Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.98

version 1.41.2.2, 2003/06/13 07:45:28 version 1.98, 2004/05/16 15:05:56
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   This program computes Healthy Life Expectancies from    directly from the data i.e. without the need of knowing the health
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    state at each age, but using a Gompertz model: log u =a + b*age .
   first survey ("cross") where individuals from different ages are    This is the basic analysis of mortality and should be done before any
   interviewed on their health status or degree of disability (in the    other analysis, in order to test if the mortality estimated from the
   case of a health survey which is our main interest) -2- at least a    cross-longitudinal survey is different from the mortality estimated
   second wave of interviews ("longitudinal") which measure each change    from other sources like vital statistic data.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    The same imach parameter file can be used but the option for mle should be -3.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Agnès, who wrote this part of the code, tried to keep most of the
   simplest model is the multinomial logistic model where pij is the    former routines in order to include the new code within the former code.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    The output is very simple: only an estimate of the intercept and of
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the slope with 95% confident intervals.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Current limitations:
   where the markup *Covariates have to be included here again* invites    A) Even if you enter covariates, i.e. with the
   you to do it.  More covariates you add, slower the    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   convergence.    B) There is no computation of Life Expectancy nor Life Table.
   
   The advantage of this computer programme, compared to a simple    Revision 1.97  2004/02/20 13:25:42  lievre
   multinomial logistic model, is clear when the delay between waves is not    Version 0.96d. Population forecasting command line is (temporarily)
   identical for each individual. Also, if a individual missed an    suppressed.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   hPijx is the probability to be observed in state i at age x+h    rewritten within the same printf. Workaround: many printfs.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.95  2003/07/08 07:54:34  brouard
   states. This elementary transition (by month or quarter trimester,    * imach.c (Repository):
   semester or year) is model as a multinomial logistic.  The hPx    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix (cov(a12,c31) instead of numbers.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    exist so I changed back to asctime which exists.
            Institut national d'études démographiques, Paris.    (Module): Version 0.96b
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.92  2003/06/25 16:30:45  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): On windows (cygwin) function asctime_r doesn't
   software can be distributed freely for non commercial use. Latest version    exist so I changed back to asctime which exists.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
 #include <math.h>    (Repository): Elapsed time after each iteration is now output. It
 #include <stdio.h>    helps to forecast when convergence will be reached. Elapsed time
 #include <stdlib.h>    is stamped in powell.  We created a new html file for the graphs
 #include <unistd.h>    concerning matrix of covariance. It has extension -cov.htm.
   
 #define MAXLINE 256    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    (Module): Some bugs corrected for windows. Also, when
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FILENAMELENGTH 80    of the covariance matrix to be input.
 /*#define DEBUG*/  
     Revision 1.89  2003/06/24 12:30:52  brouard
 /*#define windows*/    (Module): Some bugs corrected for windows. Also, when
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    of the covariance matrix to be input.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.88  2003/06/23 17:54:56  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 #define NINTERVMAX 8    Revision 1.87  2003/06/18 12:26:01  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Version 0.96
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.86  2003/06/17 20:04:08  brouard
 #define MAXN 20000    (Module): Change position of html and gnuplot routines and added
 #define YEARM 12. /* Number of months per year */    routine fileappend.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 int erreur; /* Error number */    prior to the death. In this case, dh was negative and likelihood
 int nvar;    was wrong (infinity). We still send an "Error" but patch by
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    assuming that the date of death was just one stepm after the
 int npar=NPARMAX;    interview.
 int nlstate=2; /* Number of live states */    (Repository): Because some people have very long ID (first column)
 int ndeath=1; /* Number of dead states */    we changed int to long in num[] and we added a new lvector for
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    memory allocation. But we also truncated to 8 characters (left
 int popbased=0;    truncation)
     (Repository): No more line truncation errors.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.84  2003/06/13 21:44:43  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    * imach.c (Repository): Replace "freqsummary" at a correct
 int mle, weightopt;    place. It differs from routine "prevalence" which may be called
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    many times. Probs is memory consuming and must be used with
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    parcimony.
 double jmean; /* Mean space between 2 waves */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.83  2003/06/10 13:39:11  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.82  2003/06/05 15:57:20  brouard
   char filerese[FILENAMELENGTH];    Add log in  imach.c and  fullversion number is now printed.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];  */
  FILE  *ficresvpl;  /*
   char fileresvpl[FILENAMELENGTH];     Interpolated Markov Chain
   
 #define NR_END 1    Short summary of the programme:
 #define FREE_ARG char*    
 #define FTOL 1.0e-10    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NRANSI    first survey ("cross") where individuals from different ages are
 #define ITMAX 200    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 #define TOL 2.0e-4    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 #define CGOLD 0.3819660    computed from the time spent in each health state according to a
 #define ZEPS 1.0e-10    model. More health states you consider, more time is necessary to reach the
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 #define GOLD 1.618034    probability to be observed in state j at the second wave
 #define GLIMIT 100.0    conditional to be observed in state i at the first wave. Therefore
 #define TINY 1.0e-20    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 static double maxarg1,maxarg2;    complex model than "constant and age", you should modify the program
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    where the markup *Covariates have to be included here again* invites
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    you to do it.  More covariates you add, slower the
      convergence.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 static double sqrarg;    identical for each individual. Also, if a individual missed an
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    intermediate interview, the information is lost, but taken into
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    account using an interpolation or extrapolation.  
   
 int imx;    hPijx is the probability to be observed in state i at age x+h
 int stepm;    conditional to the observed state i at age x. The delay 'h' can be
 /* Stepm, step in month: minimum step interpolation*/    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 int estepm;    semester or year) is modelled as a multinomial logistic.  The hPx
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 int m,nb;    hPijx.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Also this programme outputs the covariance matrix of the parameters but also
 double **pmmij, ***probs, ***mobaverage;    of the life expectancies. It also computes the stable prevalence. 
 double dateintmean=0;    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 double *weight;             Institut national d'études démographiques, Paris.
 int **s; /* Status */    This software have been partly granted by Euro-REVES, a concerted action
 double *agedc, **covar, idx;    from the European Union.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    can be accessed at http://euroreves.ined.fr/imach .
 double ftolhess; /* Tolerance for computing hessian */  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /**************** split *************************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    
 {    **********************************************************************/
    char *s;                             /* pointer */  /*
    int  l1, l2;                         /* length counters */    main
     read parameterfile
    l1 = strlen( path );                 /* length of path */    read datafile
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    concatwav
 #ifdef windows    freqsummary
    s = strrchr( path, '\\' );           /* find last / */    if (mle >= 1)
 #else      mlikeli
    s = strrchr( path, '/' );            /* find last / */    print results files
 #endif    if mle==1 
    if ( s == NULL ) {                   /* no directory, so use current */       computes hessian
 #if     defined(__bsd__)                /* get current working directory */    read end of parameter file: agemin, agemax, bage, fage, estepm
       extern char       *getwd( );        begin-prev-date,...
     open gnuplot file
       if ( getwd( dirc ) == NULL ) {    open html file
 #else    stable prevalence
       extern char       *getcwd( );     for age prevalim()
     h Pij x
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    variance of p varprob
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
          return( GLOCK_ERROR_GETCWD );    health expectancies
       }    Variance-covariance of DFLE
       strcpy( name, path );             /* we've got it */    prevalence()
    } else {                             /* strip direcotry from path */     movingaverage()
       s++;                              /* after this, the filename */    varevsij() 
       l2 = strlen( s );                 /* length of filename */    if popbased==1 varevsij(,popbased)
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    total life expectancies
       strcpy( name, s );                /* save file name */    Variance of stable prevalence
       strncpy( dirc, path, l1 - l2 );   /* now the directory */   end
       dirc[l1-l2] = 0;                  /* add zero */  */
    }  
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }   
 #else  #include <math.h>
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #include <stdio.h>
 #endif  #include <stdlib.h>
    s = strrchr( name, '.' );            /* find last / */  #include <unistd.h>
    s++;  
    strcpy(ext,s);                       /* save extension */  #include <sys/time.h>
    l1= strlen( name);  #include <time.h>
    l2= strlen( s)+1;  #include "timeval.h"
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  /* #include <libintl.h> */
    return( 0 );                         /* we're done */  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 /******************************************/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 void replace(char *s, char*t)  /*#define DEBUG*/
 {  /*#define windows*/
   int i;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   int lg=20;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   i=0;  
   lg=strlen(t);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for(i=0; i<= lg; i++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  #define NINTERVMAX 8
   }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 int nbocc(char *s, char occ)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   int i,j=0;  #define AGESUP 130
   int lg=20;  #define AGEBASE 40
   i=0;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   lg=strlen(s);  #ifdef unix
   for(i=0; i<= lg; i++) {  #define DIRSEPARATOR '/'
   if  (s[i] == occ ) j++;  #define ODIRSEPARATOR '\\'
   }  #else
   return j;  #define DIRSEPARATOR '\\'
 }  #define ODIRSEPARATOR '/'
   #endif
 void cutv(char *u,char *v, char*t, char occ)  
 {  /* $Id$ */
   int i,lg,j,p=0;  /* $State$ */
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  char version[]="Imach version 0.70, May 2004, INED-EUROREVES ";
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char fullversion[]="$Revision$ $Date$"; 
   }  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
   lg=strlen(t);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for(j=0; j<p; j++) {  int npar=NPARMAX;
     (u[j] = t[j]);  int nlstate=2; /* Number of live states */
   }  int ndeath=1; /* Number of dead states */
      u[p]='\0';  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  int *wav; /* Number of waves for this individuual 0 is possible */
   }  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int gipmx, gsw; /* Global variables on the number of contributions 
 /********************** nrerror ********************/                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 void nrerror(char error_text[])  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   fprintf(stderr,"ERREUR ...\n");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   fprintf(stderr,"%s\n",error_text);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   exit(1);  double jmean; /* Mean space between 2 waves */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
 /*********************** vector *******************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 double *vector(int nl, int nh)  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   double *v;  int globpr; /* Global variable for printing or not */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  double fretone; /* Only one call to likelihood */
   if (!v) nrerror("allocation failure in vector");  long ipmx; /* Number of contributions */
   return v-nl+NR_END;  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /************************ free vector ******************/  FILE *ficresilk;
 void free_vector(double*v, int nl, int nh)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   free((FREE_ARG)(v+nl-NR_END));  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /************************ivector *******************************/  FILE  *ficresvij;
 int *ivector(long nl,long nh)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   int *v;  char fileresvpl[FILENAMELENGTH];
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char title[MAXLINE];
   if (!v) nrerror("allocation failure in ivector");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   return v-nl+NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /******************free ivector **************************/  int  outcmd=0;
 void free_ivector(int *v, long nl, long nh)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /******************* imatrix *******************************/  char fileregp[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char popfile[FILENAMELENGTH];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
    struct timezone tzp;
   /* allocate pointers to rows */  extern int gettimeofday();
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   if (!m) nrerror("allocation failure 1 in matrix()");  long time_value;
   m += NR_END;  extern long time();
   m -= nrl;  char strcurr[80], strfor[80];
    
    #define NR_END 1
   /* allocate rows and set pointers to them */  #define FREE_ARG char*
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define FTOL 1.0e-10
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define NRANSI 
   m[nrl] -= ncl;  #define ITMAX 200 
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define TOL 2.0e-4 
    
   /* return pointer to array of pointers to rows */  #define CGOLD 0.3819660 
   return m;  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /****************** free_imatrix *************************/  #define GOLD 1.618034 
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define GLIMIT 100.0 
       int **m;  #define TINY 1.0e-20 
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   free((FREE_ARG) (m+nrl-NR_END));    
 }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double **m;  int agegomp= AGEGOMP;
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int imx; 
   if (!m) nrerror("allocation failure 1 in matrix()");  int stepm=1;
   m += NR_END;  /* Stepm, step in month: minimum step interpolation*/
   m -= nrl;  
   int estepm;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int m,nb;
   m[nrl] -= ncl;  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   return m;  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double *weight;
 {  int **s; /* Status */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double *agedc, **covar, idx;
   free((FREE_ARG)(m+nrl-NR_END));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 /******************* ma3x *******************************/  double ftolhess; /* Tolerance for computing hessian */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  /**************** split *************************/
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double ***m;  {
     char  *ss;                            /* pointer */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    int   l1, l2;                         /* length counters */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    l1 = strlen(path );                   /* length of path */
   m -= nrl;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if ( ss == NULL ) {                   /* no directory, so use current */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m[nrl] += NR_END;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   m[nrl] -= ncl;      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      strcpy( name, path );               /* we've got it */
   m[nrl][ncl] += NR_END;    } else {                              /* strip direcotry from path */
   m[nrl][ncl] -= nll;      ss++;                               /* after this, the filename */
   for (j=ncl+1; j<=nch; j++)      l2 = strlen( ss );                  /* length of filename */
     m[nrl][j]=m[nrl][j-1]+nlay;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
        strcpy( name, ss );         /* save file name */
   for (i=nrl+1; i<=nrh; i++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      dirc[l1-l2] = 0;                    /* add zero */
     for (j=ncl+1; j<=nch; j++)    }
       m[i][j]=m[i][j-1]+nlay;    l1 = strlen( dirc );                  /* length of directory */
   }    /*#ifdef windows
   return m;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 }  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 /*************************free ma3x ************************/  #endif
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    */
 {    ss = strrchr( name, '.' );            /* find last / */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    ss++;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    strcpy(ext,ss);                       /* save extension */
   free((FREE_ARG)(m+nrl-NR_END));    l1= strlen( name);
 }    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
 /***************** f1dim *************************/    finame[l1-l2]= 0;
 extern int ncom;    return( 0 );                          /* we're done */
 extern double *pcom,*xicom;  }
 extern double (*nrfunc)(double []);  
    
 double f1dim(double x)  /******************************************/
 {  
   int j;  void replace_back_to_slash(char *s, char*t)
   double f;  {
   double *xt;    int i;
      int lg=0;
   xt=vector(1,ncom);    i=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    lg=strlen(t);
   f=(*nrfunc)(xt);    for(i=0; i<= lg; i++) {
   free_vector(xt,1,ncom);      (s[i] = t[i]);
   return f;      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int nbocc(char *s, char occ)
 {  {
   int iter;    int i,j=0;
   double a,b,d,etemp;    int lg=20;
   double fu,fv,fw,fx;    i=0;
   double ftemp;    lg=strlen(s);
   double p,q,r,tol1,tol2,u,v,w,x,xm;    for(i=0; i<= lg; i++) {
   double e=0.0;    if  (s[i] == occ ) j++;
      }
   a=(ax < cx ? ax : cx);    return j;
   b=(ax > cx ? ax : cx);  }
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  void cutv(char *u,char *v, char*t, char occ)
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    /* cuts string t into u and v where u is ended by char occ excluding it
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/       gives u="abcedf" and v="ghi2j" */
     printf(".");fflush(stdout);    int i,lg,j,p=0;
 #ifdef DEBUG    i=0;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    for(j=0; j<=strlen(t)-1; j++) {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 #endif    }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;    lg=strlen(t);
       return fx;    for(j=0; j<p; j++) {
     }      (u[j] = t[j]);
     ftemp=fu;    }
     if (fabs(e) > tol1) {       u[p]='\0';
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);     for(j=0; j<= lg; j++) {
       p=(x-v)*q-(x-w)*r;      if (j>=(p+1))(v[j-p-1] = t[j]);
       q=2.0*(q-r);    }
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /********************** nrerror ********************/
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  void nrerror(char error_text[])
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
       else {    fprintf(stderr,"ERREUR ...\n");
         d=p/q;    fprintf(stderr,"%s\n",error_text);
         u=x+d;    exit(EXIT_FAILURE);
         if (u-a < tol2 || b-u < tol2)  }
           d=SIGN(tol1,xm-x);  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    double *v;
     }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if (!v) nrerror("allocation failure in vector");
     fu=(*f)(u);    return v-nl+NR_END;
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /************************ free vector ******************/
         SHFT(fv,fw,fx,fu)  void free_vector(double*v, int nl, int nh)
         } else {  {
           if (u < x) a=u; else b=u;    free((FREE_ARG)(v+nl-NR_END));
           if (fu <= fw || w == x) {  }
             v=w;  
             w=u;  /************************ivector *******************************/
             fv=fw;  int *ivector(long nl,long nh)
             fw=fu;  {
           } else if (fu <= fv || v == x || v == w) {    int *v;
             v=u;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
             fv=fu;    if (!v) nrerror("allocation failure in ivector");
           }    return v-nl+NR_END;
         }  }
   }  
   nrerror("Too many iterations in brent");  /******************free ivector **************************/
   *xmin=x;  void free_ivector(int *v, long nl, long nh)
   return fx;  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /****************** mnbrak ***********************/  
   /************************lvector *******************************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  long *lvector(long nl,long nh)
             double (*func)(double))  {
 {    long *v;
   double ulim,u,r,q, dum;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double fu;    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   *fa=(*func)(*ax);  }
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /******************free lvector **************************/
     SHFT(dum,*ax,*bx,dum)  void free_lvector(long *v, long nl, long nh)
       SHFT(dum,*fb,*fa,dum)  {
       }    free((FREE_ARG)(v+nl-NR_END));
   *cx=(*bx)+GOLD*(*bx-*ax);  }
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /******************* imatrix *******************************/
     r=(*bx-*ax)*(*fb-*fc);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     q=(*bx-*cx)*(*fb-*fa);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  { 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    int **m; 
     if ((*bx-u)*(u-*cx) > 0.0) {    
       fu=(*func)(u);    /* allocate pointers to rows */ 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       fu=(*func)(u);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       if (fu < *fc) {    m += NR_END; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    m -= nrl; 
           SHFT(*fb,*fc,fu,(*func)(u))    
           }    
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    /* allocate rows and set pointers to them */ 
       u=ulim;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       fu=(*func)(u);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     } else {    m[nrl] += NR_END; 
       u=(*cx)+GOLD*(*cx-*bx);    m[nrl] -= ncl; 
       fu=(*func)(u);    
     }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     SHFT(*ax,*bx,*cx,u)    
       SHFT(*fa,*fb,*fc,fu)    /* return pointer to array of pointers to rows */ 
       }    return m; 
 }  } 
   
 /*************** linmin ************************/  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 int ncom;        int **m;
 double *pcom,*xicom;        long nch,ncl,nrh,nrl; 
 double (*nrfunc)(double []);       /* free an int matrix allocated by imatrix() */ 
    { 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 {    free((FREE_ARG) (m+nrl-NR_END)); 
   double brent(double ax, double bx, double cx,  } 
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /******************* matrix *******************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double **matrix(long nrl, long nrh, long ncl, long nch)
               double *fc, double (*func)(double));  {
   int j;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double xx,xmin,bx,ax;    double **m;
   double fx,fb,fa;  
      m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   ncom=n;    if (!m) nrerror("allocation failure 1 in matrix()");
   pcom=vector(1,n);    m += NR_END;
   xicom=vector(1,n);    m -= nrl;
   nrfunc=func;  
   for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     pcom[j]=p[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     xicom[j]=xi[j];    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   ax=0.0;  
   xx=1.0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    return m;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 #ifdef DEBUG     */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  /*************************free matrix ************************/
     xi[j] *= xmin;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     p[j] += xi[j];  {
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free_vector(xicom,1,n);    free((FREE_ARG)(m+nrl-NR_END));
   free_vector(pcom,1,n);  }
 }  
   /******************* ma3x *******************************/
 /*************** powell ************************/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 {    double ***m;
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int i,ibig,j;    if (!m) nrerror("allocation failure 1 in matrix()");
   double del,t,*pt,*ptt,*xit;    m += NR_END;
   double fp,fptt;    m -= nrl;
   double *xits;  
   pt=vector(1,n);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   ptt=vector(1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   xit=vector(1,n);    m[nrl] += NR_END;
   xits=vector(1,n);    m[nrl] -= ncl;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     ibig=0;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     del=0.0;    m[nrl][ncl] += NR_END;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl][ncl] -= nll;
     for (i=1;i<=n;i++)    for (j=ncl+1; j<=nch; j++) 
       printf(" %d %.12f",i, p[i]);      m[nrl][j]=m[nrl][j-1]+nlay;
     printf("\n");    
     for (i=1;i<=n;i++) {    for (i=nrl+1; i<=nrh; i++) {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       fptt=(*fret);      for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG        m[i][j]=m[i][j-1]+nlay;
       printf("fret=%lf \n",*fret);    }
 #endif    return m; 
       printf("%d",i);fflush(stdout);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       linmin(p,xit,n,fret,func);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       if (fabs(fptt-(*fret)) > del) {    */
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /*************************free ma3x ************************/
 #ifdef DEBUG  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       printf("%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         printf(" x(%d)=%.12e",j,xit[j]);    free((FREE_ARG)(m+nrl-NR_END));
       }  }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  /*************** function subdirf ***********/
       printf("\n");  char *subdirf(char fileres[])
 #endif  {
     }    /* Caution optionfilefiname is hidden */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    strcpy(tmpout,optionfilefiname);
 #ifdef DEBUG    strcat(tmpout,"/"); /* Add to the right */
       int k[2],l;    strcat(tmpout,fileres);
       k[0]=1;    return tmpout;
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /*************** function subdirf2 ***********/
         printf(" %.12e",p[j]);  char *subdirf2(char fileres[], char *preop)
       printf("\n");  {
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    strcpy(tmpout,optionfilefiname);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    strcat(tmpout,"/");
         }    strcat(tmpout,preop);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    strcat(tmpout,fileres);
       }    return tmpout;
 #endif  }
   
   /*************** function subdirf3 ***********/
       free_vector(xit,1,n);  char *subdirf3(char fileres[], char *preop, char *preop2)
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    
       free_vector(pt,1,n);    /* Caution optionfilefiname is hidden */
       return;    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    strcat(tmpout,preop);
     for (j=1;j<=n;j++) {    strcat(tmpout,preop2);
       ptt[j]=2.0*p[j]-pt[j];    strcat(tmpout,fileres);
       xit[j]=p[j]-pt[j];    return tmpout;
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /***************** f1dim *************************/
     if (fptt < fp) {  extern int ncom; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  extern double *pcom,*xicom;
       if (t < 0.0) {  extern double (*nrfunc)(double []); 
         linmin(p,xit,n,fret,func);   
         for (j=1;j<=n;j++) {  double f1dim(double x) 
           xi[j][ibig]=xi[j][n];  { 
           xi[j][n]=xit[j];    int j; 
         }    double f;
 #ifdef DEBUG    double *xt; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);   
         for(j=1;j<=n;j++)    xt=vector(1,ncom); 
           printf(" %.12e",xit[j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         printf("\n");    f=(*nrfunc)(xt); 
 #endif    free_vector(xt,1,ncom); 
       }    return f; 
     }  } 
   }  
 }  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /**** Prevalence limit ****************/  { 
     int iter; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double a,b,d,etemp;
 {    double fu,fv,fw,fx;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    double ftemp;
      matrix by transitions matrix until convergence is reached */    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
   int i, ii,j,k;   
   double min, max, maxmin, maxmax,sumnew=0.;    a=(ax < cx ? ax : cx); 
   double **matprod2();    b=(ax > cx ? ax : cx); 
   double **out, cov[NCOVMAX], **pmij();    x=w=v=bx; 
   double **newm;    fw=fv=fx=(*f)(x); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   for (ii=1;ii<=nlstate+ndeath;ii++)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (j=1;j<=nlstate+ndeath;j++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
    cov[1]=1.;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #endif
     newm=savm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     /* Covariates have to be included here again */        *xmin=x; 
      cov[2]=agefin;        return fx; 
        } 
       for (k=1; k<=cptcovn;k++) {      ftemp=fu;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      if (fabs(e) > tol1) { 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        r=(x-w)*(fx-fv); 
       }        q=(x-v)*(fx-fw); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        p=(x-v)*q-(x-w)*r; 
       for (k=1; k<=cptcovprod;k++)        q=2.0*(q-r); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if (q > 0.0) p = -p; 
         q=fabs(q); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        etemp=e; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        e=d; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
     savm=oldm;          d=p/q; 
     oldm=newm;          u=x+d; 
     maxmax=0.;          if (u-a < tol2 || b-u < tol2) 
     for(j=1;j<=nlstate;j++){            d=SIGN(tol1,xm-x); 
       min=1.;        } 
       max=0.;      } else { 
       for(i=1; i<=nlstate; i++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         sumnew=0;      } 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      fu=(*f)(u); 
         max=FMAX(max,prlim[i][j]);      if (fu <= fx) { 
         min=FMIN(min,prlim[i][j]);        if (u >= x) a=x; else b=x; 
       }        SHFT(v,w,x,u) 
       maxmin=max-min;          SHFT(fv,fw,fx,fu) 
       maxmax=FMAX(maxmax,maxmin);          } else { 
     }            if (u < x) a=u; else b=u; 
     if(maxmax < ftolpl){            if (fu <= fw || w == x) { 
       return prlim;              v=w; 
     }              w=u; 
   }              fv=fw; 
 }              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 /*************** transition probabilities ***************/              v=u; 
               fv=fu; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            } 
 {          } 
   double s1, s2;    } 
   /*double t34;*/    nrerror("Too many iterations in brent"); 
   int i,j,j1, nc, ii, jj;    *xmin=x; 
     return fx; 
     for(i=1; i<= nlstate; i++){  } 
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /****************** mnbrak ***********************/
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/              double (*func)(double)) 
       }  { 
       ps[i][j]=s2;    double ulim,u,r,q, dum;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double fu; 
     }   
     for(j=i+1; j<=nlstate+ndeath;j++){    *fa=(*func)(*ax); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    *fb=(*func)(*bx); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    if (*fb > *fa) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      SHFT(dum,*ax,*bx,dum) 
       }        SHFT(dum,*fb,*fa,dum) 
       ps[i][j]=s2;        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
   }    *fc=(*func)(*cx); 
     /*ps[3][2]=1;*/    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
   for(i=1; i<= nlstate; i++){      q=(*bx-*cx)*(*fb-*fa); 
      s1=0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(j=1; j<i; j++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       s1+=exp(ps[i][j]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for(j=i+1; j<=nlstate+ndeath; j++)      if ((*bx-u)*(u-*cx) > 0.0) { 
       s1+=exp(ps[i][j]);        fu=(*func)(u); 
     ps[i][i]=1./(s1+1.);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(j=1; j<i; j++)        fu=(*func)(u); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        if (fu < *fc) { 
     for(j=i+1; j<=nlstate+ndeath; j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            SHFT(*fb,*fc,fu,(*func)(u)) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            } 
   } /* end i */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else { 
       ps[ii][jj]=0;        u=(*cx)+GOLD*(*cx-*bx); 
       ps[ii][ii]=1;        fu=(*func)(u); 
     }      } 
   }      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
         } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  /*************** linmin ************************/
    }  
     printf("\n ");  int ncom; 
     }  double *pcom,*xicom;
     printf("\n ");printf("%lf ",cov[2]);*/  double (*nrfunc)(double []); 
 /*   
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   goto end;*/  { 
     return ps;    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
 /**************** Product of 2 matrices ******************/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    int j; 
 {    double xx,xmin,bx,ax; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double fx,fb,fa;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   
   /* in, b, out are matrice of pointers which should have been initialized    ncom=n; 
      before: only the contents of out is modified. The function returns    pcom=vector(1,n); 
      a pointer to pointers identical to out */    xicom=vector(1,n); 
   long i, j, k;    nrfunc=func; 
   for(i=nrl; i<= nrh; i++)    for (j=1;j<=n;j++) { 
     for(k=ncolol; k<=ncoloh; k++)      pcom[j]=p[j]; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      xicom[j]=xi[j]; 
         out[i][k] +=in[i][j]*b[j][k];    } 
     ax=0.0; 
   return out;    xx=1.0; 
 }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 /************* Higher Matrix Product ***************/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #endif
 {    for (j=1;j<=n;j++) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      xi[j] *= xmin; 
      duration (i.e. until      p[j] += xi[j]; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    free_vector(xicom,1,n); 
      (typically every 2 years instead of every month which is too big).    free_vector(pcom,1,n); 
      Model is determined by parameters x and covariates have to be  } 
      included manually here.  
   char *asc_diff_time(long time_sec, char ascdiff[])
      */  {
     long sec_left, days, hours, minutes;
   int i, j, d, h, k;    days = (time_sec) / (60*60*24);
   double **out, cov[NCOVMAX];    sec_left = (time_sec) % (60*60*24);
   double **newm;    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   /* Hstepm could be zero and should return the unit matrix */    minutes = (sec_left) /60;
   for (i=1;i<=nlstate+ndeath;i++)    sec_left = (sec_left) % (60);
     for (j=1;j<=nlstate+ndeath;j++){    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       oldm[i][j]=(i==j ? 1.0 : 0.0);    return ascdiff;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** powell ************************/
   for(h=1; h <=nhstepm; h++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for(d=1; d <=hstepm; d++){              double (*func)(double [])) 
       newm=savm;  { 
       /* Covariates have to be included here again */    void linmin(double p[], double xi[], int n, double *fret, 
       cov[1]=1.;                double (*func)(double [])); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    int i,ibig,j; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double del,t,*pt,*ptt,*xit;
       for (k=1; k<=cptcovage;k++)    double fp,fptt;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double *xits;
       for (k=1; k<=cptcovprod;k++)    int niterf, itmp;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
     pt=vector(1,n); 
     ptt=vector(1,n); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    xit=vector(1,n); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    xits=vector(1,n); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    *fret=(*func)(p); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    for (j=1;j<=n;j++) pt[j]=p[j]; 
       savm=oldm;    for (*iter=1;;++(*iter)) { 
       oldm=newm;      fp=(*fret); 
     }      ibig=0; 
     for(i=1; i<=nlstate+ndeath; i++)      del=0.0; 
       for(j=1;j<=nlstate+ndeath;j++) {      last_time=curr_time;
         po[i][j][h]=newm[i][j];      (void) gettimeofday(&curr_time,&tzp);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
          */      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   } /* end h */      */
   return po;     for (i=1;i<=n;i++) {
 }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 /*************** log-likelihood *************/      }
 double func( double *x)      printf("\n");
 {      fprintf(ficlog,"\n");
   int i, ii, j, k, mi, d, kk;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      if(*iter <=3){
   double **out;        tm = *localtime(&curr_time.tv_sec);
   double sw; /* Sum of weights */        strcpy(strcurr,asctime(&tmf));
   double lli; /* Individual log likelihood */  /*       asctime_r(&tm,strcurr); */
   int s1, s2;        forecast_time=curr_time;
   long ipmx;        itmp = strlen(strcurr);
   /*extern weight */        if(strcurr[itmp-1]=='\n')
   /* We are differentiating ll according to initial status */          strcurr[itmp-1]='\0';
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /*for(i=1;i<imx;i++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     printf(" %d\n",s[4][i]);        for(niterf=10;niterf<=30;niterf+=10){
   */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   cov[1]=1.;          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   for(k=1; k<=nlstate; k++) ll[k]=0.;          strcpy(strfor,asctime(&tmf));
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          itmp = strlen(strfor);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          if(strfor[itmp-1]=='\n')
     for(mi=1; mi<= wav[i]-1; mi++){          strfor[itmp-1]='\0';
       for (ii=1;ii<=nlstate+ndeath;ii++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         for (j=1;j<=nlstate+ndeath;j++){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);        }
           savm[ii][j]=(ii==j ? 1.0 : 0.0);      }
         }      for (i=1;i<=n;i++) { 
       for(d=0; d<dh[mi][i]; d++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         newm=savm;        fptt=(*fret); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #ifdef DEBUG
         for (kk=1; kk<=cptcovage;kk++) {        printf("fret=%lf \n",*fret);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        fprintf(ficlog,"fret=%lf \n",*fret);
         }  #endif
                printf("%d",i);fflush(stdout);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        fprintf(ficlog,"%d",i);fflush(ficlog);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        linmin(p,xit,n,fret,func); 
         savm=oldm;        if (fabs(fptt-(*fret)) > del) { 
         oldm=newm;          del=fabs(fptt-(*fret)); 
                  ibig=i; 
                } 
       } /* end mult */  #ifdef DEBUG
              printf("%d %.12e",i,(*fret));
       s1=s[mw[mi][i]][i];        fprintf(ficlog,"%d %.12e",i,(*fret));
       s2=s[mw[mi+1][i]][i];        for (j=1;j<=n;j++) {
       if( s2 > nlstate){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         /* i.e. if s2 is a death state and if the date of death is known then the contribution          printf(" x(%d)=%.12e",j,xit[j]);
            to the likelihood is the probability to die between last step unit time and current          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
            step unit time, which is also the differences between probability to die before dh        }
            and probability to die before dh-stepm .        for(j=1;j<=n;j++) {
            In version up to 0.92 likelihood was computed          printf(" p=%.12e",p[j]);
            as if date of death was unknown. Death was treated as any other          fprintf(ficlog," p=%.12e",p[j]);
            health state: the date of the interview describes the actual state        }
            and not the date of a change in health state. The former idea was        printf("\n");
            to consider that at each interview the state was recorded        fprintf(ficlog,"\n");
            (healthy, disable or death) and IMaCh was corrected; but when we  #endif
            introduced the exact date of death then we should have modified      } 
            the contribution of an exact death to the likelihood. This new      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
            contribution is smaller and very dependent of the step unit  #ifdef DEBUG
            stepm. It is no more the probability to die between last interview        int k[2],l;
            and month of death but the probability to survive from last        k[0]=1;
            interview up to one month before death multiplied by the        k[1]=-1;
            probability to die within a month. Thanks to Chris        printf("Max: %.12e",(*func)(p));
            Jackson for correcting this bug.  Former versions increased        fprintf(ficlog,"Max: %.12e",(*func)(p));
            mortality artificially. The bad side is that we add another loop        for (j=1;j<=n;j++) {
            which slows down the processing. The difference can be up to 10%          printf(" %.12e",p[j]);
            lower mortality.          fprintf(ficlog," %.12e",p[j]);
         */        }
         lli=log(out[s1][s2] - savm[s1][s2]);        printf("\n");
       }else{        fprintf(ficlog,"\n");
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */        for(l=0;l<=1;l++) {
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       ipmx +=1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       sw += weight[i];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          }
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     } /* end of wave */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   } /* end of individual */        }
   #endif
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        free_vector(xit,1,n); 
   /*exit(0);*/        free_vector(xits,1,n); 
   return -l;        free_vector(ptt,1,n); 
 }        free_vector(pt,1,n); 
         return; 
       } 
 /*********** Maximum Likelihood Estimation ***************/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        ptt[j]=2.0*p[j]-pt[j]; 
 {        xit[j]=p[j]-pt[j]; 
   int i,j, iter;        pt[j]=p[j]; 
   double **xi,*delti;      } 
   double fret;      fptt=(*func)(ptt); 
   xi=matrix(1,npar,1,npar);      if (fptt < fp) { 
   for (i=1;i<=npar;i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for (j=1;j<=npar;j++)        if (t < 0.0) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);          linmin(p,xit,n,fret,func); 
   printf("Powell\n");          for (j=1;j<=n;j++) { 
   powell(p,xi,npar,ftol,&iter,&fret,func);            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
 /**** Computes Hessian and covariance matrix ***/            printf(" %.12e",xit[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))            fprintf(ficlog," %.12e",xit[j]);
 {          }
   double  **a,**y,*x,pd;          printf("\n");
   double **hess;          fprintf(ficlog,"\n");
   int i, j,jk;  #endif
   int *indx;        }
       } 
   double hessii(double p[], double delta, int theta, double delti[]);    } 
   double hessij(double p[], double delti[], int i, int j);  } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /**** Prevalence limit (stable prevalence)  ****************/
   
   hess=matrix(1,npar,1,npar);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (i=1;i<=npar;i++){       matrix by transitions matrix until convergence is reached */
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    int i, ii,j,k;
     /*printf(" %f ",p[i]);*/    double min, max, maxmin, maxmax,sumnew=0.;
     /*printf(" %lf ",hess[i][i]);*/    double **matprod2();
   }    double **out, cov[NCOVMAX], **pmij();
      double **newm;
   for (i=1;i<=npar;i++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
     for (j=1;j<=npar;j++)  {  
       if (j>i) {    for (ii=1;ii<=nlstate+ndeath;ii++)
         printf(".%d%d",i,j);fflush(stdout);      for (j=1;j<=nlstate+ndeath;j++){
         hess[i][j]=hessij(p,delti,i,j);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         hess[j][i]=hess[i][j];          }
         /*printf(" %lf ",hess[i][j]);*/  
       }     cov[1]=1.;
     }   
   }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   printf("\n");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      /* Covariates have to be included here again */
         cov[2]=agefin;
   a=matrix(1,npar,1,npar);    
   y=matrix(1,npar,1,npar);        for (k=1; k<=cptcovn;k++) {
   x=vector(1,npar);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   indx=ivector(1,npar);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   ludcmp(a,npar,indx,&pd);        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     x[j]=1;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     lubksb(a,npar,indx,x);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for (i=1;i<=npar;i++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       matcov[i][j]=x[i];  
     }      savm=oldm;
   }      oldm=newm;
       maxmax=0.;
   printf("\n#Hessian matrix#\n");      for(j=1;j<=nlstate;j++){
   for (i=1;i<=npar;i++) {        min=1.;
     for (j=1;j<=npar;j++) {        max=0.;
       printf("%.3e ",hess[i][j]);        for(i=1; i<=nlstate; i++) {
     }          sumnew=0;
     printf("\n");          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   /* Recompute Inverse */          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=npar;i++)        }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        maxmin=max-min;
   ludcmp(a,npar,indx,&pd);        maxmax=FMAX(maxmax,maxmin);
       }
   /*  printf("\n#Hessian matrix recomputed#\n");      if(maxmax < ftolpl){
         return prlim;
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;    }
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /*************** transition probabilities ***************/ 
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     }  {
     printf("\n");    double s1, s2;
   }    /*double t34;*/
   */    int i,j,j1, nc, ii, jj;
   
   free_matrix(a,1,npar,1,npar);      for(i=1; i<= nlstate; i++){
   free_matrix(y,1,npar,1,npar);      for(j=1; j<i;j++){
   free_vector(x,1,npar);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   free_ivector(indx,1,npar);          /*s2 += param[i][j][nc]*cov[nc];*/
   free_matrix(hess,1,npar,1,npar);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
 }        ps[i][j]=s2;
         /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
 /*************** hessian matrix ****************/      }
 double hessii( double x[], double delta, int theta, double delti[])      for(j=i+1; j<=nlstate+ndeath;j++){
 {        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int i;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int l=1, lmax=20;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   double k1,k2;        }
   double p2[NPARMAX+1];        ps[i][j]=s2;
   double res;      }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    }
   double fx;      /*ps[3][2]=1;*/
   int k=0,kmax=10;  
   double l1;    for(i=1; i<= nlstate; i++){
        s1=0;
   fx=func(x);      for(j=1; j<i; j++)
   for (i=1;i<=npar;i++) p2[i]=x[i];        s1+=exp(ps[i][j]);
   for(l=0 ; l <=lmax; l++){      for(j=i+1; j<=nlstate+ndeath; j++)
     l1=pow(10,l);        s1+=exp(ps[i][j]);
     delts=delt;      ps[i][i]=1./(s1+1.);
     for(k=1 ; k <kmax; k=k+1){      for(j=1; j<i; j++)
       delt = delta*(l1*k);        ps[i][j]= exp(ps[i][j])*ps[i][i];
       p2[theta]=x[theta] +delt;      for(j=i+1; j<=nlstate+ndeath; j++)
       k1=func(p2)-fx;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       p2[theta]=x[theta]-delt;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       k2=func(p2)-fx;    } /* end i */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
            for(jj=1; jj<= nlstate+ndeath; jj++){
 #ifdef DEBUG        ps[ii][jj]=0;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        ps[ii][ii]=1;
 #endif      }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  
       }    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for(jj=1; jj<= nlstate+ndeath; jj++){
         k=kmax; l=lmax*10.;       printf("%lf ",ps[ii][jj]);
       }     }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      printf("\n ");
         delts=delt;      }
       }      printf("\n ");printf("%lf ",cov[2]);*/
     }  /*
   }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   delti[theta]=delts;    goto end;*/
   return res;      return ps;
    }
 }  
   /**************** Product of 2 matrices ******************/
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   int i;  {
   int l=1, l1, lmax=20;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double k1,k2,k3,k4,res,fx;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double p2[NPARMAX+1];    /* in, b, out are matrice of pointers which should have been initialized 
   int k;       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   fx=func(x);    long i, j, k;
   for (k=1; k<=2; k++) {    for(i=nrl; i<= nrh; i++)
     for (i=1;i<=npar;i++) p2[i]=x[i];      for(k=ncolol; k<=ncoloh; k++)
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          out[i][k] +=in[i][j]*b[j][k];
     k1=func(p2)-fx;  
      return out;
     p2[thetai]=x[thetai]+delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  
    /************* Higher Matrix Product ***************/
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     k3=func(p2)-fx;  {
      /* Computes the transition matrix starting at age 'age' over 
     p2[thetai]=x[thetai]-delti[thetai]/k;       'nhstepm*hstepm*stepm' months (i.e. until
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     k4=func(p2)-fx;       nhstepm*hstepm matrices. 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 #ifdef DEBUG       (typically every 2 years instead of every month which is too big 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);       for the memory).
 #endif       Model is determined by parameters x and covariates have to be 
   }       included manually here. 
   return res;  
 }       */
   
 /************** Inverse of matrix **************/    int i, j, d, h, k;
 void ludcmp(double **a, int n, int *indx, double *d)    double **out, cov[NCOVMAX];
 {    double **newm;
   int i,imax,j,k;  
   double big,dum,sum,temp;    /* Hstepm could be zero and should return the unit matrix */
   double *vv;    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
   vv=vector(1,n);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   *d=1.0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   for (i=1;i<=n;i++) {      }
     big=0.0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (j=1;j<=n;j++)    for(h=1; h <=nhstepm; h++){
       if ((temp=fabs(a[i][j])) > big) big=temp;      for(d=1; d <=hstepm; d++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        newm=savm;
     vv[i]=1.0/big;        /* Covariates have to be included here again */
   }        cov[1]=1.;
   for (j=1;j<=n;j++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for (i=1;i<j;i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       sum=a[i][j];        for (k=1; k<=cptcovage;k++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       a[i][j]=sum;        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     big=0.0;  
     for (i=j;i<=n;i++) {  
       sum=a[i][j];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for (k=1;k<j;k++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         sum -= a[i][k]*a[k][j];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       a[i][j]=sum;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       if ( (dum=vv[i]*fabs(sum)) >= big) {        savm=oldm;
         big=dum;        oldm=newm;
         imax=i;      }
       }      for(i=1; i<=nlstate+ndeath; i++)
     }        for(j=1;j<=nlstate+ndeath;j++) {
     if (j != imax) {          po[i][j][h]=newm[i][j];
       for (k=1;k<=n;k++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         dum=a[imax][k];           */
         a[imax][k]=a[j][k];        }
         a[j][k]=dum;    } /* end h */
       }    return po;
       *d = -(*d);  }
       vv[imax]=vv[j];  
     }  
     indx[j]=imax;  /*************** log-likelihood *************/
     if (a[j][j] == 0.0) a[j][j]=TINY;  double func( double *x)
     if (j != n) {  {
       dum=1.0/(a[j][j]);    int i, ii, j, k, mi, d, kk;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
   }    double sw; /* Sum of weights */
   free_vector(vv,1,n);  /* Doesn't work */    double lli; /* Individual log likelihood */
 ;    int s1, s2;
 }    double bbh, survp;
     long ipmx;
 void lubksb(double **a, int n, int *indx, double b[])    /*extern weight */
 {    /* We are differentiating ll according to initial status */
   int i,ii=0,ip,j;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double sum;    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   for (i=1;i<=n;i++) {    */
     ip=indx[i];    cov[1]=1.;
     sum=b[ip];  
     b[ip]=b[i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    if(mle==1){
     else if (sum) ii=i;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     b[i]=sum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   for (i=n;i>=1;i--) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     sum=b[i];            for (j=1;j<=nlstate+ndeath;j++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     b[i]=sum/a[i][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /************ Frequencies ********************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)            for (kk=1; kk<=cptcovage;kk++) {
 {  /* Some frequencies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***freq; /* Frequencies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *pp;            savm=oldm;
   double pos, k2, dateintsum=0,k2cpt=0;            oldm=newm;
   FILE *ficresp;          } /* end mult */
   char fileresp[FILENAMELENGTH];        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   pp=vector(1,nlstate);          /* But now since version 0.9 we anticipate for bias and large stepm.
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   strcpy(fileresp,"p");           * (in months) between two waves is not a multiple of stepm, we rounded to 
   strcat(fileresp,fileres);           * the nearest (and in case of equal distance, to the lowest) interval but now
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     exit(0);           * probability in order to take into account the bias as a fraction of the way
   }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * -stepm/2 to stepm/2 .
   j1=0;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   j=cptcoveff;           */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   for(k1=1; k1<=j;k1++){          bbh=(double)bh[mi][i]/(double)stepm; 
     for(i1=1; i1<=ncodemax[k1];i1++){          /* bias is positive if real duration
       j1++;           * is higher than the multiple of stepm and negative otherwise.
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           */
         scanf("%d", i);*/          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (i=-1; i<=nlstate+ndeath; i++)            if( s2 > nlstate){ 
         for (jk=-1; jk<=nlstate+ndeath; jk++)              /* i.e. if s2 is a death state and if the date of death is known then the contribution
           for(m=agemin; m <= agemax+3; m++)               to the likelihood is the probability to die between last step unit time and current 
             freq[i][jk][m]=0;               step unit time, which is also the differences between probability to die before dh 
                     and probability to die before dh-stepm . 
       dateintsum=0;               In version up to 0.92 likelihood was computed
       k2cpt=0;          as if date of death was unknown. Death was treated as any other
       for (i=1; i<=imx; i++) {          health state: the date of the interview describes the actual state
         bool=1;          and not the date of a change in health state. The former idea was
         if  (cptcovn>0) {          to consider that at each interview the state was recorded
           for (z1=1; z1<=cptcoveff; z1++)          (healthy, disable or death) and IMaCh was corrected; but when we
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          introduced the exact date of death then we should have modified
               bool=0;          the contribution of an exact death to the likelihood. This new
         }          contribution is smaller and very dependent of the step unit
         if (bool==1) {          stepm. It is no more the probability to die between last interview
           for(m=firstpass; m<=lastpass; m++){          and month of death but the probability to survive from last
             k2=anint[m][i]+(mint[m][i]/12.);          interview up to one month before death multiplied by the
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          probability to die within a month. Thanks to Chris
               if(agev[m][i]==0) agev[m][i]=agemax+1;          Jackson for correcting this bug.  Former versions increased
               if(agev[m][i]==1) agev[m][i]=agemax+2;          mortality artificially. The bad side is that we add another loop
               if (m<lastpass) {          which slows down the processing. The difference can be up to 10%
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          lower mortality.
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            */
               }            lli=log(out[s1][s2] - savm[s1][s2]);
                        }else{
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                 dateintsum=dateintsum+k2;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                 k2cpt++;          } 
               }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             }          /*if(lli ==000.0)*/
           }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
       }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        } /* end of wave */
       } /* end of individual */
       if  (cptcovn>0) {    }  else if(mle==2){
         fprintf(ficresp, "\n#********** Variable ");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficresp, "**********\n#");        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp, "\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
       for(i=(int)agemin; i <= (int)agemax+3; i++){          for(d=0; d<=dh[mi][i]; d++){
         if(i==(int)agemax+3)            newm=savm;
           printf("Total");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         else            for (kk=1; kk<=cptcovage;kk++) {
           printf("Age %d", i);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){            }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=-1, pos=0; m <=0 ; m++)          } /* end mult */
             pos += freq[jk][m][i];        
           if(pp[jk]>=1.e-10)          s1=s[mw[mi][i]][i];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          s2=s[mw[mi+1][i]][i];
           else          bbh=(double)bh[mi][i]/(double)stepm; 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }          ipmx +=1;
           sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        } /* end of wave */
             pp[jk] += freq[jk][m][i];      } /* end of individual */
         }    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           pos += pp[jk];        for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1; jk <=nlstate ; jk++){          for (ii=1;ii<=nlstate+ndeath;ii++)
           if(pos>=1.e-5)            for (j=1;j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }
           if( i <= (int) agemax){          for(d=0; d<dh[mi][i]; d++){
             if(pos>=1.e-5){            newm=savm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               probs[i][jk][j1]= pp[jk]/pos;            for (kk=1; kk<=cptcovage;kk++) {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }            }
             else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
                  } /* end mult */
         for(jk=-1; jk <=nlstate+ndeath; jk++)        
           for(m=-1; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          s2=s[mw[mi+1][i]][i];
         if(i <= (int) agemax)          bbh=(double)bh[mi][i]/(double)stepm; 
           fprintf(ficresp,"\n");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         printf("\n");          ipmx +=1;
       }          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   dateintmean=dateintsum/k2cpt;      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
   fclose(ficresp);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_vector(pp,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   /* End of Freq */            for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Prevalence ********************/            }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          for(d=0; d<dh[mi][i]; d++){
 {  /* Some frequencies */            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            for (kk=1; kk<=cptcovage;kk++) {
   double ***freq; /* Frequencies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double *pp;            }
   double pos, k2;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   pp=vector(1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            savm=oldm;
              oldm=newm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          } /* end mult */
   j1=0;        
            s1=s[mw[mi][i]][i];
   j=cptcoveff;          s2=s[mw[mi+1][i]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          if( s2 > nlstate){ 
              lli=log(out[s1][s2] - savm[s1][s2]);
  for(k1=1; k1<=j;k1++){          }else{
     for(i1=1; i1<=ncodemax[k1];i1++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       j1++;          }
            ipmx +=1;
       for (i=-1; i<=nlstate+ndeath; i++)            sw += weight[i];
         for (jk=-1; jk<=nlstate+ndeath; jk++)            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=agemin; m <= agemax+3; m++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             freq[i][jk][m]=0;        } /* end of wave */
            } /* end of individual */
       for (i=1; i<=imx; i++) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         bool=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for (z1=1; z1<=cptcoveff; z1++)        for(mi=1; mi<= wav[i]-1; mi++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for (ii=1;ii<=nlstate+ndeath;ii++)
               bool=0;            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (bool==1) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=firstpass; m<=lastpass; m++){            }
             k2=anint[m][i]+(mint[m][i]/12.);          for(d=0; d<dh[mi][i]; d++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            newm=savm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               if(agev[m][i]==1) agev[m][i]=agemax+2;            for (kk=1; kk<=cptcovage;kk++) {
               if (m<lastpass)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            }
               else          
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             }            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
       }        
         for(i=(int)agemin; i <= (int)agemax+3; i++){          s1=s[mw[mi][i]][i];
           for(jk=1; jk <=nlstate ; jk++){          s2=s[mw[mi+1][i]][i];
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               pp[jk] += freq[jk][m][i];          ipmx +=1;
           }          sw += weight[i];
           for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             for(m=-1, pos=0; m <=0 ; m++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
             pos += freq[jk][m][i];        } /* end of wave */
         }      } /* end of individual */
            } /* End of if */
          for(jk=1; jk <=nlstate ; jk++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
              pp[jk] += freq[jk][m][i];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
          }    return -l;
            }
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  
   /*************** log-likelihood *************/
          for(jk=1; jk <=nlstate ; jk++){            double funcone( double *x)
            if( i <= (int) agemax){  {
              if(pos>=1.e-5){    /* Same as likeli but slower because of a lot of printf and if */
                probs[i][jk][j1]= pp[jk]/pos;    int i, ii, j, k, mi, d, kk;
              }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
            }    double **out;
          }    double lli; /* Individual log likelihood */
              double llt;
         }    int s1, s2;
     }    double bbh, survp;
   }    /*extern weight */
     /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /*for(i=1;i<imx;i++) 
   free_vector(pp,1,nlstate);      printf(" %d\n",s[4][i]);
      */
 }  /* End of Freq */    cov[1]=1.;
   
 /************* Waves Concatenation ***************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for(mi=1; mi<= wav[i]-1; mi++){
      Death is a valid wave (if date is known).        for (ii=1;ii<=nlstate+ndeath;ii++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          for (j=1;j<=nlstate+ndeath;j++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and mw[mi+1][i]. dh depends on stepm.            savm[ii][j]=(ii==j ? 1.0 : 0.0);
      */          }
         for(d=0; d<dh[mi][i]; d++){
   int i, mi, m;          newm=savm;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      double sum=0., jmean=0.;*/          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int j, k=0,jk, ju, jl;          }
   double sum=0.;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmin=1e+5;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmax=-1;          savm=oldm;
   jmean=0.;          oldm=newm;
   for(i=1; i<=imx; i++){        } /* end mult */
     mi=0;        
     m=firstpass;        s1=s[mw[mi][i]][i];
     while(s[m][i] <= nlstate){        s2=s[mw[mi+1][i]][i];
       if(s[m][i]>=1)        bbh=(double)bh[mi][i]/(double)stepm; 
         mw[++mi][i]=m;        /* bias is positive if real duration
       if(m >=lastpass)         * is higher than the multiple of stepm and negative otherwise.
         break;         */
       else        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         m++;          lli=log(out[s1][s2] - savm[s1][s2]);
     }/* end while */        } else if (mle==1){
     if (s[m][i] > nlstate){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       mi++;     /* Death is another wave */        } else if(mle==2){
       /* if(mi==0)  never been interviewed correctly before death */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          /* Only death is a correct wave */        } else if(mle==3){  /* exponential inter-extrapolation */
       mw[mi][i]=m;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
     wav[i]=mi;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     if(mi==0)          lli=log(out[s1][s2]); /* Original formula */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        } /* End of if */
   }        ipmx +=1;
         sw += weight[i];
   for(i=1; i<=imx; i++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(mi=1; mi<wav[i];mi++){  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if (stepm <=0)        if(globpr){
         dh[mi][i]=1;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
       else{   %10.6f %10.6f %10.6f ", \
         if (s[mw[mi+1][i]][i] > nlstate) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           if (agedc[i] < 2*AGESUP) {                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           if(j==0) j=1;  /* Survives at least one month after exam */            llt +=ll[k]*gipmx/gsw;
           k=k+1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           if (j >= jmax) jmax=j;          }
           if (j <= jmin) jmin=j;          fprintf(ficresilk," %10.6f\n", -llt);
           sum=sum+j;        }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      } /* end of wave */
           }    } /* end of individual */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         else{    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           k=k+1;    if(globpr==0){ /* First time we count the contributions and weights */
           if (j >= jmax) jmax=j;      gipmx=ipmx;
           else if (j <= jmin)jmin=j;      gsw=sw;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    }
           sum=sum+j;    return -l;
         }  }
         jk= j/stepm;  
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;  /*************** function likelione ***********/
         if(jl <= -ju)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           dh[mi][i]=jk;  {
         else    /* This routine should help understanding what is done with 
           dh[mi][i]=jk+1;       the selection of individuals/waves and
         if(dh[mi][i]==0)       to check the exact contribution to the likelihood.
           dh[mi][i]=1; /* At least one step */       Plotting could be done.
       }     */
     }    int k;
   }  
   jmean=sum/k;    if(*globpri !=0){ /* Just counts and sums, no printings */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      strcpy(fileresilk,"ilk"); 
  }      strcat(fileresilk,fileres);
 /*********** Tricode ****************************/      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 void tricode(int *Tvar, int **nbcode, int imx)        printf("Problem with resultfile: %s\n", fileresilk);
 {        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   int Ndum[20],ij=1, k, j, i;      }
   int cptcode=0;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   cptcoveff=0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   for (k=0; k<19; k++) Ndum[k]=0;      for(k=1; k<=nlstate; k++) 
   for (k=1; k<=7; k++) ncodemax[k]=0;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    }
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    *fretone=(*funcone)(p);
       Ndum[ij]++;    if(*globpri !=0){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      fclose(ficresilk);
       if (ij > cptcode) cptcode=ij;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     }      fflush(fichtm); 
     } 
     for (i=0; i<=cptcode; i++) {    return;
       if(Ndum[i]!=0) ncodemax[j]++;  }
     }  
     ij=1;  
   /*********** Maximum Likelihood Estimation ***************/
   
     for (i=1; i<=ncodemax[j]; i++) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for (k=0; k<=19; k++) {  {
         if (Ndum[k] != 0) {    int i,j, iter;
           nbcode[Tvar[j]][ij]=k;    double **xi;
              double fret;
           ij++;    double fretone; /* Only one call to likelihood */
         }    /*  char filerespow[FILENAMELENGTH];*/
         if (ij > ncodemax[j]) break;    xi=matrix(1,npar,1,npar);
       }      for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++)
   }          xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
  for (k=0; k<19; k++) Ndum[k]=0;    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
  for (i=1; i<=ncovmodel-2; i++) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       ij=Tvar[i];      printf("Problem with resultfile: %s\n", filerespow);
       Ndum[ij]++;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
  ij=1;    for (i=1;i<=nlstate;i++)
  for (i=1; i<=10; i++) {      for(j=1;j<=nlstate+ndeath;j++)
    if((Ndum[i]!=0) && (i<=ncovcol)){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      Tvaraff[ij]=i;    fprintf(ficrespow,"\n");
      ij++;  
    }    powell(p,xi,npar,ftol,&iter,&fret,func);
  }  
      fclose(ficrespow);
     cptcoveff=ij-1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /*********** Health Expectancies ****************/  
   }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
   /**** Computes Hessian and covariance matrix ***/
 {  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   /* Health expectancies */  {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double  **a,**y,*x,pd;
   double age, agelim, hf;    double **hess;
   double ***p3mat,***varhe;    int i, j,jk;
   double **dnewm,**doldm;    int *indx;
   double *xp;  
   double **gp, **gm;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double ***gradg, ***trgradg;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   int theta;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    double gompertz(double p[]);
   xp=vector(1,npar);    hess=matrix(1,npar,1,npar);
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);    printf("\nCalculation of the hessian matrix. Wait...\n");
      fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficreseij,"# Health expectancies\n");    for (i=1;i<=npar;i++){
   fprintf(ficreseij,"# Age");      printf("%d",i);fflush(stdout);
   for(i=1; i<=nlstate;i++)      fprintf(ficlog,"%d",i);fflush(ficlog);
     for(j=1; j<=nlstate;j++)     
       fprintf(ficreseij," %1d-%1d (SE)",i,j);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   fprintf(ficreseij,"\n");      
       /*  printf(" %f ",p[i]);
   if(estepm < stepm){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }    
   else  hstepm=estepm;      for (i=1;i<=npar;i++) {
   /* We compute the life expectancy from trapezoids spaced every estepm months      for (j=1;j<=npar;j++)  {
    * This is mainly to measure the difference between two models: for example        if (j>i) { 
    * if stepm=24 months pijx are given only every 2 years and by summing them          printf(".%d%d",i,j);fflush(stdout);
    * we are calculating an estimate of the Life Expectancy assuming a linear          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
    * progression inbetween and thus overestimating or underestimating according          hess[i][j]=hessij(p,delti,i,j,func,npar);
    * to the curvature of the survival function. If, for the same date, we          
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          hess[j][i]=hess[i][j];    
    * to compare the new estimate of Life expectancy with the same linear          /*printf(" %lf ",hess[i][j]);*/
    * hypothesis. A more precise result, taking into account a more precise        }
    * curvature will be obtained if estepm is as small as stepm. */      }
     }
   /* For example we decided to compute the life expectancy with the smallest unit */    printf("\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fprintf(ficlog,"\n");
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      Look at hpijx to understand the reason of that which relies in memory size    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
      and note for a fixed period like estepm months */    
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    a=matrix(1,npar,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    y=matrix(1,npar,1,npar);
      means that if the survival funtion is printed only each two years of age and if    x=vector(1,npar);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    indx=ivector(1,npar);
      results. So we changed our mind and took the option of the best precision.    for (i=1;i<=npar;i++)
   */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    ludcmp(a,npar,indx,&pd);
   
   agelim=AGESUP;    for (j=1;j<=npar;j++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1;i<=npar;i++) x[i]=0;
     /* nhstepm age range expressed in number of stepm */      x[j]=1;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      lubksb(a,npar,indx,x);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      for (i=1;i<=npar;i++){ 
     /* if (stepm >= YEARM) hstepm=1;*/        matcov[i][j]=x[i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);    printf("\n#Hessian matrix#\n");
     gm=matrix(0,nhstepm,1,nlstate*2);    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for (j=1;j<=npar;j++) { 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        printf("%.3e ",hess[i][j]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          fprintf(ficlog,"%.3e ",hess[i][j]);
        }
       printf("\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      fprintf(ficlog,"\n");
     }
     /* Computing Variances of health expectancies */  
     /* Recompute Inverse */
      for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    ludcmp(a,npar,indx,&pd);
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /*  printf("\n#Hessian matrix recomputed#\n");
    
       cptj=0;    for (j=1;j<=npar;j++) {
       for(j=1; j<= nlstate; j++){      for (i=1;i<=npar;i++) x[i]=0;
         for(i=1; i<=nlstate; i++){      x[j]=1;
           cptj=cptj+1;      lubksb(a,npar,indx,x);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      for (i=1;i<=npar;i++){ 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        y[i][j]=x[i];
           }        printf("%.3e ",y[i][j]);
         }        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
            printf("\n");
            fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++)    }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
          free_matrix(a,1,npar,1,npar);
       cptj=0;    free_matrix(y,1,npar,1,npar);
       for(j=1; j<= nlstate; j++){    free_vector(x,1,npar);
         for(i=1;i<=nlstate;i++){    free_ivector(indx,1,npar);
           cptj=cptj+1;    free_matrix(hess,1,npar,1,npar);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  }
         }  
       }  /*************** hessian matrix ****************/
        double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      {
     int i;
       for(j=1; j<= nlstate*2; j++)    int l=1, lmax=20;
         for(h=0; h<=nhstepm-1; h++){    double k1,k2;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double p2[NPARMAX+1];
         }    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      }    double fx;
        int k=0,kmax=10;
 /* End theta */    double l1;
   
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
      for(h=0; h<=nhstepm-1; h++)    for(l=0 ; l <=lmax; l++){
       for(j=1; j<=nlstate*2;j++)      l1=pow(10,l);
         for(theta=1; theta <=npar; theta++)      delts=delt;
         trgradg[h][j][theta]=gradg[h][theta][j];      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
      for(i=1;i<=nlstate*2;i++)        k1=func(p2)-fx;
       for(j=1;j<=nlstate*2;j++)        p2[theta]=x[theta]-delt;
         varhe[i][j][(int)age] =0.;        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
     for(h=0;h<=nhstepm-1;h++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       for(k=0;k<=nhstepm-1;k++){        
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  #ifdef DEBUG
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(i=1;i<=nlstate*2;i++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(j=1;j<=nlstate*2;j++)  #endif
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     }          k=kmax;
         }
              else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     /* Computing expectancies */          k=kmax; l=lmax*10.;
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          delts=delt;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        }
                }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }
     delti[theta]=delts;
         }    return res; 
     
     fprintf(ficreseij,"%3.0f",age );  }
     cptj=0;  
     for(i=1; i<=nlstate;i++)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       for(j=1; j<=nlstate;j++){  {
         cptj++;    int i;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    int l=1, l1, lmax=20;
       }    double k1,k2,k3,k4,res,fx;
     fprintf(ficreseij,"\n");    double p2[NPARMAX+1];
        int k;
     free_matrix(gm,0,nhstepm,1,nlstate*2);  
     free_matrix(gp,0,nhstepm,1,nlstate*2);    fx=func(x);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for (k=1; k<=2; k++) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for (i=1;i<=npar;i++) p2[i]=x[i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   free_vector(xp,1,npar);      k1=func(p2)-fx;
   free_matrix(dnewm,1,nlstate*2,1,npar);    
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      p2[thetai]=x[thetai]+delti[thetai]/k;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 }      k2=func(p2)-fx;
     
 /************ Variance ******************/      p2[thetai]=x[thetai]-delti[thetai]/k;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 {      k3=func(p2)-fx;
   /* Variance of health expectancies */    
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      p2[thetai]=x[thetai]-delti[thetai]/k;
   double **newm;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **dnewm,**doldm;      k4=func(p2)-fx;
   int i, j, nhstepm, hstepm, h, nstepm ;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   int k, cptcode;  #ifdef DEBUG
   double *xp;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double **gp, **gm;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double ***gradg, ***trgradg;  #endif
   double ***p3mat;    }
   double age,agelim, hf;    return res;
   int theta;  }
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");  /************** Inverse of matrix **************/
   fprintf(ficresvij,"# Age");  void ludcmp(double **a, int n, int *indx, double *d) 
   for(i=1; i<=nlstate;i++)  { 
     for(j=1; j<=nlstate;j++)    int i,imax,j,k; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double big,dum,sum,temp; 
   fprintf(ficresvij,"\n");    double *vv; 
    
   xp=vector(1,npar);    vv=vector(1,n); 
   dnewm=matrix(1,nlstate,1,npar);    *d=1.0; 
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=n;i++) { 
        big=0.0; 
   if(estepm < stepm){      for (j=1;j<=n;j++) 
     printf ("Problem %d lower than %d\n",estepm, stepm);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   else  hstepm=estepm;        vv[i]=1.0/big; 
   /* For example we decided to compute the life expectancy with the smallest unit */    } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (j=1;j<=n;j++) { 
      nhstepm is the number of hstepm from age to agelim      for (i=1;i<j;i++) { 
      nstepm is the number of stepm from age to agelin.        sum=a[i][j]; 
      Look at hpijx to understand the reason of that which relies in memory size        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      and note for a fixed period like k years */        a[i][j]=sum; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      } 
      survival function given by stepm (the optimization length). Unfortunately it      big=0.0; 
      means that if the survival funtion is printed only each two years of age and if      for (i=j;i<=n;i++) { 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        sum=a[i][j]; 
      results. So we changed our mind and took the option of the best precision.        for (k=1;k<j;k++) 
   */          sum -= a[i][k]*a[k][j]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        a[i][j]=sum; 
   agelim = AGESUP;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          big=dum; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          imax=i; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      if (j != imax) { 
     gp=matrix(0,nhstepm,1,nlstate);        for (k=1;k<=n;k++) { 
     gm=matrix(0,nhstepm,1,nlstate);          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
     for(theta=1; theta <=npar; theta++){          a[j][k]=dum; 
       for(i=1; i<=npar; i++){ /* Computes gradient */        } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        *d = -(*d); 
       }        vv[imax]=vv[j]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (popbased==1) {      if (j != n) { 
         for(i=1; i<=nlstate;i++)        dum=1.0/(a[j][j]); 
           prlim[i][i]=probs[(int)age][i][ij];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       }      } 
      } 
       for(j=1; j<= nlstate; j++){    free_vector(vv,1,n);  /* Doesn't work */
         for(h=0; h<=nhstepm; h++){  ;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  } 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  void lubksb(double **a, int n, int *indx, double b[]) 
       }  { 
        int i,ii=0,ip,j; 
       for(i=1; i<=npar; i++) /* Computes gradient */    double sum; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=n;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      ip=indx[i]; 
        sum=b[ip]; 
       if (popbased==1) {      b[ip]=b[i]; 
         for(i=1; i<=nlstate;i++)      if (ii) 
           prlim[i][i]=probs[(int)age][i][ij];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       }      else if (sum) ii=i; 
       b[i]=sum; 
       for(j=1; j<= nlstate; j++){    } 
         for(h=0; h<=nhstepm; h++){    for (i=n;i>=1;i--) { 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      sum=b[i]; 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         }      b[i]=sum/a[i][i]; 
       }    } 
   } 
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){  /************ Frequencies ********************/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         }  {  /* Some frequencies */
     } /* End theta */    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    int first;
     double ***freq; /* Frequencies */
     for(h=0; h<=nhstepm; h++)    double *pp, **prop;
       for(j=1; j<=nlstate;j++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         for(theta=1; theta <=npar; theta++)    FILE *ficresp;
           trgradg[h][j][theta]=gradg[h][theta][j];    char fileresp[FILENAMELENGTH];
     
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    pp=vector(1,nlstate);
     for(i=1;i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(j=1;j<=nlstate;j++)    strcpy(fileresp,"p");
         vareij[i][j][(int)age] =0.;    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
     for(h=0;h<=nhstepm;h++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
       for(k=0;k<=nhstepm;k++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      exit(0);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    }
         for(i=1;i<=nlstate;i++)    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
           for(j=1;j<=nlstate;j++)    j1=0;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }    j=cptcoveff;
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
     fprintf(ficresvij,"%.0f ",age );    first=1;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    for(k1=1; k1<=j;k1++){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for(i1=1; i1<=ncodemax[k1];i1++){
       }        j1++;
     fprintf(ficresvij,"\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     free_matrix(gp,0,nhstepm,1,nlstate);          scanf("%d", i);*/
     free_matrix(gm,0,nhstepm,1,nlstate);        for (i=-1; i<=nlstate+ndeath; i++)  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            for(m=iagemin; m <= iagemax+3; m++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              freq[i][jk][m]=0;
   } /* End age */  
        for (i=1; i<=nlstate; i++)  
   free_vector(xp,1,npar);        for(m=iagemin; m <= iagemax+3; m++)
   free_matrix(doldm,1,nlstate,1,npar);          prop[i][m]=0;
   free_matrix(dnewm,1,nlstate,1,nlstate);        
         dateintsum=0;
 }        k2cpt=0;
         for (i=1; i<=imx; i++) {
 /************ Variance of prevlim ******************/          bool=1;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          if  (cptcovn>0) {
 {            for (z1=1; z1<=cptcoveff; z1++) 
   /* Variance of prevalence limit */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                bool=0;
   double **newm;          }
   double **dnewm,**doldm;          if (bool==1){
   int i, j, nhstepm, hstepm;            for(m=firstpass; m<=lastpass; m++){
   int k, cptcode;              k2=anint[m][i]+(mint[m][i]/12.);
   double *xp;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   double *gp, *gm;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   double **gradg, **trgradg;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double age,agelim;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int theta;                if (m<lastpass) {
                      freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   fprintf(ficresvpl,"# Age");                }
   for(i=1; i<=nlstate;i++)                
       fprintf(ficresvpl," %1d-%1d",i,i);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   fprintf(ficresvpl,"\n");                  dateintsum=dateintsum+k2;
                   k2cpt++;
   xp=vector(1,npar);                }
   dnewm=matrix(1,nlstate,1,npar);                /*}*/
   doldm=matrix(1,nlstate,1,nlstate);            }
            }
   hstepm=1*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */         
   agelim = AGESUP;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        if  (cptcovn>0) {
     if (stepm >= YEARM) hstepm=1;          fprintf(ficresp, "\n#********** Variable "); 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     gradg=matrix(1,npar,1,nlstate);          fprintf(ficresp, "**********\n#");
     gp=vector(1,nlstate);        }
     gm=vector(1,nlstate);        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for(theta=1; theta <=npar; theta++){        fprintf(ficresp, "\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */        
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(i=iagemin; i <= iagemax+3; i++){
       }          if(i==iagemax+3){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            fprintf(ficlog,"Total");
       for(i=1;i<=nlstate;i++)          }else{
         gp[i] = prlim[i][i];            if(first==1){
                  first=0;
       for(i=1; i<=npar; i++) /* Computes gradient */              printf("See log file for details...\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            fprintf(ficlog,"Age %d", i);
       for(i=1;i<=nlstate;i++)          }
         gm[i] = prlim[i][i];          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for(i=1;i<=nlstate;i++)              pp[jk] += freq[jk][m][i]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          }
     } /* End theta */          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
     trgradg =matrix(1,nlstate,1,npar);              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
     for(j=1; j<=nlstate;j++)              if(first==1){
       for(theta=1; theta <=npar; theta++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         trgradg[j][theta]=gradg[theta][j];              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(i=1;i<=nlstate;i++)            }else{
       varpl[i][(int)age] =0.;              if(first==1)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(i=1;i<=nlstate;i++)            }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          }
   
     fprintf(ficresvpl,"%.0f ",age );          for(jk=1; jk <=nlstate ; jk++){
     for(i=1; i<=nlstate;i++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              pp[jk] += freq[jk][m][i];
     fprintf(ficresvpl,"\n");          }       
     free_vector(gp,1,nlstate);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_vector(gm,1,nlstate);            pos += pp[jk];
     free_matrix(gradg,1,npar,1,nlstate);            posprop += prop[jk][i];
     free_matrix(trgradg,1,nlstate,1,npar);          }
   } /* End age */          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
   free_vector(xp,1,npar);              if(first==1)
   free_matrix(doldm,1,nlstate,1,npar);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_matrix(dnewm,1,nlstate,1,nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
 }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 /************ Variance of one-step probabilities  ******************/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            }
 {            if( i <= iagemax){
   int i, j, i1, k1, j1, z1;              if(pos>=1.e-5){
   int k=0, cptcode;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   double **dnewm,**doldm;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   double *xp;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   double *gp, *gm;              }
   double **gradg, **trgradg;              else
   double age,agelim, cov[NCOVMAX];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   int theta;            }
   char fileresprob[FILENAMELENGTH];          }
           
   strcpy(fileresprob,"prob");          for(jk=-1; jk <=nlstate+ndeath; jk++)
   strcat(fileresprob,fileres);            for(m=-1; m <=nlstate+ndeath; m++)
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              if(freq[jk][m][i] !=0 ) {
     printf("Problem with resultfile: %s\n", fileresprob);              if(first==1)
   }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                }
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");          if(i <= iagemax)
   fprintf(ficresprob,"# Age");            fprintf(ficresp,"\n");
   for(i=1; i<=nlstate;i++)          if(first==1)
     for(j=1; j<=(nlstate+ndeath);j++)            printf("Others in log...\n");
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          fprintf(ficlog,"\n");
         }
       }
   fprintf(ficresprob,"\n");    }
     dateintmean=dateintsum/k2cpt; 
    
   xp=vector(1,npar);    fclose(ficresp);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   cov[1]=1;    /* End of Freq */
   j=cptcoveff;  }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
   j1=0;  /************ Prevalence ********************/
   for(k1=1; k1<=1;k1++){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     for(i1=1; i1<=ncodemax[k1];i1++){  {  
     j1++;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
     if  (cptcovn>0) {       We still use firstpass and lastpass as another selection.
       fprintf(ficresprob, "\n#********** Variable ");    */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
       fprintf(ficresprob, "**********\n#");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     }    double ***freq; /* Frequencies */
        double *pp, **prop;
       for (age=bage; age<=fage; age ++){    double pos,posprop; 
         cov[2]=age;    double  y2; /* in fractional years */
         for (k=1; k<=cptcovn;k++) {    int iagemin, iagemax;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
              iagemin= (int) agemin;
         }    iagemax= (int) agemax;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /*pp=vector(1,nlstate);*/
         for (k=1; k<=cptcovprod;k++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
            j1=0;
         gradg=matrix(1,npar,1,9);    
         trgradg=matrix(1,9,1,npar);    j=cptcoveff;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    
        for(k1=1; k1<=j;k1++){
         for(theta=1; theta <=npar; theta++){      for(i1=1; i1<=ncodemax[k1];i1++){
           for(i=1; i<=npar; i++)        j1++;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        
                  for (i=1; i<=nlstate; i++)  
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(m=iagemin; m <= iagemax+3; m++)
                      prop[i][m]=0.0;
           k=0;       
           for(i=1; i<= (nlstate+ndeath); i++){        for (i=1; i<=imx; i++) { /* Each individual */
             for(j=1; j<=(nlstate+ndeath);j++){          bool=1;
               k=k+1;          if  (cptcovn>0) {
               gp[k]=pmmij[i][j];            for (z1=1; z1<=cptcoveff; z1++) 
             }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           }                bool=0;
                    } 
           for(i=1; i<=npar; i++)          if (bool==1) { 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                  y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           k=0;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           for(i=1; i<=(nlstate+ndeath); i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             for(j=1; j<=(nlstate+ndeath);j++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
               k=k+1;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
               gm[k]=pmmij[i][j];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                      } 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              } /* end selection of waves */
         }          }
         }
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        for(i=iagemin; i <= iagemax+3; i++){  
           for(theta=1; theta <=npar; theta++)          
             trgradg[j][theta]=gradg[theta][j];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                    posprop += prop[jk][i]; 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          } 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
                  for(jk=1; jk <=nlstate ; jk++){     
         pmij(pmmij,cov,ncovmodel,x,nlstate);            if( i <=  iagemax){ 
                      if(posprop>=1.e-5){ 
         k=0;                probs[i][jk][j1]= prop[jk][i]/posprop;
         for(i=1; i<=(nlstate+ndeath); i++){              } 
           for(j=1; j<=(nlstate+ndeath);j++){            } 
             k=k+1;          }/* end jk */ 
             gm[k]=pmmij[i][j];        }/* end i */ 
           }      } /* end i1 */
         }    } /* end k1 */
          
      /*printf("\n%d ",(int)age);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    /*free_vector(pp,1,nlstate);*/
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }*/  }  /* End of prevalence */
   
         fprintf(ficresprob,"\n%d ",(int)age);  /************* Waves Concatenation ***************/
   
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
     }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));       and mw[mi+1][i]. dh depends on stepm.
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }    int i, mi, m;
   free_vector(xp,1,npar);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fclose(ficresprob);       double sum=0., jmean=0.;*/
      int first;
 }    int j, k=0,jk, ju, jl;
     double sum=0.;
 /******************* Printing html file ***********/    first=0;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    jmin=1e+5;
  int lastpass, int stepm, int weightopt, char model[],\    jmax=-1;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    jmean=0.;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    for(i=1; i<=imx; i++){
  char version[], int popforecast, int estepm ){      mi=0;
   int jj1, k1, i1, cpt;      m=firstpass;
   FILE *fichtm;      while(s[m][i] <= nlstate){
   /*char optionfilehtm[FILENAMELENGTH];*/        if(s[m][i]>=1)
           mw[++mi][i]=m;
   strcpy(optionfilehtm,optionfile);        if(m >=lastpass)
   strcat(optionfilehtm,".htm");          break;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        else
     printf("Problem with %s \n",optionfilehtm), exit(0);          m++;
   }      }/* end while */
       if (s[m][i] > nlstate){
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n        mi++;     /* Death is another wave */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        /* if(mi==0)  never been interviewed correctly before death */
 \n           /* Only death is a correct wave */
 Total number of observations=%d <br>\n        mw[mi][i]=m;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      }
 <hr  size=\"2\" color=\"#EC5E5E\">  
  <ul><li>Outputs files<br>\n      wav[i]=mi;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      if(mi==0){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n        nbwarn++;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        if(first==0){
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          first=1;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        }
         if(first==1){
  fprintf(fichtm,"\n          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        }
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      } /* end mi==0 */
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    } /* End individuals */
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
  if(popforecast==1) fprintf(fichtm,"\n        if (stepm <=0)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          dh[mi][i]=1;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        else{
         <br>",fileres,fileres,fileres,fileres);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  else            if (agedc[i] < 2*AGESUP) {
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 fprintf(fichtm," <li>Graphs</li><p>");              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
  m=cptcoveff;                nberr++;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
  jj1=0;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
  for(k1=1; k1<=m;k1++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    for(i1=1; i1<=ncodemax[k1];i1++){                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
        jj1++;              }
        if (cptcovn > 0) {              k=k+1;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              if (j >= jmax) jmax=j;
          for (cpt=1; cpt<=cptcoveff;cpt++)              if (j <= jmin) jmin=j;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              sum=sum+j;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
        }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }
        for(cpt=1; cpt<nlstate;cpt++){          else{
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        }            k=k+1;
     for(cpt=1; cpt<=nlstate;cpt++) {            if (j >= jmax) jmax=j;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            else if (j <= jmin)jmin=j;
 interval) in state (%d): v%s%d%d.gif <br>            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      }            if(j<0){
      for(cpt=1; cpt<=nlstate;cpt++) {              nberr++;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }            }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            sum=sum+j;
 health expectancies in states (1) and (2): e%s%d.gif<br>          }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          jk= j/stepm;
 fprintf(fichtm,"\n</body>");          jl= j -jk*stepm;
    }          ju= j -(jk+1)*stepm;
    }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 fclose(fichtm);            if(jl==0){
 }              dh[mi][i]=jk;
               bh[mi][i]=0;
 /******************* Gnuplot file **************/            }else{ /* We want a negative bias in order to only have interpolation ie
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              bh[mi][i]=ju;
             }
   strcpy(optionfilegnuplot,optionfilefiname);          }else{
   strcat(optionfilegnuplot,".gp.txt");            if(jl <= -ju){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              dh[mi][i]=jk;
     printf("Problem with file %s",optionfilegnuplot);              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
 #ifdef windows            }
     fprintf(ficgp,"cd \"%s\" \n",pathc);            else{
 #endif              dh[mi][i]=jk+1;
 m=pow(2,cptcoveff);              bh[mi][i]=ju;
              }
  /* 1eme*/            if(dh[mi][i]==0){
   for (cpt=1; cpt<= nlstate ; cpt ++) {              dh[mi][i]=1; /* At least one step */
    for (k1=1; k1<= m ; k1 ++) {              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            }
           } /* end if mle */
 for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } /* end wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }    jmean=sum/k;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for (i=1; i<= nlstate ; i ++) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }  /*********** Tricode ****************************/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  void tricode(int *Tvar, int **nbcode, int imx)
      for (i=1; i<= nlstate ; i ++) {  {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int Ndum[20],ij=1, k, j, i, maxncov=19;
 }      int cptcode=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    cptcoveff=0; 
    
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
    }    for (k=1; k<=7; k++) ncodemax[k]=0;
   }  
   /*2 eme*/    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   for (k1=1; k1<= m ; k1 ++) {                                 modality*/ 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
            Ndum[ij]++; /*store the modality */
     for (i=1; i<= nlstate+1 ; i ++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       k=2*i;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                                         Tvar[j]. If V=sex and male is 0 and 
       for (j=1; j<= nlstate+1 ; j ++) {                                         female is 1, then  cptcode=1.*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        for (i=0; i<=cptcode; i++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      ij=1; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1; i<=ncodemax[j]; i++) {
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for (k=0; k<= maxncov; k++) {
 }            if (Ndum[k] != 0) {
       fprintf(ficgp,"\" t\"\" w l 0,");            nbcode[Tvar[j]][ij]=k; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       for (j=1; j<= nlstate+1 ; j ++) {            
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            ij++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            if (ij > ncodemax[j]) break; 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        }  
       else fprintf(ficgp,"\" t\"\" w l 0,");      } 
     }    }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }   for (k=0; k< maxncov; k++) Ndum[k]=0;
    
   /*3eme*/   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   for (k1=1; k1<= m ; k1 ++) {     ij=Tvar[i];
     for (cpt=1; cpt<= nlstate ; cpt ++) {     Ndum[ij]++;
       k=2+nlstate*(2*cpt-2);   }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   ij=1;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");   for (i=1; i<= maxncov; i++) {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     if((Ndum[i]!=0) && (i<=ncovcol)){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       Tvaraff[ij]=i; /*For printing */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       ij++;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     }
    }
 */   
       for (i=1; i< nlstate ; i ++) {   cptcoveff=ij-1; /*Number of simple covariates*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  }
   
       }  /*********** Health Expectancies ****************/
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     }  
    {
   /* CV preval stat */    /* Health expectancies */
     for (k1=1; k1<= m ; k1 ++) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     for (cpt=1; cpt<nlstate ; cpt ++) {    double age, agelim, hf;
       k=3;    double ***p3mat,***varhe;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    double **dnewm,**doldm;
     double *xp;
       for (i=1; i< nlstate ; i ++)    double **gp, **gm;
         fprintf(ficgp,"+$%d",k+i+1);    double ***gradg, ***trgradg;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int theta;
        
       l=3+(nlstate+ndeath)*cpt;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    xp=vector(1,npar);
       for (i=1; i< nlstate ; i ++) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
         l=3+(nlstate+ndeath)*cpt;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficgp,"+$%d",l+i+1);    
       }    fprintf(ficreseij,"# Health expectancies\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficreseij,"# Age");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++)
   }          fprintf(ficreseij," %1d-%1d (SE)",i,j);
      fprintf(ficreseij,"\n");
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){    if(estepm < stepm){
     for(k=1; k <=(nlstate+ndeath); k++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       if (k != i) {    }
         for(j=1; j <=ncovmodel; j++){    else  hstepm=estepm;   
            /* We compute the life expectancy from trapezoids spaced every estepm months
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     * This is mainly to measure the difference between two models: for example
           jk++;     * if stepm=24 months pijx are given only every 2 years and by summing them
           fprintf(ficgp,"\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
         }     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we 
     }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
     for(jk=1; jk <=m; jk++) {     * curvature will be obtained if estepm is as small as stepm. */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
    i=1;    /* For example we decided to compute the life expectancy with the smallest unit */
    for(k2=1; k2<=nlstate; k2++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      k3=i;       nhstepm is the number of hstepm from age to agelim 
      for(k=1; k<=(nlstate+ndeath); k++) {       nstepm is the number of stepm from age to agelin. 
        if (k != k2){       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       and note for a fixed period like estepm months */
 ij=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for(j=3; j <=ncovmodel; j++) {       survival function given by stepm (the optimization length). Unfortunately it
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       means that if the survival funtion is printed only each two years of age and if
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             ij++;       results. So we changed our mind and took the option of the best precision.
           }    */
           else    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }    agelim=AGESUP;
           fprintf(ficgp,")/(1");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              /* nhstepm age range expressed in number of stepm */
         for(k1=1; k1 <=nlstate; k1++){        nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 ij=1;      /* if (stepm >= YEARM) hstepm=1;*/
           for(j=3; j <=ncovmodel; j++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             ij++;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
           }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           fprintf(ficgp,")");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         }   
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         i=i+ncovmodel;  
        }      /* Computing  Variances of health expectancies */
      }  
    }       for(theta=1; theta <=npar; theta++){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        for(i=1; i<=npar; i++){ 
    }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            }
   fclose(ficgp);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 }  /* end gnuplot */    
         cptj=0;
         for(j=1; j<= nlstate; j++){
 /*************** Moving average **************/          for(i=1; i<=nlstate; i++){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   int i, cpt, cptcod;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            }
       for (i=1; i<=nlstate;i++)          }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;       
           
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        for(i=1; i<=npar; i++) 
       for (i=1; i<=nlstate;i++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           for (cpt=0;cpt<=4;cpt++){        
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        cptj=0;
           }        for(j=1; j<= nlstate; j++){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          for(i=1;i<=nlstate;i++){
         }            cptj=cptj+1;
       }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     }  
                  gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 }            }
           }
         }
 /************** Forecasting ******************/        for(j=1; j<= nlstate*nlstate; j++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          for(h=0; h<=nhstepm-1; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          }
   int *popage;       } 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     
   double *popeffectif,*popcount;  /* End theta */
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
  agelim=AGESUP;       for(h=0; h<=nhstepm-1; h++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            trgradg[h][j][theta]=gradg[h][theta][j];
         
    
   strcpy(fileresf,"f");       for(i=1;i<=nlstate*nlstate;i++)
   strcat(fileresf,fileres);        for(j=1;j<=nlstate*nlstate;j++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {          varhe[i][j][(int)age] =0.;
     printf("Problem with forecast resultfile: %s\n", fileresf);  
   }       printf("%d|",(int)age);fflush(stdout);
   printf("Computing forecasting: result on file '%s' \n", fileresf);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   if (mobilav==1) {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1;i<=nlstate*nlstate;i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);            for(j=1;j<=nlstate*nlstate;j++)
   }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   stepsize=(int) (stepm+YEARM-1)/YEARM;      }
   if (stepm<=12) stepsize=1;      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   agelim=AGESUP;        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   hstepm=1;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   hstepm=hstepm/stepm;            
   yp1=modf(dateintmean,&yp);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);          }
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);      fprintf(ficreseij,"%3.0f",age );
   jprojmean=yp;      cptj=0;
   if(jprojmean==0) jprojmean=1;      for(i=1; i<=nlstate;i++)
   if(mprojmean==0) jprojmean=1;        for(j=1; j<=nlstate;j++){
            cptj++;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
          }
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(ficreseij,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     
       k=k+1;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresf,"\n#******");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       for(j=1;j<=cptcoveff;j++) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresf,"******\n");    }
       fprintf(ficresf,"# StartingAge FinalAge");    printf("\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(ficlog,"\n");
        
          free_vector(xp,1,npar);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         fprintf(ficresf,"\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  /************ Variance ******************/
           nhstepm = nhstepm/hstepm;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
            {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Variance of health expectancies */
           oldm=oldms;savm=savms;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* double **newm;*/
            double **dnewm,**doldm;
           for (h=0; h<=nhstepm; h++){    double **dnewmp,**doldmp;
             if (h==(int) (calagedate+YEARM*cpt)) {    int i, j, nhstepm, hstepm, h, nstepm ;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    int k, cptcode;
             }    double *xp;
             for(j=1; j<=nlstate+ndeath;j++) {    double **gp, **gm;  /* for var eij */
               kk1=0.;kk2=0;    double ***gradg, ***trgradg; /*for var eij */
               for(i=1; i<=nlstate;i++) {                  double **gradgp, **trgradgp; /* for var p point j */
                 if (mobilav==1)    double *gpp, *gmp; /* for var p point j */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                 else {    double ***p3mat;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double age,agelim, hf;
                 }    double ***mobaverage;
                    int theta;
               }    char digit[4];
               if (h==(int)(calagedate+12*cpt)){    char digitp[25];
                 fprintf(ficresf," %.3f", kk1);  
                            char fileresprobmorprev[FILENAMELENGTH];
               }  
             }    if(popbased==1){
           }      if(mobilav!=0)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        strcpy(digitp,"-populbased-mobilav-");
         }      else strcpy(digitp,"-populbased-nomobil-");
       }    }
     }    else 
   }      strcpy(digitp,"-stablbased-");
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficresf);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
 }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 /************** Forecasting ******************/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      }
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;    strcpy(fileresprobmorprev,"prmorprev"); 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    sprintf(digit,"%-d",ij);
   double *popeffectif,*popcount;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   double ***p3mat,***tabpop,***tabpopprev;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   char filerespop[FILENAMELENGTH];    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   agelim=AGESUP;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   strcpy(filerespop,"pop");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   strcat(filerespop,fileres);      fprintf(ficresprobmorprev," p.%-d SE",j);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with forecast resultfile: %s\n", filerespop);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   if (mobilav==1) {  /*   } */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   agelim=AGESUP;    fprintf(ficresvij,"\n");
    
   hstepm=1;    xp=vector(1,npar);
   hstepm=hstepm/stepm;    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   if (popforecast==1) {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     if((ficpop=fopen(popfile,"r"))==NULL) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     popage=ivector(0,AGESUP);    gpp=vector(nlstate+1,nlstate+ndeath);
     popeffectif=vector(0,AGESUP);    gmp=vector(nlstate+1,nlstate+ndeath);
     popcount=vector(0,AGESUP);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        
     i=1;      if(estepm < stepm){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      printf ("Problem %d lower than %d\n",estepm, stepm);
        }
     imx=i;    else  hstepm=estepm;   
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   for(cptcov=1;cptcov<=i2;cptcov++){       nstepm is the number of stepm from age to agelin. 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       Look at hpijx to understand the reason of that which relies in memory size
       k=k+1;       and note for a fixed period like k years */
       fprintf(ficrespop,"\n#******");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(j=1;j<=cptcoveff;j++) {       survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       means that if the survival funtion is printed every two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficrespop,"******\n");       results. So we changed our mind and took the option of the best precision.
       fprintf(ficrespop,"# Age");    */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       if (popforecast==1)  fprintf(ficrespop," [Population]");    agelim = AGESUP;
          for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for (cpt=0; cpt<=0;cpt++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      gp=matrix(0,nhstepm,1,nlstate);
           nhstepm = nhstepm/hstepm;      gm=matrix(0,nhstepm,1,nlstate);
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      for(theta=1; theta <=npar; theta++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             }  
             for(j=1; j<=nlstate+ndeath;j++) {        if (popbased==1) {
               kk1=0.;kk2=0;          if(mobilav ==0){
               for(i=1; i<=nlstate;i++) {                          for(i=1; i<=nlstate;i++)
                 if (mobilav==1)              prlim[i][i]=probs[(int)age][i][ij];
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          }else{ /* mobilav */ 
                 else {            for(i=1; i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              prlim[i][i]=mobaverage[(int)age][i][ij];
                 }          }
               }        }
               if (h==(int)(calagedate+12*cpt)){    
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for(j=1; j<= nlstate; j++){
                   /*fprintf(ficrespop," %.3f", kk1);          for(h=0; h<=nhstepm; h++){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
             }          }
             for(i=1; i<=nlstate;i++){        }
               kk1=0.;        /* This for computing probability of death (h=1 means
                 for(j=1; j<=nlstate;j++){           computed over hstepm matrices product = hstepm*stepm months) 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];           as a weighted average of prlim.
                 }        */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        }    
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        /* end probability of death */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /******/   
         if (popbased==1) {
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          if(mobilav ==0){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              for(i=1; i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              prlim[i][i]=probs[(int)age][i][ij];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }else{ /* mobilav */ 
           nhstepm = nhstepm/hstepm;            for(i=1; i<=nlstate;i++)
                        prlim[i][i]=mobaverage[(int)age][i][ij];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){        for(j=1; j<= nlstate; j++){
             if (h==(int) (calagedate+YEARM*cpt)) {          for(h=0; h<=nhstepm; h++){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
             }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                      /* This for computing probability of death (h=1 means
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];               computed over hstepm matrices product = hstepm*stepm months) 
               }           as a weighted average of prlim.
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        */
             }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }        }    
       }        /* end probability of death */
    }  
   }        for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     free_vector(popeffectif,0,AGESUP);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     free_vector(popcount,0,AGESUP);        }
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      } /* End theta */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 }  
       for(h=0; h<=nhstepm; h++) /* veij */
 /***********************************************/        for(j=1; j<=nlstate;j++)
 /**************** Main Program *****************/          for(theta=1; theta <=npar; theta++)
 /***********************************************/            trgradg[h][j][theta]=gradg[h][theta][j];
   
 int main(int argc, char *argv[])      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 {        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
   double fret;        for(j=1;j<=nlstate;j++)
   double **xi,tmp,delta;          vareij[i][j][(int)age] =0.;
   
   double dum; /* Dummy variable */      for(h=0;h<=nhstepm;h++){
   double ***p3mat;        for(k=0;k<=nhstepm;k++){
   int *indx;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   char line[MAXLINE], linepar[MAXLINE];          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   char title[MAXLINE];          for(i=1;i<=nlstate;i++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];            for(j=1;j<=nlstate;j++)
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      }
     
   char filerest[FILENAMELENGTH];      /* pptj */
   char fileregp[FILENAMELENGTH];      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   char popfile[FILENAMELENGTH];      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   int firstobs=1, lastobs=10;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   int sdeb, sfin; /* Status at beginning and end */          varppt[j][i]=doldmp[j][i];
   int c,  h , cpt,l;      /* end ppptj */
   int ju,jl, mi;      /*  x centered again */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   int mobilav=0,popforecast=0;   
   int hstepm, nhstepm;      if (popbased==1) {
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
   double bage, fage, age, agelim, agebase;            prlim[i][i]=probs[(int)age][i][ij];
   double ftolpl=FTOL;        }else{ /* mobilav */ 
   double **prlim;          for(i=1; i<=nlstate;i++)
   double *severity;            prlim[i][i]=mobaverage[(int)age][i][ij];
   double ***param; /* Matrix of parameters */        }
   double  *p;      }
   double **matcov; /* Matrix of covariance */               
   double ***delti3; /* Scale */      /* This for computing probability of death (h=1 means
   double *delti; /* Scale */         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   double ***eij, ***vareij;         as a weighted average of prlim.
   double **varpl; /* Variances of prevalence limits by age */      */
   double *epj, vepp;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double kk1, kk2;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
       /* end probability of death */
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   char z[1]="c", occ;        for(i=1; i<=nlstate;i++){
 #include <sys/time.h>          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
 #include <time.h>        }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      } 
        fprintf(ficresprobmorprev,"\n");
   /* long total_usecs;  
   struct timeval start_time, end_time;      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        for(j=1; j<=nlstate;j++){
   getcwd(pathcd, size);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   printf("\n%s",version);      fprintf(ficresvij,"\n");
   if(argc <=1){      free_matrix(gp,0,nhstepm,1,nlstate);
     printf("\nEnter the parameter file name: ");      free_matrix(gm,0,nhstepm,1,nlstate);
     scanf("%s",pathtot);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   else{      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     strcpy(pathtot,argv[1]);    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
   /*cygwin_split_path(pathtot,path,optionfile);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   chdir(path);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   replace(pathc,path);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 /*-------- arguments in the command line --------*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   strcpy(fileres,"r");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   strcat(fileres, optionfilefiname);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   strcat(fileres,".txt");    /* Other files have txt extension */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*---------arguments file --------*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);    free_vector(xp,1,npar);
     goto end;    free_matrix(doldm,1,nlstate,1,nlstate);
   }    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   strcpy(filereso,"o");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   strcat(filereso,fileres);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficparo=fopen(filereso,"w"))==NULL) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    fclose(ficresprobmorprev);
   }    fflush(ficgp);
     fflush(fichtm); 
   /* Reads comments: lines beginning with '#' */  }  /* end varevsij */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance of prevlim ******************/
     fgets(line, MAXLINE, ficpar);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
     puts(line);  {
     fputs(line,ficparo);    /* Variance of prevalence limit */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   ungetc(c,ficpar);    double **newm;
     double **dnewm,**doldm;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    int i, j, nhstepm, hstepm;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    int k, cptcode;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double *xp;
 while((c=getc(ficpar))=='#' && c!= EOF){    double *gp, *gm;
     ungetc(c,ficpar);    double **gradg, **trgradg;
     fgets(line, MAXLINE, ficpar);    double age,agelim;
     puts(line);    int theta;
     fputs(line,ficparo);     
   }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   ungetc(c,ficpar);    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %1d-%1d",i,i);
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficresvpl,"\n");
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   ncovmodel=2+cptcovn;    doldm=matrix(1,nlstate,1,nlstate);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    
      hstepm=1*YEARM; /* Every year of age */
   /* Read guess parameters */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   /* Reads comments: lines beginning with '#' */    agelim = AGESUP;
   while((c=getc(ficpar))=='#' && c!= EOF){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     ungetc(c,ficpar);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fgets(line, MAXLINE, ficpar);      if (stepm >= YEARM) hstepm=1;
     puts(line);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     fputs(line,ficparo);      gradg=matrix(1,npar,1,nlstate);
   }      gp=vector(1,nlstate);
   ungetc(c,ficpar);      gm=vector(1,nlstate);
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(theta=1; theta <=npar; theta++){
     for(i=1; i <=nlstate; i++)        for(i=1; i<=npar; i++){ /* Computes gradient */
     for(j=1; j <=nlstate+ndeath-1; j++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       fprintf(ficparo,"%1d%1d",i1,j1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("%1d%1d",i,j);        for(i=1;i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){          gp[i] = prlim[i][i];
         fscanf(ficpar," %lf",&param[i][j][k]);      
         printf(" %lf",param[i][j][k]);        for(i=1; i<=npar; i++) /* Computes gradient */
         fprintf(ficparo," %lf",param[i][j][k]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fscanf(ficpar,"\n");        for(i=1;i<=nlstate;i++)
       printf("\n");          gm[i] = prlim[i][i];
       fprintf(ficparo,"\n");  
     }        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      } /* End theta */
   
   p=param[1][1];      trgradg =matrix(1,nlstate,1,npar);
    
   /* Reads comments: lines beginning with '#' */      for(j=1; j<=nlstate;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){        for(theta=1; theta <=npar; theta++)
     ungetc(c,ficpar);          trgradg[j][theta]=gradg[theta][j];
     fgets(line, MAXLINE, ficpar);  
     puts(line);      for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);        varpl[i][(int)age] =0.;
   }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   ungetc(c,ficpar);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){      fprintf(ficresvpl,"%.0f ",age );
     for(j=1; j <=nlstate+ndeath-1; j++){      for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       printf("%1d%1d",i,j);      fprintf(ficresvpl,"\n");
       fprintf(ficparo,"%1d%1d",i1,j1);      free_vector(gp,1,nlstate);
       for(k=1; k<=ncovmodel;k++){      free_vector(gm,1,nlstate);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      free_matrix(gradg,1,npar,1,nlstate);
         printf(" %le",delti3[i][j][k]);      free_matrix(trgradg,1,nlstate,1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);    } /* End age */
       }  
       fscanf(ficpar,"\n");    free_vector(xp,1,npar);
       printf("\n");    free_matrix(doldm,1,nlstate,1,npar);
       fprintf(ficparo,"\n");    free_matrix(dnewm,1,nlstate,1,nlstate);
     }  
   }  }
   delti=delti3[1][1];  
    /************ Variance of one-step probabilities  ******************/
   /* Reads comments: lines beginning with '#' */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    int i, j=0,  i1, k1, l1, t, tj;
     fgets(line, MAXLINE, ficpar);    int k2, l2, j1,  z1;
     puts(line);    int k=0,l, cptcode;
     fputs(line,ficparo);    int first=1, first1;
   }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   ungetc(c,ficpar);    double **dnewm,**doldm;
      double *xp;
   matcov=matrix(1,npar,1,npar);    double *gp, *gm;
   for(i=1; i <=npar; i++){    double **gradg, **trgradg;
     fscanf(ficpar,"%s",&str);    double **mu;
     printf("%s",str);    double age,agelim, cov[NCOVMAX];
     fprintf(ficparo,"%s",str);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     for(j=1; j <=i; j++){    int theta;
       fscanf(ficpar," %le",&matcov[i][j]);    char fileresprob[FILENAMELENGTH];
       printf(" %.5le",matcov[i][j]);    char fileresprobcov[FILENAMELENGTH];
       fprintf(ficparo," %.5le",matcov[i][j]);    char fileresprobcor[FILENAMELENGTH];
     }  
     fscanf(ficpar,"\n");    double ***varpij;
     printf("\n");  
     fprintf(ficparo,"\n");    strcpy(fileresprob,"prob"); 
   }    strcat(fileresprob,fileres);
   for(i=1; i <=npar; i++)    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     for(j=i+1;j<=npar;j++)      printf("Problem with resultfile: %s\n", fileresprob);
       matcov[i][j]=matcov[j][i];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        }
   printf("\n");    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     /*-------- Rewriting paramater file ----------*/      printf("Problem with resultfile: %s\n", fileresprobcov);
      strcpy(rfileres,"r");    /* "Rparameterfile */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    }
      strcat(rfileres,".");    /* */    strcpy(fileresprobcor,"probcor"); 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    strcat(fileresprobcor,fileres);
     if((ficres =fopen(rfileres,"w"))==NULL) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      printf("Problem with resultfile: %s\n", fileresprobcor);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficres,"#%s\n",version);    }
        printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     /*-------- data file ----------*/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     if((fic=fopen(datafile,"r"))==NULL)    {    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       printf("Problem with datafile: %s\n", datafile);goto end;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     n= lastobs;    
     severity = vector(1,maxwav);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     outcome=imatrix(1,maxwav+1,1,n);    fprintf(ficresprob,"# Age");
     num=ivector(1,n);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     moisnais=vector(1,n);    fprintf(ficresprobcov,"# Age");
     annais=vector(1,n);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     moisdc=vector(1,n);    fprintf(ficresprobcov,"# Age");
     andc=vector(1,n);  
     agedc=vector(1,n);  
     cod=ivector(1,n);    for(i=1; i<=nlstate;i++)
     weight=vector(1,n);      for(j=1; j<=(nlstate+ndeath);j++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     mint=matrix(1,maxwav,1,n);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     anint=matrix(1,maxwav,1,n);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     s=imatrix(1,maxwav+1,1,n);      }  
     adl=imatrix(1,maxwav+1,1,n);       /* fprintf(ficresprob,"\n");
     tab=ivector(1,NCOVMAX);    fprintf(ficresprobcov,"\n");
     ncodemax=ivector(1,8);    fprintf(ficresprobcor,"\n");
    */
     i=1;   xp=vector(1,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       if ((i >= firstobs) && (i <=lastobs)) {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
            mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         for (j=maxwav;j>=1;j--){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    first=1;
           strcpy(line,stra);    fprintf(ficgp,"\n# Routine varprob");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n");
         }  
            fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  and drawn. It helps understanding how is the covariance between two incidences.\
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         for (j=ncovcol;j>=1;j--){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  standard deviations wide on each axis. <br>\
         }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         num[i]=atol(stra);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
          To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    cov[1]=1;
     tj=cptcoveff;
         i=i+1;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       }    j1=0;
     }    for(t=1; t<=tj;t++){
     /* printf("ii=%d", ij);      for(i1=1; i1<=ncodemax[t];i1++){ 
        scanf("%d",i);*/        j1++;
   imx=i-1; /* Number of individuals */        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   /* for (i=1; i<=imx; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          fprintf(ficresprob, "**********\n#\n");
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          fprintf(ficresprobcov, "\n#********** Variable "); 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }*/          fprintf(ficresprobcov, "**********\n#\n");
    /*  for (i=1; i<=imx; i++){          
      if (s[4][i]==9)  s[4][i]=-1;          fprintf(ficgp, "\n#********** Variable "); 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficgp, "**********\n#\n");
            
   /* Calculation of the number of parameter from char model*/          
   Tvar=ivector(1,15);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   Tprod=ivector(1,15);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   Tvaraff=ivector(1,15);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   Tvard=imatrix(1,15,1,2);          
   Tage=ivector(1,15);                fprintf(ficresprobcor, "\n#********** Variable ");    
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (strlen(model) >1){          fprintf(ficresprobcor, "**********\n#");    
     j=0, j1=0, k1=1, k2=1;        }
     j=nbocc(model,'+');        
     j1=nbocc(model,'*');        for (age=bage; age<=fage; age ++){ 
     cptcovn=j+1;          cov[2]=age;
     cptcovprod=j1;          for (k=1; k<=cptcovn;k++) {
                cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     strcpy(modelsav,model);          }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       printf("Error. Non available option model=%s ",model);          for (k=1; k<=cptcovprod;k++)
       goto end;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }          
              gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     for(i=(j+1); i>=1;i--){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       cutv(stra,strb,modelsav,'+');          gp=vector(1,(nlstate)*(nlstate+ndeath));
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          gm=vector(1,(nlstate)*(nlstate+ndeath));
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      
       /*scanf("%d",i);*/          for(theta=1; theta <=npar; theta++){
       if (strchr(strb,'*')) {            for(i=1; i<=npar; i++)
         cutv(strd,strc,strb,'*');              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         if (strcmp(strc,"age")==0) {            
           cptcovprod--;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           cutv(strb,stre,strd,'V');            
           Tvar[i]=atoi(stre);            k=0;
           cptcovage++;            for(i=1; i<= (nlstate); i++){
             Tage[cptcovage]=i;              for(j=1; j<=(nlstate+ndeath);j++){
             /*printf("stre=%s ", stre);*/                k=k+1;
         }                gp[k]=pmmij[i][j];
         else if (strcmp(strd,"age")==0) {              }
           cptcovprod--;            }
           cutv(strb,stre,strc,'V');            
           Tvar[i]=atoi(stre);            for(i=1; i<=npar; i++)
           cptcovage++;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           Tage[cptcovage]=i;      
         }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         else {            k=0;
           cutv(strb,stre,strc,'V');            for(i=1; i<=(nlstate); i++){
           Tvar[i]=ncovcol+k1;              for(j=1; j<=(nlstate+ndeath);j++){
           cutv(strb,strc,strd,'V');                k=k+1;
           Tprod[k1]=i;                gm[k]=pmmij[i][j];
           Tvard[k1][1]=atoi(strc);              }
           Tvard[k1][2]=atoi(stre);            }
           Tvar[cptcovn+k2]=Tvard[k1][1];       
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           for (k=1; k<=lastobs;k++)              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          }
           k1++;  
           k2=k2+2;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         }            for(theta=1; theta <=npar; theta++)
       }              trgradg[j][theta]=gradg[theta][j];
       else {          
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
        /*  scanf("%d",i);*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       cutv(strd,strc,strb,'V');          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       Tvar[i]=atoi(strc);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       strcpy(modelsav,stra);            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  
         scanf("%d",i);*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
     }          
 }          k=0;
            for(i=1; i<=(nlstate); i++){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            for(j=1; j<=(nlstate+ndeath);j++){
   printf("cptcovprod=%d ", cptcovprod);              k=k+1;
   scanf("%d ",i);*/              mu[k][(int) age]=pmmij[i][j];
     fclose(fic);            }
           }
     /*  if(mle==1){*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     if (weightopt != 1) { /* Maximisation without weights*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       for(i=1;i<=n;i++) weight[i]=1.0;              varpij[i][j][(int)age] = doldm[i][j];
     }  
     /*-calculation of age at interview from date of interview and age at death -*/          /*printf("\n%d ",(int)age);
     agev=matrix(1,maxwav,1,imx);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     for (i=1; i<=imx; i++) {            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       for(m=2; (m<= maxwav); m++) {            }*/
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;          fprintf(ficresprob,"\n%d ",(int)age);
          s[m][i]=-1;          fprintf(ficresprobcov,"\n%d ",(int)age);
        }          fprintf(ficresprobcor,"\n%d ",(int)age);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     for (i=1; i<=imx; i++)  {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       for(m=1; (m<= maxwav); m++){          }
         if(s[m][i] >0){          i=0;
           if (s[m][i] >= nlstate+1) {          for (k=1; k<=(nlstate);k++){
             if(agedc[i]>0)            for (l=1; l<=(nlstate+ndeath);l++){ 
               if(moisdc[i]!=99 && andc[i]!=9999)              i=i++;
                 agev[m][i]=agedc[i];              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
            else {              for (j=1; j<=i;j++){
               if (andc[i]!=9999){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               agev[m][i]=-1;              }
               }            }
             }          }/* end of loop for state */
           }        } /* end of loop for age */
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        /* Confidence intervalle of pij  */
             if(mint[m][i]==99 || anint[m][i]==9999)        /*
               agev[m][i]=1;          fprintf(ficgp,"\nset noparametric;unset label");
             else if(agev[m][i] <agemin){          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
               agemin=agev[m][i];          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
             }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
             else if(agev[m][i] >agemax){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
               agemax=agev[m][i];          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        */
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
             /*   agev[m][i] = age[i]+2*m;*/        first1=1;
           }        for (k2=1; k2<=(nlstate);k2++){
           else { /* =9 */          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             agev[m][i]=1;            if(l2==k2) continue;
             s[m][i]=-1;            j=(k2-1)*(nlstate+ndeath)+l2;
           }            for (k1=1; k1<=(nlstate);k1++){
         }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         else /*= 0 Unknown */                if(l1==k1) continue;
           agev[m][i]=1;                i=(k1-1)*(nlstate+ndeath)+l1;
       }                if(i<=j) continue;
                    for (age=bage; age<=fage; age ++){ 
     }                  if ((int)age %5==0){
     for (i=1; i<=imx; i++)  {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       for(m=1; (m<= maxwav); m++){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         if (s[m][i] > (nlstate+ndeath)) {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           printf("Error: Wrong value in nlstate or ndeath\n");                      mu1=mu[i][(int) age]/stepm*YEARM ;
           goto end;                    mu2=mu[j][(int) age]/stepm*YEARM;
         }                    c12=cv12/sqrt(v1*v2);
       }                    /* Computing eigen value of matrix of covariance */
     }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     free_vector(severity,1,maxwav);                    /*v21=sqrt(1.-v11*v11); *//* error */
     free_imatrix(outcome,1,maxwav+1,1,n);                    v21=(lc1-v1)/cv12*v11;
     free_vector(moisnais,1,n);                    v12=-v21;
     free_vector(annais,1,n);                    v22=v11;
     /* free_matrix(mint,1,maxwav,1,n);                    tnalp=v21/v11;
        free_matrix(anint,1,maxwav,1,n);*/                    if(first1==1){
     free_vector(moisdc,1,n);                      first1=0;
     free_vector(andc,1,n);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                        fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     wav=ivector(1,imx);                    /*printf(fignu*/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                        if(first==1){
     /* Concatenates waves */                      first=0;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       Tcode=ivector(1,100);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       ncodemax[1]=1;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    codtab=imatrix(1,100,1,10);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    h=0;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
    m=pow(2,cptcoveff);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    for(k=1;k<=cptcoveff; k++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
      for(i=1; i <=(m/pow(2,k));i++){                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
        for(j=1; j <= ncodemax[k]; j++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
            h++;                    }else{
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                      first=0;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
          }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
        }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
      }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       codtab[1][2]=1;codtab[2][2]=2; */                    }/* if first */
    /* for(i=1; i <=m ;i++){                  } /* age mod 5 */
       for(k=1; k <=cptcovn; k++){                } /* end loop age */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                first=1;
       printf("\n");              } /*l12 */
       }            } /* k12 */
       scanf("%d",i);*/          } /*l1 */
            }/* k1 */
    /* Calculates basic frequencies. Computes observed prevalence at single age      } /* loop covariates */
        and prints on file fileres'p'. */    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
        free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
        free_vector(xp,1,npar);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fclose(ficresprob);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fclose(ficresprobcov);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fclose(ficresprobcor);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fflush(ficgp);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fflush(fichtmcov);
        }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     if(mle==1){                    int lastpass, int stepm, int weightopt, char model[],\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     }                    int popforecast, int estepm ,\
                        double jprev1, double mprev1,double anprev1, \
     /*--------- results files --------------*/                    double jprev2, double mprev2,double anprev2){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    int jj1, k1, i1, cpt;
    
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    jk=1;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     fprintf(fichtm,"\
    for(i=1,jk=1; i <=nlstate; i++){   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
      for(k=1; k <=(nlstate+ndeath); k++){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
        if (k != i)     fprintf(fichtm,"\
          {   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
            printf("%d%d ",i,k);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
            fprintf(ficres,"%1d%1d ",i,k);     fprintf(fichtm,"\
            for(j=1; j <=ncovmodel; j++){   - Life expectancies by age and initial health status (estepm=%2d months): \
              printf("%f ",p[jk]);     <a href=\"%s\">%s</a> <br>\n</li>",
              fprintf(ficres,"%f ",p[jk]);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
              jk++;  
            }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
            printf("\n");  
            fprintf(ficres,"\n");   m=cptcoveff;
          }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      }  
    }   jj1=0;
  if(mle==1){   for(k1=1; k1<=m;k1++){
     /* Computing hessian and covariance matrix */     for(i1=1; i1<=ncodemax[k1];i1++){
     ftolhess=ftol; /* Usually correct */       jj1++;
     hesscov(matcov, p, npar, delti, ftolhess, func);       if (cptcovn > 0) {
  }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
     printf("# Scales (for hessian or gradient estimation)\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
      for(i=1,jk=1; i <=nlstate; i++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       for(j=1; j <=nlstate+ndeath; j++){       }
         if (j!=i) {       /* Pij */
           fprintf(ficres,"%1d%1d",i,j);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
           printf("%1d%1d",i,j);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           for(k=1; k<=ncovmodel;k++){       /* Quasi-incidences */
             printf(" %.5e",delti[jk]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
             fprintf(ficres," %.5e",delti[jk]);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
             jk++;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           }         /* Stable prevalence in each health state */
           printf("\n");         for(cpt=1; cpt<nlstate;cpt++){
           fprintf(ficres,"\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
         }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       }         }
      }       for(cpt=1; cpt<=nlstate;cpt++) {
              fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     k=1;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     } /* end i1 */
     for(i=1;i<=npar;i++){   }/* End k1 */
       /*  if (k>nlstate) k=1;   fprintf(fichtm,"</ul>");
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/   fprintf(fichtm,"\
       fprintf(ficres,"%3d",i);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
       printf("%3d",i);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       for(j=1; j<=i;j++){  
         fprintf(ficres," %.5e",matcov[i][j]);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         printf(" %.5e",matcov[i][j]);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       }   fprintf(fichtm,"\
       fprintf(ficres,"\n");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       printf("\n");           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       k++;  
     }   fprintf(fichtm,"\
       - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     while((c=getc(ficpar))=='#' && c!= EOF){           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       ungetc(c,ficpar);   fprintf(fichtm,"\
       fgets(line, MAXLINE, ficpar);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       puts(line);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       fputs(line,ficparo);   fprintf(fichtm,"\
     }   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     ungetc(c,ficpar);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     estepm=0;   fprintf(fichtm,"\
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
     if (estepm==0 || estepm < stepm) estepm=stepm;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     if (fage <= 2) {  
       bage = ageminpar;  /*  if(popforecast==1) fprintf(fichtm,"\n */
       fage = agemaxpar;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
      /*      <br>",fileres,fileres,fileres,fileres); */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  /*  else  */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   fflush(fichtm);
     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   m=cptcoveff;
     fgets(line, MAXLINE, ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       if (cptcovn > 0) {
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         for (cpt=1; cpt<=cptcoveff;cpt++) 
                 fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   while((c=getc(ficpar))=='#' && c!= EOF){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);       for(cpt=1; cpt<=nlstate;cpt++) {
     puts(line);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     fputs(line,ficparo);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   ungetc(c,ficpar);       }
         fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;     } /* end i1 */
    }/* End k1 */
   fscanf(ficpar,"pop_based=%d\n",&popbased);   fprintf(fichtm,"</ul>");
   fprintf(ficparo,"pop_based=%d\n",popbased);     fflush(fichtm);
   fprintf(ficres,"pop_based=%d\n",popbased);    }
    
   while((c=getc(ficpar))=='#' && c!= EOF){  /******************* Gnuplot file **************/
     ungetc(c,ficpar);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     fgets(line, MAXLINE, ficpar);  
     puts(line);    char dirfileres[132],optfileres[132];
     fputs(line,ficparo);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }    int ng;
   ungetc(c,ficpar);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*   } */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
 while((c=getc(ficpar))=='#' && c!= EOF){      /*#endif */
     ungetc(c,ficpar);    m=pow(2,cptcoveff);
     fgets(line, MAXLINE, ficpar);  
     puts(line);    strcpy(dirfileres,optionfilefiname);
     fputs(line,ficparo);    strcpy(optfileres,"vpl");
   }   /* 1eme*/
   ungetc(c,ficpar);    for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  set ter png small\n\
   set size 0.65,0.65\n\
 /*------------ gnuplot -------------*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  
         for (i=1; i<= nlstate ; i ++) {
 /*------------ free_vector  -------------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  chdir(path);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }
  free_ivector(wav,1,imx);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       for (i=1; i<= nlstate ; i ++) {
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  free_ivector(num,1,n);         else fprintf(ficgp," \%%*lf (\%%*lf)");
  free_vector(agedc,1,n);       } 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
  fclose(ficparo);       for (i=1; i<= nlstate ; i ++) {
  fclose(ficres);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
 /*--------- index.htm --------*/       }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);     }
     }
      /*2 eme*/
   /*--------------- Prevalence limit --------------*/    
      for (k1=1; k1<= m ; k1 ++) { 
   strcpy(filerespl,"pl");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   strcat(filerespl,fileres);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      for (i=1; i<= nlstate+1 ; i ++) {
   }        k=2*i;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fprintf(ficrespl,"#Prevalence limit\n");        for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficrespl,"#Age ");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficrespl,"\n");        }   
          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   prlim=matrix(1,nlstate,1,nlstate);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (j=1; j<= nlstate+1 ; j ++) {
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          else fprintf(ficgp," \%%*lf (\%%*lf)");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        }   
   k=0;        fprintf(ficgp,"\" t\"\" w l 0,");
   agebase=ageminpar;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   agelim=agemaxpar;        for (j=1; j<= nlstate+1 ; j ++) {
   ftolpl=1.e-10;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   i1=cptcoveff;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if (cptcovn < 1){i1=1;}        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   for(cptcov=1;cptcov<=i1;cptcov++){        else fprintf(ficgp,"\" t\"\" w l 0,");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
         k=k+1;    }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    
         fprintf(ficrespl,"\n#******");    /*3eme*/
         for(j=1;j<=cptcoveff;j++)    
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficrespl,"******\n");      for (cpt=1; cpt<= nlstate ; cpt ++) {
                k=2+nlstate*(2*cpt-2);
         for (age=agebase; age<=agelim; age++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficgp,"set ter png small\n\
           fprintf(ficrespl,"%.0f",age );  set size 0.65,0.65\n\
           for(i=1; i<=nlstate;i++)  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           fprintf(ficrespl," %.5f", prlim[i][i]);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           fprintf(ficrespl,"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fclose(ficrespl);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
   /*------------- h Pij x at various ages ------------*/        */
          for (i=1; i< nlstate ; i ++) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        } 
   }      }
   printf("Computing pij: result on file '%s' \n", filerespij);    }
      
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* CV preval stable (period) */
   /*if (stepm<=24) stepsize=2;*/    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
   agelim=AGESUP;        k=3;
   hstepm=stepsize*YEARM; /* Every year of age */        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    set ter png small\nset size 0.65,0.65\n\
   k=0;  unset log y\n\
   for(cptcov=1;cptcov<=i1;cptcov++){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        
       k=k+1;        for (i=1; i< nlstate ; i ++)
         fprintf(ficrespij,"\n#****** ");          fprintf(ficgp,"+$%d",k+i+1);
         for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        
         fprintf(ficrespij,"******\n");        l=3+(nlstate+ndeath)*cpt;
                fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        for (i=1; i< nlstate ; i ++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          l=3+(nlstate+ndeath)*cpt;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(ficgp,"+$%d",l+i+1);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        } 
           fprintf(ficrespij,"# Age");    }  
           for(i=1; i<=nlstate;i++)    
             for(j=1; j<=nlstate+ndeath;j++)    /* proba elementaires */
               fprintf(ficrespij," %1d-%1d",i,j);    for(i=1,jk=1; i <=nlstate; i++){
           fprintf(ficrespij,"\n");      for(k=1; k <=(nlstate+ndeath); k++){
            for (h=0; h<=nhstepm; h++){        if (k != i) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          for(j=1; j <=ncovmodel; j++){
             for(i=1; i<=nlstate;i++)            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
               for(j=1; j<=nlstate+ndeath;j++)            jk++; 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            fprintf(ficgp,"\n");
             fprintf(ficrespij,"\n");          }
              }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
           fprintf(ficrespij,"\n");     }
         }  
     }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   }       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   fclose(ficrespij);         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   /*---------- Forecasting ------------------*/         i=1;
   if((stepm == 1) && (strcmp(model,".")==0)){         for(k2=1; k2<=nlstate; k2++) {
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);           k3=i;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);           for(k=1; k<=(nlstate+ndeath); k++) {
   }             if (k != k2){
   else{               if(ng==2)
     erreur=108;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);               else
   }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 ij=1;
                for(j=3; j <=ncovmodel; j++) {
   /*---------- Health expectancies and variances ------------*/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   strcpy(filerest,"t");                   ij++;
   strcat(filerest,fileres);                 }
   if((ficrest=fopen(filerest,"w"))==NULL) {                 else
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }               }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);               fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
   strcpy(filerese,"e");                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   strcat(filerese,fileres);                 ij=1;
   if((ficreseij=fopen(filerese,"w"))==NULL) {                 for(j=3; j <=ncovmodel; j++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                     ij++;
                    }
  strcpy(fileresv,"v");                   else
   strcat(fileresv,fileres);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                 }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                 fprintf(ficgp,")");
   }               }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   calagedate=-1;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);               i=i+ncovmodel;
              }
   k=0;           } /* end k */
   for(cptcov=1;cptcov<=i1;cptcov++){         } /* end k2 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       } /* end jk */
       k=k+1;     } /* end ng */
       fprintf(ficrest,"\n#****** ");     fflush(ficgp); 
       for(j=1;j<=cptcoveff;j++)  }  /* end gnuplot */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");  
   /*************** Moving average **************/
       fprintf(ficreseij,"\n#****** ");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int i, cpt, cptcod;
       fprintf(ficreseij,"******\n");    int modcovmax =1;
     int mobilavrange, mob;
       fprintf(ficresvij,"\n#****** ");    double age;
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       fprintf(ficresvij,"******\n");                             a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        if(mobilav==1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for (age=bage; age<=fage; age++)
       oldm=oldms;savm=savms;        for (i=1; i<=nlstate;i++)
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
                mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");         we use a 5 terms etc. until the borders are no more concerned. 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      */ 
       fprintf(ficrest,"\n");      for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       epj=vector(1,nlstate+1);          for (i=1; i<=nlstate;i++){
       for(age=bage; age <=fage ;age++){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         if (popbased==1) {                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           for(i=1; i<=nlstate;i++)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
             prlim[i][i]=probs[(int)age][i][k];                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         }                }
                      mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         fprintf(ficrest," %4.0f",age);            }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        }/* end age */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      }/* end mob */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    }else return -1;
           }    return 0;
           epj[nlstate+1] +=epj[j];  }/* End movingaverage */
         }  
   
         for(i=1, vepp=0.;i <=nlstate;i++)  /************** Forecasting ******************/
           for(j=1;j <=nlstate;j++)  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
             vepp += vareij[i][j][(int)age];    /* proj1, year, month, day of starting projection 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       agemin, agemax range of age
         for(j=1;j <=nlstate;j++){       dateprev1 dateprev2 range of dates during which prevalence is computed
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       anproj2 year of en of projection (same day and month as proj1).
         }    */
         fprintf(ficrest,"\n");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       }    int *popage;
     }    double agec; /* generic age */
   }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
 free_matrix(mint,1,maxwav,1,n);    double *popeffectif,*popcount;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    double ***p3mat;
     free_vector(weight,1,n);    double ***mobaverage;
   fclose(ficreseij);    char fileresf[FILENAMELENGTH];
   fclose(ficresvij);  
   fclose(ficrest);    agelim=AGESUP;
   fclose(ficpar);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   free_vector(epj,1,nlstate+1);   
      strcpy(fileresf,"f"); 
   /*------- Variance limit prevalence------*/      strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
   strcpy(fileresvpl,"vpl");      printf("Problem with forecast resultfile: %s\n", fileresf);
   strcat(fileresvpl,fileres);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    printf("Computing forecasting: result on file '%s' \n", fileresf);
     exit(0);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   k=0;    if (mobilav!=0) {
   for(cptcov=1;cptcov<=i1;cptcov++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       k=k+1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficresvpl,"\n#****** ");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for(j=1;j<=cptcoveff;j++)      }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficresvpl,"******\n");  
          stepsize=(int) (stepm+YEARM-1)/YEARM;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    if (stepm<=12) stepsize=1;
       oldm=oldms;savm=savms;    if(estepm < stepm){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }    }
  }    else  hstepm=estepm;   
   
   fclose(ficresvpl);    hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   /*---------- End : free ----------------*/                                 fractional in yp1 */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    anprojmean=yp;
      yp2=modf((yp1*12),&yp);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    mprojmean=yp;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    yp1=modf((yp2*30.5),&yp);
      jprojmean=yp;
      if(jprojmean==0) jprojmean=1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    if(mprojmean==0) jprojmean=1;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    i1=cptcoveff;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (cptcovn < 1){i1=1;}
      
   free_matrix(matcov,1,npar,1,npar);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   free_vector(delti,1,npar);    
   free_matrix(agev,1,maxwav,1,imx);    fprintf(ficresf,"#****** Routine prevforecast **\n");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
   /*            if (h==(int)(YEARM*yearp)){ */
   if(erreur >0)    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     printf("End of Imach with error or warning %d\n",erreur);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   else   printf("End of Imach\n");        k=k+1;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        fprintf(ficresf,"\n#******");
          for(j=1;j<=cptcoveff;j++) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /*printf("Total time was %d uSec.\n", total_usecs);*/        }
   /*------ End -----------*/        fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
  end:          for(i=1; i<=nlstate;i++)              
   /* chdir(pathcd);*/            fprintf(ficresf," p%d%d",i,j);
  /*system("wgnuplot graph.plt");*/          fprintf(ficresf," p.%d",j);
  /*system("../gp37mgw/wgnuplot graph.plt");*/        }
  /*system("cd ../gp37mgw");*/        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          fprintf(ficresf,"\n");
  strcpy(plotcmd,GNUPLOTPROGRAM);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
  system(plotcmd);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
  /*#ifdef windows*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   while (z[0] != 'q') {            oldm=oldms;savm=savms;
     /* chdir(path); */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          
     scanf("%s",z);            for (h=0; h<=nhstepm; h++){
     if (z[0] == 'c') system("./imach");              if (h*hstepm/YEARM*stepm ==yearp) {
     else if (z[0] == 'e') system(optionfilehtm);                fprintf(ficresf,"\n");
     else if (z[0] == 'g') system(plotcmd);                for(j=1;j<=cptcoveff;j++) 
     else if (z[0] == 'q') exit(0);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   /*#endif */              } 
 }              for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.98


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>