]=p[j]-pt[j];              v=u; 
       pt[j]=p[j];              fv=fu; 
     }            } 
     fptt=(*func)(ptt);          } 
     if (fptt < fp) {    } 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    nrerror("Too many iterations in brent"); 
       if (t < 0.0) {    *xmin=x; 
         linmin(p,xit,n,fret,func);    return fx; 
         for (j=1;j<=n;j++) {  } 
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /****************** mnbrak ***********************/
         }  
 #ifdef DEBUG  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);              double (*func)(double)) 
         for(j=1;j<=n;j++)  { 
           printf(" %.12e",xit[j]);    double ulim,u,r,q, dum;
         printf("\n");    double fu; 
 #endif   
       }    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
   }    if (*fb > *fa) { 
 }      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
 /**** Prevalence limit ****************/        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    *fc=(*func)(*cx); 
 {    while (*fb > *fc) { 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      r=(*bx-*ax)*(*fb-*fc); 
      matrix by transitions matrix until convergence is reached */      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   int i, ii,j,k;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double min, max, maxmin, maxmax,sumnew=0.;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double **matprod2();      if ((*bx-u)*(u-*cx) > 0.0) { 
   double **out, cov[NCOVMAX], **pmij();        fu=(*func)(u); 
   double **newm;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double agefin, delaymax=50 ; /* Max number of years to converge */        fu=(*func)(u); 
         if (fu < *fc) { 
   for (ii=1;ii<=nlstate+ndeath;ii++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for (j=1;j<=nlstate+ndeath;j++){            SHFT(*fb,*fc,fu,(*func)(u)) 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
    cov[1]=1.;        fu=(*func)(u); 
        } else { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        u=(*cx)+GOLD*(*cx-*bx); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        fu=(*func)(u); 
     newm=savm;      } 
     /* Covariates have to be included here again */      SHFT(*ax,*bx,*cx,u) 
      cov[2]=agefin;        SHFT(*fa,*fb,*fc,fu) 
          } 
       for (k=1; k<=cptcovn;k++) {  } 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /*************** linmin ************************/
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  int ncom; 
       for (k=1; k<=cptcovprod;k++)  double *pcom,*xicom;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double (*nrfunc)(double []); 
    
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  { 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    double brent(double ax, double bx, double cx, 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
     savm=oldm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     oldm=newm;                double *fc, double (*func)(double)); 
     maxmax=0.;    int j; 
     for(j=1;j<=nlstate;j++){    double xx,xmin,bx,ax; 
       min=1.;    double fx,fb,fa;
       max=0.;   
       for(i=1; i<=nlstate; i++) {    ncom=n; 
         sumnew=0;    pcom=vector(1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    xicom=vector(1,n); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    nrfunc=func; 
         max=FMAX(max,prlim[i][j]);    for (j=1;j<=n;j++) { 
         min=FMIN(min,prlim[i][j]);      pcom[j]=p[j]; 
       }      xicom[j]=xi[j]; 
       maxmin=max-min;    } 
       maxmax=FMAX(maxmax,maxmin);    ax=0.0; 
     }    xx=1.0; 
     if(maxmax < ftolpl){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       return prlim;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
   }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
 /*************** transition probabilities ***************/    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      p[j] += xi[j]; 
 {    } 
   double s1, s2;    free_vector(xicom,1,n); 
   /*double t34;*/    free_vector(pcom,1,n); 
   int i,j,j1, nc, ii, jj;  } 
   
     for(i=1; i<= nlstate; i++){  char *asc_diff_time(long time_sec, char ascdiff[])
     for(j=1; j<i;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    long sec_left, days, hours, minutes;
         /*s2 += param[i][j][nc]*cov[nc];*/    days = (time_sec) / (60*60*24);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    sec_left = (time_sec) % (60*60*24);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    hours = (sec_left) / (60*60) ;
       }    sec_left = (sec_left) %(60*60);
       ps[i][j]=s2;    minutes = (sec_left) /60;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    sec_left = (sec_left) % (60);
     }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     for(j=i+1; j<=nlstate+ndeath;j++){    return ascdiff;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /*************** powell ************************/
       }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       ps[i][j]=s2;              double (*func)(double [])) 
     }  { 
   }    void linmin(double p[], double xi[], int n, double *fret, 
     /*ps[3][2]=1;*/                double (*func)(double [])); 
     int i,ibig,j; 
   for(i=1; i<= nlstate; i++){    double del,t,*pt,*ptt,*xit;
      s1=0;    double fp,fptt;
     for(j=1; j<i; j++)    double *xits;
       s1+=exp(ps[i][j]);    int niterf, itmp;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);    pt=vector(1,n); 
     ps[i][i]=1./(s1+1.);    ptt=vector(1,n); 
     for(j=1; j<i; j++)    xit=vector(1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    xits=vector(1,n); 
     for(j=i+1; j<=nlstate+ndeath; j++)    *fret=(*func)(p); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (j=1;j<=n;j++) pt[j]=p[j]; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (*iter=1;;++(*iter)) { 
   } /* end i */      fp=(*fret); 
       ibig=0; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      del=0.0; 
     for(jj=1; jj<= nlstate+ndeath; jj++){      last_time=curr_time;
       ps[ii][jj]=0;      (void) gettimeofday(&curr_time,&tzp);
       ps[ii][ii]=1;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fprintf(ficlog," %d %.12lf",i, p[i]);
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficrespow," %.12lf", p[i]);
      printf("%lf ",ps[ii][jj]);      }
    }      printf("\n");
     printf("\n ");      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");fflush(ficrespow);
     printf("\n ");printf("%lf ",cov[2]);*/      if(*iter <=3){
 /*        tm = *localtime(&curr_time.tv_sec);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        strcpy(strcurr,asctime(&tmf));
   goto end;*/  /*       asctime_r(&tm,strcurr); */
     return ps;        forecast_time=curr_time;
 }        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')
 /**************** Product of 2 matrices ******************/          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        for(niterf=10;niterf<=30;niterf+=10){
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          tmf = *localtime(&forecast_time.tv_sec);
   /* in, b, out are matrice of pointers which should have been initialized  /*      asctime_r(&tmf,strfor); */
      before: only the contents of out is modified. The function returns          strcpy(strfor,asctime(&tmf));
      a pointer to pointers identical to out */          itmp = strlen(strfor);
   long i, j, k;          if(strfor[itmp-1]=='\n')
   for(i=nrl; i<= nrh; i++)          strfor[itmp-1]='\0';
     for(k=ncolol; k<=ncoloh; k++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         out[i][k] +=in[i][j]*b[j][k];        }
       }
   return out;      for (i=1;i<=n;i++) { 
 }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   #ifdef DEBUG
 /************* Higher Matrix Product ***************/        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #endif
 {        printf("%d",i);fflush(stdout);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        fprintf(ficlog,"%d",i);fflush(ficlog);
      duration (i.e. until        linmin(p,xit,n,fret,func); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        if (fabs(fptt-(*fret)) > del) { 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          del=fabs(fptt-(*fret)); 
      (typically every 2 years instead of every month which is too big).          ibig=i; 
      Model is determined by parameters x and covariates have to be        } 
      included manually here.  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
      */        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   int i, j, d, h, k;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double **out, cov[NCOVMAX];          printf(" x(%d)=%.12e",j,xit[j]);
   double **newm;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   /* Hstepm could be zero and should return the unit matrix */        for(j=1;j<=n;j++) {
   for (i=1;i<=nlstate+ndeath;i++)          printf(" p=%.12e",p[j]);
     for (j=1;j<=nlstate+ndeath;j++){          fprintf(ficlog," p=%.12e",p[j]);
       oldm[i][j]=(i==j ? 1.0 : 0.0);        }
       po[i][j][0]=(i==j ? 1.0 : 0.0);        printf("\n");
     }        fprintf(ficlog,"\n");
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #endif
   for(h=1; h <=nhstepm; h++){      } 
     for(d=1; d <=hstepm; d++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       newm=savm;  #ifdef DEBUG
       /* Covariates have to be included here again */        int k[2],l;
       cov[1]=1.;        k[0]=1;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        k[1]=-1;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        printf("Max: %.12e",(*func)(p));
       for (k=1; k<=cptcovage;k++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for (j=1;j<=n;j++) {
       for (k=1; k<=cptcovprod;k++)          printf(" %.12e",p[j]);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          fprintf(ficlog," %.12e",p[j]);
         }
         printf("\n");
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        fprintf(ficlog,"\n");
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        for(l=0;l<=1;l++) {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          for (j=1;j<=n;j++) {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       savm=oldm;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       oldm=newm;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }          }
     for(i=1; i<=nlstate+ndeath; i++)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for(j=1;j<=nlstate+ndeath;j++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         po[i][j][h]=newm[i][j];        }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  #endif
          */  
       }  
   } /* end h */        free_vector(xit,1,n); 
   return po;        free_vector(xits,1,n); 
 }        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
         return; 
 /*************** log-likelihood *************/      } 
 double func( double *x)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 {      for (j=1;j<=n;j++) { 
   int i, ii, j, k, mi, d, kk;        ptt[j]=2.0*p[j]-pt[j]; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        xit[j]=p[j]-pt[j]; 
   double **out;        pt[j]=p[j]; 
   double sw; /* Sum of weights */      } 
   double lli; /* Individual log likelihood */      fptt=(*func)(ptt); 
   int s1, s2;      if (fptt < fp) { 
   long ipmx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   /*extern weight */        if (t < 0.0) { 
   /* We are differentiating ll according to initial status */          linmin(p,xit,n,fret,func); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          for (j=1;j<=n;j++) { 
   /*for(i=1;i<imx;i++)            xi[j][ibig]=xi[j][n]; 
     printf(" %d\n",s[4][i]);            xi[j][n]=xit[j]; 
   */          }
   cov[1]=1.;  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(k=1; k<=nlstate; k++) ll[k]=0.;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          for(j=1;j<=n;j++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            printf(" %.12e",xit[j]);
     for(mi=1; mi<= wav[i]-1; mi++){            fprintf(ficlog," %.12e",xit[j]);
       for (ii=1;ii<=nlstate+ndeath;ii++)          }
         for (j=1;j<=nlstate+ndeath;j++){          printf("\n");
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog,"\n");
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
         }        }
       for(d=0; d<dh[mi][i]; d++){      } 
         newm=savm;    } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  } 
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /**** Prevalence limit (stable prevalence)  ****************/
         }  
          double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         savm=oldm;       matrix by transitions matrix until convergence is reached */
         oldm=newm;  
            int i, ii,j,k;
            double min, max, maxmin, maxmax,sumnew=0.;
       } /* end mult */    double **matprod2();
          double **out, cov[NCOVMAX], **pmij();
       s1=s[mw[mi][i]][i];    double **newm;
       s2=s[mw[mi+1][i]][i];    double agefin, delaymax=50 ; /* Max number of years to converge */
       if( s2 > nlstate){  
         /* i.e. if s2 is a death state and if the date of death is known then the contribution    for (ii=1;ii<=nlstate+ndeath;ii++)
            to the likelihood is the probability to die between last step unit time and current      for (j=1;j<=nlstate+ndeath;j++){
            step unit time, which is also the differences between probability to die before dh        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            and probability to die before dh-stepm .      }
            In version up to 0.92 likelihood was computed  
            as if date of death was unknown. Death was treated as any other     cov[1]=1.;
            health state: the date of the interview describes the actual state   
            and not the date of a change in health state. The former idea was   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            to consider that at each interview the state was recorded    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
            (healthy, disable or death) and IMaCh was corrected; but when we      newm=savm;
            introduced the exact date of death then we should have modified      /* Covariates have to be included here again */
            the contribution of an exact death to the likelihood. This new       cov[2]=agefin;
            contribution is smaller and very dependent of the step unit    
            stepm. It is no more the probability to die between last interview        for (k=1; k<=cptcovn;k++) {
            and month of death but the probability to survive from last          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            interview up to one month before death multiplied by the          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
            probability to die within a month. Thanks to Chris        }
            Jackson for correcting this bug.  Former versions increased        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            mortality artificially. The bad side is that we add another loop        for (k=1; k<=cptcovprod;k++)
            which slows down the processing. The difference can be up to 10%          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            lower mortality.  
         */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         lli=log(out[s1][s2] - savm[s1][s2]);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       }else{        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       }      savm=oldm;
       ipmx +=1;      oldm=newm;
       sw += weight[i];      maxmax=0.;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(j=1;j<=nlstate;j++){
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/        min=1.;
     } /* end of wave */        max=0.;
   } /* end of individual */        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          prlim[i][j]= newm[i][j]/(1-sumnew);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          max=FMAX(max,prlim[i][j]);
   /*exit(0);*/          min=FMIN(min,prlim[i][j]);
   return -l;        }
 }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
       }
 /*********** Maximum Likelihood Estimation ***************/      if(maxmax < ftolpl){
         return prlim;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      }
 {    }
   int i,j, iter;  }
   double **xi,*delti;  
   double fret;  /*************** transition probabilities ***************/ 
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for (j=1;j<=npar;j++)  {
       xi[i][j]=(i==j ? 1.0 : 0.0);    double s1, s2;
   printf("Powell\n");    /*double t34;*/
   powell(p,xi,npar,ftol,&iter,&fret,func);    int i,j,j1, nc, ii, jj;
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      for(i=1; i<= nlstate; i++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }          /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /**** Computes Hessian and covariance matrix ***/          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        }
 {        ps[i][j]=s2;
   double  **a,**y,*x,pd;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   double **hess;      }
   int i, j,jk;      for(j=i+1; j<=nlstate+ndeath;j++){
   int *indx;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double hessii(double p[], double delta, int theta, double delti[]);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   double hessij(double p[], double delti[], int i, int j);        }
   void lubksb(double **a, int npar, int *indx, double b[]) ;        ps[i][j]=s2;
   void ludcmp(double **a, int npar, int *indx, double *d) ;      }
     }
   hess=matrix(1,npar,1,npar);      /*ps[3][2]=1;*/
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    for(i=1; i<= nlstate; i++){
   for (i=1;i<=npar;i++){       s1=0;
     printf("%d",i);fflush(stdout);      for(j=1; j<i; j++)
     hess[i][i]=hessii(p,ftolhess,i,delti);        s1+=exp(ps[i][j]);
     /*printf(" %f ",p[i]);*/      for(j=i+1; j<=nlstate+ndeath; j++)
     /*printf(" %lf ",hess[i][i]);*/        s1+=exp(ps[i][j]);
   }      ps[i][i]=1./(s1+1.);
        for(j=1; j<i; j++)
   for (i=1;i<=npar;i++) {        ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (j=1;j<=npar;j++)  {      for(j=i+1; j<=nlstate+ndeath; j++)
       if (j>i) {        ps[i][j]= exp(ps[i][j])*ps[i][i];
         printf(".%d%d",i,j);fflush(stdout);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         hess[i][j]=hessij(p,delti,i,j);    } /* end i */
         hess[j][i]=hess[i][j];      
         /*printf(" %lf ",hess[i][j]);*/    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }      for(jj=1; jj<= nlstate+ndeath; jj++){
     }        ps[ii][jj]=0;
   }        ps[ii][ii]=1;
   printf("\n");      }
     }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
    
   a=matrix(1,npar,1,npar);    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   y=matrix(1,npar,1,npar);      for(jj=1; jj<= nlstate+ndeath; jj++){
   x=vector(1,npar);       printf("%lf ",ps[ii][jj]);
   indx=ivector(1,npar);     }
   for (i=1;i<=npar;i++)      printf("\n ");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      }
   ludcmp(a,npar,indx,&pd);      printf("\n ");printf("%lf ",cov[2]);*/
   /*
   for (j=1;j<=npar;j++) {    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     for (i=1;i<=npar;i++) x[i]=0;    goto end;*/
     x[j]=1;      return ps;
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /**************** Product of 2 matrices ******************/
     }  
   }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
   printf("\n#Hessian matrix#\n");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for (i=1;i<=npar;i++) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for (j=1;j<=npar;j++) {    /* in, b, out are matrice of pointers which should have been initialized 
       printf("%.3e ",hess[i][j]);       before: only the contents of out is modified. The function returns
     }       a pointer to pointers identical to out */
     printf("\n");    long i, j, k;
   }    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   /* Recompute Inverse */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   for (i=1;i<=npar;i++)          out[i][k] +=in[i][j]*b[j][k];
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    return out;
   }
   /*  printf("\n#Hessian matrix recomputed#\n");  
   
   for (j=1;j<=npar;j++) {  /************* Higher Matrix Product ***************/
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    /* Computes the transition matrix starting at age 'age' over 
       y[i][j]=x[i];       'nhstepm*hstepm*stepm' months (i.e. until
       printf("%.3e ",y[i][j]);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
     printf("\n");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   }       (typically every 2 years instead of every month which is too big 
   */       for the memory).
        Model is determined by parameters x and covariates have to be 
   free_matrix(a,1,npar,1,npar);       included manually here. 
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);       */
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);    int i, j, d, h, k;
     double **out, cov[NCOVMAX];
     double **newm;
 }  
     /* Hstepm could be zero and should return the unit matrix */
 /*************** hessian matrix ****************/    for (i=1;i<=nlstate+ndeath;i++)
 double hessii( double x[], double delta, int theta, double delti[])      for (j=1;j<=nlstate+ndeath;j++){
 {        oldm[i][j]=(i==j ? 1.0 : 0.0);
   int i;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   int l=1, lmax=20;      }
   double k1,k2;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double p2[NPARMAX+1];    for(h=1; h <=nhstepm; h++){
   double res;      for(d=1; d <=hstepm; d++){
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        newm=savm;
   double fx;        /* Covariates have to be included here again */
   int k=0,kmax=10;        cov[1]=1.;
   double l1;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   fx=func(x);        for (k=1; k<=cptcovage;k++)
   for (i=1;i<=npar;i++) p2[i]=x[i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(l=0 ; l <=lmax; l++){        for (k=1; k<=cptcovprod;k++)
     l1=pow(10,l);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       p2[theta]=x[theta] +delt;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       k1=func(p2)-fx;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       p2[theta]=x[theta]-delt;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       k2=func(p2)-fx;        savm=oldm;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        oldm=newm;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      }
            for(i=1; i<=nlstate+ndeath; i++)
 #ifdef DEBUG        for(j=1;j<=nlstate+ndeath;j++) {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          po[i][j][h]=newm[i][j];
 #endif          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */           */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        }
         k=kmax;    } /* end h */
       }    return po;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  }
         k=kmax; l=lmax*10.;  
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*************** log-likelihood *************/
         delts=delt;  double func( double *x)
       }  {
     }    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   delti[theta]=delts;    double **out;
   return res;    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
 }    int s1, s2;
     double bbh, survp;
 double hessij( double x[], double delti[], int thetai,int thetaj)    long ipmx;
 {    /*extern weight */
   int i;    /* We are differentiating ll according to initial status */
   int l=1, l1, lmax=20;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double k1,k2,k3,k4,res,fx;    /*for(i=1;i<imx;i++) 
   double p2[NPARMAX+1];      printf(" %d\n",s[4][i]);
   int k;    */
     cov[1]=1.;
   fx=func(x);  
   for (k=1; k<=2; k++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;    if(mle==1){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     k1=func(p2)-fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetai]=x[thetai]+delti[thetai]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            for (j=1;j<=nlstate+ndeath;j++){
     k2=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]-delti[thetai]/k;            }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          for(d=0; d<dh[mi][i]; d++){
     k3=func(p2)-fx;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetai]=x[thetai]-delti[thetai]/k;            for (kk=1; kk<=cptcovage;kk++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     k4=func(p2)-fx;            }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 #ifdef DEBUG                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            savm=oldm;
 #endif            oldm=newm;
   }          } /* end mult */
   return res;        
 }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
 /************** Inverse of matrix **************/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 void ludcmp(double **a, int n, int *indx, double *d)           * (in months) between two waves is not a multiple of stepm, we rounded to 
 {           * the nearest (and in case of equal distance, to the lowest) interval but now
   int i,imax,j,k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double big,dum,sum,temp;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   double *vv;           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   vv=vector(1,n);           * -stepm/2 to stepm/2 .
   *d=1.0;           * For stepm=1 the results are the same as for previous versions of Imach.
   for (i=1;i<=n;i++) {           * For stepm > 1 the results are less biased than in previous versions. 
     big=0.0;           */
     for (j=1;j<=n;j++)          s1=s[mw[mi][i]][i];
       if ((temp=fabs(a[i][j])) > big) big=temp;          s2=s[mw[mi+1][i]][i];
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          bbh=(double)bh[mi][i]/(double)stepm; 
     vv[i]=1.0/big;          /* bias is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   for (j=1;j<=n;j++) {           */
     for (i=1;i<j;i++) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       sum=a[i][j];          if( s2 > nlstate){ 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       a[i][j]=sum;               to the likelihood is the probability to die between last step unit time and current 
     }               step unit time, which is also the differences between probability to die before dh 
     big=0.0;               and probability to die before dh-stepm . 
     for (i=j;i<=n;i++) {               In version up to 0.92 likelihood was computed
       sum=a[i][j];          as if date of death was unknown. Death was treated as any other
       for (k=1;k<j;k++)          health state: the date of the interview describes the actual state
         sum -= a[i][k]*a[k][j];          and not the date of a change in health state. The former idea was
       a[i][j]=sum;          to consider that at each interview the state was recorded
       if ( (dum=vv[i]*fabs(sum)) >= big) {          (healthy, disable or death) and IMaCh was corrected; but when we
         big=dum;          introduced the exact date of death then we should have modified
         imax=i;          the contribution of an exact death to the likelihood. This new
       }          contribution is smaller and very dependent of the step unit
     }          stepm. It is no more the probability to die between last interview
     if (j != imax) {          and month of death but the probability to survive from last
       for (k=1;k<=n;k++) {          interview up to one month before death multiplied by the
         dum=a[imax][k];          probability to die within a month. Thanks to Chris
         a[imax][k]=a[j][k];          Jackson for correcting this bug.  Former versions increased
         a[j][k]=dum;          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
       *d = -(*d);          lower mortality.
       vv[imax]=vv[j];            */
     }            lli=log(out[s1][s2] - savm[s1][s2]);
     indx[j]=imax;          }else{
     if (a[j][j] == 0.0) a[j][j]=TINY;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     if (j != n) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       dum=1.0/(a[j][j]);          } 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   free_vector(vv,1,n);  /* Doesn't work */          ipmx +=1;
 ;          sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 void lubksb(double **a, int n, int *indx, double b[])      } /* end of individual */
 {    }  else if(mle==2){
   int i,ii=0,ip,j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   for (i=1;i<=n;i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     ip=indx[i];            for (j=1;j<=nlstate+ndeath;j++){
     sum=b[ip];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[ip]=b[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (ii)            }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          for(d=0; d<=dh[mi][i]; d++){
     else if (sum) ii=i;            newm=savm;
     b[i]=sum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   for (i=n;i>=1;i--) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     sum=b[i];            }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     b[i]=sum/a[i][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************ Frequencies ********************/        
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 {  /* Some frequencies */          /* But now since version 0.9 we anticipate for bias and large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double ***freq; /* Frequencies */           * the nearest (and in case of equal distance, to the lowest) interval but now
   double *pp;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double pos, k2, dateintsum=0,k2cpt=0;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   FILE *ficresp;           * probability in order to take into account the bias as a fraction of the way
   char fileresp[FILENAMELENGTH];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   pp=vector(1,nlstate);           * For stepm=1 the results are the same as for previous versions of Imach.
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * For stepm > 1 the results are less biased than in previous versions. 
   strcpy(fileresp,"p");           */
   strcat(fileresp,fileres);          s1=s[mw[mi][i]][i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {          s2=s[mw[mi+1][i]][i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);          bbh=(double)bh[mi][i]/(double)stepm; 
     exit(0);          /* bias is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           */
   j1=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   j=cptcoveff;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
   for(k1=1; k1<=j;k1++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     for(i1=1; i1<=ncodemax[k1];i1++){          ipmx +=1;
       j1++;          sw += weight[i];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         scanf("%d", i);*/        } /* end of wave */
       for (i=-1; i<=nlstate+ndeath; i++)        } /* end of individual */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      }  else if(mle==3){  /* exponential inter-extrapolation */
           for(m=agemin; m <= agemax+3; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             freq[i][jk][m]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       dateintsum=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
       k2cpt=0;            for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         bool=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)          for(d=0; d<dh[mi][i]; d++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            newm=savm;
               bool=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         if (bool==1) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if ((k2>=dateprev1) && (k2<=dateprev2)) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               if(agev[m][i]==0) agev[m][i]=agemax+1;            savm=oldm;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            oldm=newm;
               if (m<lastpass) {          } /* end mult */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               }          /* But now since version 0.9 we anticipate for bias and large stepm.
                         * If stepm is larger than one month (smallest stepm) and if the exact delay 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 dateintsum=dateintsum+k2;           * the nearest (and in case of equal distance, to the lowest) interval but now
                 k2cpt++;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
               }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             }           * probability in order to take into account the bias as a fraction of the way
           }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
       }           * For stepm=1 the results are the same as for previous versions of Imach.
                   * For stepm > 1 the results are less biased than in previous versions. 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);           */
           s1=s[mw[mi][i]][i];
       if  (cptcovn>0) {          s2=s[mw[mi+1][i]][i];
         fprintf(ficresp, "\n#********** Variable ");          bbh=(double)bh[mi][i]/(double)stepm; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /* bias is positive if real duration
         fprintf(ficresp, "**********\n#");           * is higher than the multiple of stepm and negative otherwise.
       }           */
       for(i=1; i<=nlstate;i++)          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       fprintf(ficresp, "\n");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                /*if(lli ==000.0)*/
       for(i=(int)agemin; i <= (int)agemax+3; i++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if(i==(int)agemax+3)          ipmx +=1;
           printf("Total");          sw += weight[i];
         else          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           printf("Age %d", i);        } /* end of wave */
         for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1, pos=0; m <=0 ; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             pos += freq[jk][m][i];            for (j=1;j<=nlstate+ndeath;j++){
           if(pp[jk]>=1.e-10)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           else            }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             pp[jk] += freq[jk][m][i];            }
         }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1,pos=0; jk <=nlstate ; jk++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           pos += pp[jk];            savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           if(pos>=1.e-5)          } /* end mult */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        
           else          s1=s[mw[mi][i]][i];
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          s2=s[mw[mi+1][i]][i];
           if( i <= (int) agemax){          if( s2 > nlstate){ 
             if(pos>=1.e-5){            lli=log(out[s1][s2] - savm[s1][s2]);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          }else{
               probs[i][jk][j1]= pp[jk]/pos;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          }
             }          ipmx +=1;
             else          sw += weight[i];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
              } /* end of individual */
         for(jk=-1; jk <=nlstate+ndeath; jk++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           for(m=-1; m <=nlstate+ndeath; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(i <= (int) agemax)        for(mi=1; mi<= wav[i]-1; mi++){
           fprintf(ficresp,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
         printf("\n");            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   dateintmean=dateintsum/k2cpt;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   fclose(ficresp);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            for (kk=1; kk<=cptcovage;kk++) {
   free_vector(pp,1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   /* End of Freq */          
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /************ Prevalence ********************/            savm=oldm;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            oldm=newm;
 {  /* Some frequencies */          } /* end mult */
          
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          s1=s[mw[mi][i]][i];
   double ***freq; /* Frequencies */          s2=s[mw[mi+1][i]][i];
   double *pp;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double pos, k2;          ipmx +=1;
           sw += weight[i];
   pp=vector(1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          } /* end of wave */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      } /* end of individual */
   j1=0;    } /* End of if */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   j=cptcoveff;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      return -l;
  for(k1=1; k1<=j;k1++){  }
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /*************** log-likelihood *************/
    double funcone( double *x)
       for (i=-1; i<=nlstate+ndeath; i++)    {
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /* Same as likeli but slower because of a lot of printf and if */
           for(m=agemin; m <= agemax+3; m++)    int i, ii, j, k, mi, d, kk;
             freq[i][jk][m]=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
          double **out;
       for (i=1; i<=imx; i++) {    double lli; /* Individual log likelihood */
         bool=1;    double llt;
         if  (cptcovn>0) {    int s1, s2;
           for (z1=1; z1<=cptcoveff; z1++)    double bbh, survp;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /*extern weight */
               bool=0;    /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         if (bool==1) {    /*for(i=1;i<imx;i++) 
           for(m=firstpass; m<=lastpass; m++){      printf(" %d\n",s[4][i]);
             k2=anint[m][i]+(mint[m][i]/12.);    */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    cov[1]=1.;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    for(k=1; k<=nlstate; k++) ll[k]=0.;
               if (m<lastpass)  
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               else      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for(mi=1; mi<= wav[i]-1; mi++){
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        for (ii=1;ii<=nlstate+ndeath;ii++)
             }          for (j=1;j<=nlstate+ndeath;j++){
           }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
         for(i=(int)agemin; i <= (int)agemax+3; i++){        for(d=0; d<dh[mi][i]; d++){
           for(jk=1; jk <=nlstate ; jk++){          newm=savm;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               pp[jk] += freq[jk][m][i];          for (kk=1; kk<=cptcovage;kk++) {
           }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(jk=1; jk <=nlstate ; jk++){          }
             for(m=-1, pos=0; m <=0 ; m++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pos += freq[jk][m][i];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }          savm=oldm;
                  oldm=newm;
          for(jk=1; jk <=nlstate ; jk++){        } /* end mult */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        
              pp[jk] += freq[jk][m][i];        s1=s[mw[mi][i]][i];
          }        s2=s[mw[mi+1][i]][i];
                  bbh=(double)bh[mi][i]/(double)stepm; 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
          for(jk=1; jk <=nlstate ; jk++){                   */
            if( i <= (int) agemax){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
              if(pos>=1.e-5){          lli=log(out[s1][s2] - savm[s1][s2]);
                probs[i][jk][j1]= pp[jk]/pos;        } else if (mle==1){
              }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
            }        } else if(mle==2){
          }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                  } else if(mle==3){  /* exponential inter-extrapolation */
         }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   }          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
            lli=log(out[s1][s2]); /* Original formula */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        } /* End of if */
   free_vector(pp,1,nlstate);        ipmx +=1;
          sw += weight[i];
 }  /* End of Freq */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 /************* Waves Concatenation ***************/        if(globpr){
           fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)   %10.6f %10.6f %10.6f ", \
 {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
      Death is a valid wave (if date is known).          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            llt +=ll[k]*gipmx/gsw;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
      and mw[mi+1][i]. dh depends on stepm.          }
      */          fprintf(ficresilk," %10.6f\n", -llt);
         }
   int i, mi, m;      } /* end of wave */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    } /* end of individual */
      double sum=0., jmean=0.;*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int j, k=0,jk, ju, jl;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double sum=0.;    if(globpr==0){ /* First time we count the contributions and weights */
   jmin=1e+5;      gipmx=ipmx;
   jmax=-1;      gsw=sw;
   jmean=0.;    }
   for(i=1; i<=imx; i++){    return -l;
     mi=0;  }
     m=firstpass;  
     while(s[m][i] <= nlstate){  char *subdirf(char fileres[])
       if(s[m][i]>=1)  {
         mw[++mi][i]=m;    /* Caution optionfilefiname is hidden */
       if(m >=lastpass)    strcpy(tmpout,optionfilefiname);
         break;    strcat(tmpout,"/"); /* Add to the right */
       else    strcat(tmpout,fileres);
         m++;    return tmpout;
     }/* end while */  }
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */  char *subdirf2(char fileres[], char *preop)
       /* if(mi==0)  never been interviewed correctly before death */  {
          /* Only death is a correct wave */    
       mw[mi][i]=m;    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     strcat(tmpout,preop);
     wav[i]=mi;    strcat(tmpout,fileres);
     if(mi==0)    return tmpout;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  }
   }  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
   for(i=1; i<=imx; i++){    
     for(mi=1; mi<wav[i];mi++){    strcpy(tmpout,optionfilefiname);
       if (stepm <=0)    strcat(tmpout,"/");
         dh[mi][i]=1;    strcat(tmpout,preop);
       else{    strcat(tmpout,preop2);
         if (s[mw[mi+1][i]][i] > nlstate) {    strcat(tmpout,fileres);
           if (agedc[i] < 2*AGESUP) {    return tmpout;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  }
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           if (j >= jmax) jmax=j;  {
           if (j <= jmin) jmin=j;    /* This routine should help understanding what is done with 
           sum=sum+j;       the selection of individuals/waves and
           /*if (j<0) printf("j=%d num=%d \n",j,i); */       to check the exact contribution to the likelihood.
           }       Plotting could be done.
         }     */
         else{    int k;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;    if(*globpri !=0){ /* Just counts and sums, no printings */
           if (j >= jmax) jmax=j;      strcpy(fileresilk,"ilk"); 
           else if (j <= jmin)jmin=j;      strcat(fileresilk,fileres);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           sum=sum+j;        printf("Problem with resultfile: %s\n", fileresilk);
         }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         jk= j/stepm;      }
         jl= j -jk*stepm;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         ju= j -(jk+1)*stepm;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         if(jl <= -ju)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
           dh[mi][i]=jk;      for(k=1; k<=nlstate; k++) 
         else        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           dh[mi][i]=jk+1;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         if(dh[mi][i]==0)    }
           dh[mi][i]=1; /* At least one step */  
       }    *fretone=(*funcone)(p);
     }    if(*globpri !=0){
   }      fclose(ficresilk);
   jmean=sum/k;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      fflush(fichtm); 
  }    } 
 /*********** Tricode ****************************/    return;
 void tricode(int *Tvar, int **nbcode, int imx)  }
 {  
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;  /*********** Maximum Likelihood Estimation ***************/
   cptcoveff=0;  
    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for (k=0; k<19; k++) Ndum[k]=0;  {
   for (k=1; k<=7; k++) ncodemax[k]=0;    int i,j, iter;
     double **xi;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double fret;
     for (i=1; i<=imx; i++) {    double fretone; /* Only one call to likelihood */
       ij=(int)(covar[Tvar[j]][i]);    char filerespow[FILENAMELENGTH];
       Ndum[ij]++;    xi=matrix(1,npar,1,npar);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    for (i=1;i<=npar;i++)
       if (ij > cptcode) cptcode=ij;      for (j=1;j<=npar;j++)
     }        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for (i=0; i<=cptcode; i++) {    strcpy(filerespow,"pow"); 
       if(Ndum[i]!=0) ncodemax[j]++;    strcat(filerespow,fileres);
     }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     ij=1;      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     for (i=1; i<=ncodemax[j]; i++) {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for (k=0; k<=19; k++) {    for (i=1;i<=nlstate;i++)
         if (Ndum[k] != 0) {      for(j=1;j<=nlstate+ndeath;j++)
           nbcode[Tvar[j]][ij]=k;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
              fprintf(ficrespow,"\n");
           ij++;  
         }    powell(p,xi,npar,ftol,&iter,&fret,func);
         if (ij > ncodemax[j]) break;  
       }      fclose(ficrespow);
     }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   }      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
  for (k=0; k<19; k++) Ndum[k]=0;  
   }
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];  /**** Computes Hessian and covariance matrix ***/
       Ndum[ij]++;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     }  {
     double  **a,**y,*x,pd;
  ij=1;    double **hess;
  for (i=1; i<=10; i++) {    int i, j,jk;
    if((Ndum[i]!=0) && (i<=ncovcol)){    int *indx;
      Tvaraff[ij]=i;  
      ij++;    double hessii(double p[], double delta, int theta, double delti[]);
    }    double hessij(double p[], double delti[], int i, int j);
  }    void lubksb(double **a, int npar, int *indx, double b[]) ;
      void ludcmp(double **a, int npar, int *indx, double *d) ;
     cptcoveff=ij-1;  
 }    hess=matrix(1,npar,1,npar);
   
 /*********** Health Expectancies ****************/    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
 {      fprintf(ficlog,"%d",i);fflush(ficlog);
   /* Health expectancies */      hess[i][i]=hessii(p,ftolhess,i,delti);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      /*printf(" %f ",p[i]);*/
   double age, agelim, hf;      /*printf(" %lf ",hess[i][i]);*/
   double ***p3mat,***varhe;    }
   double **dnewm,**doldm;    
   double *xp;    for (i=1;i<=npar;i++) {
   double **gp, **gm;      for (j=1;j<=npar;j++)  {
   double ***gradg, ***trgradg;        if (j>i) { 
   int theta;          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          hess[i][j]=hessij(p,delti,i,j);
   xp=vector(1,npar);          hess[j][i]=hess[i][j];    
   dnewm=matrix(1,nlstate*2,1,npar);          /*printf(" %lf ",hess[i][j]);*/
   doldm=matrix(1,nlstate*2,1,nlstate*2);        }
        }
   fprintf(ficreseij,"# Health expectancies\n");    }
   fprintf(ficreseij,"# Age");    printf("\n");
   for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n");
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficreseij,"\n");    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   if(estepm < stepm){    a=matrix(1,npar,1,npar);
     printf ("Problem %d lower than %d\n",estepm, stepm);    y=matrix(1,npar,1,npar);
   }    x=vector(1,npar);
   else  hstepm=estepm;      indx=ivector(1,npar);
   /* We compute the life expectancy from trapezoids spaced every estepm months    for (i=1;i<=npar;i++)
    * This is mainly to measure the difference between two models: for example      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
    * if stepm=24 months pijx are given only every 2 years and by summing them    ludcmp(a,npar,indx,&pd);
    * we are calculating an estimate of the Life Expectancy assuming a linear  
    * progression inbetween and thus overestimating or underestimating according    for (j=1;j<=npar;j++) {
    * to the curvature of the survival function. If, for the same date, we      for (i=1;i<=npar;i++) x[i]=0;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      x[j]=1;
    * to compare the new estimate of Life expectancy with the same linear      lubksb(a,npar,indx,x);
    * hypothesis. A more precise result, taking into account a more precise      for (i=1;i<=npar;i++){ 
    * curvature will be obtained if estepm is as small as stepm. */        matcov[i][j]=x[i];
       }
   /* For example we decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    printf("\n#Hessian matrix#\n");
      nstepm is the number of stepm from age to agelin.    fprintf(ficlog,"\n#Hessian matrix#\n");
      Look at hpijx to understand the reason of that which relies in memory size    for (i=1;i<=npar;i++) { 
      and note for a fixed period like estepm months */      for (j=1;j<=npar;j++) { 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        printf("%.3e ",hess[i][j]);
      survival function given by stepm (the optimization length). Unfortunately it        fprintf(ficlog,"%.3e ",hess[i][j]);
      means that if the survival funtion is printed only each two years of age and if      }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      printf("\n");
      results. So we changed our mind and took the option of the best precision.      fprintf(ficlog,"\n");
   */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     /* Recompute Inverse */
   agelim=AGESUP;    for (i=1;i<=npar;i++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     /* nhstepm age range expressed in number of stepm */    ludcmp(a,npar,indx,&pd);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    /*  printf("\n#Hessian matrix recomputed#\n");
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (j=1;j<=npar;j++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<=npar;i++) x[i]=0;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      x[j]=1;
     gp=matrix(0,nhstepm,1,nlstate*2);      lubksb(a,npar,indx,x);
     gm=matrix(0,nhstepm,1,nlstate*2);      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        printf("%.3e ",y[i][j]);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        fprintf(ficlog,"%.3e ",y[i][j]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        }
        printf("\n");
       fprintf(ficlog,"\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    }
     */
     /* Computing Variances of health expectancies */  
     free_matrix(a,1,npar,1,npar);
      for(theta=1; theta <=npar; theta++){    free_matrix(y,1,npar,1,npar);
       for(i=1; i<=npar; i++){    free_vector(x,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
    
       cptj=0;  }
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){  /*************** hessian matrix ****************/
           cptj=cptj+1;  double hessii( double x[], double delta, int theta, double delti[])
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  {
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    int i;
           }    int l=1, lmax=20;
         }    double k1,k2;
       }    double p2[NPARMAX+1];
          double res;
          double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(i=1; i<=npar; i++)    double fx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int k=0,kmax=10;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double l1;
        
       cptj=0;    fx=func(x);
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++) p2[i]=x[i];
         for(i=1;i<=nlstate;i++){    for(l=0 ; l <=lmax; l++){
           cptj=cptj+1;      l1=pow(10,l);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      delts=delt;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      for(k=1 ; k <kmax; k=k+1){
           }        delt = delta*(l1*k);
         }        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;
              p2[theta]=x[theta]-delt;
            k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(j=1; j<= nlstate*2; j++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         for(h=0; h<=nhstepm-1; h++){        
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  #ifdef DEBUG
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      }  #endif
            /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 /* End theta */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
      for(h=0; h<=nhstepm-1; h++)          k=kmax; l=lmax*10.;
       for(j=1; j<=nlstate*2;j++)        }
         for(theta=1; theta <=npar; theta++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         trgradg[h][j][theta]=gradg[h][theta][j];          delts=delt;
         }
       }
      for(i=1;i<=nlstate*2;i++)    }
       for(j=1;j<=nlstate*2;j++)    delti[theta]=delts;
         varhe[i][j][(int)age] =0.;    return res; 
     
     for(h=0;h<=nhstepm-1;h++){  }
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  double hessij( double x[], double delti[], int thetai,int thetaj)
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  {
         for(i=1;i<=nlstate*2;i++)    int i;
           for(j=1;j<=nlstate*2;j++)    int l=1, l1, lmax=20;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double k1,k2,k3,k4,res,fx;
       }    double p2[NPARMAX+1];
     }    int k;
   
          fx=func(x);
     /* Computing expectancies */    for (k=1; k<=2; k++) {
     for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++) p2[i]=x[i];
       for(j=1; j<=nlstate;j++)      p2[thetai]=x[thetai]+delti[thetai]/k;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      k1=func(p2)-fx;
              
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k2=func(p2)-fx;
     
     fprintf(ficreseij,"%3.0f",age );      p2[thetai]=x[thetai]-delti[thetai]/k;
     cptj=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(i=1; i<=nlstate;i++)      k3=func(p2)-fx;
       for(j=1; j<=nlstate;j++){    
         cptj++;      p2[thetai]=x[thetai]-delti[thetai]/k;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k4=func(p2)-fx;
     fprintf(ficreseij,"\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      #ifdef DEBUG
     free_matrix(gm,0,nhstepm,1,nlstate*2);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_matrix(gp,0,nhstepm,1,nlstate*2);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  #endif
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return res;
   }  }
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);  /************** Inverse of matrix **************/
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  void ludcmp(double **a, int n, int *indx, double *d) 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  { 
 }    int i,imax,j,k; 
     double big,dum,sum,temp; 
 /************ Variance ******************/    double *vv; 
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)   
 {    vv=vector(1,n); 
   /* Variance of health expectancies */    *d=1.0; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (i=1;i<=n;i++) { 
   double **newm;      big=0.0; 
   double **dnewm,**doldm;      for (j=1;j<=n;j++) 
   int i, j, nhstepm, hstepm, h, nstepm ;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   int k, cptcode;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double *xp;      vv[i]=1.0/big; 
   double **gp, **gm;    } 
   double ***gradg, ***trgradg;    for (j=1;j<=n;j++) { 
   double ***p3mat;      for (i=1;i<j;i++) { 
   double age,agelim, hf;        sum=a[i][j]; 
   int theta;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
    fprintf(ficresvij,"# Covariances of life expectancies\n");      } 
   fprintf(ficresvij,"# Age");      big=0.0; 
   for(i=1; i<=nlstate;i++)      for (i=j;i<=n;i++) { 
     for(j=1; j<=nlstate;j++)        sum=a[i][j]; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        for (k=1;k<j;k++) 
   fprintf(ficresvij,"\n");          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   xp=vector(1,npar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   dnewm=matrix(1,nlstate,1,npar);          big=dum; 
   doldm=matrix(1,nlstate,1,nlstate);          imax=i; 
          } 
   if(estepm < stepm){      } 
     printf ("Problem %d lower than %d\n",estepm, stepm);      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
   else  hstepm=estepm;            dum=a[imax][k]; 
   /* For example we decided to compute the life expectancy with the smallest unit */          a[imax][k]=a[j][k]; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          a[j][k]=dum; 
      nhstepm is the number of hstepm from age to agelim        } 
      nstepm is the number of stepm from age to agelin.        *d = -(*d); 
      Look at hpijx to understand the reason of that which relies in memory size        vv[imax]=vv[j]; 
      and note for a fixed period like k years */      } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      indx[j]=imax; 
      survival function given by stepm (the optimization length). Unfortunately it      if (a[j][j] == 0.0) a[j][j]=TINY; 
      means that if the survival funtion is printed only each two years of age and if      if (j != n) { 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        dum=1.0/(a[j][j]); 
      results. So we changed our mind and took the option of the best precision.        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   */      } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    } 
   agelim = AGESUP;    free_vector(vv,1,n);  /* Doesn't work */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  ;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  } 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void lubksb(double **a, int n, int *indx, double b[]) 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  { 
     gp=matrix(0,nhstepm,1,nlstate);    int i,ii=0,ip,j; 
     gm=matrix(0,nhstepm,1,nlstate);    double sum; 
    
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=n;i++) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */      ip=indx[i]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      sum=b[ip]; 
       }      b[ip]=b[i]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        if (ii) 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
       if (popbased==1) {      b[i]=sum; 
         for(i=1; i<=nlstate;i++)    } 
           prlim[i][i]=probs[(int)age][i][ij];    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(j=1; j<= nlstate; j++){      b[i]=sum/a[i][i]; 
         for(h=0; h<=nhstepm; h++){    } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  } 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  /************ Frequencies ********************/
       }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
      {  /* Some frequencies */
       for(i=1; i<=npar; i++) /* Computes gradient */    
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int first;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double ***freq; /* Frequencies */
      double *pp, **prop;
       if (popbased==1) {    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(i=1; i<=nlstate;i++)    FILE *ficresp;
           prlim[i][i]=probs[(int)age][i][ij];    char fileresp[FILENAMELENGTH];
       }    
     pp=vector(1,nlstate);
       for(j=1; j<= nlstate; j++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(h=0; h<=nhstepm; h++){    strcpy(fileresp,"p");
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    strcat(fileresp,fileres);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    if((ficresp=fopen(fileresp,"w"))==NULL) {
         }      printf("Problem with prevalence resultfile: %s\n", fileresp);
       }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
       for(j=1; j<= nlstate; j++)    }
         for(h=0; h<=nhstepm; h++){    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    j1=0;
         }    
     } /* End theta */    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
     first=1;
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    for(k1=1; k1<=j;k1++){
         for(theta=1; theta <=npar; theta++)      for(i1=1; i1<=ncodemax[k1];i1++){
           trgradg[h][j][theta]=gradg[h][theta][j];        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          scanf("%d", i);*/
     for(i=1;i<=nlstate;i++)        for (i=-1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate;j++)          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         vareij[i][j][(int)age] =0.;            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){      for (i=1; i<=nlstate; i++)  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for(m=iagemin; m <= iagemax+3; m++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          prop[i][m]=0;
         for(i=1;i<=nlstate;i++)        
           for(j=1;j<=nlstate;j++)        dateintsum=0;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        k2cpt=0;
       }        for (i=1; i<=imx; i++) {
     }          bool=1;
           if  (cptcovn>0) {
     fprintf(ficresvij,"%.0f ",age );            for (z1=1; z1<=cptcoveff; z1++) 
     for(i=1; i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       for(j=1; j<=nlstate;j++){                bool=0;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          }
       }          if (bool==1){
     fprintf(ficresvij,"\n");            for(m=firstpass; m<=lastpass; m++){
     free_matrix(gp,0,nhstepm,1,nlstate);              k2=anint[m][i]+(mint[m][i]/12.);
     free_matrix(gm,0,nhstepm,1,nlstate);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   } /* End age */                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   free_vector(xp,1,npar);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   free_matrix(doldm,1,nlstate,1,npar);                }
   free_matrix(dnewm,1,nlstate,1,nlstate);                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 }                  dateintsum=dateintsum+k2;
                   k2cpt++;
 /************ Variance of prevlim ******************/                }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                /*}*/
 {            }
   /* Variance of prevalence limit */          }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   double **newm;         
   double **dnewm,**doldm;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   int i, j, nhstepm, hstepm;  
   int k, cptcode;        if  (cptcovn>0) {
   double *xp;          fprintf(ficresp, "\n#********** Variable "); 
   double *gp, *gm;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double **gradg, **trgradg;          fprintf(ficresp, "**********\n#");
   double age,agelim;        }
   int theta;        for(i=1; i<=nlstate;i++) 
              fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        fprintf(ficresp, "\n");
   fprintf(ficresvpl,"# Age");        
   for(i=1; i<=nlstate;i++)        for(i=iagemin; i <= iagemax+3; i++){
       fprintf(ficresvpl," %1d-%1d",i,i);          if(i==iagemax+3){
   fprintf(ficresvpl,"\n");            fprintf(ficlog,"Total");
           }else{
   xp=vector(1,npar);            if(first==1){
   dnewm=matrix(1,nlstate,1,npar);              first=0;
   doldm=matrix(1,nlstate,1,nlstate);              printf("See log file for details...\n");
              }
   hstepm=1*YEARM; /* Every year of age */            fprintf(ficlog,"Age %d", i);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }
   agelim = AGESUP;          for(jk=1; jk <=nlstate ; jk++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              pp[jk] += freq[jk][m][i]; 
     if (stepm >= YEARM) hstepm=1;          }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for(jk=1; jk <=nlstate ; jk++){
     gradg=matrix(1,npar,1,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
     gp=vector(1,nlstate);              pos += freq[jk][m][i];
     gm=vector(1,nlstate);            if(pp[jk]>=1.e-10){
               if(first==1){
     for(theta=1; theta <=npar; theta++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(i=1; i<=npar; i++){ /* Computes gradient */              }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }            }else{
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if(first==1)
       for(i=1;i<=nlstate;i++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         gp[i] = prlim[i][i];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                }
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(jk=1; jk <=nlstate ; jk++){
       for(i=1;i<=nlstate;i++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         gm[i] = prlim[i][i];              pp[jk] += freq[jk][m][i];
           }       
       for(i=1;i<=nlstate;i++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            pos += pp[jk];
     } /* End theta */            posprop += prop[jk][i];
           }
     trgradg =matrix(1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
     for(j=1; j<=nlstate;j++)              if(first==1)
       for(theta=1; theta <=npar; theta++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         trgradg[j][theta]=gradg[theta][j];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
     for(i=1;i<=nlstate;i++)              if(first==1)
       varpl[i][(int)age] =0.;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            }
     for(i=1;i<=nlstate;i++)            if( i <= iagemax){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     fprintf(ficresvpl,"%.0f ",age );                /*probs[i][jk][j1]= pp[jk]/pos;*/
     for(i=1; i<=nlstate;i++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              }
     fprintf(ficresvpl,"\n");              else
     free_vector(gp,1,nlstate);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     free_vector(gm,1,nlstate);            }
     free_matrix(gradg,1,npar,1,nlstate);          }
     free_matrix(trgradg,1,nlstate,1,npar);          
   } /* End age */          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   free_vector(xp,1,npar);              if(freq[jk][m][i] !=0 ) {
   free_matrix(doldm,1,nlstate,1,npar);              if(first==1)
   free_matrix(dnewm,1,nlstate,1,nlstate);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
 }              }
           if(i <= iagemax)
 /************ Variance of one-step probabilities  ******************/            fprintf(ficresp,"\n");
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          if(first==1)
 {            printf("Others in log...\n");
   int i, j, i1, k1, j1, z1;          fprintf(ficlog,"\n");
   int k=0, cptcode;        }
   double **dnewm,**doldm;      }
   double *xp;    }
   double *gp, *gm;    dateintmean=dateintsum/k2cpt; 
   double **gradg, **trgradg;   
   double age,agelim, cov[NCOVMAX];    fclose(ficresp);
   int theta;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   char fileresprob[FILENAMELENGTH];    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   strcpy(fileresprob,"prob");    /* End of Freq */
   strcat(fileresprob,fileres);  }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  {  
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   fprintf(ficresprob,"# Age");       We still use firstpass and lastpass as another selection.
   for(i=1; i<=nlstate;i++)    */
     for(j=1; j<=(nlstate+ndeath);j++)   
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
     double *pp, **prop;
   fprintf(ficresprob,"\n");    double pos,posprop; 
     double  y2; /* in fractional years */
     int iagemin, iagemax;
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    iagemin= (int) agemin;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    iagemax= (int) agemax;
      /*pp=vector(1,nlstate);*/
   cov[1]=1;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   j=cptcoveff;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    j1=0;
   j1=0;    
   for(k1=1; k1<=1;k1++){    j=cptcoveff;
     for(i1=1; i1<=ncodemax[k1];i1++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     j1++;    
     for(k1=1; k1<=j;k1++){
     if  (cptcovn>0) {      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficresprob, "\n#********** Variable ");        j1++;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        
       fprintf(ficresprob, "**********\n#");        for (i=1; i<=nlstate; i++)  
     }          for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0.0;
       for (age=bage; age<=fage; age ++){       
         cov[2]=age;        for (i=1; i<=imx; i++) { /* Each individual */
         for (k=1; k<=cptcovn;k++) {          bool=1;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          if  (cptcovn>0) {
                      for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                bool=0;
         for (k=1; k<=cptcovprod;k++)          } 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          if (bool==1) { 
                    for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         gradg=matrix(1,npar,1,9);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         trgradg=matrix(1,9,1,npar);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         for(theta=1; theta <=npar; theta++){                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           for(i=1; i<=npar; i++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                            prop[s[m][i]][iagemax+3] += weight[i]; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                } 
                        }
           k=0;            } /* end selection of waves */
           for(i=1; i<= (nlstate+ndeath); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){        }
               k=k+1;        for(i=iagemin; i <= iagemax+3; i++){  
               gp[k]=pmmij[i][j];          
             }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           }            posprop += prop[jk][i]; 
                    } 
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              if(posprop>=1.e-5){ 
           k=0;                probs[i][jk][j1]= prop[jk][i]/posprop;
           for(i=1; i<=(nlstate+ndeath); i++){              } 
             for(j=1; j<=(nlstate+ndeath);j++){            } 
               k=k+1;          }/* end jk */ 
               gm[k]=pmmij[i][j];        }/* end i */ 
             }      } /* end i1 */
           }    } /* end k1 */
          
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      /*free_vector(pp,1,nlstate);*/
         }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)  /************* Waves Concatenation ***************/
             trgradg[j][theta]=gradg[theta][j];  
          void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);  {
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               Death is a valid wave (if date is known).
         pmij(pmmij,cov,ncovmodel,x,nlstate);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         k=0;       and mw[mi+1][i]. dh depends on stepm.
         for(i=1; i<=(nlstate+ndeath); i++){       */
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;    int i, mi, m;
             gm[k]=pmmij[i][j];    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           }       double sum=0., jmean=0.;*/
         }    int first;
          int j, k=0,jk, ju, jl;
      /*printf("\n%d ",(int)age);    double sum=0.;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    first=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    jmin=1e+5;
      }*/    jmax=-1;
     jmean=0.;
         fprintf(ficresprob,"\n%d ",(int)age);    for(i=1; i<=imx; i++){
       mi=0;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)      m=firstpass;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));      while(s[m][i] <= nlstate){
          if(s[m][i]>=1)
       }          mw[++mi][i]=m;
     }        if(m >=lastpass)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          break;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        else
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          m++;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }/* end while */
   }      if (s[m][i] > nlstate){
   free_vector(xp,1,npar);        mi++;     /* Death is another wave */
   fclose(ficresprob);        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
 }        mw[mi][i]=m;
       }
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      wav[i]=mi;
  int lastpass, int stepm, int weightopt, char model[],\      if(mi==0){
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        nbwarn++;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        if(first==0){
  char version[], int popforecast, int estepm ){          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   int jj1, k1, i1, cpt;          first=1;
   FILE *fichtm;        }
   /*char optionfilehtm[FILENAMELENGTH];*/        if(first==1){
           fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
   strcpy(optionfilehtm,optionfile);        }
   strcat(optionfilehtm,".htm");      } /* end mi==0 */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    } /* End individuals */
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        if (stepm <=0)
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          dh[mi][i]=1;
 \n        else{
 Total number of observations=%d <br>\n          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            if (agedc[i] < 2*AGESUP) {
 <hr  size=\"2\" color=\"#EC5E5E\">              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  <ul><li>Outputs files<br>\n              if(j==0) j=1;  /* Survives at least one month after exam */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n              else if(j<0){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n                nberr++;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n                j=1; /* Temporary Dangerous patch */
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  fprintf(fichtm,"\n              }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n              k=k+1;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              if (j >= jmax) jmax=j;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              if (j <= jmin) jmin=j;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n              sum=sum+j;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
  if(popforecast==1) fprintf(fichtm,"\n            }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          else{
         <br>",fileres,fileres,fileres,fileres);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
  else            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            k=k+1;
 fprintf(fichtm," <li>Graphs</li><p>");            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
  m=cptcoveff;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
  jj1=0;              nberr++;
  for(k1=1; k1<=m;k1++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    for(i1=1; i1<=ncodemax[k1];i1++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        jj1++;            }
        if (cptcovn > 0) {            sum=sum+j;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          }
          for (cpt=1; cpt<=cptcoveff;cpt++)          jk= j/stepm;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          jl= j -jk*stepm;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          ju= j -(jk+1)*stepm;
        }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            if(jl==0){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  dh[mi][i]=jk;
        for(cpt=1; cpt<nlstate;cpt++){              bh[mi][i]=0;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            }else{ /* We want a negative bias in order to only have interpolation ie
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                    * at the price of an extra matrix product in likelihood */
        }              dh[mi][i]=jk+1;
     for(cpt=1; cpt<=nlstate;cpt++) {              bh[mi][i]=ju;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            }
 interval) in state (%d): v%s%d%d.gif <br>          }else{
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if(jl <= -ju){
      }              dh[mi][i]=jk;
      for(cpt=1; cpt<=nlstate;cpt++) {              bh[mi][i]=jl;       /* bias is positive if real duration
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>                                   * is higher than the multiple of stepm and negative otherwise.
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                                   */
      }            }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            else{
 health expectancies in states (1) and (2): e%s%d.gif<br>              dh[mi][i]=jk+1;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              bh[mi][i]=ju;
 fprintf(fichtm,"\n</body>");            }
    }            if(dh[mi][i]==0){
    }              dh[mi][i]=1; /* At least one step */
 fclose(fichtm);              bh[mi][i]=ju; /* At least one step */
 }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
 /******************* Gnuplot file **************/          } /* end if mle */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        }
       } /* end wave */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    }
     jmean=sum/k;
   strcpy(optionfilegnuplot,optionfilefiname);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   strcat(optionfilegnuplot,".gp.txt");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {   }
     printf("Problem with file %s",optionfilegnuplot);  
   }  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
 #ifdef windows  {
     fprintf(ficgp,"cd \"%s\" \n",pathc);    
 #endif    int Ndum[20],ij=1, k, j, i, maxncov=19;
 m=pow(2,cptcoveff);    int cptcode=0;
      cptcoveff=0; 
  /* 1eme*/   
   for (cpt=1; cpt<= nlstate ; cpt ++) {    for (k=0; k<maxncov; k++) Ndum[k]=0;
    for (k1=1; k1<= m ; k1 ++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
   
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 for (i=1; i<= nlstate ; i ++) {                                 modality*/ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");        Ndum[ij]++; /*store the modality */
 }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     for (i=1; i<= nlstate ; i ++) {                                         Tvar[j]. If V=sex and male is 0 and 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                         female is 1, then  cptcode=1.*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      for (i=0; i<=cptcode; i++) {
      for (i=1; i<= nlstate ; i ++) {        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        ij=1; 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if (Ndum[k] != 0) {
    }            nbcode[Tvar[j]][ij]=k; 
   }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   /*2 eme*/            
             ij++;
   for (k1=1; k1<= m ; k1 ++) {          }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);          if (ij > ncodemax[j]) break; 
            }  
     for (i=1; i<= nlstate+1 ; i ++) {      } 
       k=2*i;    }  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");   for (i=1; i<=ncovmodel-2; i++) { 
 }       /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");     ij=Tvar[i];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);     Ndum[ij]++;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);   }
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   ij=1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");   for (i=1; i<= maxncov; i++) {
 }       if((Ndum[i]!=0) && (i<=ncovcol)){
       fprintf(ficgp,"\" t\"\" w l 0,");       Tvaraff[ij]=i; /*For printing */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);       ij++;
       for (j=1; j<= nlstate+1 ; j ++) {     }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   }
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }     cptcoveff=ij-1; /*Number of simple covariates*/
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  }
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }  /*********** Health Expectancies ****************/
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
    
   /*3eme*/  {
     /* Health expectancies */
   for (k1=1; k1<= m ; k1 ++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    double age, agelim, hf;
       k=2+nlstate*(2*cpt-2);    double ***p3mat,***varhe;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    double **dnewm,**doldm;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double *xp;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double **gp, **gm;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double ***gradg, ***trgradg;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    int theta;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
 */    dnewm=matrix(1,nlstate*nlstate,1,npar);
       for (i=1; i< nlstate ; i ++) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    
     fprintf(ficreseij,"# Health expectancies\n");
       }    fprintf(ficreseij,"# Age");
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++)
     }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
      fprintf(ficreseij,"\n");
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {    if(estepm < stepm){
     for (cpt=1; cpt<nlstate ; cpt ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
       k=3;    }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
       for (i=1; i< nlstate ; i ++)     * This is mainly to measure the difference between two models: for example
         fprintf(ficgp,"+$%d",k+i+1);     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           * progression in between and thus overestimating or underestimating according
       l=3+(nlstate+ndeath)*cpt;     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       for (i=1; i< nlstate ; i ++) {     * to compare the new estimate of Life expectancy with the same linear 
         l=3+(nlstate+ndeath)*cpt;     * hypothesis. A more precise result, taking into account a more precise
         fprintf(ficgp,"+$%d",l+i+1);     * curvature will be obtained if estepm is as small as stepm. */
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
   }         nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   /* proba elementaires */       and note for a fixed period like estepm months */
    for(i=1,jk=1; i <=nlstate; i++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(k=1; k <=(nlstate+ndeath); k++){       survival function given by stepm (the optimization length). Unfortunately it
       if (k != i) {       means that if the survival funtion is printed only each two years of age and if
         for(j=1; j <=ncovmodel; j++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               results. So we changed our mind and took the option of the best precision.
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    */
           jk++;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           fprintf(ficgp,"\n");  
         }    agelim=AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      /* nhstepm age range expressed in number of stepm */
     }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     for(jk=1; jk <=m; jk++) {      /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    i=1;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(k2=1; k2<=nlstate; k2++) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      k3=i;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
      for(k=1; k<=(nlstate+ndeath); k++) {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 ij=1;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         for(j=3; j <=ncovmodel; j++) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
             ij++;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           }  
           else      /* Computing Variances of health expectancies */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }       for(theta=1; theta <=npar; theta++){
           fprintf(ficgp,")/(1");        for(i=1; i<=npar; i++){ 
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for(k1=1; k1 <=nlstate; k1++){          }
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 ij=1;    
           for(j=3; j <=ncovmodel; j++){        cptj=0;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=1; j<= nlstate; j++){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(i=1; i<=nlstate; i++){
             ij++;            cptj=cptj+1;
           }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
           else              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }
           }          }
           fprintf(ficgp,")");        }
         }       
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);       
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        for(i=1; i<=npar; i++) 
         i=i+ncovmodel;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      }        
    }        cptj=0;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        for(j=1; j<= nlstate; j++){
    }          for(i=1;i<=nlstate;i++){
                cptj=cptj+1;
   fclose(ficgp);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 }  /* end gnuplot */  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
 /*************** Moving average **************/          }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        }
         for(j=1; j<= nlstate*nlstate; j++)
   int i, cpt, cptcod;          for(h=0; h<=nhstepm-1; h++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       for (i=1; i<=nlstate;i++)          }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)       } 
           mobaverage[(int)agedeb][i][cptcod]=0.;     
      /* End theta */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){       for(h=0; h<=nhstepm-1; h++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        for(j=1; j<=nlstate*nlstate;j++)
           }          for(theta=1; theta <=npar; theta++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            trgradg[h][j][theta]=gradg[h][theta][j];
         }       
       }  
     }       for(i=1;i<=nlstate*nlstate;i++)
            for(j=1;j<=nlstate*nlstate;j++)
 }          varhe[i][j][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
 /************** Forecasting ******************/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   int *popage;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          for(i=1;i<=nlstate*nlstate;i++)
   double *popeffectif,*popcount;            for(j=1;j<=nlstate*nlstate;j++)
   double ***p3mat;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   char fileresf[FILENAMELENGTH];        }
       }
  agelim=AGESUP;      /* Computing expectancies */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   strcpy(fileresf,"f");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {          }
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }      fprintf(ficreseij,"%3.0f",age );
   printf("Computing forecasting: result on file '%s' \n", fileresf);      cptj=0;
       for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(j=1; j<=nlstate;j++){
           cptj++;
   if (mobilav==1) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficreseij,"\n");
   }     
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   if (stepm<=12) stepsize=1;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   agelim=AGESUP;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }
   hstepm=1;    printf("\n");
   hstepm=hstepm/stepm;    fprintf(ficlog,"\n");
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;    free_vector(xp,1,npar);
   yp2=modf((yp1*12),&yp);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   mprojmean=yp;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   yp1=modf((yp2*30.5),&yp);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   jprojmean=yp;  }
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;  /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  {
      /* Variance of health expectancies */
   for(cptcov=1;cptcov<=i2;cptcov++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* double **newm;*/
       k=k+1;    double **dnewm,**doldm;
       fprintf(ficresf,"\n#******");    double **dnewmp,**doldmp;
       for(j=1;j<=cptcoveff;j++) {    int i, j, nhstepm, hstepm, h, nstepm ;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int k, cptcode;
       }    double *xp;
       fprintf(ficresf,"******\n");    double **gp, **gm;  /* for var eij */
       fprintf(ficresf,"# StartingAge FinalAge");    double ***gradg, ***trgradg; /*for var eij */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double **gradgp, **trgradgp; /* for var p point j */
          double *gpp, *gmp; /* for var p point j */
          double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double ***p3mat;
         fprintf(ficresf,"\n");    double age,agelim, hf;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double ***mobaverage;
     int theta;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    char digit[4];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    char digitp[25];
           nhstepm = nhstepm/hstepm;  
              char fileresprobmorprev[FILENAMELENGTH];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    if(popbased==1){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        if(mobilav!=0)
                strcpy(digitp,"-populbased-mobilav-");
           for (h=0; h<=nhstepm; h++){      else strcpy(digitp,"-populbased-nomobil-");
             if (h==(int) (calagedate+YEARM*cpt)) {    }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    else 
             }      strcpy(digitp,"-stablbased-");
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    if (mobilav!=0) {
               for(i=1; i<=nlstate;i++) {                    mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                 if (mobilav==1)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                 else {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      }
                 }    }
                  
               }    strcpy(fileresprobmorprev,"prmorprev"); 
               if (h==(int)(calagedate+12*cpt)){    sprintf(digit,"%-d",ij);
                 fprintf(ficresf," %.3f", kk1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                            strcat(fileresprobmorprev,digit); /* Tvar to be done */
               }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             }    strcat(fileresprobmorprev,fileres);
           }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       }    }
     }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
            fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fclose(ficresf);      fprintf(ficresprobmorprev," p.%-d SE",j);
 }      for(i=1; i<=nlstate;i++)
 /************** Forecasting ******************/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    }  
      fprintf(ficresprobmorprev,"\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficgp,"\n# Routine varevsij");
   int *popage;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double *popeffectif,*popcount;  /*   } */
   double ***p3mat,***tabpop,***tabpopprev;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char filerespop[FILENAMELENGTH];  
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresvij,"# Age");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=nlstate;i++)
   agelim=AGESUP;      for(j=1; j<=nlstate;j++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
      fprintf(ficresvij,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   strcpy(filerespop,"pop");    doldm=matrix(1,nlstate,1,nlstate);
   strcat(filerespop,fileres);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("Problem with forecast resultfile: %s\n", filerespop);  
   }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
   if (mobilav==1) {    if(estepm < stepm){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf ("Problem %d lower than %d\n",estepm, stepm);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    }
   }    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (stepm<=12) stepsize=1;       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   agelim=AGESUP;       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like k years */
   hstepm=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   hstepm=hstepm/stepm;       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
   if (popforecast==1) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     if((ficpop=fopen(popfile,"r"))==NULL) {       results. So we changed our mind and took the option of the best precision.
       printf("Problem with population file : %s\n",popfile);exit(0);    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     popage=ivector(0,AGESUP);    agelim = AGESUP;
     popeffectif=vector(0,AGESUP);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     popcount=vector(0,AGESUP);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     i=1;        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
          gp=matrix(0,nhstepm,1,nlstate);
     imx=i;      gm=matrix(0,nhstepm,1,nlstate);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }  
       for(theta=1; theta <=npar; theta++){
   for(cptcov=1;cptcov<=i2;cptcov++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       k=k+1;        }
       fprintf(ficrespop,"\n#******");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(j=1;j<=cptcoveff;j++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }        if (popbased==1) {
       fprintf(ficrespop,"******\n");          if(mobilav ==0){
       fprintf(ficrespop,"# Age");            for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              prlim[i][i]=probs[(int)age][i][ij];
       if (popforecast==1)  fprintf(ficrespop," [Population]");          }else{ /* mobilav */ 
                  for(i=1; i<=nlstate;i++)
       for (cpt=0; cpt<=0;cpt++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }
                }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        for(j=1; j<= nlstate; j++){
           nhstepm = nhstepm/hstepm;          for(h=0; h<=nhstepm; h++){
                      for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }
                /* This for computing probability of death (h=1 means
           for (h=0; h<=nhstepm; h++){           computed over hstepm matrices product = hstepm*stepm months) 
             if (h==(int) (calagedate+YEARM*cpt)) {           as a weighted average of prlim.
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        */
             }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             for(j=1; j<=nlstate+ndeath;j++) {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
               kk1=0.;kk2=0;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               for(i=1; i<=nlstate;i++) {                      }    
                 if (mobilav==1)        /* end probability of death */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               if (h==(int)(calagedate+12*cpt)){   
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        if (popbased==1) {
                   /*fprintf(ficrespop," %.3f", kk1);          if(mobilav ==0){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            for(i=1; i<=nlstate;i++)
               }              prlim[i][i]=probs[(int)age][i][ij];
             }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++){            for(i=1; i<=nlstate;i++)
               kk1=0.;              prlim[i][i]=mobaverage[(int)age][i][ij];
                 for(j=1; j<=nlstate;j++){          }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        }
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for(j=1; j<= nlstate; j++){
             }          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          }
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* This for computing probability of death (h=1 means
         }           computed over hstepm matrices product = hstepm*stepm months) 
       }           as a weighted average of prlim.
          */
   /******/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        /* end probability of death */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;        for(j=1; j<= nlstate; j++) /* vareij */
                    for(h=0; h<=nhstepm; h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             if (h==(int) (calagedate+YEARM*cpt)) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }  
             for(j=1; j<=nlstate+ndeath;j++) {      } /* End theta */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                    trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }      for(h=0; h<=nhstepm; h++) /* veij */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        for(j=1; j<=nlstate;j++)
             }          for(theta=1; theta <=npar; theta++)
           }            trgradg[h][j][theta]=gradg[h][theta][j];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       }        for(theta=1; theta <=npar; theta++)
    }          trgradgp[j][theta]=gradgp[theta][j];
   }    
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
   if (popforecast==1) {        for(j=1;j<=nlstate;j++)
     free_ivector(popage,0,AGESUP);          vareij[i][j][(int)age] =0.;
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);      for(h=0;h<=nhstepm;h++){
   }        for(k=0;k<=nhstepm;k++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   fclose(ficrespop);          for(i=1;i<=nlstate;i++)
 }            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 /***********************************************/        }
 /**************** Main Program *****************/      }
 /***********************************************/    
       /* pptj */
 int main(int argc, char *argv[])      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double agedeb, agefin,hf;          varppt[j][i]=doldmp[j][i];
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      /* end ppptj */
       /*  x centered again */
   double fret;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   double **xi,tmp,delta;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
   double dum; /* Dummy variable */      if (popbased==1) {
   double ***p3mat;        if(mobilav ==0){
   int *indx;          for(i=1; i<=nlstate;i++)
   char line[MAXLINE], linepar[MAXLINE];            prlim[i][i]=probs[(int)age][i][ij];
   char title[MAXLINE];        }else{ /* mobilav */ 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          for(i=1; i<=nlstate;i++)
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      }
                
   char filerest[FILENAMELENGTH];      /* This for computing probability of death (h=1 means
   char fileregp[FILENAMELENGTH];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   char popfile[FILENAMELENGTH];         as a weighted average of prlim.
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      */
   int firstobs=1, lastobs=10;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   int sdeb, sfin; /* Status at beginning and end */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   int c,  h , cpt,l;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   int ju,jl, mi;      }    
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      /* end probability of death */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   int hstepm, nhstepm;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
   double bage, fage, age, agelim, agebase;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   double ftolpl=FTOL;        }
   double **prlim;      } 
   double *severity;      fprintf(ficresprobmorprev,"\n");
   double ***param; /* Matrix of parameters */  
   double  *p;      fprintf(ficresvij,"%.0f ",age );
   double **matcov; /* Matrix of covariance */      for(i=1; i<=nlstate;i++)
   double ***delti3; /* Scale */        for(j=1; j<=nlstate;j++){
   double *delti; /* Scale */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   double ***eij, ***vareij;        }
   double **varpl; /* Variances of prevalence limits by age */      fprintf(ficresvij,"\n");
   double *epj, vepp;      free_matrix(gp,0,nhstepm,1,nlstate);
   double kk1, kk2;      free_matrix(gm,0,nhstepm,1,nlstate);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";    } /* End age */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   char z[1]="c", occ;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 #include <sys/time.h>    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 #include <time.h>    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /* long total_usecs;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   struct timeval start_time, end_time;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   getcwd(pathcd, size);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   printf("\n%s",version);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   if(argc <=1){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     printf("\nEnter the parameter file name: ");  */
     scanf("%s",pathtot);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   }    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   else{  
     strcpy(pathtot,argv[1]);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,nlstate);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_matrix(dnewm,1,nlstate,1,npar);
   /*cygwin_split_path(pathtot,path,optionfile);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   /* cutv(path,optionfile,pathtot,'\\');*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fclose(ficresprobmorprev);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    fflush(ficgp);
   chdir(path);    fflush(fichtm); 
   replace(pathc,path);  }  /* end varevsij */
   
 /*-------- arguments in the command line --------*/  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   strcpy(fileres,"r");  {
   strcat(fileres, optionfilefiname);    /* Variance of prevalence limit */
   strcat(fileres,".txt");    /* Other files have txt extension */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   /*---------arguments file --------*/    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    int k, cptcode;
     printf("Problem with optionfile %s\n",optionfile);    double *xp;
     goto end;    double *gp, *gm;
   }    double **gradg, **trgradg;
     double age,agelim;
   strcpy(filereso,"o");    int theta;
   strcat(filereso,fileres);     
   if((ficparo=fopen(filereso,"w"))==NULL) {    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    fprintf(ficresvpl,"# Age");
   }    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   /* Reads comments: lines beginning with '#' */    fprintf(ficresvpl,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    xp=vector(1,npar);
     fgets(line, MAXLINE, ficpar);    dnewm=matrix(1,nlstate,1,npar);
     puts(line);    doldm=matrix(1,nlstate,1,nlstate);
     fputs(line,ficparo);    
   }    hstepm=1*YEARM; /* Every year of age */
   ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      if (stepm >= YEARM) hstepm=1;
 while((c=getc(ficpar))=='#' && c!= EOF){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     ungetc(c,ficpar);      gradg=matrix(1,npar,1,nlstate);
     fgets(line, MAXLINE, ficpar);      gp=vector(1,nlstate);
     puts(line);      gm=vector(1,nlstate);
     fputs(line,ficparo);  
   }      for(theta=1; theta <=npar; theta++){
   ungetc(c,ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
            }
   covar=matrix(0,NCOVMAX,1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   cptcovn=0;        for(i=1;i<=nlstate;i++)
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          gp[i] = prlim[i][i];
       
   ncovmodel=2+cptcovn;        for(i=1; i<=npar; i++) /* Computes gradient */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Read guess parameters */        for(i=1;i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */          gm[i] = prlim[i][i];
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     puts(line);      } /* End theta */
     fputs(line,ficparo);  
   }      trgradg =matrix(1,nlstate,1,npar);
   ungetc(c,ficpar);  
        for(j=1; j<=nlstate;j++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(theta=1; theta <=npar; theta++)
     for(i=1; i <=nlstate; i++)          trgradg[j][theta]=gradg[theta][j];
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(i=1;i<=nlstate;i++)
       fprintf(ficparo,"%1d%1d",i1,j1);        varpl[i][(int)age] =0.;
       printf("%1d%1d",i,j);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       for(k=1; k<=ncovmodel;k++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         fscanf(ficpar," %lf",&param[i][j][k]);      for(i=1;i<=nlstate;i++)
         printf(" %lf",param[i][j][k]);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         fprintf(ficparo," %lf",param[i][j][k]);  
       }      fprintf(ficresvpl,"%.0f ",age );
       fscanf(ficpar,"\n");      for(i=1; i<=nlstate;i++)
       printf("\n");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficparo,"\n");      fprintf(ficresvpl,"\n");
     }      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
   p=param[1][1];    } /* End age */
    
   /* Reads comments: lines beginning with '#' */    free_vector(xp,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(doldm,1,nlstate,1,npar);
     ungetc(c,ficpar);    free_matrix(dnewm,1,nlstate,1,nlstate);
     fgets(line, MAXLINE, ficpar);  
     puts(line);  }
     fputs(line,ficparo);  
   }  /************ Variance of one-step probabilities  ******************/
   ungetc(c,ficpar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int i, j=0,  i1, k1, l1, t, tj;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    int k2, l2, j1,  z1;
   for(i=1; i <=nlstate; i++){    int k=0,l, cptcode;
     for(j=1; j <=nlstate+ndeath-1; j++){    int first=1, first1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       printf("%1d%1d",i,j);    double **dnewm,**doldm;
       fprintf(ficparo,"%1d%1d",i1,j1);    double *xp;
       for(k=1; k<=ncovmodel;k++){    double *gp, *gm;
         fscanf(ficpar,"%le",&delti3[i][j][k]);    double **gradg, **trgradg;
         printf(" %le",delti3[i][j][k]);    double **mu;
         fprintf(ficparo," %le",delti3[i][j][k]);    double age,agelim, cov[NCOVMAX];
       }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       fscanf(ficpar,"\n");    int theta;
       printf("\n");    char fileresprob[FILENAMELENGTH];
       fprintf(ficparo,"\n");    char fileresprobcov[FILENAMELENGTH];
     }    char fileresprobcor[FILENAMELENGTH];
   }  
   delti=delti3[1][1];    double ***varpij;
    
   /* Reads comments: lines beginning with '#' */    strcpy(fileresprob,"prob"); 
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresprob,fileres);
     ungetc(c,ficpar);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with resultfile: %s\n", fileresprob);
     puts(line);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     fputs(line,ficparo);    }
   }    strcpy(fileresprobcov,"probcov"); 
   ungetc(c,ficpar);    strcat(fileresprobcov,fileres);
      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   matcov=matrix(1,npar,1,npar);      printf("Problem with resultfile: %s\n", fileresprobcov);
   for(i=1; i <=npar; i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     fscanf(ficpar,"%s",&str);    }
     printf("%s",str);    strcpy(fileresprobcor,"probcor"); 
     fprintf(ficparo,"%s",str);    strcat(fileresprobcor,fileres);
     for(j=1; j <=i; j++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       fscanf(ficpar," %le",&matcov[i][j]);      printf("Problem with resultfile: %s\n", fileresprobcor);
       printf(" %.5le",matcov[i][j]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficparo," %.5le",matcov[i][j]);    }
     }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fscanf(ficpar,"\n");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("\n");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficparo,"\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   for(i=1; i <=npar; i++)    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     for(j=i+1;j<=npar;j++)    
       matcov[i][j]=matcov[j][i];    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
        fprintf(ficresprob,"# Age");
   printf("\n");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     /*-------- Rewriting paramater file ----------*/    fprintf(ficresprobcov,"# Age");
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */    for(i=1; i<=nlstate;i++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      for(j=1; j<=(nlstate+ndeath);j++){
     if((ficres =fopen(rfileres,"w"))==NULL) {        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     fprintf(ficres,"#%s\n",version);      }  
       /* fprintf(ficresprob,"\n");
     /*-------- data file ----------*/    fprintf(ficresprobcov,"\n");
     if((fic=fopen(datafile,"r"))==NULL)    {    fprintf(ficresprobcor,"\n");
       printf("Problem with datafile: %s\n", datafile);goto end;   */
     }   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     n= lastobs;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     severity = vector(1,maxwav);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     outcome=imatrix(1,maxwav+1,1,n);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     num=ivector(1,n);    first=1;
     moisnais=vector(1,n);    fprintf(ficgp,"\n# Routine varprob");
     annais=vector(1,n);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     moisdc=vector(1,n);    fprintf(fichtm,"\n");
     andc=vector(1,n);  
     agedc=vector(1,n);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
     cod=ivector(1,n);    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
     weight=vector(1,n);    file %s<br>\n",optionfilehtmcov);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     mint=matrix(1,maxwav,1,n);  and drawn. It helps understanding how is the covariance between two incidences.\
     anint=matrix(1,maxwav,1,n);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     s=imatrix(1,maxwav+1,1,n);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     adl=imatrix(1,maxwav+1,1,n);      It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     tab=ivector(1,NCOVMAX);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     ncodemax=ivector(1,8);  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     i=1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     while (fgets(line, MAXLINE, fic) != NULL)    {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       if ((i >= firstobs) && (i <=lastobs)) {  
            cov[1]=1;
         for (j=maxwav;j>=1;j--){    tj=cptcoveff;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           strcpy(line,stra);    j1=0;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for(t=1; t<=tj;t++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(i1=1; i1<=ncodemax[t];i1++){ 
         }        j1++;
                if  (cptcovn>0) {
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprob, "\n#********** Variable "); 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcov, "\n#********** Variable "); 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          
         for (j=ncovcol;j>=1;j--){          fprintf(ficgp, "\n#********** Variable "); 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficgp, "**********\n#\n");
         num[i]=atol(stra);          
                  
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         i=i+1;          
       }          fprintf(ficresprobcor, "\n#********** Variable ");    
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /* printf("ii=%d", ij);          fprintf(ficresprobcor, "**********\n#");    
        scanf("%d",i);*/        }
   imx=i-1; /* Number of individuals */        
         for (age=bage; age<=fage; age ++){ 
   /* for (i=1; i<=imx; i++){          cov[2]=age;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          for (k=1; k<=cptcovn;k++) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          }
     }*/          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    /*  for (i=1; i<=imx; i++){          for (k=1; k<=cptcovprod;k++)
      if (s[4][i]==9)  s[4][i]=-1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          
            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /* Calculation of the number of parameter from char model*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
   Tvar=ivector(1,15);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   Tprod=ivector(1,15);      
   Tvaraff=ivector(1,15);          for(theta=1; theta <=npar; theta++){
   Tvard=imatrix(1,15,1,2);            for(i=1; i<=npar; i++)
   Tage=ivector(1,15);                    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                
   if (strlen(model) >1){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     j=0, j1=0, k1=1, k2=1;            
     j=nbocc(model,'+');            k=0;
     j1=nbocc(model,'*');            for(i=1; i<= (nlstate); i++){
     cptcovn=j+1;              for(j=1; j<=(nlstate+ndeath);j++){
     cptcovprod=j1;                k=k+1;
                    gp[k]=pmmij[i][j];
     strcpy(modelsav,model);              }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            }
       printf("Error. Non available option model=%s ",model);            
       goto end;            for(i=1; i<=npar; i++)
     }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
          
     for(i=(j+1); i>=1;i--){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       cutv(stra,strb,modelsav,'+');            k=0;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            for(i=1; i<=(nlstate); i++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              for(j=1; j<=(nlstate+ndeath);j++){
       /*scanf("%d",i);*/                k=k+1;
       if (strchr(strb,'*')) {                gm[k]=pmmij[i][j];
         cutv(strd,strc,strb,'*');              }
         if (strcmp(strc,"age")==0) {            }
           cptcovprod--;       
           cutv(strb,stre,strd,'V');            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           Tvar[i]=atoi(stre);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           cptcovage++;          }
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         }            for(theta=1; theta <=npar; theta++)
         else if (strcmp(strd,"age")==0) {              trgradg[j][theta]=gradg[theta][j];
           cptcovprod--;          
           cutv(strb,stre,strc,'V');          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           Tvar[i]=atoi(stre);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           cptcovage++;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           Tage[cptcovage]=i;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         else {          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncovcol+k1;          pmij(pmmij,cov,ncovmodel,x,nlstate);
           cutv(strb,strc,strd,'V');          
           Tprod[k1]=i;          k=0;
           Tvard[k1][1]=atoi(strc);          for(i=1; i<=(nlstate); i++){
           Tvard[k1][2]=atoi(stre);            for(j=1; j<=(nlstate+ndeath);j++){
           Tvar[cptcovn+k2]=Tvard[k1][1];              k=k+1;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];              mu[k][(int) age]=pmmij[i][j];
           for (k=1; k<=lastobs;k++)            }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          }
           k1++;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           k2=k2+2;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         }              varpij[i][j][(int)age] = doldm[i][j];
       }  
       else {          /*printf("\n%d ",(int)age);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
        /*  scanf("%d",i);*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       cutv(strd,strc,strb,'V');            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       Tvar[i]=atoi(strc);            }*/
       }  
       strcpy(modelsav,stra);            fprintf(ficresprob,"\n%d ",(int)age);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          fprintf(ficresprobcov,"\n%d ",(int)age);
         scanf("%d",i);*/          fprintf(ficresprobcor,"\n%d ",(int)age);
     }  
 }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   printf("cptcovprod=%d ", cptcovprod);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   scanf("%d ",i);*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     fclose(fic);          }
           i=0;
     /*  if(mle==1){*/          for (k=1; k<=(nlstate);k++){
     if (weightopt != 1) { /* Maximisation without weights*/            for (l=1; l<=(nlstate+ndeath);l++){ 
       for(i=1;i<=n;i++) weight[i]=1.0;              i=i++;
     }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     /*-calculation of age at interview from date of interview and age at death -*/              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     agev=matrix(1,maxwav,1,imx);              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     for (i=1; i<=imx; i++) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       for(m=2; (m<= maxwav); m++) {              }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            }
          anint[m][i]=9999;          }/* end of loop for state */
          s[m][i]=-1;        } /* end of loop for age */
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        /* Confidence intervalle of pij  */
       }        /*
     }          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     for (i=1; i<=imx; i++)  {          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       for(m=1; (m<= maxwav); m++){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
         if(s[m][i] >0){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           if (s[m][i] >= nlstate+1) {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
             if(agedc[i]>0)        */
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        first1=1;
            else {        for (k2=1; k2<=(nlstate);k2++){
               if (andc[i]!=9999){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            if(l2==k2) continue;
               agev[m][i]=-1;            j=(k2-1)*(nlstate+ndeath)+l2;
               }            for (k1=1; k1<=(nlstate);k1++){
             }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
           }                if(l1==k1) continue;
           else if(s[m][i] !=9){ /* Should no more exist */                i=(k1-1)*(nlstate+ndeath)+l1;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                if(i<=j) continue;
             if(mint[m][i]==99 || anint[m][i]==9999)                for (age=bage; age<=fage; age ++){ 
               agev[m][i]=1;                  if ((int)age %5==0){
             else if(agev[m][i] <agemin){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
               agemin=agev[m][i];                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
             }                    mu1=mu[i][(int) age]/stepm*YEARM ;
             else if(agev[m][i] >agemax){                    mu2=mu[j][(int) age]/stepm*YEARM;
               agemax=agev[m][i];                    c12=cv12/sqrt(v1*v2);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                    /* Computing eigen value of matrix of covariance */
             }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             /*agev[m][i]=anint[m][i]-annais[i];*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             /*   agev[m][i] = age[i]+2*m;*/                    /* Eigen vectors */
           }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           else { /* =9 */                    /*v21=sqrt(1.-v11*v11); *//* error */
             agev[m][i]=1;                    v21=(lc1-v1)/cv12*v11;
             s[m][i]=-1;                    v12=-v21;
           }                    v22=v11;
         }                    tnalp=v21/v11;
         else /*= 0 Unknown */                    if(first1==1){
           agev[m][i]=1;                      first1=0;
       }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                        }
     }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     for (i=1; i<=imx; i++)  {                    /*printf(fignu*/
       for(m=1; (m<= maxwav); m++){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         if (s[m][i] > (nlstate+ndeath)) {                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           printf("Error: Wrong value in nlstate or ndeath\n");                      if(first==1){
           goto end;                      first=0;
         }                      fprintf(ficgp,"\nset parametric;unset label");
       }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     free_vector(severity,1,maxwav);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     free_imatrix(outcome,1,maxwav+1,1,n);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_vector(moisnais,1,n);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_vector(annais,1,n);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     /* free_matrix(mint,1,maxwav,1,n);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        free_matrix(anint,1,maxwav,1,n);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     free_vector(moisdc,1,n);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     free_vector(andc,1,n);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                  mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     wav=ivector(1,imx);                    }else{
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                      first=0;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                          fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     /* Concatenates waves */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       Tcode=ivector(1,100);                    }/* if first */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                  } /* age mod 5 */
       ncodemax[1]=1;                } /* end loop age */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                      first=1;
    codtab=imatrix(1,100,1,10);              } /*l12 */
    h=0;            } /* k12 */
    m=pow(2,cptcoveff);          } /*l1 */
          }/* k1 */
    for(k=1;k<=cptcoveff; k++){      } /* loop covariates */
      for(i=1; i <=(m/pow(2,k));i++){    }
        for(j=1; j <= ncodemax[k]; j++){    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
            h++;    free_vector(xp,1,npar);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    fclose(ficresprob);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    fclose(ficresprobcov);
          }    fclose(ficresprobcor);
        }    fflush(ficgp);
      }    fflush(fichtmcov);
    }  }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){  /******************* Printing html file ***********/
       for(k=1; k <=cptcovn; k++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                    int lastpass, int stepm, int weightopt, char model[],\
       }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       printf("\n");                    int popforecast, int estepm ,\
       }                    double jprev1, double mprev1,double anprev1, \
       scanf("%d",i);*/                    double jprev2, double mprev2,double anprev2){
        int jj1, k1, i1, cpt;
    /* Calculates basic frequencies. Computes observed prevalence at single age    /*char optionfilehtm[FILENAMELENGTH];*/
        and prints on file fileres'p'. */  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
      /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
      /*   } */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
         - Life expectancies by age and initial health status (estepm=%2d months): \
     /* For Powell, parameters are in a vector p[] starting at p[1]     <a href=\"%s\">%s</a> <br>\n</li>", \
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
     if(mle==1){             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      
     /*--------- results files --------------*/   m=cptcoveff;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
    jj1=0;
    jk=1;   for(k1=1; k1<=m;k1++){
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     for(i1=1; i1<=ncodemax[k1];i1++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       jj1++;
    for(i=1,jk=1; i <=nlstate; i++){       if (cptcovn > 0) {
      for(k=1; k <=(nlstate+ndeath); k++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        if (k != i)         for (cpt=1; cpt<=cptcoveff;cpt++) 
          {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
            printf("%d%d ",i,k);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
            fprintf(ficres,"%1d%1d ",i,k);       }
            for(j=1; j <=ncovmodel; j++){       /* Pij */
              printf("%f ",p[jk]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
              fprintf(ficres,"%f ",p[jk]);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
              jk++;       /* Quasi-incidences */
            }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
            printf("\n");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
            fprintf(ficres,"\n");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          }         /* Stable prevalence in each health state */
      }         for(cpt=1; cpt<nlstate;cpt++){
    }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
  if(mle==1){  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     /* Computing hessian and covariance matrix */         }
     ftolhess=ftol; /* Usually correct */       for(cpt=1; cpt<=nlstate;cpt++) {
     hesscov(matcov, p, npar, delti, ftolhess, func);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
  }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");       }
     printf("# Scales (for hessian or gradient estimation)\n");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
      for(i=1,jk=1; i <=nlstate; i++){  health expectancies in states (1) and (2): %s%d.png<br>\
       for(j=1; j <=nlstate+ndeath; j++){  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         if (j!=i) {     } /* end i1 */
           fprintf(ficres,"%1d%1d",i,j);   }/* End k1 */
           printf("%1d%1d",i,j);   fprintf(fichtm,"</ul>");
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
             jk++;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
           }   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
           printf("\n");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
           fprintf(ficres,"\n");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
         }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
       }   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
      }   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
               rfileres,rfileres,\
     k=1;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
     for(i=1;i<=npar;i++){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
       /*  if (k>nlstate) k=1;           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
       i1=(i-1)/(ncovmodel*nlstate)+1;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/  /*  if(popforecast==1) fprintf(fichtm,"\n */
       fprintf(ficres,"%3d",i);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       printf("%3d",i);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       for(j=1; j<=i;j++){  /*      <br>",fileres,fileres,fileres,fileres); */
         fprintf(ficres," %.5e",matcov[i][j]);  /*  else  */
         printf(" %.5e",matcov[i][j]);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       }  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       fprintf(ficres,"\n");  
       printf("\n");   m=cptcoveff;
       k++;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     }  
       jj1=0;
     while((c=getc(ficpar))=='#' && c!= EOF){   for(k1=1; k1<=m;k1++){
       ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
       fgets(line, MAXLINE, ficpar);       jj1++;
       puts(line);       if (cptcovn > 0) {
       fputs(line,ficparo);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     }         for (cpt=1; cpt<=cptcoveff;cpt++) 
     ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     estepm=0;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);       }
     if (estepm==0 || estepm < stepm) estepm=stepm;       for(cpt=1; cpt<=nlstate;cpt++) {
     if (fage <= 2) {         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
       bage = ageminpar;  interval) in state (%d): %s%d%d.png <br>\
       fage = agemaxpar;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     }       }
         } /* end i1 */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   }/* End k1 */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   fprintf(fichtm,"</ul>");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   fflush(fichtm);
    }
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /******************* Gnuplot file **************/
     fgets(line, MAXLINE, ficpar);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     puts(line);  
     fputs(line,ficparo);    char dirfileres[132],optfileres[132];
   }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   ungetc(c,ficpar);    int ng;
    /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  /*     printf("Problem with file %s",optionfilegnuplot); */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*   } */
        
   while((c=getc(ficpar))=='#' && c!= EOF){    /*#ifdef windows */
     ungetc(c,ficpar);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     fgets(line, MAXLINE, ficpar);      /*#endif */
     puts(line);    m=pow(2,cptcoveff);
     fputs(line,ficparo);  
   }    strcpy(dirfileres,optionfilefiname);
   ungetc(c,ficpar);    strcpy(optfileres,"vpl");
     /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;     for (k1=1; k1<= m ; k1 ++) {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   fscanf(ficpar,"pop_based=%d\n",&popbased);       fprintf(ficgp,"set xlabel \"Age\" \n\
   fprintf(ficparo,"pop_based=%d\n",popbased);    set ylabel \"Probability\" \n\
   fprintf(ficres,"pop_based=%d\n",popbased);    set ter png small\n\
    set size 0.65,0.65\n\
   while((c=getc(ficpar))=='#' && c!= EOF){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);       for (i=1; i<= nlstate ; i ++) {
     puts(line);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fputs(line,ficparo);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }
   ungetc(c,ficpar);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         else fprintf(ficgp," \%%*lf (\%%*lf)");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
 while((c=getc(ficpar))=='#' && c!= EOF){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     ungetc(c,ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fgets(line, MAXLINE, ficpar);       }  
     puts(line);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     fputs(line,ficparo);     }
   }    }
   ungetc(c,ficpar);    /*2 eme*/
     
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    for (k1=1; k1<= m ; k1 ++) { 
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
 /*------------ gnuplot -------------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 /*------------ free_vector  -------------*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
  chdir(path);        }   
          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  free_ivector(wav,1,imx);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          for (j=1; j<= nlstate+1 ; j ++) {
  free_ivector(num,1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  free_vector(agedc,1,n);          else fprintf(ficgp," \%%*lf (\%%*lf)");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        }   
  fclose(ficparo);        fprintf(ficgp,"\" t\"\" w l 0,");
  fclose(ficres);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
 /*--------- index.htm --------*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
          else fprintf(ficgp,"\" t\"\" w l 0,");
   /*--------------- Prevalence limit --------------*/      }
      }
   strcpy(filerespl,"pl");    
   strcat(filerespl,fileres);    /*3eme*/
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    for (k1=1; k1<= m ; k1 ++) { 
   }      for (cpt=1; cpt<= nlstate ; cpt ++) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        k=2+nlstate*(2*cpt-2);
   fprintf(ficrespl,"#Prevalence limit\n");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   fprintf(ficrespl,"#Age ");        fprintf(ficgp,"set ter png small\n\
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  set size 0.65,0.65\n\
   fprintf(ficrespl,"\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   prlim=matrix(1,nlstate,1,nlstate);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          
   k=0;        */
   agebase=ageminpar;        for (i=1; i< nlstate ; i ++) {
   agelim=agemaxpar;          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   ftolpl=1.e-10;          
   i1=cptcoveff;        } 
   if (cptcovn < 1){i1=1;}      }
     }
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* CV preval stable (period) */
         k=k+1;    for (k1=1; k1<= m ; k1 ++) { 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      for (cpt=1; cpt<=nlstate ; cpt ++) {
         fprintf(ficrespl,"\n#******");        k=3;
         for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
         fprintf(ficrespl,"******\n");  set ter png small\nset size 0.65,0.65\n\
          unset log y\n\
         for (age=agebase; age<=agelim; age++){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        
           fprintf(ficrespl,"%.0f",age );        for (i=1; i< nlstate ; i ++)
           for(i=1; i<=nlstate;i++)          fprintf(ficgp,"+$%d",k+i+1);
           fprintf(ficrespl," %.5f", prlim[i][i]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
           fprintf(ficrespl,"\n");        
         }        l=3+(nlstate+ndeath)*cpt;
       }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     }        for (i=1; i< nlstate ; i ++) {
   fclose(ficrespl);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
   /*------------- h Pij x at various ages ------------*/        }
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      } 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    }  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    
   }    /* proba elementaires */
   printf("Computing pij: result on file '%s' \n", filerespij);    for(i=1,jk=1; i <=nlstate; i++){
        for(k=1; k <=(nlstate+ndeath); k++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;        if (k != i) {
   /*if (stepm<=24) stepsize=2;*/          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   agelim=AGESUP;            jk++; 
   hstepm=stepsize*YEARM; /* Every year of age */            fprintf(ficgp,"\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          }
          }
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){     }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         fprintf(ficrespij,"\n#****** ");       for(jk=1; jk <=m; jk++) {
         for(j=1;j<=cptcoveff;j++)         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         if (ng==2)
         fprintf(ficrespij,"******\n");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                 else
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */           fprintf(ficgp,"\nset title \"Probability\"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */         i=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         for(k2=1; k2<=nlstate; k2++) {
           oldm=oldms;savm=savms;           k3=i;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             for(k=1; k<=(nlstate+ndeath); k++) {
           fprintf(ficrespij,"# Age");             if (k != k2){
           for(i=1; i<=nlstate;i++)               if(ng==2)
             for(j=1; j<=nlstate+ndeath;j++)                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
               fprintf(ficrespij," %1d-%1d",i,j);               else
           fprintf(ficrespij,"\n");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
            for (h=0; h<=nhstepm; h++){               ij=1;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );               for(j=3; j <=ncovmodel; j++) {
             for(i=1; i<=nlstate;i++)                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
               for(j=1; j<=nlstate+ndeath;j++)                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                   ij++;
             fprintf(ficrespij,"\n");                 }
              }                 else
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           fprintf(ficrespij,"\n");               }
         }               fprintf(ficgp,")/(1");
     }               
   }               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                 ij=1;
                  for(j=3; j <=ncovmodel; j++){
   fclose(ficrespij);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
   /*---------- Forecasting ------------------*/                   }
   if((stepm == 1) && (strcmp(model,".")==0)){                   else
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                 }
   }                 fprintf(ficgp,")");
   else{               }
     erreur=108;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   }               i=i+ncovmodel;
               }
            } /* end k */
   /*---------- Health expectancies and variances ------------*/         } /* end k2 */
        } /* end jk */
   strcpy(filerest,"t");     } /* end ng */
   strcat(filerest,fileres);     fflush(ficgp); 
   if((ficrest=fopen(filerest,"w"))==NULL) {  }  /* end gnuplot */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
   strcpy(filerese,"e");    int i, cpt, cptcod;
   strcat(filerese,fileres);    int modcovmax =1;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    int mobilavrange, mob;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double age;
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
  strcpy(fileresv,"v");    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      if(mobilav==1) mobilavrange=5; /* default */
   }      else mobilavrange=mobilav;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      for (age=bage; age<=fage; age++)
   calagedate=-1;        for (i=1; i<=nlstate;i++)
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   k=0;      /* We keep the original values on the extreme ages bage, fage and for 
   for(cptcov=1;cptcov<=i1;cptcov++){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         we use a 5 terms etc. until the borders are no more concerned. 
       k=k+1;      */ 
       fprintf(ficrest,"\n#****** ");      for (mob=3;mob <=mobilavrange;mob=mob+2){
       for(j=1;j<=cptcoveff;j++)        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (i=1; i<=nlstate;i++){
       fprintf(ficrest,"******\n");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       fprintf(ficreseij,"\n#****** ");                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       for(j=1;j<=cptcoveff;j++)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       fprintf(ficreseij,"******\n");                }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       fprintf(ficresvij,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }/* end age */
       fprintf(ficresvij,"******\n");      }/* end mob */
     }else return -1;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    return 0;
       oldm=oldms;savm=savms;  }/* End movingaverage */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /************** Forecasting ******************/
       oldm=oldms;savm=savms;  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    /* proj1, year, month, day of starting projection 
           agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
         anproj2 year of en of projection (same day and month as proj1).
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       fprintf(ficrest,"\n");    int *popage;
     double agec; /* generic age */
       epj=vector(1,nlstate+1);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       for(age=bage; age <=fage ;age++){    double *popeffectif,*popcount;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    double ***p3mat;
         if (popbased==1) {    double ***mobaverage;
           for(i=1; i<=nlstate;i++)    char fileresf[FILENAMELENGTH];
             prlim[i][i]=probs[(int)age][i][k];  
         }    agelim=AGESUP;
            prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficrest," %4.0f",age);   
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    strcpy(fileresf,"f"); 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    strcat(fileresf,fileres);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    if((ficresf=fopen(fileresf,"w"))==NULL) {
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      printf("Problem with forecast resultfile: %s\n", fileresf);
           }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           epj[nlstate+1] +=epj[j];    }
         }    printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    if (mobilav!=0) {
         for(j=1;j <=nlstate;j++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrest,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }      }
     }    }
   }  
 free_matrix(mint,1,maxwav,1,n);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    if (stepm<=12) stepsize=1;
     free_vector(weight,1,n);    if(estepm < stepm){
   fclose(ficreseij);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficresvij);    }
   fclose(ficrest);    else  hstepm=estepm;   
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    hstepm=hstepm/stepm; 
      yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   /*------- Variance limit prevalence------*/                                   fractional in yp1 */
     anprojmean=yp;
   strcpy(fileresvpl,"vpl");    yp2=modf((yp1*12),&yp);
   strcat(fileresvpl,fileres);    mprojmean=yp;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    yp1=modf((yp2*30.5),&yp);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    jprojmean=yp;
     exit(0);    if(jprojmean==0) jprojmean=1;
   }    if(mprojmean==0) jprojmean=1;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     i1=cptcoveff;
   k=0;    if (cptcovn < 1){i1=1;}
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       k=k+1;    
       fprintf(ficresvpl,"\n#****** ");    fprintf(ficresf,"#****** Routine prevforecast **\n");
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*            if (h==(int)(YEARM*yearp)){ */
       fprintf(ficresvpl,"******\n");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
            for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        k=k+1;
       oldm=oldms;savm=savms;        fprintf(ficresf,"\n#******");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for(j=1;j<=cptcoveff;j++) {
     }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
  }        }
         fprintf(ficresf,"******\n");
   fclose(ficresvpl);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
   /*---------- End : free ----------------*/          for(i=1; i<=nlstate;i++)              
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            fprintf(ficresf," p%d%d",i,j);
            fprintf(ficresf," p.%d",j);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
            fprintf(ficresf,"\n");
            fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            nhstepm = nhstepm/hstepm; 
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(matcov,1,npar,1,npar);            oldm=oldms;savm=savms;
   free_vector(delti,1,npar);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   free_matrix(agev,1,maxwav,1,imx);          
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
   if(erreur >0)                fprintf(ficresf,"\n");
     printf("End of Imach with error or warning %d\n",erreur);                for(j=1;j<=cptcoveff;j++) 
   else   printf("End of Imach\n");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
                } 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              for(j=1; j<=nlstate+ndeath;j++) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/                ppij=0.;
   /*------ End -----------*/                for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
  end:                  else {
   /* chdir(pathcd);*/                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
  /*system("wgnuplot graph.plt");*/                  }
  /*system("../gp37mgw/wgnuplot graph.plt");*/                  if (h*hstepm/YEARM*stepm== yearp) {
  /*system("cd ../gp37mgw");*/                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                  }
  strcpy(plotcmd,GNUPLOTPROGRAM);                } /* end i */
  strcat(plotcmd," ");                if (h*hstepm/YEARM*stepm==yearp) {
  strcat(plotcmd,optionfilegnuplot);                  fprintf(ficresf," %.3f", ppij);
  system(plotcmd);                }
               }/* end j */
  /*#ifdef windows*/            } /* end h */
   while (z[0] != 'q') {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* chdir(path); */          } /* end agec */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        } /* end yearp */
     scanf("%s",z);      } /* end cptcod */
     if (z[0] == 'c') system("./imach");    } /* end  cptcov */
     else if (z[0] == 'e') system(optionfilehtm);         
     else if (z[0] == 'g') system(plotcmd);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     else if (z[0] == 'q') exit(0);  
   }    fclose(ficresf);
   /*#endif */  }
 }  
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.92


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>