Diff for /imach/src/imach.c between versions 1.42 and 1.128

version 1.42, 2002/05/21 18:44:41 version 1.128, 2006/06/30 13:02:05
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.128  2006/06/30 13:02:05  brouard
      (Module): Clarifications on computing e.j
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.127  2006/04/28 18:11:50  brouard
   first survey ("cross") where individuals from different ages are    (Module): Yes the sum of survivors was wrong since
   interviewed on their health status or degree of disability (in the    imach-114 because nhstepm was no more computed in the age
   case of a health survey which is our main interest) -2- at least a    loop. Now we define nhstepma in the age loop.
   second wave of interviews ("longitudinal") which measure each change    (Module): In order to speed up (in case of numerous covariates) we
   (if any) in individual health status.  Health expectancies are    compute health expectancies (without variances) in a first step
   computed from the time spent in each health state according to a    and then all the health expectancies with variances or standard
   model. More health states you consider, more time is necessary to reach the    deviation (needs data from the Hessian matrices) which slows the
   Maximum Likelihood of the parameters involved in the model.  The    computation.
   simplest model is the multinomial logistic model where pij is the    In the future we should be able to stop the program is only health
   probability to be observed in state j at the second wave    expectancies and graph are needed without standard deviations.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.126  2006/04/28 17:23:28  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Yes the sum of survivors was wrong since
   complex model than "constant and age", you should modify the program    imach-114 because nhstepm was no more computed in the age
   where the markup *Covariates have to be included here again* invites    loop. Now we define nhstepma in the age loop.
   you to do it.  More covariates you add, slower the    Version 0.98h
   convergence.  
     Revision 1.125  2006/04/04 15:20:31  lievre
   The advantage of this computer programme, compared to a simple    Errors in calculation of health expectancies. Age was not initialized.
   multinomial logistic model, is clear when the delay between waves is not    Forecasting file added.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.124  2006/03/22 17:13:53  lievre
   account using an interpolation or extrapolation.      Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.123  2006/03/20 10:52:43  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Module): <title> changed, corresponds to .htm file
   states. This elementary transition (by month or quarter trimester,    name. <head> headers where missing.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Module): Weights can have a decimal point as for
   and the contribution of each individual to the likelihood is simply    English (a comma might work with a correct LC_NUMERIC environment,
   hPijx.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Also this programme outputs the covariance matrix of the parameters but also    1.
   of the life expectancies. It also computes the prevalence limits.    Version 0.98g
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.122  2006/03/20 09:45:41  brouard
            Institut national d'études démographiques, Paris.    (Module): Weights can have a decimal point as for
   This software have been partly granted by Euro-REVES, a concerted action    English (a comma might work with a correct LC_NUMERIC environment,
   from the European Union.    otherwise the weight is truncated).
   It is copyrighted identically to a GNU software product, ie programme and    Modification of warning when the covariates values are not 0 or
   software can be distributed freely for non commercial use. Latest version    1.
   can be accessed at http://euroreves.ined.fr/imach .    Version 0.98g
   **********************************************************************/  
      Revision 1.121  2006/03/16 17:45:01  lievre
 #include <math.h>    * imach.c (Module): Comments concerning covariates added
 #include <stdio.h>  
 #include <stdlib.h>    * imach.c (Module): refinements in the computation of lli if
 #include <unistd.h>    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.120  2006/03/16 15:10:38  lievre
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): refinements in the computation of lli if
 #define FILENAMELENGTH 80    status=-2 in order to have more reliable computation if stepm is
 /*#define DEBUG*/    not 1 month. Version 0.98f
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.119  2006/03/15 17:42:26  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 #define NINTERVMAX 8    table of variances if popbased=1 .
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Function pstamp added
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Version 0.98d
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.117  2006/03/14 17:16:22  brouard
 #define AGESUP 130    (Module): varevsij Comments added explaining the second
 #define AGEBASE 40    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 int erreur; /* Error number */    (Module): Version 0.98d
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.116  2006/03/06 10:29:27  brouard
 int npar=NPARMAX;    (Module): Variance-covariance wrong links and
 int nlstate=2; /* Number of live states */    varian-covariance of ej. is needed (Saito).
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.115  2006/02/27 12:17:45  brouard
 int popbased=0;    (Module): One freematrix added in mlikeli! 0.98c
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.114  2006/02/26 12:57:58  brouard
 int maxwav; /* Maxim number of waves */    (Module): Some improvements in processing parameter
 int jmin, jmax; /* min, max spacing between 2 waves */    filename with strsep.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.113  2006/02/24 14:20:24  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Memory leaks checks with valgrind and:
 double jmean; /* Mean space between 2 waves */    datafile was not closed, some imatrix were not freed and on matrix
 double **oldm, **newm, **savm; /* Working pointers to matrices */    allocation too.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.112  2006/01/30 09:55:26  brouard
 FILE *ficgp,*ficresprob,*ficpop;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.111  2006/01/25 20:38:18  brouard
  FILE  *ficresvij;    (Module): Lots of cleaning and bugs added (Gompertz)
   char fileresv[FILENAMELENGTH];    (Module): Comments can be added in data file. Missing date values
  FILE  *ficresvpl;    can be a simple dot '.'.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.110  2006/01/25 00:51:50  brouard
 #define NR_END 1    (Module): Lots of cleaning and bugs added (Gompertz)
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 #define NRANSI  
 #define ITMAX 200    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 #define TOL 2.0e-4    To be fixed
   
 #define CGOLD 0.3819660    Revision 1.107  2006/01/19 16:20:37  brouard
 #define ZEPS 1.0e-10    Test existence of gnuplot in imach path
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.106  2006/01/19 13:24:36  brouard
 #define GOLD 1.618034    Some cleaning and links added in html output
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.104  2005/09/30 16:11:43  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): sump fixed, loop imx fixed, and simplifications.
      (Module): If the status is missing at the last wave but we know
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    that the person is alive, then we can code his/her status as -2
 #define rint(a) floor(a+0.5)    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 static double sqrarg;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    the healthy state at last known wave). Version is 0.98
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.103  2005/09/30 15:54:49  lievre
 int imx;    (Module): sump fixed, loop imx fixed, and simplifications.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.100  2004/07/12 18:29:06  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Add version for Mac OS X. Just define UNIX in Makefile
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 double *weight;  
 int **s; /* Status */    Revision 1.98  2004/05/16 15:05:56  brouard
 double *agedc, **covar, idx;    New version 0.97 . First attempt to estimate force of mortality
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    This is the basic analysis of mortality and should be done before any
 double ftolhess; /* Tolerance for computing hessian */    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 /**************** split *************************/    from other sources like vital statistic data.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    The same imach parameter file can be used but the option for mle should be -3.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    The output is very simple: only an estimate of the intercept and of
 #ifdef windows    the slope with 95% confident intervals.
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Current limitations:
    s = strrchr( path, '/' );            /* find last / */    A) Even if you enter covariates, i.e. with the
 #endif    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    if ( s == NULL ) {                   /* no directory, so use current */    B) There is no computation of Life Expectancy nor Life Table.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
       if ( getwd( dirc ) == NULL ) {    suppressed.
 #else  
       extern char       *getcwd( );    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    rewritten within the same printf. Workaround: many printfs.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.95  2003/07/08 07:54:34  brouard
       }    * imach.c (Repository):
       strcpy( name, path );             /* we've got it */    (Repository): Using imachwizard code to output a more meaningful covariance
    } else {                             /* strip direcotry from path */    matrix (cov(a12,c31) instead of numbers.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.94  2003/06/27 13:00:02  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Just cleaning
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.93  2003/06/25 16:33:55  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): On windows (cygwin) function asctime_r doesn't
    }    exist so I changed back to asctime which exists.
    l1 = strlen( dirc );                 /* length of directory */    (Module): Version 0.96b
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.92  2003/06/25 16:30:45  brouard
 #else    (Module): On windows (cygwin) function asctime_r doesn't
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    exist so I changed back to asctime which exists.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.91  2003/06/25 15:30:29  brouard
    s++;    * imach.c (Repository): Duplicated warning errors corrected.
    strcpy(ext,s);                       /* save extension */    (Repository): Elapsed time after each iteration is now output. It
    l1= strlen( name);    helps to forecast when convergence will be reached. Elapsed time
    l2= strlen( s)+1;    is stamped in powell.  We created a new html file for the graphs
    strncpy( finame, name, l1-l2);    concerning matrix of covariance. It has extension -cov.htm.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.90  2003/06/24 12:34:15  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /******************************************/  
     Revision 1.89  2003/06/24 12:30:52  brouard
 void replace(char *s, char*t)    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   int i;    of the covariance matrix to be input.
   int lg=20;  
   i=0;    Revision 1.88  2003/06/23 17:54:56  brouard
   lg=strlen(t);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.87  2003/06/18 12:26:01  brouard
     if (t[i]== '\\') s[i]='/';    Version 0.96
   }  
 }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 int nbocc(char *s, char occ)    routine fileappend.
 {  
   int i,j=0;    Revision 1.85  2003/06/17 13:12:43  brouard
   int lg=20;    * imach.c (Repository): Check when date of death was earlier that
   i=0;    current date of interview. It may happen when the death was just
   lg=strlen(s);    prior to the death. In this case, dh was negative and likelihood
   for(i=0; i<= lg; i++) {    was wrong (infinity). We still send an "Error" but patch by
   if  (s[i] == occ ) j++;    assuming that the date of death was just one stepm after the
   }    interview.
   return j;    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 void cutv(char *u,char *v, char*t, char occ)    truncation)
 {    (Repository): No more line truncation errors.
   int i,lg,j,p=0;  
   i=0;    Revision 1.84  2003/06/13 21:44:43  brouard
   for(j=0; j<=strlen(t)-1; j++) {    * imach.c (Repository): Replace "freqsummary" at a correct
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    place. It differs from routine "prevalence" which may be called
   }    many times. Probs is memory consuming and must be used with
     parcimony.
   lg=strlen(t);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.83  2003/06/10 13:39:11  lievre
   }    *** empty log message ***
      u[p]='\0';  
     Revision 1.82  2003/06/05 15:57:20  brouard
    for(j=0; j<= lg; j++) {    Add log in  imach.c and  fullversion number is now printed.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  */
 }  /*
      Interpolated Markov Chain
 /********************** nrerror ********************/  
     Short summary of the programme:
 void nrerror(char error_text[])    
 {    This program computes Healthy Life Expectancies from
   fprintf(stderr,"ERREUR ...\n");    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   fprintf(stderr,"%s\n",error_text);    first survey ("cross") where individuals from different ages are
   exit(1);    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
 /*********************** vector *******************/    second wave of interviews ("longitudinal") which measure each change
 double *vector(int nl, int nh)    (if any) in individual health status.  Health expectancies are
 {    computed from the time spent in each health state according to a
   double *v;    model. More health states you consider, more time is necessary to reach the
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Maximum Likelihood of the parameters involved in the model.  The
   if (!v) nrerror("allocation failure in vector");    simplest model is the multinomial logistic model where pij is the
   return v-nl+NR_END;    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /************************ free vector ******************/    'age' is age and 'sex' is a covariate. If you want to have a more
 void free_vector(double*v, int nl, int nh)    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   free((FREE_ARG)(v+nl-NR_END));    you to do it.  More covariates you add, slower the
 }    convergence.
   
 /************************ivector *******************************/    The advantage of this computer programme, compared to a simple
 int *ivector(long nl,long nh)    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   int *v;    intermediate interview, the information is lost, but taken into
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    account using an interpolation or extrapolation.  
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    hPijx is the probability to be observed in state i at age x+h
 }    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /******************free ivector **************************/    states. This elementary transition (by month, quarter,
 void free_ivector(int *v, long nl, long nh)    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   free((FREE_ARG)(v+nl-NR_END));    and the contribution of each individual to the likelihood is simply
 }    hPijx.
   
 /******************* imatrix *******************************/    Also this programme outputs the covariance matrix of the parameters but also
 int **imatrix(long nrl, long nrh, long ncl, long nch)    of the life expectancies. It also computes the period (stable) prevalence. 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;             Institut national d'études démographiques, Paris.
   int **m;    This software have been partly granted by Euro-REVES, a concerted action
      from the European Union.
   /* allocate pointers to rows */    It is copyrighted identically to a GNU software product, ie programme and
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    software can be distributed freely for non commercial use. Latest version
   if (!m) nrerror("allocation failure 1 in matrix()");    can be accessed at http://euroreves.ined.fr/imach .
   m += NR_END;  
   m -= nrl;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
      or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   /* allocate rows and set pointers to them */    **********************************************************************/
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    main
   m[nrl] += NR_END;    read parameterfile
   m[nrl] -= ncl;    read datafile
      concatwav
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    freqsummary
      if (mle >= 1)
   /* return pointer to array of pointers to rows */      mlikeli
   return m;    print results files
 }    if mle==1 
        computes hessian
 /****************** free_imatrix *************************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 void free_imatrix(m,nrl,nrh,ncl,nch)        begin-prev-date,...
       int **m;    open gnuplot file
       long nch,ncl,nrh,nrl;    open html file
      /* free an int matrix allocated by imatrix() */    period (stable) prevalence
 {     for age prevalim()
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    h Pij x
   free((FREE_ARG) (m+nrl-NR_END));    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /******************* matrix *******************************/    Variance-covariance of DFLE
 double **matrix(long nrl, long nrh, long ncl, long nch)    prevalence()
 {     movingaverage()
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    varevsij() 
   double **m;    if popbased==1 varevsij(,popbased)
     total life expectancies
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Variance of period (stable) prevalence
   if (!m) nrerror("allocation failure 1 in matrix()");   end
   m += NR_END;  */
   m -= nrl;  
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   
   m[nrl] += NR_END;  #include <math.h>
   m[nrl] -= ncl;  #include <stdio.h>
   #include <stdlib.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <string.h>
   return m;  #include <unistd.h>
 }  
   #include <limits.h>
 /*************************free matrix ************************/  #include <sys/types.h>
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #include <sys/stat.h>
 {  #include <errno.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  extern int errno;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /* #include <sys/time.h> */
   #include <time.h>
 /******************* ma3x *******************************/  #include "timeval.h"
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  /* #include <libintl.h> */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /* #define _(String) gettext (String) */
   double ***m;  
   #define MAXLINE 256
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define GNUPLOTPROGRAM "gnuplot"
   m += NR_END;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m -= nrl;  #define FILENAMELENGTH 132
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   #define NINTERVMAX 8
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m[nrl][ncl] += NR_END;  #define NCOVMAX 8 /* Maximum number of covariates */
   m[nrl][ncl] -= nll;  #define MAXN 20000
   for (j=ncl+1; j<=nch; j++)  #define YEARM 12. /* Number of months per year */
     m[nrl][j]=m[nrl][j-1]+nlay;  #define AGESUP 130
    #define AGEBASE 40
   for (i=nrl+1; i<=nrh; i++) {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #ifdef UNIX
     for (j=ncl+1; j<=nch; j++)  #define DIRSEPARATOR '/'
       m[i][j]=m[i][j-1]+nlay;  #define CHARSEPARATOR "/"
   }  #define ODIRSEPARATOR '\\'
   return m;  #else
 }  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 /*************************free ma3x ************************/  #define ODIRSEPARATOR '/'
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #endif
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /* $Id$ */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* $State$ */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char version[]="Imach version 0.98i, June 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$"; 
 /***************** f1dim *************************/  char strstart[80];
 extern int ncom;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 extern double *pcom,*xicom;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 extern double (*nrfunc)(double []);  int nvar;
    int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double f1dim(double x)  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   int j;  int ndeath=1; /* Number of dead states */
   double f;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   double *xt;  int popbased=0;
    
   xt=vector(1,ncom);  int *wav; /* Number of waves for this individuual 0 is possible */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int maxwav; /* Maxim number of waves */
   f=(*nrfunc)(xt);  int jmin, jmax; /* min, max spacing between 2 waves */
   free_vector(xt,1,ncom);  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   return f;  int gipmx, gsw; /* Global variables on the number of contributions 
 }                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
 /*****************brent *************************/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   int iter;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double a,b,d,etemp;  double jmean; /* Mean space between 2 waves */
   double fu,fv,fw,fx;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double ftemp;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   double e=0.0;  FILE *ficlog, *ficrespow;
    int globpr; /* Global variable for printing or not */
   a=(ax < cx ? ax : cx);  double fretone; /* Only one call to likelihood */
   b=(ax > cx ? ax : cx);  long ipmx; /* Number of contributions */
   x=w=v=bx;  double sw; /* Sum of weights */
   fw=fv=fx=(*f)(x);  char filerespow[FILENAMELENGTH];
   for (iter=1;iter<=ITMAX;iter++) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     xm=0.5*(a+b);  FILE *ficresilk;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  FILE *ficresprobmorprev;
     printf(".");fflush(stdout);  FILE *fichtm, *fichtmcov; /* Html File */
 #ifdef DEBUG  FILE *ficreseij;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char filerese[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  FILE *ficresstdeij;
 #endif  char fileresstde[FILENAMELENGTH];
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  FILE *ficrescveij;
       *xmin=x;  char filerescve[FILENAMELENGTH];
       return fx;  FILE  *ficresvij;
     }  char fileresv[FILENAMELENGTH];
     ftemp=fu;  FILE  *ficresvpl;
     if (fabs(e) > tol1) {  char fileresvpl[FILENAMELENGTH];
       r=(x-w)*(fx-fv);  char title[MAXLINE];
       q=(x-v)*(fx-fw);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       p=(x-v)*q-(x-w)*r;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       q=2.0*(q-r);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       if (q > 0.0) p = -p;  char command[FILENAMELENGTH];
       q=fabs(q);  int  outcmd=0;
       etemp=e;  
       e=d;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filelog[FILENAMELENGTH]; /* Log file */
       else {  char filerest[FILENAMELENGTH];
         d=p/q;  char fileregp[FILENAMELENGTH];
         u=x+d;  char popfile[FILENAMELENGTH];
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       }  
     } else {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  struct timezone tzp;
     }  extern int gettimeofday();
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     fu=(*f)(u);  long time_value;
     if (fu <= fx) {  extern long time();
       if (u >= x) a=x; else b=x;  char strcurr[80], strfor[80];
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  char *endptr;
         } else {  long lval;
           if (u < x) a=u; else b=u;  double dval;
           if (fu <= fw || w == x) {  
             v=w;  #define NR_END 1
             w=u;  #define FREE_ARG char*
             fv=fw;  #define FTOL 1.0e-10
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  #define NRANSI 
             v=u;  #define ITMAX 200 
             fv=fu;  
           }  #define TOL 2.0e-4 
         }  
   }  #define CGOLD 0.3819660 
   nrerror("Too many iterations in brent");  #define ZEPS 1.0e-10 
   *xmin=x;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   return fx;  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /****************** mnbrak ***********************/  #define TINY 1.0e-20 
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  static double maxarg1,maxarg2;
             double (*func)(double))  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double ulim,u,r,q, dum;    
   double fu;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  static double sqrarg;
   if (*fb > *fa) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     SHFT(dum,*ax,*bx,dum)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       SHFT(dum,*fb,*fa,dum)  int agegomp= AGEGOMP;
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  int imx; 
   *fc=(*func)(*cx);  int stepm=1;
   while (*fb > *fc) {  /* Stepm, step in month: minimum step interpolation*/
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  int estepm;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int m,nb;
     if ((*bx-u)*(u-*cx) > 0.0) {  long *num;
       fu=(*func)(u);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       fu=(*func)(u);  double **pmmij, ***probs;
       if (fu < *fc) {  double *ageexmed,*agecens;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double dateintmean=0;
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  double *weight;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int **s; /* Status */
       u=ulim;  double *agedc, **covar, idx;
       fu=(*func)(u);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     } else {  double *lsurv, *lpop, *tpop;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     }  double ftolhess; /* Tolerance for computing hessian */
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /**************** split *************************/
       }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 /*************** linmin ************************/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 int ncom;    char  *ss;                            /* pointer */
 double *pcom,*xicom;    int   l1, l2;                         /* length counters */
 double (*nrfunc)(double []);  
      l1 = strlen(path );                   /* length of path */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double brent(double ax, double bx, double cx,    if ( ss == NULL ) {                   /* no directory, so determine current directory */
                double (*f)(double), double tol, double *xmin);      strcpy( name, path );               /* we got the fullname name because no directory */
   double f1dim(double x);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
               double *fc, double (*func)(double));      /* get current working directory */
   int j;      /*    extern  char* getcwd ( char *buf , int len);*/
   double xx,xmin,bx,ax;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double fx,fb,fa;        return( GLOCK_ERROR_GETCWD );
        }
   ncom=n;      /* got dirc from getcwd*/
   pcom=vector(1,n);      printf(" DIRC = %s \n",dirc);
   xicom=vector(1,n);    } else {                              /* strip direcotry from path */
   nrfunc=func;      ss++;                               /* after this, the filename */
   for (j=1;j<=n;j++) {      l2 = strlen( ss );                  /* length of filename */
     pcom[j]=p[j];      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     xicom[j]=xi[j];      strcpy( name, ss );         /* save file name */
   }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   ax=0.0;      dirc[l1-l2] = 0;                    /* add zero */
   xx=1.0;      printf(" DIRC2 = %s \n",dirc);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    /* We add a separator at the end of dirc if not exists */
 #ifdef DEBUG    l1 = strlen( dirc );                  /* length of directory */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if( dirc[l1-1] != DIRSEPARATOR ){
 #endif      dirc[l1] =  DIRSEPARATOR;
   for (j=1;j<=n;j++) {      dirc[l1+1] = 0; 
     xi[j] *= xmin;      printf(" DIRC3 = %s \n",dirc);
     p[j] += xi[j];    }
   }    ss = strrchr( name, '.' );            /* find last / */
   free_vector(xicom,1,n);    if (ss >0){
   free_vector(pcom,1,n);      ss++;
 }      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
 /*************** powell ************************/      l2= strlen(ss)+1;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      strncpy( finame, name, l1-l2);
             double (*func)(double []))      finame[l1-l2]= 0;
 {    }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));    return( 0 );                          /* we're done */
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  
   double *xits;  /******************************************/
   pt=vector(1,n);  
   ptt=vector(1,n);  void replace_back_to_slash(char *s, char*t)
   xit=vector(1,n);  {
   xits=vector(1,n);    int i;
   *fret=(*func)(p);    int lg=0;
   for (j=1;j<=n;j++) pt[j]=p[j];    i=0;
   for (*iter=1;;++(*iter)) {    lg=strlen(t);
     fp=(*fret);    for(i=0; i<= lg; i++) {
     ibig=0;      (s[i] = t[i]);
     del=0.0;      if (t[i]== '\\') s[i]='/';
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    }
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  int nbocc(char *s, char occ)
     for (i=1;i<=n;i++) {  {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    int i,j=0;
       fptt=(*fret);    int lg=20;
 #ifdef DEBUG    i=0;
       printf("fret=%lf \n",*fret);    lg=strlen(s);
 #endif    for(i=0; i<= lg; i++) {
       printf("%d",i);fflush(stdout);    if  (s[i] == occ ) j++;
       linmin(p,xit,n,fret,func);    }
       if (fabs(fptt-(*fret)) > del) {    return j;
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  void cutv(char *u,char *v, char*t, char occ)
 #ifdef DEBUG  {
       printf("%d %.12e",i,(*fret));    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       for (j=1;j<=n;j++) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);       gives u="abcedf" and v="ghi2j" */
         printf(" x(%d)=%.12e",j,xit[j]);    int i,lg,j,p=0;
       }    i=0;
       for(j=1;j<=n;j++)    for(j=0; j<=strlen(t)-1; j++) {
         printf(" p=%.12e",p[j]);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       printf("\n");    }
 #endif  
     }    lg=strlen(t);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    for(j=0; j<p; j++) {
 #ifdef DEBUG      (u[j] = t[j]);
       int k[2],l;    }
       k[0]=1;       u[p]='\0';
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));     for(j=0; j<= lg; j++) {
       for (j=1;j<=n;j++)      if (j>=(p+1))(v[j-p-1] = t[j]);
         printf(" %.12e",p[j]);    }
       printf("\n");  }
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /********************** nrerror ********************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void nrerror(char error_text[])
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    fprintf(stderr,"ERREUR ...\n");
       }    fprintf(stderr,"%s\n",error_text);
 #endif    exit(EXIT_FAILURE);
   }
   /*********************** vector *******************/
       free_vector(xit,1,n);  double *vector(int nl, int nh)
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    double *v;
       free_vector(pt,1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       return;    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /************************ free vector ******************/
       xit[j]=p[j]-pt[j];  void free_vector(double*v, int nl, int nh)
       pt[j]=p[j];  {
     }    free((FREE_ARG)(v+nl-NR_END));
     fptt=(*func)(ptt);  }
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /************************ivector *******************************/
       if (t < 0.0) {  int *ivector(long nl,long nh)
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    int *v;
           xi[j][ibig]=xi[j][n];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
           xi[j][n]=xit[j];    if (!v) nrerror("allocation failure in ivector");
         }    return v-nl+NR_END;
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /******************free ivector **************************/
           printf(" %.12e",xit[j]);  void free_ivector(int *v, long nl, long nh)
         printf("\n");  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
       }  }
     }  
   }  /************************lvector *******************************/
 }  long *lvector(long nl,long nh)
   {
 /**** Prevalence limit ****************/    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    if (!v) nrerror("allocation failure in ivector");
 {    return v-nl+NR_END;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  }
      matrix by transitions matrix until convergence is reached */  
   /******************free lvector **************************/
   int i, ii,j,k;  void free_lvector(long *v, long nl, long nh)
   double min, max, maxmin, maxmax,sumnew=0.;  {
   double **matprod2();    free((FREE_ARG)(v+nl-NR_END));
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
   for (ii=1;ii<=nlstate+ndeath;ii++)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     for (j=1;j<=nlstate+ndeath;j++){  { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     }    int **m; 
     
    cov[1]=1.;    /* allocate pointers to rows */ 
      m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (!m) nrerror("allocation failure 1 in matrix()"); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m += NR_END; 
     newm=savm;    m -= nrl; 
     /* Covariates have to be included here again */    
      cov[2]=agefin;    
      /* allocate rows and set pointers to them */ 
       for (k=1; k<=cptcovn;k++) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
       for (k=1; k<=cptcovprod;k++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
     /* return pointer to array of pointers to rows */ 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    return m; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  } 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
     savm=oldm;        int **m;
     oldm=newm;        long nch,ncl,nrh,nrl; 
     maxmax=0.;       /* free an int matrix allocated by imatrix() */ 
     for(j=1;j<=nlstate;j++){  { 
       min=1.;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       max=0.;    free((FREE_ARG) (m+nrl-NR_END)); 
       for(i=1; i<=nlstate; i++) {  } 
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /******************* matrix *******************************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  double **matrix(long nrl, long nrh, long ncl, long nch)
         max=FMAX(max,prlim[i][j]);  {
         min=FMIN(min,prlim[i][j]);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     if(maxmax < ftolpl){    m += NR_END;
       return prlim;    m -= nrl;
     }  
   }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************** transition probabilities ***************/    m[nrl] -= ncl;
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {    return m;
   double s1, s2;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   /*double t34;*/     */
   int i,j,j1, nc, ii, jj;  }
   
     for(i=1; i<= nlstate; i++){  /*************************free matrix ************************/
     for(j=1; j<i;j++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         /*s2 += param[i][j][nc]*cov[nc];*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG)(m+nrl-NR_END));
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  }
       }  
       ps[i][j]=s2;  /******************* ma3x *******************************/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     for(j=i+1; j<=nlstate+ndeath;j++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double ***m;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       ps[i][j]=s2;    m += NR_END;
     }    m -= nrl;
   }  
     /*ps[3][2]=1;*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for(i=1; i<= nlstate; i++){    m[nrl] += NR_END;
      s1=0;    m[nrl] -= ncl;
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     ps[i][i]=1./(s1+1.);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     for(j=1; j<i; j++)    m[nrl][ncl] += NR_END;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl][ncl] -= nll;
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=ncl+1; j<=nch; j++) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      m[nrl][j]=m[nrl][j-1]+nlay;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    
   } /* end i */    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      for (j=ncl+1; j<=nch; j++) 
     for(jj=1; jj<= nlstate+ndeath; jj++){        m[i][j]=m[i][j-1]+nlay;
       ps[ii][jj]=0;    }
       ps[ii][ii]=1;    return m; 
     }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
   }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************************free ma3x ************************/
      printf("%lf ",ps[ii][jj]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    }  {
     printf("\n ");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     printf("\n ");printf("%lf ",cov[2]);*/    free((FREE_ARG)(m+nrl-NR_END));
 /*  }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  /*************** function subdirf ***********/
     return ps;  char *subdirf(char fileres[])
 }  {
     /* Caution optionfilefiname is hidden */
 /**************** Product of 2 matrices ******************/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    strcat(tmpout,fileres);
 {    return tmpout;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /*************** function subdirf2 ***********/
      before: only the contents of out is modified. The function returns  char *subdirf2(char fileres[], char *preop)
      a pointer to pointers identical to out */  {
   long i, j, k;    
   for(i=nrl; i<= nrh; i++)    /* Caution optionfilefiname is hidden */
     for(k=ncolol; k<=ncoloh; k++)    strcpy(tmpout,optionfilefiname);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    strcat(tmpout,"/");
         out[i][k] +=in[i][j]*b[j][k];    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   return out;    return tmpout;
 }  }
   
   /*************** function subdirf3 ***********/
 /************* Higher Matrix Product ***************/  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    
 {    /* Caution optionfilefiname is hidden */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    strcpy(tmpout,optionfilefiname);
      duration (i.e. until    strcat(tmpout,"/");
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    strcat(tmpout,preop);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    strcat(tmpout,preop2);
      (typically every 2 years instead of every month which is too big).    strcat(tmpout,fileres);
      Model is determined by parameters x and covariates have to be    return tmpout;
      included manually here.  }
   
      */  /***************** f1dim *************************/
   extern int ncom; 
   int i, j, d, h, k;  extern double *pcom,*xicom;
   double **out, cov[NCOVMAX];  extern double (*nrfunc)(double []); 
   double **newm;   
   double f1dim(double x) 
   /* Hstepm could be zero and should return the unit matrix */  { 
   for (i=1;i<=nlstate+ndeath;i++)    int j; 
     for (j=1;j<=nlstate+ndeath;j++){    double f;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double *xt; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);   
     }    xt=vector(1,ncom); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for(h=1; h <=nhstepm; h++){    f=(*nrfunc)(xt); 
     for(d=1; d <=hstepm; d++){    free_vector(xt,1,ncom); 
       newm=savm;    return f; 
       /* Covariates have to be included here again */  } 
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /*****************brent *************************/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       for (k=1; k<=cptcovage;k++)  { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int iter; 
       for (k=1; k<=cptcovprod;k++)    double a,b,d,etemp;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double fu,fv,fw,fx;
     double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double e=0.0; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/   
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    a=(ax < cx ? ax : cx); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    b=(ax > cx ? ax : cx); 
       savm=oldm;    x=w=v=bx; 
       oldm=newm;    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
     for(i=1; i<=nlstate+ndeath; i++)      xm=0.5*(a+b); 
       for(j=1;j<=nlstate+ndeath;j++) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         po[i][j][h]=newm[i][j];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      printf(".");fflush(stdout);
          */      fprintf(ficlog,".");fflush(ficlog);
       }  #ifdef DEBUG
   } /* end h */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   return po;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 /*************** log-likelihood *************/        *xmin=x; 
 double func( double *x)        return fx; 
 {      } 
   int i, ii, j, k, mi, d, kk;      ftemp=fu;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      if (fabs(e) > tol1) { 
   double **out;        r=(x-w)*(fx-fv); 
   double sw; /* Sum of weights */        q=(x-v)*(fx-fw); 
   double lli; /* Individual log likelihood */        p=(x-v)*q-(x-w)*r; 
   long ipmx;        q=2.0*(q-r); 
   /*extern weight */        if (q > 0.0) p = -p; 
   /* We are differentiating ll according to initial status */        q=fabs(q); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        etemp=e; 
   /*for(i=1;i<imx;i++)        e=d; 
     printf(" %d\n",s[4][i]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   cov[1]=1.;        else { 
           d=p/q; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;          u=x+d; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          if (u-a < tol2 || b-u < tol2) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            d=SIGN(tol1,xm-x); 
     for(mi=1; mi<= wav[i]-1; mi++){        } 
       for (ii=1;ii<=nlstate+ndeath;ii++)      } else { 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(d=0; d<dh[mi][i]; d++){      } 
         newm=savm;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      fu=(*f)(u); 
         for (kk=1; kk<=cptcovage;kk++) {      if (fu <= fx) { 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        if (u >= x) a=x; else b=x; 
         }        SHFT(v,w,x,u) 
                  SHFT(fv,fw,fx,fu) 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          } else { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            if (u < x) a=u; else b=u; 
         savm=oldm;            if (fu <= fw || w == x) { 
         oldm=newm;              v=w; 
                      w=u; 
                      fv=fw; 
       } /* end mult */              fw=fu; 
                  } else if (fu <= fv || v == x || v == w) { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);              v=u; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/              fv=fu; 
       ipmx +=1;            } 
       sw += weight[i];          } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    } 
     } /* end of wave */    nrerror("Too many iterations in brent"); 
   } /* end of individual */    *xmin=x; 
     return fx; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /****************** mnbrak ***********************/
   return -l;  
 }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   { 
 /*********** Maximum Likelihood Estimation ***************/    double ulim,u,r,q, dum;
     double fu; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))   
 {    *fa=(*func)(*ax); 
   int i,j, iter;    *fb=(*func)(*bx); 
   double **xi,*delti;    if (*fb > *fa) { 
   double fret;      SHFT(dum,*ax,*bx,dum) 
   xi=matrix(1,npar,1,npar);        SHFT(dum,*fb,*fa,dum) 
   for (i=1;i<=npar;i++)        } 
     for (j=1;j<=npar;j++)    *cx=(*bx)+GOLD*(*bx-*ax); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    *fc=(*func)(*cx); 
   printf("Powell\n");    while (*fb > *fc) { 
   powell(p,xi,npar,ftol,&iter,&fret,func);      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
 }      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
 /**** Computes Hessian and covariance matrix ***/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fu=(*func)(u); 
 {        if (fu < *fc) { 
   double  **a,**y,*x,pd;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double **hess;            SHFT(*fb,*fc,fu,(*func)(u)) 
   int i, j,jk;            } 
   int *indx;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   double hessii(double p[], double delta, int theta, double delti[]);        fu=(*func)(u); 
   double hessij(double p[], double delti[], int i, int j);      } else { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        u=(*cx)+GOLD*(*cx-*bx); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fu=(*func)(u); 
       } 
   hess=matrix(1,npar,1,npar);      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   printf("\nCalculation of the hessian matrix. Wait...\n");        } 
   for (i=1;i<=npar;i++){  } 
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*************** linmin ************************/
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  int ncom; 
   }  double *pcom,*xicom;
    double (*nrfunc)(double []); 
   for (i=1;i<=npar;i++) {   
     for (j=1;j<=npar;j++)  {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       if (j>i) {  { 
         printf(".%d%d",i,j);fflush(stdout);    double brent(double ax, double bx, double cx, 
         hess[i][j]=hessij(p,delti,i,j);                 double (*f)(double), double tol, double *xmin); 
         hess[j][i]=hess[i][j];        double f1dim(double x); 
         /*printf(" %lf ",hess[i][j]);*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       }                double *fc, double (*func)(double)); 
     }    int j; 
   }    double xx,xmin,bx,ax; 
   printf("\n");    double fx,fb,fa;
    
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    ncom=n; 
      pcom=vector(1,n); 
   a=matrix(1,npar,1,npar);    xicom=vector(1,n); 
   y=matrix(1,npar,1,npar);    nrfunc=func; 
   x=vector(1,npar);    for (j=1;j<=n;j++) { 
   indx=ivector(1,npar);      pcom[j]=p[j]; 
   for (i=1;i<=npar;i++)      xicom[j]=xi[j]; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    } 
   ludcmp(a,npar,indx,&pd);    ax=0.0; 
     xx=1.0; 
   for (j=1;j<=npar;j++) {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (i=1;i<=npar;i++) x[i]=0;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     x[j]=1;  #ifdef DEBUG
     lubksb(a,npar,indx,x);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (i=1;i<=npar;i++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       matcov[i][j]=x[i];  #endif
     }    for (j=1;j<=n;j++) { 
   }      xi[j] *= xmin; 
       p[j] += xi[j]; 
   printf("\n#Hessian matrix#\n");    } 
   for (i=1;i<=npar;i++) {    free_vector(xicom,1,n); 
     for (j=1;j<=npar;j++) {    free_vector(pcom,1,n); 
       printf("%.3e ",hess[i][j]);  } 
     }  
     printf("\n");  char *asc_diff_time(long time_sec, char ascdiff[])
   }  {
     long sec_left, days, hours, minutes;
   /* Recompute Inverse */    days = (time_sec) / (60*60*24);
   for (i=1;i<=npar;i++)    sec_left = (time_sec) % (60*60*24);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    hours = (sec_left) / (60*60) ;
   ludcmp(a,npar,indx,&pd);    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   /*  printf("\n#Hessian matrix recomputed#\n");    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   for (j=1;j<=npar;j++) {    return ascdiff;
     for (i=1;i<=npar;i++) x[i]=0;  }
     x[j]=1;  
     lubksb(a,npar,indx,x);  /*************** powell ************************/
     for (i=1;i<=npar;i++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       y[i][j]=x[i];              double (*func)(double [])) 
       printf("%.3e ",y[i][j]);  { 
     }    void linmin(double p[], double xi[], int n, double *fret, 
     printf("\n");                double (*func)(double [])); 
   }    int i,ibig,j; 
   */    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
   free_matrix(a,1,npar,1,npar);    double *xits;
   free_matrix(y,1,npar,1,npar);    int niterf, itmp;
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);    pt=vector(1,n); 
   free_matrix(hess,1,npar,1,npar);    ptt=vector(1,n); 
     xit=vector(1,n); 
     xits=vector(1,n); 
 }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 /*************** hessian matrix ****************/    for (*iter=1;;++(*iter)) { 
 double hessii( double x[], double delta, int theta, double delti[])      fp=(*fret); 
 {      ibig=0; 
   int i;      del=0.0; 
   int l=1, lmax=20;      last_time=curr_time;
   double k1,k2;      (void) gettimeofday(&curr_time,&tzp);
   double p2[NPARMAX+1];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double res;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   double fx;     for (i=1;i<=n;i++) {
   int k=0,kmax=10;        printf(" %d %.12f",i, p[i]);
   double l1;        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   fx=func(x);      }
   for (i=1;i<=npar;i++) p2[i]=x[i];      printf("\n");
   for(l=0 ; l <=lmax; l++){      fprintf(ficlog,"\n");
     l1=pow(10,l);      fprintf(ficrespow,"\n");fflush(ficrespow);
     delts=delt;      if(*iter <=3){
     for(k=1 ; k <kmax; k=k+1){        tm = *localtime(&curr_time.tv_sec);
       delt = delta*(l1*k);        strcpy(strcurr,asctime(&tm));
       p2[theta]=x[theta] +delt;  /*       asctime_r(&tm,strcurr); */
       k1=func(p2)-fx;        forecast_time=curr_time; 
       p2[theta]=x[theta]-delt;        itmp = strlen(strcurr);
       k2=func(p2)-fx;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       /*res= (k1-2.0*fx+k2)/delt/delt; */          strcurr[itmp-1]='\0';
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
              fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 #ifdef DEBUG        for(niterf=10;niterf<=30;niterf+=10){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 #endif          tmf = *localtime(&forecast_time.tv_sec);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  /*      asctime_r(&tmf,strfor); */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          strcpy(strfor,asctime(&tmf));
         k=kmax;          itmp = strlen(strfor);
       }          if(strfor[itmp-1]=='\n')
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          strfor[itmp-1]='\0';
         k=kmax; l=lmax*10.;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;      }
       }      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   }        fptt=(*fret); 
   delti[theta]=delts;  #ifdef DEBUG
   return res;        printf("fret=%lf \n",*fret);
          fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
 double hessij( double x[], double delti[], int thetai,int thetaj)        fprintf(ficlog,"%d",i);fflush(ficlog);
 {        linmin(p,xit,n,fret,func); 
   int i;        if (fabs(fptt-(*fret)) > del) { 
   int l=1, l1, lmax=20;          del=fabs(fptt-(*fret)); 
   double k1,k2,k3,k4,res,fx;          ibig=i; 
   double p2[NPARMAX+1];        } 
   int k;  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   fx=func(x);        fprintf(ficlog,"%d %.12e",i,(*fret));
   for (k=1; k<=2; k++) {        for (j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     p2[thetai]=x[thetai]+delti[thetai]/k;          printf(" x(%d)=%.12e",j,xit[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     k1=func(p2)-fx;        }
          for(j=1;j<=n;j++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;          printf(" p=%.12e",p[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          fprintf(ficlog," p=%.12e",p[j]);
     k2=func(p2)-fx;        }
          printf("\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;        fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #endif
     k3=func(p2)-fx;      } 
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     p2[thetai]=x[thetai]-delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        int k[2],l;
     k4=func(p2)-fx;        k[0]=1;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        k[1]=-1;
 #ifdef DEBUG        printf("Max: %.12e",(*func)(p));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        fprintf(ficlog,"Max: %.12e",(*func)(p));
 #endif        for (j=1;j<=n;j++) {
   }          printf(" %.12e",p[j]);
   return res;          fprintf(ficlog," %.12e",p[j]);
 }        }
         printf("\n");
 /************** Inverse of matrix **************/        fprintf(ficlog,"\n");
 void ludcmp(double **a, int n, int *indx, double *d)        for(l=0;l<=1;l++) {
 {          for (j=1;j<=n;j++) {
   int i,imax,j,k;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double big,dum,sum,temp;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double *vv;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
   vv=vector(1,n);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   *d=1.0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=n;i++) {        }
     big=0.0;  #endif
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        free_vector(xit,1,n); 
     vv[i]=1.0/big;        free_vector(xits,1,n); 
   }        free_vector(ptt,1,n); 
   for (j=1;j<=n;j++) {        free_vector(pt,1,n); 
     for (i=1;i<j;i++) {        return; 
       sum=a[i][j];      } 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       a[i][j]=sum;      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
     big=0.0;        xit[j]=p[j]-pt[j]; 
     for (i=j;i<=n;i++) {        pt[j]=p[j]; 
       sum=a[i][j];      } 
       for (k=1;k<j;k++)      fptt=(*func)(ptt); 
         sum -= a[i][k]*a[k][j];      if (fptt < fp) { 
       a[i][j]=sum;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        if (t < 0.0) { 
         big=dum;          linmin(p,xit,n,fret,func); 
         imax=i;          for (j=1;j<=n;j++) { 
       }            xi[j][ibig]=xi[j][n]; 
     }            xi[j][n]=xit[j]; 
     if (j != imax) {          }
       for (k=1;k<=n;k++) {  #ifdef DEBUG
         dum=a[imax][k];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         a[imax][k]=a[j][k];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         a[j][k]=dum;          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
       *d = -(*d);            fprintf(ficlog," %.12e",xit[j]);
       vv[imax]=vv[j];          }
     }          printf("\n");
     indx[j]=imax;          fprintf(ficlog,"\n");
     if (a[j][j] == 0.0) a[j][j]=TINY;  #endif
     if (j != n) {        }
       dum=1.0/(a[j][j]);      } 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    } 
     }  } 
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /**** Prevalence limit (stable or period prevalence)  ****************/
 ;  
 }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
 void lubksb(double **a, int n, int *indx, double b[])    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 {       matrix by transitions matrix until convergence is reached */
   int i,ii=0,ip,j;  
   double sum;    int i, ii,j,k;
      double min, max, maxmin, maxmax,sumnew=0.;
   for (i=1;i<=n;i++) {    double **matprod2();
     ip=indx[i];    double **out, cov[NCOVMAX], **pmij();
     sum=b[ip];    double **newm;
     b[ip]=b[i];    double agefin, delaymax=50 ; /* Max number of years to converge */
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    for (ii=1;ii<=nlstate+ndeath;ii++)
     else if (sum) ii=i;      for (j=1;j<=nlstate+ndeath;j++){
     b[i]=sum;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }      }
   for (i=n;i>=1;i--) {  
     sum=b[i];     cov[1]=1.;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];   
     b[i]=sum/a[i][i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 }      newm=savm;
       /* Covariates have to be included here again */
 /************ Frequencies ********************/       cov[2]=agefin;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    
 {  /* Some frequencies */        for (k=1; k<=cptcovn;k++) {
            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   double ***freq; /* Frequencies */        }
   double *pp;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double pos, k2, dateintsum=0,k2cpt=0;        for (k=1; k<=cptcovprod;k++)
   FILE *ficresp;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   char fileresp[FILENAMELENGTH];  
          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   pp=vector(1,nlstate);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   strcpy(fileresp,"p");      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {      savm=oldm;
     printf("Problem with prevalence resultfile: %s\n", fileresp);      oldm=newm;
     exit(0);      maxmax=0.;
   }      for(j=1;j<=nlstate;j++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        min=1.;
   j1=0;        max=0.;
          for(i=1; i<=nlstate; i++) {
   j=cptcoveff;          sumnew=0;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
   for(k1=1; k1<=j;k1++){          max=FMAX(max,prlim[i][j]);
     for(i1=1; i1<=ncodemax[k1];i1++){          min=FMIN(min,prlim[i][j]);
       j1++;        }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        maxmin=max-min;
         scanf("%d", i);*/        maxmax=FMAX(maxmax,maxmin);
       for (i=-1; i<=nlstate+ndeath; i++)        }
         for (jk=-1; jk<=nlstate+ndeath; jk++)        if(maxmax < ftolpl){
           for(m=agemin; m <= agemax+3; m++)        return prlim;
             freq[i][jk][m]=0;      }
          }
       dateintsum=0;  }
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  /*************** transition probabilities ***************/ 
         bool=1;  
         if  (cptcovn>0) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           for (z1=1; z1<=cptcoveff; z1++)  {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double s1, s2;
               bool=0;    /*double t34;*/
         }    int i,j,j1, nc, ii, jj;
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){      for(i=1; i<= nlstate; i++){
             k2=anint[m][i]+(mint[m][i]/12.);        for(j=1; j<i;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;            /*s2 += param[i][j][nc]*cov[nc];*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
               if (m<lastpass) {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          ps[i][j]=s2;
               }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
                      }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        for(j=i+1; j<=nlstate+ndeath;j++){
                 dateintsum=dateintsum+k2;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                 k2cpt++;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
               }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
             }          }
           }          ps[i][j]=s2;
         }        }
       }      }
              /*ps[3][2]=1;*/
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      
       for(i=1; i<= nlstate; i++){
       if  (cptcovn>0) {        s1=0;
         fprintf(ficresp, "\n#********** Variable ");        for(j=1; j<i; j++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          s1+=exp(ps[i][j]);
         fprintf(ficresp, "**********\n#");        for(j=i+1; j<=nlstate+ndeath; j++)
       }          s1+=exp(ps[i][j]);
       for(i=1; i<=nlstate;i++)        ps[i][i]=1./(s1+1.);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for(j=1; j<i; j++)
       fprintf(ficresp, "\n");          ps[i][j]= exp(ps[i][j])*ps[i][i];
              for(j=i+1; j<=nlstate+ndeath; j++)
       for(i=(int)agemin; i <= (int)agemax+3; i++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
         if(i==(int)agemax+3)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           printf("Total");      } /* end i */
         else      
           printf("Age %d", i);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jk=1; jk <=nlstate ; jk++){        for(jj=1; jj<= nlstate+ndeath; jj++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ps[ii][jj]=0;
             pp[jk] += freq[jk][m][i];          ps[ii][ii]=1;
         }        }
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pos=0; m <=0 ; m++)      
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           else  /*         printf("ddd %lf ",ps[ii][jj]); */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*       } */
         }  /*       printf("\n "); */
   /*        } */
         for(jk=1; jk <=nlstate ; jk++){  /*        printf("\n ");printf("%lf ",cov[2]); */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)         /*
             pp[jk] += freq[jk][m][i];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         }        goto end;*/
       return ps;
         for(jk=1,pos=0; jk <=nlstate ; jk++)  }
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){  /**************** Product of 2 matrices ******************/
           if(pos>=1.e-5)  
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           else  {
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           if( i <= (int) agemax){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
             if(pos>=1.e-5){    /* in, b, out are matrice of pointers which should have been initialized 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);       before: only the contents of out is modified. The function returns
               probs[i][jk][j1]= pp[jk]/pos;       a pointer to pointers identical to out */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    long i, j, k;
             }    for(i=nrl; i<= nrh; i++)
             else      for(k=ncolol; k<=ncoloh; k++)
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           }          out[i][k] +=in[i][j]*b[j][k];
         }  
            return out;
         for(jk=-1; jk <=nlstate+ndeath; jk++)  }
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
         if(i <= (int) agemax)  /************* Higher Matrix Product ***************/
           fprintf(ficresp,"\n");  
         printf("\n");  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       }  {
     }    /* Computes the transition matrix starting at age 'age' over 
   }       'nhstepm*hstepm*stepm' months (i.e. until
   dateintmean=dateintsum/k2cpt;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
   fclose(ficresp);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       (typically every 2 years instead of every month which is too big 
   free_vector(pp,1,nlstate);       for the memory).
         Model is determined by parameters x and covariates have to be 
   /* End of Freq */       included manually here. 
 }  
        */
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    int i, j, d, h, k;
 {  /* Some frequencies */    double **out, cov[NCOVMAX];
      double **newm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */    /* Hstepm could be zero and should return the unit matrix */
   double *pp;    for (i=1;i<=nlstate+ndeath;i++)
   double pos, k2;      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for(h=1; h <=nhstepm; h++){
   j1=0;      for(d=1; d <=hstepm; d++){
          newm=savm;
   j=cptcoveff;        /* Covariates have to be included here again */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        cov[1]=1.;
          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovage;k++)
       j1++;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
       for (i=-1; i<=nlstate+ndeath; i++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
              /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for (i=1; i<=imx; i++) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         bool=1;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         if  (cptcovn>0) {        savm=oldm;
           for (z1=1; z1<=cptcoveff; z1++)        oldm=newm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      }
               bool=0;      for(i=1; i<=nlstate+ndeath; i++)
         }        for(j=1;j<=nlstate+ndeath;j++) {
         if (bool==1) {          po[i][j][h]=newm[i][j];
           for(m=firstpass; m<=lastpass; m++){          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
             k2=anint[m][i]+(mint[m][i]/12.);        }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      /*printf("h=%d ",h);*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;    } /* end h */
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /*     printf("\n H=%d \n",h); */
               if (m<lastpass) {    return po;
                 if (calagedate>0)  }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
                 else  
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /*************** log-likelihood *************/
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  double func( double *x)
               }  {
             }    int i, ii, j, k, mi, d, kk;
           }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
       }    double sw; /* Sum of weights */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    double lli; /* Individual log likelihood */
         for(jk=1; jk <=nlstate ; jk++){    int s1, s2;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double bbh, survp;
             pp[jk] += freq[jk][m][i];    long ipmx;
         }    /*extern weight */
         for(jk=1; jk <=nlstate ; jk++){    /* We are differentiating ll according to initial status */
           for(m=-1, pos=0; m <=0 ; m++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             pos += freq[jk][m][i];    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
            */
         for(jk=1; jk <=nlstate ; jk++){    cov[1]=1.;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
            if(mle==1){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){            for(mi=1; mi<= wav[i]-1; mi++){
           if( i <= (int) agemax){          for (ii=1;ii<=nlstate+ndeath;ii++)
             if(pos>=1.e-5){            for (j=1;j<=nlstate+ndeath;j++){
               probs[i][jk][j1]= pp[jk]/pos;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(pp,1,nlstate);            savm=oldm;
              oldm=newm;
 }  /* End of Freq */          } /* end mult */
         
 /************* Waves Concatenation ***************/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {           * (in months) between two waves is not a multiple of stepm, we rounded to 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.           * the nearest (and in case of equal distance, to the lowest) interval but now
      Death is a valid wave (if date is known).           * we keep into memory the bias bh[mi][i] and also the previous matrix product
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]           * probability in order to take into account the bias as a fraction of the way
      and mw[mi+1][i]. dh depends on stepm.           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
      */           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
   int i, mi, m;           * For stepm > 1 the results are less biased than in previous versions. 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           */
      double sum=0., jmean=0.;*/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   int j, k=0,jk, ju, jl;          bbh=(double)bh[mi][i]/(double)stepm; 
   double sum=0.;          /* bias bh is positive if real duration
   jmin=1e+5;           * is higher than the multiple of stepm and negative otherwise.
   jmax=-1;           */
   jmean=0.;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for(i=1; i<=imx; i++){          if( s2 > nlstate){ 
     mi=0;            /* i.e. if s2 is a death state and if the date of death is known 
     m=firstpass;               then the contribution to the likelihood is the probability to 
     while(s[m][i] <= nlstate){               die between last step unit time and current  step unit time, 
       if(s[m][i]>=1)               which is also equal to probability to die before dh 
         mw[++mi][i]=m;               minus probability to die before dh-stepm . 
       if(m >=lastpass)               In version up to 0.92 likelihood was computed
         break;          as if date of death was unknown. Death was treated as any other
       else          health state: the date of the interview describes the actual state
         m++;          and not the date of a change in health state. The former idea was
     }/* end while */          to consider that at each interview the state was recorded
     if (s[m][i] > nlstate){          (healthy, disable or death) and IMaCh was corrected; but when we
       mi++;     /* Death is another wave */          introduced the exact date of death then we should have modified
       /* if(mi==0)  never been interviewed correctly before death */          the contribution of an exact death to the likelihood. This new
          /* Only death is a correct wave */          contribution is smaller and very dependent of the step unit
       mw[mi][i]=m;          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
     wav[i]=mi;          probability to die within a month. Thanks to Chris
     if(mi==0)          Jackson for correcting this bug.  Former versions increased
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
           lower mortality.
   for(i=1; i<=imx; i++){            */
     for(mi=1; mi<wav[i];mi++){            lli=log(out[s1][s2] - savm[s1][s2]);
       if (stepm <=0)  
         dh[mi][i]=1;  
       else{          } else if  (s2==-2) {
         if (s[mw[mi+1][i]][i] > nlstate) {            for (j=1,survp=0. ; j<=nlstate; j++) 
           if (agedc[i] < 2*AGESUP) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            /*survp += out[s1][j]; */
           if(j==0) j=1;  /* Survives at least one month after exam */            lli= log(survp);
           k=k+1;          }
           if (j >= jmax) jmax=j;          
           if (j <= jmin) jmin=j;          else if  (s2==-4) { 
           sum=sum+j;            for (j=3,survp=0. ; j<=nlstate; j++)  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           }            lli= log(survp); 
         }          } 
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          else if  (s2==-5) { 
           k=k+1;            for (j=1,survp=0. ; j<=2; j++)  
           if (j >= jmax) jmax=j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           else if (j <= jmin)jmin=j;            lli= log(survp); 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          } 
           sum=sum+j;          
         }          else{
         jk= j/stepm;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         jl= j -jk*stepm;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         ju= j -(jk+1)*stepm;          } 
         if(jl <= -ju)          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           dh[mi][i]=jk;          /*if(lli ==000.0)*/
         else          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           dh[mi][i]=jk+1;          ipmx +=1;
         if(dh[mi][i]==0)          sw += weight[i];
           dh[mi][i]=1; /* At least one step */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
   }    }  else if(mle==2){
   jmean=sum/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  }        for(mi=1; mi<= wav[i]-1; mi++){
 /*********** Tricode ****************************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void tricode(int *Tvar, int **nbcode, int imx)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int Ndum[20],ij=1, k, j, i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int cptcode=0;            }
   cptcoveff=0;          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
   for (k=0; k<19; k++) Ndum[k]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (k=1; k<=7; k++) ncodemax[k]=0;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            }
     for (i=1; i<=imx; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       ij=(int)(covar[Tvar[j]][i]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       Ndum[ij]++;            savm=oldm;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            oldm=newm;
       if (ij > cptcode) cptcode=ij;          } /* end mult */
     }        
           s1=s[mw[mi][i]][i];
     for (i=0; i<=cptcode; i++) {          s2=s[mw[mi+1][i]][i];
       if(Ndum[i]!=0) ncodemax[j]++;          bbh=(double)bh[mi][i]/(double)stepm; 
     }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     ij=1;          ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1; i<=ncodemax[j]; i++) {        } /* end of wave */
       for (k=0; k<=19; k++) {      } /* end of individual */
         if (Ndum[k] != 0) {    }  else if(mle==3){  /* exponential inter-extrapolation */
           nbcode[Tvar[j]][ij]=k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                  for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           ij++;        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         if (ij > ncodemax[j]) break;            for (j=1;j<=nlstate+ndeath;j++){
       }                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              }
           for(d=0; d<dh[mi][i]; d++){
  for (k=0; k<19; k++) Ndum[k]=0;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  for (i=1; i<=ncovmodel-2; i++) {            for (kk=1; kk<=cptcovage;kk++) {
       ij=Tvar[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       Ndum[ij]++;            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  ij=1;            savm=oldm;
  for (i=1; i<=10; i++) {            oldm=newm;
    if((Ndum[i]!=0) && (i<=ncovcol)){          } /* end mult */
      Tvaraff[ij]=i;        
      ij++;          s1=s[mw[mi][i]][i];
    }          s2=s[mw[mi+1][i]][i];
  }          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     cptcoveff=ij-1;          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Health Expectancies ****************/        } /* end of wave */
       } /* end of individual */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Health expectancies */        for(mi=1; mi<= wav[i]-1; mi++){
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double age, agelim, hf;            for (j=1;j<=nlstate+ndeath;j++){
   double ***p3mat,***varhe;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **dnewm,**doldm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *xp;            }
   double **gp, **gm;          for(d=0; d<dh[mi][i]; d++){
   double ***gradg, ***trgradg;            newm=savm;
   int theta;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   xp=vector(1,npar);            }
   dnewm=matrix(1,nlstate*2,1,npar);          
   doldm=matrix(1,nlstate*2,1,nlstate*2);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficreseij,"# Health expectancies\n");            savm=oldm;
   fprintf(ficreseij,"# Age");            oldm=newm;
   for(i=1; i<=nlstate;i++)          } /* end mult */
     for(j=1; j<=nlstate;j++)        
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"\n");          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
   if(estepm < stepm){            lli=log(out[s1][s2] - savm[s1][s2]);
     printf ("Problem %d lower than %d\n",estepm, stepm);          }else{
   }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   else  hstepm=estepm;            }
   /* We compute the life expectancy from trapezoids spaced every estepm months          ipmx +=1;
    * This is mainly to measure the difference between two models: for example          sw += weight[i];
    * if stepm=24 months pijx are given only every 2 years and by summing them          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * we are calculating an estimate of the Life Expectancy assuming a linear  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    * progression inbetween and thus overestimating or underestimating according        } /* end of wave */
    * to the curvature of the survival function. If, for the same date, we      } /* end of individual */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
    * to compare the new estimate of Life expectancy with the same linear      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * hypothesis. A more precise result, taking into account a more precise        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    * curvature will be obtained if estepm is as small as stepm. */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   /* For example we decided to compute the life expectancy with the smallest unit */            for (j=1;j<=nlstate+ndeath;j++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      nhstepm is the number of hstepm from age to agelim              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      nstepm is the number of stepm from age to agelin.            }
      Look at hpijx to understand the reason of that which relies in memory size          for(d=0; d<dh[mi][i]; d++){
      and note for a fixed period like estepm months */            newm=savm;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      survival function given by stepm (the optimization length). Unfortunately it            for (kk=1; kk<=cptcovage;kk++) {
      means that if the survival funtion is printed only each two years of age and if              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            }
      results. So we changed our mind and took the option of the best precision.          
   */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   agelim=AGESUP;            oldm=newm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          } /* end mult */
     /* nhstepm age range expressed in number of stepm */        
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          s1=s[mw[mi][i]][i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          s2=s[mw[mi+1][i]][i];
     /* if (stepm >= YEARM) hstepm=1;*/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          ipmx +=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          sw += weight[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gp=matrix(0,nhstepm,1,nlstate*2);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     gm=matrix(0,nhstepm,1,nlstate*2);        } /* end of wave */
       } /* end of individual */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    } /* End of if */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  }
   
     /* Computing Variances of health expectancies */  /*************** log-likelihood *************/
   double funcone( double *x)
      for(theta=1; theta <=npar; theta++){  {
       for(i=1; i<=npar; i++){    /* Same as likeli but slower because of a lot of printf and if */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **out;
      double lli; /* Individual log likelihood */
       cptj=0;    double llt;
       for(j=1; j<= nlstate; j++){    int s1, s2;
         for(i=1; i<=nlstate; i++){    double bbh, survp;
           cptj=cptj+1;    /*extern weight */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    /* We are differentiating ll according to initial status */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           }    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
       }    */
          cov[1]=1.;
        
       for(i=1; i<=npar; i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       cptj=0;      for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){        for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=1;i<=nlstate;i++){          for (j=1;j<=nlstate+ndeath;j++){
           cptj=cptj+1;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          }
           }        for(d=0; d<dh[mi][i]; d++){
         }          newm=savm;
       }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
       for(j=1; j<= nlstate*2; j++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm-1; h++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          savm=oldm;
         }          oldm=newm;
         } /* end mult */
      }        
            s1=s[mw[mi][i]][i];
 /* End theta */        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
      for(h=0; h<=nhstepm-1; h++)         */
       for(j=1; j<=nlstate*2;j++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         for(theta=1; theta <=npar; theta++)          lli=log(out[s1][s2] - savm[s1][s2]);
         trgradg[h][j][theta]=gradg[h][theta][j];        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      for(i=1;i<=nlstate*2;i++)          lli= log(survp);
       for(j=1;j<=nlstate*2;j++)        }else if (mle==1){
         varhe[i][j][(int)age] =0.;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
      printf("%d||",(int)age);fflush(stdout);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(h=0;h<=nhstepm-1;h++){        } else if(mle==3){  /* exponential inter-extrapolation */
       for(k=0;k<=nhstepm-1;k++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          lli=log(out[s1][s2]); /* Original formula */
         for(i=1;i<=nlstate*2;i++)        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           for(j=1;j<=nlstate*2;j++)          lli=log(out[s1][s2]); /* Original formula */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        } /* End of if */
       }        ipmx +=1;
     }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     /* Computing expectancies */        if(globpr){
     for(i=1; i<=nlstate;i++)          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(j=1; j<=nlstate;j++)   %11.6f %11.6f %11.6f ", \
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                    for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         }          }
           fprintf(ficresilk," %10.6f\n", -llt);
     fprintf(ficreseij,"%3.0f",age );        }
     cptj=0;      } /* end of wave */
     for(i=1; i<=nlstate;i++)    } /* end of individual */
       for(j=1; j<=nlstate;j++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         cptj++;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    if(globpr==0){ /* First time we count the contributions and weights */
     fprintf(ficreseij,"\n");      gipmx=ipmx;
          gsw=sw;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    }
     free_matrix(gp,0,nhstepm,1,nlstate*2);    return -l;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  /*************** function likelione ***********/
   free_vector(xp,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_matrix(dnewm,1,nlstate*2,1,npar);  {
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    /* This routine should help understanding what is done with 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);       the selection of individuals/waves and
 }       to check the exact contribution to the likelihood.
        Plotting could be done.
 /************ Variance ******************/     */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    int k;
 {  
   /* Variance of health expectancies */    if(*globpri !=0){ /* Just counts and sums, no printings */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      strcpy(fileresilk,"ilk"); 
   double **newm;      strcat(fileresilk,fileres);
   double **dnewm,**doldm;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int i, j, nhstepm, hstepm, h, nstepm ;        printf("Problem with resultfile: %s\n", fileresilk);
   int k, cptcode;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double *xp;      }
   double **gp, **gm;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double ***gradg, ***trgradg;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double ***p3mat;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double age,agelim, hf;      for(k=1; k<=nlstate; k++) 
   int theta;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
    fprintf(ficresvij,"# Covariances of life expectancies\n");    }
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    *fretone=(*funcone)(p);
     for(j=1; j<=nlstate;j++)    if(*globpri !=0){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      fclose(ficresilk);
   fprintf(ficresvij,"\n");      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
   xp=vector(1,npar);    } 
   dnewm=matrix(1,nlstate,1,npar);    return;
   doldm=matrix(1,nlstate,1,nlstate);  }
    
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  /*********** Maximum Likelihood Estimation ***************/
   }  
   else  hstepm=estepm;    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   /* For example we decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    int i,j, iter;
      nhstepm is the number of hstepm from age to agelim    double **xi;
      nstepm is the number of stepm from age to agelin.    double fret;
      Look at hpijx to understand the reason of that which relies in memory size    double fretone; /* Only one call to likelihood */
      and note for a fixed period like k years */    /*  char filerespow[FILENAMELENGTH];*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    xi=matrix(1,npar,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it    for (i=1;i<=npar;i++)
      means that if the survival funtion is printed only each two years of age and if      for (j=1;j<=npar;j++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        xi[i][j]=(i==j ? 1.0 : 0.0);
      results. So we changed our mind and took the option of the best precision.    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   */    strcpy(filerespow,"pow"); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    strcat(filerespow,fileres);
   agelim = AGESUP;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("Problem with resultfile: %s\n", filerespow);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for (i=1;i<=nlstate;i++)
     gp=matrix(0,nhstepm,1,nlstate);      for(j=1;j<=nlstate+ndeath;j++)
     gm=matrix(0,nhstepm,1,nlstate);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    powell(p,xi,npar,ftol,&iter,&fret,func);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    free_matrix(xi,1,npar,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fclose(ficrespow);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       if (popbased==1) {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  }
       }  
    /**** Computes Hessian and covariance matrix ***/
       for(j=1; j<= nlstate; j++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         for(h=0; h<=nhstepm; h++){  {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double  **a,**y,*x,pd;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double **hess;
         }    int i, j,jk;
       }    int *indx;
      
       for(i=1; i<=npar; i++) /* Computes gradient */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      void lubksb(double **a, int npar, int *indx, double b[]) ;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    void ludcmp(double **a, int npar, int *indx, double *d) ;
      double gompertz(double p[]);
       if (popbased==1) {    hess=matrix(1,npar,1,npar);
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    printf("\nCalculation of the hessian matrix. Wait...\n");
       }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
       for(j=1; j<= nlstate; j++){      printf("%d",i);fflush(stdout);
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"%d",i);fflush(ficlog);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)     
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         }      
       }      /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for(j=1; j<= nlstate; j++)    }
         for(h=0; h<=nhstepm; h++){    
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (i=1;i<=npar;i++) {
         }      for (j=1;j<=npar;j++)  {
     } /* End theta */        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
     for(h=0; h<=nhstepm; h++)          
       for(j=1; j<=nlstate;j++)          hess[j][i]=hess[i][j];    
         for(theta=1; theta <=npar; theta++)          /*printf(" %lf ",hess[i][j]);*/
           trgradg[h][j][theta]=gradg[h][theta][j];        }
       }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    }
     for(i=1;i<=nlstate;i++)    printf("\n");
       for(j=1;j<=nlstate;j++)    fprintf(ficlog,"\n");
         vareij[i][j][(int)age] =0.;  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(h=0;h<=nhstepm;h++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(k=0;k<=nhstepm;k++){    
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    a=matrix(1,npar,1,npar);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    y=matrix(1,npar,1,npar);
         for(i=1;i<=nlstate;i++)    x=vector(1,npar);
           for(j=1;j<=nlstate;j++)    indx=ivector(1,npar);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     }    ludcmp(a,npar,indx,&pd);
   
     fprintf(ficresvij,"%.0f ",age );    for (j=1;j<=npar;j++) {
     for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<=nlstate;j++){      x[j]=1;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
     fprintf(ficresvij,"\n");        matcov[i][j]=x[i];
     free_matrix(gp,0,nhstepm,1,nlstate);      }
     free_matrix(gm,0,nhstepm,1,nlstate);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    printf("\n#Hessian matrix#\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\n#Hessian matrix#\n");
   } /* End age */    for (i=1;i<=npar;i++) { 
        for (j=1;j<=npar;j++) { 
   free_vector(xp,1,npar);        printf("%.3e ",hess[i][j]);
   free_matrix(doldm,1,nlstate,1,npar);        fprintf(ficlog,"%.3e ",hess[i][j]);
   free_matrix(dnewm,1,nlstate,1,nlstate);      }
       printf("\n");
 }      fprintf(ficlog,"\n");
     }
 /************ Variance of prevlim ******************/  
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /* Recompute Inverse */
 {    for (i=1;i<=npar;i++)
   /* Variance of prevalence limit */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    ludcmp(a,npar,indx,&pd);
   double **newm;  
   double **dnewm,**doldm;    /*  printf("\n#Hessian matrix recomputed#\n");
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    for (j=1;j<=npar;j++) {
   double *xp;      for (i=1;i<=npar;i++) x[i]=0;
   double *gp, *gm;      x[j]=1;
   double **gradg, **trgradg;      lubksb(a,npar,indx,x);
   double age,agelim;      for (i=1;i<=npar;i++){ 
   int theta;        y[i][j]=x[i];
            printf("%.3e ",y[i][j]);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        fprintf(ficlog,"%.3e ",y[i][j]);
   fprintf(ficresvpl,"# Age");      }
   for(i=1; i<=nlstate;i++)      printf("\n");
       fprintf(ficresvpl," %1d-%1d",i,i);      fprintf(ficlog,"\n");
   fprintf(ficresvpl,"\n");    }
     */
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    free_matrix(a,1,npar,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    free_matrix(y,1,npar,1,npar);
      free_vector(x,1,npar);
   hstepm=1*YEARM; /* Every year of age */    free_ivector(indx,1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    free_matrix(hess,1,npar,1,npar);
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /*************** hessian matrix ****************/
     gradg=matrix(1,npar,1,nlstate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     gp=vector(1,nlstate);  {
     gm=vector(1,nlstate);    int i;
     int l=1, lmax=20;
     for(theta=1; theta <=npar; theta++){    double k1,k2;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double p2[NPARMAX+1];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double res;
       }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double fx;
       for(i=1;i<=nlstate;i++)    int k=0,kmax=10;
         gp[i] = prlim[i][i];    double l1;
      
       for(i=1; i<=npar; i++) /* Computes gradient */    fx=func(x);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) p2[i]=x[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(l=0 ; l <=lmax; l++){
       for(i=1;i<=nlstate;i++)      l1=pow(10,l);
         gm[i] = prlim[i][i];      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
       for(i=1;i<=nlstate;i++)        delt = delta*(l1*k);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        p2[theta]=x[theta] +delt;
     } /* End theta */        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
     trgradg =matrix(1,nlstate,1,npar);        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
     for(j=1; j<=nlstate;j++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       for(theta=1; theta <=npar; theta++)        
         trgradg[j][theta]=gradg[theta][j];  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for(i=1;i<=nlstate;i++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       varpl[i][(int)age] =0.;  #endif
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for(i=1;i<=nlstate;i++)          k=kmax;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     fprintf(ficresvpl,"%.0f ",age );          k=kmax; l=lmax*10.;
     for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     fprintf(ficresvpl,"\n");          delts=delt;
     free_vector(gp,1,nlstate);        }
     free_vector(gm,1,nlstate);      }
     free_matrix(gradg,1,npar,1,nlstate);    }
     free_matrix(trgradg,1,nlstate,1,npar);    delti[theta]=delts;
   } /* End age */    return res; 
     
   free_vector(xp,1,npar);  }
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
 }    int i;
     int l=1, l1, lmax=20;
 /************ Variance of one-step probabilities  ******************/    double k1,k2,k3,k4,res,fx;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    double p2[NPARMAX+1];
 {    int k;
   int i, j, i1, k1, j1, z1;  
   int k=0, cptcode;    fx=func(x);
   double **dnewm,**doldm;    for (k=1; k<=2; k++) {
   double *xp;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double *gp, *gm;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double **gradg, **trgradg;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double age,agelim, cov[NCOVMAX];      k1=func(p2)-fx;
   int theta;    
   char fileresprob[FILENAMELENGTH];      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcpy(fileresprob,"prob");      k2=func(p2)-fx;
   strcat(fileresprob,fileres);    
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      p2[thetai]=x[thetai]-delti[thetai]/k;
     printf("Problem with resultfile: %s\n", fileresprob);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k3=func(p2)-fx;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    
        p2[thetai]=x[thetai]-delti[thetai]/k;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresprob,"# Age");      k4=func(p2)-fx;
   for(i=1; i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(j=1; j<=(nlstate+ndeath);j++)  #ifdef DEBUG
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   fprintf(ficresprob,"\n");    }
     return res;
   }
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /************** Inverse of matrix **************/
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  void ludcmp(double **a, int n, int *indx, double *d) 
    { 
   cov[1]=1;    int i,imax,j,k; 
   j=cptcoveff;    double big,dum,sum,temp; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double *vv; 
   j1=0;   
   for(k1=1; k1<=1;k1++){    vv=vector(1,n); 
     for(i1=1; i1<=ncodemax[k1];i1++){    *d=1.0; 
     j1++;    for (i=1;i<=n;i++) { 
       big=0.0; 
     if  (cptcovn>0) {      for (j=1;j<=n;j++) 
       fprintf(ficresprob, "\n#********** Variable ");        if ((temp=fabs(a[i][j])) > big) big=temp; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       fprintf(ficresprob, "**********\n#");      vv[i]=1.0/big; 
     }    } 
        for (j=1;j<=n;j++) { 
       for (age=bage; age<=fage; age ++){      for (i=1;i<j;i++) { 
         cov[2]=age;        sum=a[i][j]; 
         for (k=1; k<=cptcovn;k++) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        a[i][j]=sum; 
                } 
         }      big=0.0; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for (i=j;i<=n;i++) { 
         for (k=1; k<=cptcovprod;k++)        sum=a[i][j]; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (k=1;k<j;k++) 
                  sum -= a[i][k]*a[k][j]; 
         gradg=matrix(1,npar,1,9);        a[i][j]=sum; 
         trgradg=matrix(1,9,1,npar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          big=dum; 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          imax=i; 
            } 
         for(theta=1; theta <=npar; theta++){      } 
           for(i=1; i<=npar; i++)      if (j != imax) { 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (k=1;k<=n;k++) { 
                    dum=a[imax][k]; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          a[imax][k]=a[j][k]; 
                    a[j][k]=dum; 
           k=0;        } 
           for(i=1; i<= (nlstate+ndeath); i++){        *d = -(*d); 
             for(j=1; j<=(nlstate+ndeath);j++){        vv[imax]=vv[j]; 
               k=k+1;      } 
               gp[k]=pmmij[i][j];      indx[j]=imax; 
             }      if (a[j][j] == 0.0) a[j][j]=TINY; 
           }      if (j != n) { 
                  dum=1.0/(a[j][j]); 
           for(i=1; i<=npar; i++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      } 
        } 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_vector(vv,1,n);  /* Doesn't work */
           k=0;  ;
           for(i=1; i<=(nlstate+ndeath); i++){  } 
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;  void lubksb(double **a, int n, int *indx, double b[]) 
               gm[k]=pmmij[i][j];  { 
             }    int i,ii=0,ip,j; 
           }    double sum; 
         
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    for (i=1;i<=n;i++) { 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        ip=indx[i]; 
         }      sum=b[ip]; 
       b[ip]=b[i]; 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      if (ii) 
           for(theta=1; theta <=npar; theta++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
             trgradg[j][theta]=gradg[theta][j];      else if (sum) ii=i; 
              b[i]=sum; 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    } 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    for (i=n;i>=1;i--) { 
              sum=b[i]; 
         pmij(pmmij,cov,ncovmodel,x,nlstate);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
              b[i]=sum/a[i][i]; 
         k=0;    } 
         for(i=1; i<=(nlstate+ndeath); i++){  } 
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;  void pstamp(FILE *fichier)
             gm[k]=pmmij[i][j];  {
           }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         }  }
        
      /*printf("\n%d ",(int)age);  /************ Frequencies ********************/
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  {  /* Some frequencies */
      }*/    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         fprintf(ficresprob,"\n%d ",(int)age);    int first;
     double ***freq; /* Frequencies */
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    double *pp, **prop;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      char fileresp[FILENAMELENGTH];
       }    
     }    pp=vector(1,nlstate);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    prop=matrix(1,nlstate,iagemin,iagemax+3);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    strcpy(fileresp,"p");
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    strcat(fileresp,fileres);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   }      printf("Problem with prevalence resultfile: %s\n", fileresp);
   free_vector(xp,1,npar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   fclose(ficresprob);      exit(0);
      }
 }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
 /******************* Printing html file ***********/    
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    j=cptcoveff;
  int lastpass, int stepm, int weightopt, char model[],\    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    first=1;
  char version[], int popforecast, int estepm ){  
   int jj1, k1, i1, cpt;    for(k1=1; k1<=j;k1++){
   FILE *fichtm;      for(i1=1; i1<=ncodemax[k1];i1++){
   /*char optionfilehtm[FILENAMELENGTH];*/        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   strcpy(optionfilehtm,optionfile);          scanf("%d", i);*/
   strcat(optionfilehtm,".htm");        for (i=-5; i<=nlstate+ndeath; i++)  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     printf("Problem with %s \n",optionfilehtm), exit(0);            for(m=iagemin; m <= iagemax+3; m++)
   }              freq[i][jk][m]=0;
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      for (i=1; i<=nlstate; i++)  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        for(m=iagemin; m <= iagemax+3; m++)
 \n          prop[i][m]=0;
 Total number of observations=%d <br>\n        
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        dateintsum=0;
 <hr  size=\"2\" color=\"#EC5E5E\">        k2cpt=0;
  <ul><li>Outputs files<br>\n        for (i=1; i<=imx; i++) {
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          bool=1;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n          if  (cptcovn>0) {
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            for (z1=1; z1<=cptcoveff; z1++) 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n                bool=0;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          }
           if (bool==1){
  fprintf(fichtm,"\n            for(m=firstpass; m<=lastpass; m++){
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n              k2=anint[m][i]+(mint[m][i]/12.);
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
  if(popforecast==1) fprintf(fichtm,"\n                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                }
         <br>",fileres,fileres,fileres,fileres);                
  else                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                  dateintsum=dateintsum+k2;
 fprintf(fichtm," <li>Graphs</li><p>");                  k2cpt++;
                 }
  m=cptcoveff;                /*}*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            }
           }
  jj1=0;        }
  for(k1=1; k1<=m;k1++){         
    for(i1=1; i1<=ncodemax[k1];i1++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
        jj1++;        pstamp(ficresp);
        if (cptcovn > 0) {        if  (cptcovn>0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          fprintf(ficresp, "\n#********** Variable "); 
          for (cpt=1; cpt<=cptcoveff;cpt++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          fprintf(ficresp, "**********\n#");
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        }
        }        for(i=1; i<=nlstate;i++) 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.png<br>          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 <img src=\"pe%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            fprintf(ficresp, "\n");
        for(cpt=1; cpt<nlstate;cpt++){        
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.png<br>        for(i=iagemin; i <= iagemax+3; i++){
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if(i==iagemax+3){
        }            fprintf(ficlog,"Total");
     for(cpt=1; cpt<=nlstate;cpt++) {          }else{
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            if(first==1){
 interval) in state (%d): v%s%d%d.png <br>              first=0;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                printf("See log file for details...\n");
      }            }
      for(cpt=1; cpt<=nlstate;cpt++) {            fprintf(ficlog,"Age %d", i);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(jk=1; jk <=nlstate ; jk++){
      }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              pp[jk] += freq[jk][m][i]; 
 health expectancies in states (1) and (2): e%s%d.png<br>          }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(jk=1; jk <=nlstate ; jk++){
 fprintf(fichtm,"\n</body>");            for(m=-1, pos=0; m <=0 ; m++)
    }              pos += freq[jk][m][i];
    }            if(pp[jk]>=1.e-10){
 fclose(fichtm);              if(first==1){
 }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
 /******************* Gnuplot file **************/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            }else{
               if(first==1)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   strcpy(optionfilegnuplot,optionfilefiname);            }
   strcat(optionfilegnuplot,".gp.txt");          }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
 #ifdef windows          }       
     fprintf(ficgp,"cd \"%s\" \n",pathc);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 #endif            pos += pp[jk];
 m=pow(2,cptcoveff);            posprop += prop[jk][i];
            }
  /* 1eme*/          for(jk=1; jk <=nlstate ; jk++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {            if(pos>=1.e-5){
    for (k1=1; k1<= m ; k1 ++) {              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 #ifdef windows              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);            }else{
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              if(first==1)
 #endif                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 #ifdef unix              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);            }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);            if( i <= iagemax){
 #endif              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 for (i=1; i<= nlstate ; i ++) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }              else
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          
 }          for(jk=-1; jk <=nlstate+ndeath; jk++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            for(m=-1; m <=nlstate+ndeath; m++)
      for (i=1; i<= nlstate ; i ++) {              if(freq[jk][m][i] !=0 ) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(first==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 }                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              }
 #ifdef unix          if(i <= iagemax)
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");            fprintf(ficresp,"\n");
 #endif          if(first==1)
    }            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   /*2 eme*/        }
       }
   for (k1=1; k1<= m ; k1 ++) {    }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n\n",strtok(optionfile, "."),k1);    dateintmean=dateintsum/k2cpt; 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);   
        fclose(ficresp);
     for (i=1; i<= nlstate+1 ; i ++) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       k=2*i;    free_vector(pp,1,nlstate);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       for (j=1; j<= nlstate+1 ; j ++) {    /* End of Freq */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    /************ Prevalence ********************/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  {  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       for (j=1; j<= nlstate+1 ; j ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       We still use firstpass and lastpass as another selection.
         else fprintf(ficgp," \%%*lf (\%%*lf)");    */
 }     
       fprintf(ficgp,"\" t\"\" w l 0,");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double ***freq; /* Frequencies */
       for (j=1; j<= nlstate+1 ; j ++) {    double *pp, **prop;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double pos,posprop; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double  y2; /* in fractional years */
 }      int iagemin, iagemax;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");    iagemin= (int) agemin;
     }    iagemax= (int) agemax;
   }    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
   /*3eme*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
   for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<= nlstate ; cpt ++) {    j=cptcoveff;
       k=2+nlstate*(2*cpt-2);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);    
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    for(k1=1; k1<=j;k1++){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for(i1=1; i1<=ncodemax[k1];i1++){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        j1++;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for (i=1; i<=nlstate; i++)  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          for(m=iagemin; m <= iagemax+3; m++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            prop[i][m]=0.0;
        
 */        for (i=1; i<=imx; i++) { /* Each individual */
       for (i=1; i< nlstate ; i ++) {          bool=1;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
       }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     }                bool=0;
   }          } 
            if (bool==1) { 
   /* CV preval stat */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     for (k1=1; k1<= m ; k1 ++) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for (cpt=1; cpt<nlstate ; cpt ++) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       k=3;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fprintf(ficgp,"set out \"p%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for (i=1; i< nlstate ; i ++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         fprintf(ficgp,"+$%d",k+i+1);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                  prop[s[m][i]][iagemax+3] += weight[i]; 
                      } 
       l=3+(nlstate+ndeath)*cpt;              }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            } /* end selection of waves */
       for (i=1; i< nlstate ; i ++) {          }
         l=3+(nlstate+ndeath)*cpt;        }
         fprintf(ficgp,"+$%d",l+i+1);        for(i=iagemin; i <= iagemax+3; i++){  
       }          
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     }            posprop += prop[jk][i]; 
   }            } 
    
   /* proba elementaires */          for(jk=1; jk <=nlstate ; jk++){     
    for(i=1,jk=1; i <=nlstate; i++){            if( i <=  iagemax){ 
     for(k=1; k <=(nlstate+ndeath); k++){              if(posprop>=1.e-5){ 
       if (k != i) {                probs[i][jk][j1]= prop[jk][i]/posprop;
         for(j=1; j <=ncovmodel; j++){              } else
                        printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            } 
           jk++;          }/* end jk */ 
           fprintf(ficgp,"\n");        }/* end i */ 
         }      } /* end i1 */
       }    } /* end k1 */
     }    
    }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
    for(jk=1; jk <=m; jk++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      fprintf(ficgp,"\nset out \"pe%s%d.png\" \n\n",strtok(optionfile, "."),jk);  }  /* End of prevalence */
      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
      i=1;  /************* Waves Concatenation ***************/
      for(k2=1; k2<=nlstate; k2++) {  
        k3=i;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
        for(k=1; k<=(nlstate+ndeath); k++) {  {
          if (k != k2){    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
            fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       Death is a valid wave (if date is known).
            ij=1;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
            for(j=3; j <=ncovmodel; j++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
              if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       and mw[mi+1][i]. dh depends on stepm.
                fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       */
                ij++;  
              }    int i, mi, m;
              else    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       double sum=0., jmean=0.;*/
            }    int first;
            fprintf(ficgp,")/(1");    int j, k=0,jk, ju, jl;
                double sum=0.;
            for(k1=1; k1 <=nlstate; k1++){      first=0;
              fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    jmin=1e+5;
              ij=1;    jmax=-1;
              for(j=3; j <=ncovmodel; j++){    jmean=0.;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    for(i=1; i<=imx; i++){
                  fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      mi=0;
                  ij++;      m=firstpass;
                }      while(s[m][i] <= nlstate){
                else        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                  fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          mw[++mi][i]=m;
              }        if(m >=lastpass)
              fprintf(ficgp,")");          break;
            }        else
            fprintf(ficgp,") t \"p%d%d\" ", k2,k);          m++;
            if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");      }/* end while */
            i=i+ncovmodel;      if (s[m][i] > nlstate){
          }        mi++;     /* Death is another wave */
        }        /* if(mi==0)  never been interviewed correctly before death */
      }           /* Only death is a correct wave */
    }        mw[mi][i]=m;
          }
    fclose(ficgp);  
 }  /* end gnuplot */      wav[i]=mi;
       if(mi==0){
         nbwarn++;
 /*************** Moving average **************/        if(first==0){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
   int i, cpt, cptcod;        }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        if(first==1){
       for (i=1; i<=nlstate;i++)          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;      } /* end mi==0 */
        } /* End individuals */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){    for(i=1; i<=imx; i++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(mi=1; mi<wav[i];mi++){
           for (cpt=0;cpt<=4;cpt++){        if (stepm <=0)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          dh[mi][i]=1;
           }        else{
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         }            if (agedc[i] < 2*AGESUP) {
       }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     }              if(j==0) j=1;  /* Survives at least one month after exam */
                  else if(j<0){
 }                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
 /************** Forecasting ******************/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              }
   int *popage;              k=k+1;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              if (j >= jmax){
   double *popeffectif,*popcount;                jmax=j;
   double ***p3mat;                ijmax=i;
   char fileresf[FILENAMELENGTH];              }
               if (j <= jmin){
  agelim=AGESUP;                jmin=j;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;                ijmin=i;
               }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              sum=sum+j;
                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   strcpy(fileresf,"f");            }
   strcat(fileresf,fileres);          }
   if((ficresf=fopen(fileresf,"w"))==NULL) {          else{
     printf("Problem with forecast resultfile: %s\n", fileresf);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
             k=k+1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            if (j >= jmax) {
               jmax=j;
   if (mobilav==1) {              ijmax=i;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
     movingaverage(agedeb, fage, ageminpar, mobaverage);            else if (j <= jmin){
   }              jmin=j;
               ijmin=i;
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   agelim=AGESUP;            if(j<0){
                nberr++;
   hstepm=1;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   hstepm=hstepm/stepm;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   yp1=modf(dateintmean,&yp);            }
   anprojmean=yp;            sum=sum+j;
   yp2=modf((yp1*12),&yp);          }
   mprojmean=yp;          jk= j/stepm;
   yp1=modf((yp2*30.5),&yp);          jl= j -jk*stepm;
   jprojmean=yp;          ju= j -(jk+1)*stepm;
   if(jprojmean==0) jprojmean=1;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   if(mprojmean==0) jprojmean=1;            if(jl==0){
                dh[mi][i]=jk;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              bh[mi][i]=0;
              }else{ /* We want a negative bias in order to only have interpolation ie
   for(cptcov=1;cptcov<=i2;cptcov++){                    * at the price of an extra matrix product in likelihood */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              dh[mi][i]=jk+1;
       k=k+1;              bh[mi][i]=ju;
       fprintf(ficresf,"\n#******");            }
       for(j=1;j<=cptcoveff;j++) {          }else{
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if(jl <= -ju){
       }              dh[mi][i]=jk;
       fprintf(ficresf,"******\n");              bh[mi][i]=jl;       /* bias is positive if real duration
       fprintf(ficresf,"# StartingAge FinalAge");                                   * is higher than the multiple of stepm and negative otherwise.
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                                   */
                  }
                  else{
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              dh[mi][i]=jk+1;
         fprintf(ficresf,"\n");              bh[mi][i]=ju;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              }
             if(dh[mi][i]==0){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              dh[mi][i]=1; /* At least one step */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              bh[mi][i]=ju; /* At least one step */
           nhstepm = nhstepm/hstepm;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } /* end if mle */
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        } /* end wave */
            }
           for (h=0; h<=nhstepm; h++){    jmean=sum/k;
             if (h==(int) (calagedate+YEARM*cpt)) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
             }   }
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;  /*********** Tricode ****************************/
               for(i=1; i<=nlstate;i++) {                void tricode(int *Tvar, int **nbcode, int imx)
                 if (mobilav==1)  {
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    
                 else {    int Ndum[20],ij=1, k, j, i, maxncov=19;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    int cptcode=0;
                 }    cptcoveff=0; 
                   
               }    for (k=0; k<maxncov; k++) Ndum[k]=0;
               if (h==(int)(calagedate+12*cpt)){    for (k=1; k<=7; k++) ncodemax[k]=0;
                 fprintf(ficresf," %.3f", kk1);  
                            for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
               }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
             }                                 modality*/ 
           }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        Ndum[ij]++; /*store the modality */
         }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     }                                         Tvar[j]. If V=sex and male is 0 and 
   }                                         female is 1, then  cptcode=1.*/
              }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       for (i=0; i<=cptcode; i++) {
   fclose(ficresf);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
 }      }
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      ij=1; 
        for (i=1; i<=ncodemax[j]; i++) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for (k=0; k<= maxncov; k++) {
   int *popage;          if (Ndum[k] != 0) {
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            nbcode[Tvar[j]][ij]=k; 
   double *popeffectif,*popcount;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   double ***p3mat,***tabpop,***tabpopprev;            
   char filerespop[FILENAMELENGTH];            ij++;
           }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (ij > ncodemax[j]) break; 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }  
   agelim=AGESUP;      } 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    }  
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   for (k=0; k< maxncov; k++) Ndum[k]=0;
    
     for (i=1; i<=ncovmodel-2; i++) { 
   strcpy(filerespop,"pop");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   strcat(filerespop,fileres);     ij=Tvar[i];
   if((ficrespop=fopen(filerespop,"w"))==NULL) {     Ndum[ij]++;
     printf("Problem with forecast resultfile: %s\n", filerespop);   }
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);   ij=1;
    for (i=1; i<= maxncov; i++) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
   if (mobilav==1) {       ij++;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     }
     movingaverage(agedeb, fage, ageminpar, mobaverage);   }
   }   
    cptcoveff=ij-1; /*Number of simple covariates*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  }
   if (stepm<=12) stepsize=1;  
    /*********** Health Expectancies ****************/
   agelim=AGESUP;  
    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   hstepm=1;  
   hstepm=hstepm/stepm;  {
      /* Health expectancies, no variances */
   if (popforecast==1) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     if((ficpop=fopen(popfile,"r"))==NULL) {    int nhstepma, nstepma; /* Decreasing with age */
       printf("Problem with population file : %s\n",popfile);exit(0);    double age, agelim, hf;
     }    double ***p3mat;
     popage=ivector(0,AGESUP);    double eip;
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);    pstamp(ficreseij);
        fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     i=1;      fprintf(ficreseij,"# Age");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    for(i=1; i<=nlstate;i++){
          for(j=1; j<=nlstate;j++){
     imx=i;        fprintf(ficreseij," e%1d%1d ",i,j);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      }
   }      fprintf(ficreseij," e%1d. ",i);
     }
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficreseij,"\n");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    
       fprintf(ficrespop,"\n#******");    if(estepm < stepm){
       for(j=1;j<=cptcoveff;j++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    else  hstepm=estepm;   
       fprintf(ficrespop,"******\n");    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficrespop,"# Age");     * This is mainly to measure the difference between two models: for example
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);     * if stepm=24 months pijx are given only every 2 years and by summing them
       if (popforecast==1)  fprintf(ficrespop," [Population]");     * we are calculating an estimate of the Life Expectancy assuming a linear 
           * progression in between and thus overestimating or underestimating according
       for (cpt=0; cpt<=0;cpt++) {     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
             * to compare the new estimate of Life expectancy with the same linear 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * hypothesis. A more precise result, taking into account a more precise
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * curvature will be obtained if estepm is as small as stepm. */
           nhstepm = nhstepm/hstepm;  
              /* For example we decided to compute the life expectancy with the smallest unit */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           oldm=oldms;savm=savms;       nhstepm is the number of hstepm from age to agelim 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
           for (h=0; h<=nhstepm; h++){       and note for a fixed period like estepm months */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       survival function given by stepm (the optimization length). Unfortunately it
             }       means that if the survival funtion is printed only each two years of age and if
             for(j=1; j<=nlstate+ndeath;j++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               kk1=0.;kk2=0;       results. So we changed our mind and took the option of the best precision.
               for(i=1; i<=nlstate;i++) {                  */
                 if (mobilav==1)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    agelim=AGESUP;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* If stepm=6 months */
                 }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
               if (h==(int)(calagedate+12*cpt)){      
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  /* nhstepm age range expressed in number of stepm */
                   /*fprintf(ficrespop," %.3f", kk1);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               }    /* if (stepm >= YEARM) hstepm=1;*/
             }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             for(i=1; i<=nlstate;i++){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){    for (age=bage; age<=fage; age ++){ 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                 }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      /* if (stepm >= YEARM) hstepm=1;*/
             }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      /* If stepm=6 months */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
         }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       }      
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /******/      
       printf("%d|",(int)age);fflush(stdout);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /* Computing expectancies */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(i=1; i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;        for(j=1; j<=nlstate;j++)
                    for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
           oldm=oldms;savm=savms;            
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {          }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }      fprintf(ficreseij,"%3.0f",age );
             for(j=1; j<=nlstate+ndeath;j++) {      for(i=1; i<=nlstate;i++){
               kk1=0.;kk2=0;        eip=0;
               for(i=1; i<=nlstate;i++) {                      for(j=1; j<=nlstate;j++){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              eip +=eij[i][j][(int)age];
               }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }        fprintf(ficreseij,"%9.4f", eip );
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficreseij,"\n");
         }      
       }    }
    }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
      fprintf(ficlog,"\n");
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   }
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);  {
   }    /* Covariances of health expectancies eij and of total life expectancies according
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     to initial status i, ei. .
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    */
   fclose(ficrespop);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 }    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
 /***********************************************/    double ***p3matp, ***p3matm, ***varhe;
 /**************** Main Program *****************/    double **dnewm,**doldm;
 /***********************************************/    double *xp, *xm;
     double **gp, **gm;
 int main(int argc, char *argv[])    double ***gradg, ***trgradg;
 {    int theta;
   
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double eip, vip;
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
   double fret;    xm=vector(1,npar);
   double **xi,tmp,delta;    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   double dum; /* Dummy variable */    
   double ***p3mat;    pstamp(ficresstdeij);
   int *indx;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficresstdeij,"# Age");
   char title[MAXLINE];    for(i=1; i<=nlstate;i++){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      for(j=1; j<=nlstate;j++)
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
        fprintf(ficresstdeij," e%1d. ",i);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    }
     fprintf(ficresstdeij,"\n");
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];    pstamp(ficrescveij);
   char popfile[FILENAMELENGTH];    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    fprintf(ficrescveij,"# Age");
   int firstobs=1, lastobs=10;    for(i=1; i<=nlstate;i++)
   int sdeb, sfin; /* Status at beginning and end */      for(j=1; j<=nlstate;j++){
   int c,  h , cpt,l;        cptj= (j-1)*nlstate+i;
   int ju,jl, mi;        for(i2=1; i2<=nlstate;i2++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for(j2=1; j2<=nlstate;j2++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            cptj2= (j2-1)*nlstate+i2;
   int mobilav=0,popforecast=0;            if(cptj2 <= cptj)
   int hstepm, nhstepm;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          }
       }
   double bage, fage, age, agelim, agebase;    fprintf(ficrescveij,"\n");
   double ftolpl=FTOL;    
   double **prlim;    if(estepm < stepm){
   double *severity;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double ***param; /* Matrix of parameters */    }
   double  *p;    else  hstepm=estepm;   
   double **matcov; /* Matrix of covariance */    /* We compute the life expectancy from trapezoids spaced every estepm months
   double ***delti3; /* Scale */     * This is mainly to measure the difference between two models: for example
   double *delti; /* Scale */     * if stepm=24 months pijx are given only every 2 years and by summing them
   double ***eij, ***vareij;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double **varpl; /* Variances of prevalence limits by age */     * progression in between and thus overestimating or underestimating according
   double *epj, vepp;     * to the curvature of the survival function. If, for the same date, we 
   double kk1, kk2;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   char z[1]="c", occ;       nstepm is the number of stepm from age to agelin. 
 #include <sys/time.h>       Look at hpijx to understand the reason of that which relies in memory size
 #include <time.h>       and note for a fixed period like estepm months */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   /* long total_usecs;       means that if the survival funtion is printed only each two years of age and if
   struct timeval start_time, end_time;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    */
   getcwd(pathcd, size);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   printf("\n%s",version);    /* If stepm=6 months */
   if(argc <=1){    /* nhstepm age range expressed in number of stepm */
     printf("\nEnter the parameter file name: ");    agelim=AGESUP;
     scanf("%s",pathtot);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   else{    /* if (stepm >= YEARM) hstepm=1;*/
     strcpy(pathtot,argv[1]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }    
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*cygwin_split_path(pathtot,path,optionfile);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /* cutv(path,optionfile,pathtot,'\\');*/    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);    for (age=bage; age<=fage; age ++){ 
   replace(pathc,path);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 /*-------- arguments in the command line --------*/      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);      /* If stepm=6 months */
   strcat(fileres,".txt");    /* Other files have txt extension */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   /*---------arguments file --------*/      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);      /* Computing  Variances of health expectancies */
     goto end;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   }         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
   strcpy(filereso,"o");        for(i=1; i<=npar; i++){ 
   strcat(filereso,fileres);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   if((ficparo=fopen(filereso,"w"))==NULL) {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        }
   }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<= nlstate; j++){
     ungetc(c,ficpar);          for(i=1; i<=nlstate; i++){
     fgets(line, MAXLINE, ficpar);            for(h=0; h<=nhstepm-1; h++){
     puts(line);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     fputs(line,ficparo);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   }            }
   ungetc(c,ficpar);          }
         }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for(ij=1; ij<= nlstate*nlstate; ij++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          for(h=0; h<=nhstepm-1; h++){
 while((c=getc(ficpar))=='#' && c!= EOF){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);      }/* End theta */
     puts(line);      
     fputs(line,ficparo);      
   }      for(h=0; h<=nhstepm-1; h++)
   ungetc(c,ficpar);        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
                trgradg[h][j][theta]=gradg[h][theta][j];
   covar=matrix(0,NCOVMAX,1,n);      
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
   ncovmodel=2+cptcovn;          varhe[ij][ji][(int)age] =0.;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
         printf("%d|",(int)age);fflush(stdout);
   /* Read guess parameters */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /* Reads comments: lines beginning with '#' */       for(h=0;h<=nhstepm-1;h++){
   while((c=getc(ficpar))=='#' && c!= EOF){        for(k=0;k<=nhstepm-1;k++){
     ungetc(c,ficpar);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     fgets(line, MAXLINE, ficpar);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     puts(line);          for(ij=1;ij<=nlstate*nlstate;ij++)
     fputs(line,ficparo);            for(ji=1;ji<=nlstate*nlstate;ji++)
   }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   ungetc(c,ficpar);        }
        }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)      /* Computing expectancies */
     for(j=1; j <=nlstate+ndeath-1; j++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"%1d%1d",i1,j1);        for(j=1; j<=nlstate;j++)
       printf("%1d%1d",i,j);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(k=1; k<=ncovmodel;k++){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         fscanf(ficpar," %lf",&param[i][j][k]);            
         printf(" %lf",param[i][j][k]);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         fprintf(ficparo," %lf",param[i][j][k]);  
       }          }
       fscanf(ficpar,"\n");  
       printf("\n");      fprintf(ficresstdeij,"%3.0f",age );
       fprintf(ficparo,"\n");      for(i=1; i<=nlstate;i++){
     }        eip=0.;
          vip=0.;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
   p=param[1][1];          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
              vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   /* Reads comments: lines beginning with '#' */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     fgets(line, MAXLINE, ficpar);      }
     puts(line);      fprintf(ficresstdeij,"\n");
     fputs(line,ficparo);  
   }      fprintf(ficrescveij,"%3.0f",age );
   ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          cptj= (j-1)*nlstate+i;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          for(i2=1; i2<=nlstate;i2++)
   for(i=1; i <=nlstate; i++){            for(j2=1; j2<=nlstate;j2++){
     for(j=1; j <=nlstate+ndeath-1; j++){              cptj2= (j2-1)*nlstate+i2;
       fscanf(ficpar,"%1d%1d",&i1,&j1);              if(cptj2 <= cptj)
       printf("%1d%1d",i,j);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       fprintf(ficparo,"%1d%1d",i1,j1);            }
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);      fprintf(ficrescveij,"\n");
         printf(" %le",delti3[i][j][k]);     
         fprintf(ficparo," %le",delti3[i][j][k]);    }
       }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       fscanf(ficpar,"\n");    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       printf("\n");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       fprintf(ficparo,"\n");    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   delti=delti3[1][1];    printf("\n");
      fprintf(ficlog,"\n");
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(xm,1,npar);
     ungetc(c,ficpar);    free_vector(xp,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     puts(line);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     fputs(line,ficparo);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }  }
   ungetc(c,ficpar);  
    /************ Variance ******************/
   matcov=matrix(1,npar,1,npar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   for(i=1; i <=npar; i++){  {
     fscanf(ficpar,"%s",&str);    /* Variance of health expectancies */
     printf("%s",str);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     fprintf(ficparo,"%s",str);    /* double **newm;*/
     for(j=1; j <=i; j++){    double **dnewm,**doldm;
       fscanf(ficpar," %le",&matcov[i][j]);    double **dnewmp,**doldmp;
       printf(" %.5le",matcov[i][j]);    int i, j, nhstepm, hstepm, h, nstepm ;
       fprintf(ficparo," %.5le",matcov[i][j]);    int k, cptcode;
     }    double *xp;
     fscanf(ficpar,"\n");    double **gp, **gm;  /* for var eij */
     printf("\n");    double ***gradg, ***trgradg; /*for var eij */
     fprintf(ficparo,"\n");    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
   for(i=1; i <=npar; i++)    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     for(j=i+1;j<=npar;j++)    double ***p3mat;
       matcov[i][j]=matcov[j][i];    double age,agelim, hf;
        double ***mobaverage;
   printf("\n");    int theta;
     char digit[4];
     char digitp[25];
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */    char fileresprobmorprev[FILENAMELENGTH];
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */    if(popbased==1){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      if(mobilav!=0)
     if((ficres =fopen(rfileres,"w"))==NULL) {        strcpy(digitp,"-populbased-mobilav-");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      else strcpy(digitp,"-populbased-nomobil-");
     }    }
     fprintf(ficres,"#%s\n",version);    else 
          strcpy(digitp,"-stablbased-");
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {    if (mobilav!=0) {
       printf("Problem with datafile: %s\n", datafile);goto end;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     n= lastobs;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     severity = vector(1,maxwav);      }
     outcome=imatrix(1,maxwav+1,1,n);    }
     num=ivector(1,n);  
     moisnais=vector(1,n);    strcpy(fileresprobmorprev,"prmorprev"); 
     annais=vector(1,n);    sprintf(digit,"%-d",ij);
     moisdc=vector(1,n);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     andc=vector(1,n);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     agedc=vector(1,n);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     cod=ivector(1,n);    strcat(fileresprobmorprev,fileres);
     weight=vector(1,n);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     mint=matrix(1,maxwav,1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     anint=matrix(1,maxwav,1,n);    }
     s=imatrix(1,maxwav+1,1,n);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     adl=imatrix(1,maxwav+1,1,n);       
     tab=ivector(1,NCOVMAX);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     ncodemax=ivector(1,8);    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     i=1;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     while (fgets(line, MAXLINE, fic) != NULL)    {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       if ((i >= firstobs) && (i <=lastobs)) {      fprintf(ficresprobmorprev," p.%-d SE",j);
              for(i=1; i<=nlstate;i++)
         for (j=maxwav;j>=1;j--){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    }  
           strcpy(line,stra);    fprintf(ficresprobmorprev,"\n");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficgp,"\n# Routine varevsij");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
            fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   } */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    else
         for (j=ncovcol;j>=1;j--){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresvij,"# Age");
         }    for(i=1; i<=nlstate;i++)
         num[i]=atol(stra);      for(j=1; j<=nlstate;j++)
                fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fprintf(ficresvij,"\n");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
     xp=vector(1,npar);
         i=i+1;    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
     }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     /* printf("ii=%d", ij);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
   /* for (i=1; i<=imx; i++){    gmp=vector(nlstate+1,nlstate+ndeath);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    if(estepm < stepm){
     }*/      printf ("Problem %d lower than %d\n",estepm, stepm);
    /*  for (i=1; i<=imx; i++){    }
      if (s[4][i]==9)  s[4][i]=-1;    else  hstepm=estepm;   
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   /* Calculation of the number of parameter from char model*/       nstepm is the number of stepm from age to agelin. 
   Tvar=ivector(1,15);       Look at function hpijx to understand why (it is linked to memory size questions) */
   Tprod=ivector(1,15);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   Tvaraff=ivector(1,15);       survival function given by stepm (the optimization length). Unfortunately it
   Tvard=imatrix(1,15,1,2);       means that if the survival funtion is printed every two years of age and if
   Tage=ivector(1,15);             you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
   if (strlen(model) >1){    */
     j=0, j1=0, k1=1, k2=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     j=nbocc(model,'+');    agelim = AGESUP;
     j1=nbocc(model,'*');    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     cptcovn=j+1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     cptcovprod=j1;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     strcpy(modelsav,model);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      gp=matrix(0,nhstepm,1,nlstate);
       printf("Error. Non available option model=%s ",model);      gm=matrix(0,nhstepm,1,nlstate);
       goto end;  
     }  
          for(theta=1; theta <=npar; theta++){
     for(i=(j+1); i>=1;i--){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       cutv(stra,strb,modelsav,'+');          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       /*scanf("%d",i);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');        if (popbased==1) {
         if (strcmp(strc,"age")==0) {          if(mobilav ==0){
           cptcovprod--;            for(i=1; i<=nlstate;i++)
           cutv(strb,stre,strd,'V');              prlim[i][i]=probs[(int)age][i][ij];
           Tvar[i]=atoi(stre);          }else{ /* mobilav */ 
           cptcovage++;            for(i=1; i<=nlstate;i++)
             Tage[cptcovage]=i;              prlim[i][i]=mobaverage[(int)age][i][ij];
             /*printf("stre=%s ", stre);*/          }
         }        }
         else if (strcmp(strd,"age")==0) {    
           cptcovprod--;        for(j=1; j<= nlstate; j++){
           cutv(strb,stre,strc,'V');          for(h=0; h<=nhstepm; h++){
           Tvar[i]=atoi(stre);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
           cptcovage++;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           Tage[cptcovage]=i;          }
         }        }
         else {        /* This for computing probability of death (h=1 means
           cutv(strb,stre,strc,'V');           computed over hstepm matrices product = hstepm*stepm months) 
           Tvar[i]=ncovcol+k1;           as a weighted average of prlim.
           cutv(strb,strc,strd,'V');        */
           Tprod[k1]=i;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           Tvard[k1][1]=atoi(strc);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           Tvard[k1][2]=atoi(stre);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           Tvar[cptcovn+k2]=Tvard[k1][1];        }    
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        /* end probability of death */
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           k1++;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           k2=k2+2;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }   
       else {        if (popbased==1) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          if(mobilav ==0){
        /*  scanf("%d",i);*/            for(i=1; i<=nlstate;i++)
       cutv(strd,strc,strb,'V');              prlim[i][i]=probs[(int)age][i][ij];
       Tvar[i]=atoi(strc);          }else{ /* mobilav */ 
       }            for(i=1; i<=nlstate;i++)
       strcpy(modelsav,stra);                prlim[i][i]=mobaverage[(int)age][i][ij];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          }
         scanf("%d",i);*/        }
     }  
 }        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
            for(h=0; h<=nhstepm; h++){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   printf("cptcovprod=%d ", cptcovprod);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   scanf("%d ",i);*/          }
     fclose(fic);        }
         /* This for computing probability of death (h=1 means
     /*  if(mle==1){*/           computed over hstepm matrices product = hstepm*stepm months) 
     if (weightopt != 1) { /* Maximisation without weights*/           as a weighted average of prlim.
       for(i=1;i<=n;i++) weight[i]=1.0;        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /*-calculation of age at interview from date of interview and age at death -*/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     agev=matrix(1,maxwav,1,imx);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
     for (i=1; i<=imx; i++) {        /* end probability of death */
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        for(j=1; j<= nlstate; j++) /* vareij */
          anint[m][i]=9999;          for(h=0; h<=nhstepm; h++){
          s[m][i]=-1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        }          }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      } /* End theta */
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)      for(h=0; h<=nhstepm; h++) /* veij */
               if(moisdc[i]!=99 && andc[i]!=9999)        for(j=1; j<=nlstate;j++)
                 agev[m][i]=agedc[i];          for(theta=1; theta <=npar; theta++)
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            trgradg[h][j][theta]=gradg[h][theta][j];
            else {  
               if (andc[i]!=9999){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        for(theta=1; theta <=npar; theta++)
               agev[m][i]=-1;          trgradgp[j][theta]=gradgp[theta][j];
               }    
             }  
           }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           else if(s[m][i] !=9){ /* Should no more exist */      for(i=1;i<=nlstate;i++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        for(j=1;j<=nlstate;j++)
             if(mint[m][i]==99 || anint[m][i]==9999)          vareij[i][j][(int)age] =0.;
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){      for(h=0;h<=nhstepm;h++){
               agemin=agev[m][i];        for(k=0;k<=nhstepm;k++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
             else if(agev[m][i] >agemax){          for(i=1;i<=nlstate;i++)
               agemax=agev[m][i];            for(j=1;j<=nlstate;j++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
             }        }
             /*agev[m][i]=anint[m][i]-annais[i];*/      }
             /*   agev[m][i] = age[i]+2*m;*/    
           }      /* pptj */
           else { /* =9 */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             agev[m][i]=1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
             s[m][i]=-1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         }          varppt[j][i]=doldmp[j][i];
         else /*= 0 Unknown */      /* end ppptj */
           agev[m][i]=1;      /*  x centered again */
       }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     }   
     for (i=1; i<=imx; i++)  {      if (popbased==1) {
       for(m=1; (m<= maxwav); m++){        if(mobilav ==0){
         if (s[m][i] > (nlstate+ndeath)) {          for(i=1; i<=nlstate;i++)
           printf("Error: Wrong value in nlstate or ndeath\n");              prlim[i][i]=probs[(int)age][i][ij];
           goto end;        }else{ /* mobilav */ 
         }          for(i=1; i<=nlstate;i++)
       }            prlim[i][i]=mobaverage[(int)age][i][ij];
     }        }
       }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);               
       /* This for computing probability of death (h=1 means
     free_vector(severity,1,maxwav);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     free_imatrix(outcome,1,maxwav+1,1,n);         as a weighted average of prlim.
     free_vector(moisnais,1,n);      */
     free_vector(annais,1,n);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     /* free_matrix(mint,1,maxwav,1,n);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
        free_matrix(anint,1,maxwav,1,n);*/          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     free_vector(moisdc,1,n);      }    
     free_vector(andc,1,n);      /* end probability of death */
   
          fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     wav=ivector(1,imx);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for(i=1; i<=nlstate;i++){
              fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     /* Concatenates waves */        }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      } 
       fprintf(ficresprobmorprev,"\n");
   
       Tcode=ivector(1,100);      fprintf(ficresvij,"%.0f ",age );
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      for(i=1; i<=nlstate;i++)
       ncodemax[1]=1;        for(j=1; j<=nlstate;j++){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
              }
    codtab=imatrix(1,100,1,10);      fprintf(ficresvij,"\n");
    h=0;      free_matrix(gp,0,nhstepm,1,nlstate);
    m=pow(2,cptcoveff);      free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
    for(k=1;k<=cptcoveff; k++){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
      for(i=1; i <=(m/pow(2,k));i++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        for(j=1; j <= ncodemax[k]; j++){    } /* End age */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
            h++;    free_vector(gmp,nlstate+1,nlstate+ndeath);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
        }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       codtab[1][2]=1;codtab[2][2]=2; */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
    /* for(i=1; i <=m ;i++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       for(k=1; k <=cptcovn; k++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       printf("\n");    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       scanf("%d",i);*/  */
      /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
    /* Calculates basic frequencies. Computes observed prevalence at single age    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        and prints on file fileres'p'. */  
     free_vector(xp,1,npar);
        free_matrix(doldm,1,nlstate,1,nlstate);
        free_matrix(dnewm,1,nlstate,1,npar);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fclose(ficresprobmorprev);
          fflush(ficgp);
     /* For Powell, parameters are in a vector p[] starting at p[1]    fflush(fichtm); 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  }  /* end varevsij */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
   /************ Variance of prevlim ******************/
     if(mle==1){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  {
     }    /* Variance of prevalence limit */
        /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     /*--------- results files --------------*/    double **newm;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
     int k, cptcode;
    jk=1;    double *xp;
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double *gp, *gm;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double **gradg, **trgradg;
    for(i=1,jk=1; i <=nlstate; i++){    double age,agelim;
      for(k=1; k <=(nlstate+ndeath); k++){    int theta;
        if (k != i)    
          {    pstamp(ficresvpl);
            printf("%d%d ",i,k);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficresvpl,"# Age");
            for(j=1; j <=ncovmodel; j++){    for(i=1; i<=nlstate;i++)
              printf("%f ",p[jk]);        fprintf(ficresvpl," %1d-%1d",i,i);
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficresvpl,"\n");
              jk++;  
            }    xp=vector(1,npar);
            printf("\n");    dnewm=matrix(1,nlstate,1,npar);
            fprintf(ficres,"\n");    doldm=matrix(1,nlstate,1,nlstate);
          }    
      }    hstepm=1*YEARM; /* Every year of age */
    }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
  if(mle==1){    agelim = AGESUP;
     /* Computing hessian and covariance matrix */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     ftolhess=ftol; /* Usually correct */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     hesscov(matcov, p, npar, delti, ftolhess, func);      if (stepm >= YEARM) hstepm=1;
  }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      gradg=matrix(1,npar,1,nlstate);
     printf("# Scales (for hessian or gradient estimation)\n");      gp=vector(1,nlstate);
      for(i=1,jk=1; i <=nlstate; i++){      gm=vector(1,nlstate);
       for(j=1; j <=nlstate+ndeath; j++){  
         if (j!=i) {      for(theta=1; theta <=npar; theta++){
           fprintf(ficres,"%1d%1d",i,j);        for(i=1; i<=npar; i++){ /* Computes gradient */
           printf("%1d%1d",i,j);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for(k=1; k<=ncovmodel;k++){        }
             printf(" %.5e",delti[jk]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             fprintf(ficres," %.5e",delti[jk]);        for(i=1;i<=nlstate;i++)
             jk++;          gp[i] = prlim[i][i];
           }      
           printf("\n");        for(i=1; i<=npar; i++) /* Computes gradient */
           fprintf(ficres,"\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
      }          gm[i] = prlim[i][i];
      
     k=1;        for(i=1;i<=nlstate;i++)
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      } /* End theta */
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;      trgradg =matrix(1,nlstate,1,npar);
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      for(j=1; j<=nlstate;j++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/        for(theta=1; theta <=npar; theta++)
       fprintf(ficres,"%3d",i);          trgradg[j][theta]=gradg[theta][j];
       printf("%3d",i);  
       for(j=1; j<=i;j++){      for(i=1;i<=nlstate;i++)
         fprintf(ficres," %.5e",matcov[i][j]);        varpl[i][(int)age] =0.;
         printf(" %.5e",matcov[i][j]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       fprintf(ficres,"\n");      for(i=1;i<=nlstate;i++)
       printf("\n");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       k++;  
     }      fprintf(ficresvpl,"%.0f ",age );
          for(i=1; i<=nlstate;i++)
     while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       ungetc(c,ficpar);      fprintf(ficresvpl,"\n");
       fgets(line, MAXLINE, ficpar);      free_vector(gp,1,nlstate);
       puts(line);      free_vector(gm,1,nlstate);
       fputs(line,ficparo);      free_matrix(gradg,1,npar,1,nlstate);
     }      free_matrix(trgradg,1,nlstate,1,npar);
     ungetc(c,ficpar);    } /* End age */
     estepm=0;  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    free_vector(xp,1,npar);
     if (estepm==0 || estepm < stepm) estepm=stepm;    free_matrix(doldm,1,nlstate,1,npar);
     if (fage <= 2) {    free_matrix(dnewm,1,nlstate,1,nlstate);
       bage = ageminpar;  
       fage = agemaxpar;  }
     }  
      /************ Variance of one-step probabilities  ******************/
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  {
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    int i, j=0,  i1, k1, l1, t, tj;
      int k2, l2, j1,  z1;
     while((c=getc(ficpar))=='#' && c!= EOF){    int k=0,l, cptcode;
     ungetc(c,ficpar);    int first=1, first1;
     fgets(line, MAXLINE, ficpar);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     puts(line);    double **dnewm,**doldm;
     fputs(line,ficparo);    double *xp;
   }    double *gp, *gm;
   ungetc(c,ficpar);    double **gradg, **trgradg;
      double **mu;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    double age,agelim, cov[NCOVMAX];
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    int theta;
          char fileresprob[FILENAMELENGTH];
   while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprobcov[FILENAMELENGTH];
     ungetc(c,ficpar);    char fileresprobcor[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);  
     puts(line);    double ***varpij;
     fputs(line,ficparo);  
   }    strcpy(fileresprob,"prob"); 
   ungetc(c,ficpar);    strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    }
     strcpy(fileresprobcov,"probcov"); 
   fscanf(ficpar,"pop_based=%d\n",&popbased);    strcat(fileresprobcov,fileres);
   fprintf(ficparo,"pop_based=%d\n",popbased);      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   fprintf(ficres,"pop_based=%d\n",popbased);        printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    strcpy(fileresprobcor,"probcor"); 
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobcor,fileres);
     puts(line);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     fputs(line,ficparo);      printf("Problem with resultfile: %s\n", fileresprobcor);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   ungetc(c,ficpar);    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficresprob);
     ungetc(c,ficpar);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprob,"# Age");
     puts(line);    pstamp(ficresprobcov);
     fputs(line,ficparo);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   }    fprintf(ficresprobcov,"# Age");
   ungetc(c,ficpar);    pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    fprintf(ficresprobcor,"# Age");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
     for(i=1; i<=nlstate;i++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 /*------------ gnuplot -------------*/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
        }  
 /*------------ free_vector  -------------*/   /* fprintf(ficresprob,"\n");
  chdir(path);    fprintf(ficresprobcov,"\n");
      fprintf(ficresprobcor,"\n");
  free_ivector(wav,1,imx);   */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   xp=vector(1,npar);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  free_ivector(num,1,n);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  free_vector(agedc,1,n);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
  fclose(ficparo);    first=1;
  fclose(ficres);    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 /*--------- index.htm --------*/    fprintf(fichtm,"\n");
   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
      file %s<br>\n",optionfilehtmcov);
   /*--------------- Prevalence limit --------------*/    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    and drawn. It helps understanding how is the covariance between two incidences.\
   strcpy(filerespl,"pl");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   strcat(filerespl,fileres);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   }  standard deviations wide on each axis. <br>\
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   fprintf(ficrespl,"#Prevalence limit\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   fprintf(ficrespl,"#Age ");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");    cov[1]=1;
      tj=cptcoveff;
   prlim=matrix(1,nlstate,1,nlstate);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    j1=0;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for(t=1; t<=tj;t++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i1=1; i1<=ncodemax[t];i1++){ 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        j1++;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        if  (cptcovn>0) {
   k=0;          fprintf(ficresprob, "\n#********** Variable "); 
   agebase=ageminpar;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   agelim=agemaxpar;          fprintf(ficresprob, "**********\n#\n");
   ftolpl=1.e-10;          fprintf(ficresprobcov, "\n#********** Variable "); 
   i1=cptcoveff;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (cptcovn < 1){i1=1;}          fprintf(ficresprobcov, "**********\n#\n");
           
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp, "\n#********** Variable "); 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         k=k+1;          fprintf(ficgp, "**********\n#\n");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          
         fprintf(ficrespl,"\n#******");          
         for(j=1;j<=cptcoveff;j++)          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrespl,"******\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                  
         for (age=agebase; age<=agelim; age++){          fprintf(ficresprobcor, "\n#********** Variable ");    
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficrespl,"%.0f",age );          fprintf(ficresprobcor, "**********\n#");    
           for(i=1; i<=nlstate;i++)        }
           fprintf(ficrespl," %.5f", prlim[i][i]);        
           fprintf(ficrespl,"\n");        for (age=bage; age<=fage; age ++){ 
         }          cov[2]=age;
       }          for (k=1; k<=cptcovn;k++) {
     }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   fclose(ficrespl);          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /*------------- h Pij x at various ages ------------*/          for (k=1; k<=cptcovprod;k++)
              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   }          gp=vector(1,(nlstate)*(nlstate+ndeath));
   printf("Computing pij: result on file '%s' \n", filerespij);          gm=vector(1,(nlstate)*(nlstate+ndeath));
        
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for(theta=1; theta <=npar; theta++){
   /*if (stepm<=24) stepsize=2;*/            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   agelim=AGESUP;            
   hstepm=stepsize*YEARM; /* Every year of age */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            
              k=0;
   k=0;            for(i=1; i<= (nlstate); i++){
   for(cptcov=1;cptcov<=i1;cptcov++){              for(j=1; j<=(nlstate+ndeath);j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                k=k+1;
       k=k+1;                gp[k]=pmmij[i][j];
         fprintf(ficrespij,"\n#****** ");              }
         for(j=1;j<=cptcoveff;j++)            }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            
         fprintf(ficrespij,"******\n");            for(i=1; i<=npar; i++)
                      xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            k=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=(nlstate); i++){
           oldm=oldms;savm=savms;              for(j=1; j<=(nlstate+ndeath);j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  k=k+1;
           fprintf(ficrespij,"# Age");                gm[k]=pmmij[i][j];
           for(i=1; i<=nlstate;i++)              }
             for(j=1; j<=nlstate+ndeath;j++)            }
               fprintf(ficrespij," %1d-%1d",i,j);       
           fprintf(ficrespij,"\n");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
            for (h=0; h<=nhstepm; h++){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          }
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            for(theta=1; theta <=npar; theta++)
             fprintf(ficrespij,"\n");              trgradg[j][theta]=gradg[theta][j];
              }          
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           fprintf(ficrespij,"\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
   fclose(ficrespij);          
           k=0;
           for(i=1; i<=(nlstate); i++){
   /*---------- Forecasting ------------------*/            for(j=1; j<=(nlstate+ndeath);j++){
   if((stepm == 1) && (strcmp(model,".")==0)){              k=k+1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);              mu[k][(int) age]=pmmij[i][j];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            }
   }          }
   else{          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     erreur=108;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);              varpij[i][j][(int)age] = doldm[i][j];
   }  
            /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /*---------- Health expectancies and variances ------------*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcpy(filerest,"t");            }*/
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {          fprintf(ficresprob,"\n%d ",(int)age);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          fprintf(ficresprobcov,"\n%d ",(int)age);
   }          fprintf(ficresprobcor,"\n%d ",(int)age);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   strcpy(filerese,"e");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   strcat(filerese,fileres);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   if((ficreseij=fopen(filerese,"w"))==NULL) {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          }
   }          i=0;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
  strcpy(fileresv,"v");              i=i++;
   strcat(fileresv,fileres);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);              for (j=1; j<=i;j++){
   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   calagedate=-1;              }
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            }
           }/* end of loop for state */
   k=0;        } /* end of loop for age */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* Confidence intervalle of pij  */
       k=k+1;        /*
       fprintf(ficrest,"\n#****** ");          fprintf(ficgp,"\nset noparametric;unset label");
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       fprintf(ficrest,"******\n");          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       fprintf(ficreseij,"\n#****** ");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        */
       fprintf(ficreseij,"******\n");  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       fprintf(ficresvij,"\n#****** ");        first1=1;
       for(j=1;j<=cptcoveff;j++)        for (k2=1; k2<=(nlstate);k2++){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       fprintf(ficresvij,"******\n");            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);            for (k1=1; k1<=(nlstate);k1++){
       oldm=oldms;savm=savms;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                  if(l1==k1) continue;
                  i=(k1-1)*(nlstate+ndeath)+l1;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                if(i<=j) continue;
       oldm=oldms;savm=savms;                for (age=bage; age<=fage; age ++){ 
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                  if ((int)age %5==0){
                        v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                    mu1=mu[i][(int) age]/stepm*YEARM ;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                    mu2=mu[j][(int) age]/stepm*YEARM;
       fprintf(ficrest,"\n");                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
       epj=vector(1,nlstate+1);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       for(age=bage; age <=fage ;age++){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    /* Eigen vectors */
         if (popbased==1) {                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           for(i=1; i<=nlstate;i++)                    /*v21=sqrt(1.-v11*v11); *//* error */
             prlim[i][i]=probs[(int)age][i][k];                    v21=(lc1-v1)/cv12*v11;
         }                    v12=-v21;
                            v22=v11;
         fprintf(ficrest," %4.0f",age);                    tnalp=v21/v11;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                    if(first1==1){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                      first1=0;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                    }
           }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           epj[nlstate+1] +=epj[j];                    /*printf(fignu*/
         }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
         for(i=1, vepp=0.;i <=nlstate;i++)                    if(first==1){
           for(j=1;j <=nlstate;j++)                      first=0;
             vepp += vareij[i][j][(int)age];                      fprintf(ficgp,"\nset parametric;unset label");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         for(j=1;j <=nlstate;j++){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         fprintf(ficrest,"\n");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 free_matrix(mint,1,maxwav,1,n);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     free_vector(weight,1,n);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fclose(ficreseij);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   fclose(ficresvij);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fclose(ficrest);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fclose(ficpar);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   free_vector(epj,1,nlstate+1);                    }else{
                        first=0;
   /*------- Variance limit prevalence------*/                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   strcpy(fileresvpl,"vpl");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   strcat(fileresvpl,fileres);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     exit(0);                    }/* if first */
   }                  } /* age mod 5 */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   k=0;                first=1;
   for(cptcov=1;cptcov<=i1;cptcov++){              } /*l12 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            } /* k12 */
       k=k+1;          } /*l1 */
       fprintf(ficresvpl,"\n#****** ");        }/* k1 */
       for(j=1;j<=cptcoveff;j++)      } /* loop covariates */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficresvpl,"******\n");    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
          free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       oldm=oldms;savm=savms;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    free_vector(xp,1,npar);
     }    fclose(ficresprob);
  }    fclose(ficresprobcov);
     fclose(ficresprobcor);
   fclose(ficresvpl);    fflush(ficgp);
     fflush(fichtmcov);
   /*---------- End : free ----------------*/  }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /******************* Printing html file ***********/
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                      int lastpass, int stepm, int weightopt, char model[],\
                      int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    int popforecast, int estepm ,\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                    double jprev1, double mprev1,double anprev1, \
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                    double jprev2, double mprev2,double anprev2){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    int jj1, k1, i1, cpt;
    
   free_matrix(matcov,1,npar,1,npar);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   free_vector(delti,1,npar);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   free_matrix(agev,1,maxwav,1,imx);  </ul>");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   if(erreur >0)             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     printf("End of Imach with error or warning %d\n",erreur);     fprintf(fichtm,"\
   else   printf("End of Imach\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       fprintf(fichtm,"\
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   /*printf("Total time was %d uSec.\n", total_usecs);*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   /*------ End -----------*/     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
  end:             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 #ifdef windows     fprintf(fichtm,"\
   /* chdir(pathcd);*/   - Population projections by age and states: \
 #endif     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/   m=cptcoveff;
  strcpy(plotcmd,GNUPLOTPROGRAM);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);   jj1=0;
  system(plotcmd);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
 #ifdef windows       jj1++;
   while (z[0] != 'q') {       if (cptcovn > 0) {
     /* chdir(path); */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");         for (cpt=1; cpt<=cptcoveff;cpt++) 
     scanf("%s",z);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     if (z[0] == 'c') system("./imach");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     else if (z[0] == 'e') system(optionfilehtm);       }
     else if (z[0] == 'g') system(plotcmd);       /* Pij */
     else if (z[0] == 'q') exit(0);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
 #endif       /* Quasi-incidences */
 }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.42  
changed lines
  Added in v.1.128


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>