Diff for /imach/src/imach.c between versions 1.42 and 1.142

version 1.42, 2002/05/21 18:44:41 version 1.142, 2014/01/26 03:57:36
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.142  2014/01/26 03:57:36  brouard
      Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.141  2014/01/26 02:42:01  brouard
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.140  2011/09/02 10:37:54  brouard
   computed from the time spent in each health state according to a    Summary: times.h is ok with mingw32 now.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.139  2010/06/14 07:50:17  brouard
   simplest model is the multinomial logistic model where pij is the    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   probability to be observed in state j at the second wave    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.138  2010/04/30 18:19:40  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    *** empty log message ***
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.137  2010/04/29 18:11:38  brouard
   you to do it.  More covariates you add, slower the    (Module): Checking covariates for more complex models
   convergence.    than V1+V2. A lot of change to be done. Unstable.
   
   The advantage of this computer programme, compared to a simple    Revision 1.136  2010/04/26 20:30:53  brouard
   multinomial logistic model, is clear when the delay between waves is not    (Module): merging some libgsl code. Fixing computation
   identical for each individual. Also, if a individual missed an    of likelione (using inter/intrapolation if mle = 0) in order to
   intermediate interview, the information is lost, but taken into    get same likelihood as if mle=1.
   account using an interpolation or extrapolation.      Some cleaning of code and comments added.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.135  2009/10/29 15:33:14  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.134  2009/10/29 13:18:53  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.133  2009/07/06 10:21:25  brouard
   hPijx.    just nforces
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.132  2009/07/06 08:22:05  brouard
   of the life expectancies. It also computes the prevalence limits.    Many tings
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.131  2009/06/20 16:22:47  brouard
            Institut national d'études démographiques, Paris.    Some dimensions resccaled
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.130  2009/05/26 06:44:34  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Max Covariate is now set to 20 instead of 8. A
   software can be distributed freely for non commercial use. Latest version    lot of cleaning with variables initialized to 0. Trying to make
   can be accessed at http://euroreves.ined.fr/imach .    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   **********************************************************************/  
      Revision 1.129  2007/08/31 13:49:27  lievre
 #include <math.h>    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.128  2006/06/30 13:02:05  brouard
 #include <unistd.h>    (Module): Clarifications on computing e.j
   
 #define MAXLINE 256    Revision 1.127  2006/04/28 18:11:50  brouard
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Yes the sum of survivors was wrong since
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    imach-114 because nhstepm was no more computed in the age
 #define FILENAMELENGTH 80    loop. Now we define nhstepma in the age loop.
 /*#define DEBUG*/    (Module): In order to speed up (in case of numerous covariates) we
 #define windows    compute health expectancies (without variances) in a first step
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    and then all the health expectancies with variances or standard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    deviation (needs data from the Hessian matrices) which slows the
     computation.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    In the future we should be able to stop the program is only health
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    expectancies and graph are needed without standard deviations.
   
 #define NINTERVMAX 8    Revision 1.126  2006/04/28 17:23:28  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Yes the sum of survivors was wrong since
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    imach-114 because nhstepm was no more computed in the age
 #define NCOVMAX 8 /* Maximum number of covariates */    loop. Now we define nhstepma in the age loop.
 #define MAXN 20000    Version 0.98h
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.125  2006/04/04 15:20:31  lievre
 #define AGEBASE 40    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
   
 int erreur; /* Error number */    Revision 1.124  2006/03/22 17:13:53  lievre
 int nvar;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    The log-likelihood is printed in the log file
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.123  2006/03/20 10:52:43  brouard
 int ndeath=1; /* Number of dead states */    * imach.c (Module): <title> changed, corresponds to .htm file
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    name. <head> headers where missing.
 int popbased=0;  
     * imach.c (Module): Weights can have a decimal point as for
 int *wav; /* Number of waves for this individuual 0 is possible */    English (a comma might work with a correct LC_NUMERIC environment,
 int maxwav; /* Maxim number of waves */    otherwise the weight is truncated).
 int jmin, jmax; /* min, max spacing between 2 waves */    Modification of warning when the covariates values are not 0 or
 int mle, weightopt;    1.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Version 0.98g
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.122  2006/03/20 09:45:41  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Weights can have a decimal point as for
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    English (a comma might work with a correct LC_NUMERIC environment,
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    otherwise the weight is truncated).
 FILE *ficgp,*ficresprob,*ficpop;    Modification of warning when the covariates values are not 0 or
 FILE *ficreseij;    1.
   char filerese[FILENAMELENGTH];    Version 0.98g
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.121  2006/03/16 17:45:01  lievre
  FILE  *ficresvpl;    * imach.c (Module): Comments concerning covariates added
   char fileresvpl[FILENAMELENGTH];  
     * imach.c (Module): refinements in the computation of lli if
 #define NR_END 1    status=-2 in order to have more reliable computation if stepm is
 #define FREE_ARG char*    not 1 month. Version 0.98f
 #define FTOL 1.0e-10  
     Revision 1.120  2006/03/16 15:10:38  lievre
 #define NRANSI    (Module): refinements in the computation of lli if
 #define ITMAX 200    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define TOL 2.0e-4  
     Revision 1.119  2006/03/15 17:42:26  brouard
 #define CGOLD 0.3819660    (Module): Bug if status = -2, the loglikelihood was
 #define ZEPS 1.0e-10    computed as likelihood omitting the logarithm. Version O.98e
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.118  2006/03/14 18:20:07  brouard
 #define GOLD 1.618034    (Module): varevsij Comments added explaining the second
 #define GLIMIT 100.0    table of variances if popbased=1 .
 #define TINY 1.0e-20    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 static double maxarg1,maxarg2;    (Module): Version 0.98d
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.117  2006/03/14 17:16:22  brouard
      (Module): varevsij Comments added explaining the second
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    table of variances if popbased=1 .
 #define rint(a) floor(a+0.5)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 static double sqrarg;    (Module): Version 0.98d
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 int imx;    varian-covariance of ej. is needed (Saito).
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 int m,nb;    filename with strsep.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.113  2006/02/24 14:20:24  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Memory leaks checks with valgrind and:
 double dateintmean=0;    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 double *weight;  
 int **s; /* Status */    Revision 1.112  2006/01/30 09:55:26  brouard
 double *agedc, **covar, idx;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.111  2006/01/25 20:38:18  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Lots of cleaning and bugs added (Gompertz)
 double ftolhess; /* Tolerance for computing hessian */    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.110  2006/01/25 00:51:50  brouard
 {    (Module): Lots of cleaning and bugs added (Gompertz)
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.108  2006/01/19 18:05:42  lievre
 #ifdef windows    Gnuplot problem appeared...
    s = strrchr( path, '\\' );           /* find last / */    To be fixed
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.107  2006/01/19 16:20:37  brouard
 #endif    Test existence of gnuplot in imach path
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.106  2006/01/19 13:24:36  brouard
       extern char       *getwd( );    Some cleaning and links added in html output
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.105  2006/01/05 20:23:19  lievre
 #else    *** empty log message ***
       extern char       *getcwd( );  
     Revision 1.104  2005/09/30 16:11:43  lievre
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): sump fixed, loop imx fixed, and simplifications.
 #endif    (Module): If the status is missing at the last wave but we know
          return( GLOCK_ERROR_GETCWD );    that the person is alive, then we can code his/her status as -2
       }    (instead of missing=-1 in earlier versions) and his/her
       strcpy( name, path );             /* we've got it */    contributions to the likelihood is 1 - Prob of dying from last
    } else {                             /* strip direcotry from path */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
       s++;                              /* after this, the filename */    the healthy state at last known wave). Version is 0.98
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.103  2005/09/30 15:54:49  lievre
       strcpy( name, s );                /* save file name */    (Module): sump fixed, loop imx fixed, and simplifications.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.102  2004/09/15 17:31:30  brouard
    }    Add the possibility to read data file including tab characters.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.101  2004/09/15 10:38:38  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Fix on curr_time
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.100  2004/07/12 18:29:06  brouard
 #endif    Add version for Mac OS X. Just define UNIX in Makefile
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.99  2004/06/05 08:57:40  brouard
    strcpy(ext,s);                       /* save extension */    *** empty log message ***
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.98  2004/05/16 15:05:56  brouard
    strncpy( finame, name, l1-l2);    New version 0.97 . First attempt to estimate force of mortality
    finame[l1-l2]= 0;    directly from the data i.e. without the need of knowing the health
    return( 0 );                         /* we're done */    state at each age, but using a Gompertz model: log u =a + b*age .
 }    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 /******************************************/    from other sources like vital statistic data.
   
 void replace(char *s, char*t)    The same imach parameter file can be used but the option for mle should be -3.
 {  
   int i;    Agnès, who wrote this part of the code, tried to keep most of the
   int lg=20;    former routines in order to include the new code within the former code.
   i=0;  
   lg=strlen(t);    The output is very simple: only an estimate of the intercept and of
   for(i=0; i<= lg; i++) {    the slope with 95% confident intervals.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Current limitations:
   }    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 int nbocc(char *s, char occ)  
 {    Revision 1.97  2004/02/20 13:25:42  lievre
   int i,j=0;    Version 0.96d. Population forecasting command line is (temporarily)
   int lg=20;    suppressed.
   i=0;  
   lg=strlen(s);    Revision 1.96  2003/07/15 15:38:55  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   if  (s[i] == occ ) j++;    rewritten within the same printf. Workaround: many printfs.
   }  
   return j;    Revision 1.95  2003/07/08 07:54:34  brouard
 }    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 void cutv(char *u,char *v, char*t, char occ)    matrix (cov(a12,c31) instead of numbers.
 {  
   int i,lg,j,p=0;    Revision 1.94  2003/06/27 13:00:02  brouard
   i=0;    Just cleaning
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.93  2003/06/25 16:33:55  brouard
   }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
   lg=strlen(t);    (Module): Version 0.96b
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.92  2003/06/25 16:30:45  brouard
   }    (Module): On windows (cygwin) function asctime_r doesn't
      u[p]='\0';    exist so I changed back to asctime which exists.
   
    for(j=0; j<= lg; j++) {    Revision 1.91  2003/06/25 15:30:29  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    * imach.c (Repository): Duplicated warning errors corrected.
   }    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 /********************** nrerror ********************/    concerning matrix of covariance. It has extension -cov.htm.
   
 void nrerror(char error_text[])    Revision 1.90  2003/06/24 12:34:15  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   fprintf(stderr,"ERREUR ...\n");    mle=-1 a template is output in file "or"mypar.txt with the design
   fprintf(stderr,"%s\n",error_text);    of the covariance matrix to be input.
   exit(1);  
 }    Revision 1.89  2003/06/24 12:30:52  brouard
 /*********************** vector *******************/    (Module): Some bugs corrected for windows. Also, when
 double *vector(int nl, int nh)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Revision 1.88  2003/06/23 17:54:56  brouard
   if (!v) nrerror("allocation failure in vector");    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   return v-nl+NR_END;  
 }    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   free((FREE_ARG)(v+nl-NR_END));    routine fileappend.
 }  
     Revision 1.85  2003/06/17 13:12:43  brouard
 /************************ivector *******************************/    * imach.c (Repository): Check when date of death was earlier that
 int *ivector(long nl,long nh)    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   int *v;    was wrong (infinity). We still send an "Error" but patch by
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    assuming that the date of death was just one stepm after the
   if (!v) nrerror("allocation failure in ivector");    interview.
   return v-nl+NR_END;    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /******************free ivector **************************/    truncation)
 void free_ivector(int *v, long nl, long nh)    (Repository): No more line truncation errors.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /******************* imatrix *******************************/    many times. Probs is memory consuming and must be used with
 int **imatrix(long nrl, long nrh, long ncl, long nch)    parcimony.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.83  2003/06/10 13:39:11  lievre
   int **m;    *** empty log message ***
    
   /* allocate pointers to rows */    Revision 1.82  2003/06/05 15:57:20  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Add log in  imach.c and  fullversion number is now printed.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  */
   m -= nrl;  /*
       Interpolated Markov Chain
    
   /* allocate rows and set pointers to them */    Short summary of the programme:
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    This program computes Healthy Life Expectancies from
   m[nrl] += NR_END;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   m[nrl] -= ncl;    first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    case of a health survey which is our main interest) -2- at least a
      second wave of interviews ("longitudinal") which measure each change
   /* return pointer to array of pointers to rows */    (if any) in individual health status.  Health expectancies are
   return m;    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 /****************** free_imatrix *************************/    simplest model is the multinomial logistic model where pij is the
 void free_imatrix(m,nrl,nrh,ncl,nch)    probability to be observed in state j at the second wave
       int **m;    conditional to be observed in state i at the first wave. Therefore
       long nch,ncl,nrh,nrl;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
      /* free an int matrix allocated by imatrix() */    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    where the markup *Covariates have to be included here again* invites
   free((FREE_ARG) (m+nrl-NR_END));    you to do it.  More covariates you add, slower the
 }    convergence.
   
 /******************* matrix *******************************/    The advantage of this computer programme, compared to a simple
 double **matrix(long nrl, long nrh, long ncl, long nch)    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    intermediate interview, the information is lost, but taken into
   double **m;    account using an interpolation or extrapolation.  
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    hPijx is the probability to be observed in state i at age x+h
   if (!m) nrerror("allocation failure 1 in matrix()");    conditional to the observed state i at age x. The delay 'h' can be
   m += NR_END;    split into an exact number (nh*stepm) of unobserved intermediate
   m -= nrl;    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    matrix is simply the matrix product of nh*stepm elementary matrices
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    and the contribution of each individual to the likelihood is simply
   m[nrl] += NR_END;    hPijx.
   m[nrl] -= ncl;  
     Also this programme outputs the covariance matrix of the parameters but also
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    of the life expectancies. It also computes the period (stable) prevalence. 
   return m;    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 /*************************free matrix ************************/    This software have been partly granted by Euro-REVES, a concerted action
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    software can be distributed freely for non commercial use. Latest version
   free((FREE_ARG)(m+nrl-NR_END));    can be accessed at http://euroreves.ined.fr/imach .
 }  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /******************* ma3x *******************************/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    
 {    **********************************************************************/
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /*
   double ***m;    main
     read parameterfile
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    read datafile
   if (!m) nrerror("allocation failure 1 in matrix()");    concatwav
   m += NR_END;    freqsummary
   m -= nrl;    if (mle >= 1)
       mlikeli
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    print results files
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if mle==1 
   m[nrl] += NR_END;       computes hessian
   m[nrl] -= ncl;    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    open gnuplot file
     open html file
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    period (stable) prevalence
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");     for age prevalim()
   m[nrl][ncl] += NR_END;    h Pij x
   m[nrl][ncl] -= nll;    variance of p varprob
   for (j=ncl+1; j<=nch; j++)    forecasting if prevfcast==1 prevforecast call prevalence()
     m[nrl][j]=m[nrl][j-1]+nlay;    health expectancies
      Variance-covariance of DFLE
   for (i=nrl+1; i<=nrh; i++) {    prevalence()
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;     movingaverage()
     for (j=ncl+1; j<=nch; j++)    varevsij() 
       m[i][j]=m[i][j-1]+nlay;    if popbased==1 varevsij(,popbased)
   }    total life expectancies
   return m;    Variance of period (stable) prevalence
 }   end
   */
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));   
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <math.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include <stdio.h>
 }  #include <stdlib.h>
   #include <string.h>
 /***************** f1dim *************************/  #include <unistd.h>
 extern int ncom;  
 extern double *pcom,*xicom;  #include <limits.h>
 extern double (*nrfunc)(double []);  #include <sys/types.h>
    #include <sys/stat.h>
 double f1dim(double x)  #include <errno.h>
 {  extern int errno;
   int j;  
   double f;  #ifdef LINUX
   double *xt;  #include <time.h>
    #include "timeval.h"
   xt=vector(1,ncom);  #else
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #include <sys/time.h>
   f=(*nrfunc)(xt);  #endif
   free_vector(xt,1,ncom);  
   return f;  #ifdef GSL
 }  #include <gsl/gsl_errno.h>
   #include <gsl/gsl_multimin.h>
 /*****************brent *************************/  #endif
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  /* #include <libintl.h> */
   int iter;  /* #define _(String) gettext (String) */
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define GNUPLOTPROGRAM "gnuplot"
   double e=0.0;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    #define FILENAMELENGTH 132
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   x=w=v=bx;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
     xm=0.5*(a+b);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define NINTERVMAX 8
     printf(".");fflush(stdout);  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #ifdef DEBUG  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define NCOVMAX 20 /* Maximum number of covariates */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define MAXN 20000
 #endif  #define YEARM 12. /* Number of months per year */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define AGESUP 130
       *xmin=x;  #define AGEBASE 40
       return fx;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     }  #ifdef UNIX
     ftemp=fu;  #define DIRSEPARATOR '/'
     if (fabs(e) > tol1) {  #define CHARSEPARATOR "/"
       r=(x-w)*(fx-fv);  #define ODIRSEPARATOR '\\'
       q=(x-v)*(fx-fw);  #else
       p=(x-v)*q-(x-w)*r;  #define DIRSEPARATOR '\\'
       q=2.0*(q-r);  #define CHARSEPARATOR "\\"
       if (q > 0.0) p = -p;  #define ODIRSEPARATOR '/'
       q=fabs(q);  #endif
       etemp=e;  
       e=d;  /* $Id$ */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /* $State$ */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  char version[]="Imach version 0.98nR, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
         d=p/q;  char fullversion[]="$Revision$ $Date$"; 
         u=x+d;  char strstart[80];
         if (u-a < tol2 || b-u < tol2)  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
           d=SIGN(tol1,xm-x);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       }  int nvar=0, nforce=0; /* Number of variables, number of forces */
     } else {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int npar=NPARMAX;
     }  int nlstate=2; /* Number of live states */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int ndeath=1; /* Number of dead states */
     fu=(*f)(u);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     if (fu <= fx) {  int popbased=0;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  int *wav; /* Number of waves for this individuual 0 is possible */
         SHFT(fv,fw,fx,fu)  int maxwav=0; /* Maxim number of waves */
         } else {  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
           if (u < x) a=u; else b=u;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
           if (fu <= fw || w == x) {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
             v=w;                     to the likelihood and the sum of weights (done by funcone)*/
             w=u;  int mle=1, weightopt=0;
             fv=fw;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
             fw=fu;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
           } else if (fu <= fv || v == x || v == w) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
             v=u;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
             fv=fu;  double jmean=1; /* Mean space between 2 waves */
           }  double **oldm, **newm, **savm; /* Working pointers to matrices */
         }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   }  /*FILE *fic ; */ /* Used in readdata only */
   nrerror("Too many iterations in brent");  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   *xmin=x;  FILE *ficlog, *ficrespow;
   return fx;  int globpr=0; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx=0; /* Number of contributions */
 /****************** mnbrak ***********************/  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
             double (*func)(double))  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double ulim,u,r,q, dum;  FILE *ficresprobmorprev;
   double fu;  FILE *fichtm, *fichtmcov; /* Html File */
    FILE *ficreseij;
   *fa=(*func)(*ax);  char filerese[FILENAMELENGTH];
   *fb=(*func)(*bx);  FILE *ficresstdeij;
   if (*fb > *fa) {  char fileresstde[FILENAMELENGTH];
     SHFT(dum,*ax,*bx,dum)  FILE *ficrescveij;
       SHFT(dum,*fb,*fa,dum)  char filerescve[FILENAMELENGTH];
       }  FILE  *ficresvij;
   *cx=(*bx)+GOLD*(*bx-*ax);  char fileresv[FILENAMELENGTH];
   *fc=(*func)(*cx);  FILE  *ficresvpl;
   while (*fb > *fc) {  char fileresvpl[FILENAMELENGTH];
     r=(*bx-*ax)*(*fb-*fc);  char title[MAXLINE];
     q=(*bx-*cx)*(*fb-*fa);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  char command[FILENAMELENGTH];
     if ((*bx-u)*(u-*cx) > 0.0) {  int  outcmd=0;
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       fu=(*func)(u);  
       if (fu < *fc) {  char filelog[FILENAMELENGTH]; /* Log file */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  char filerest[FILENAMELENGTH];
           SHFT(*fb,*fc,fu,(*func)(u))  char fileregp[FILENAMELENGTH];
           }  char popfile[FILENAMELENGTH];
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       fu=(*func)(u);  
     } else {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       u=(*cx)+GOLD*(*cx-*bx);  struct timezone tzp;
       fu=(*func)(u);  extern int gettimeofday();
     }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     SHFT(*ax,*bx,*cx,u)  long time_value;
       SHFT(*fa,*fb,*fc,fu)  extern long time();
       }  char strcurr[80], strfor[80];
 }  
   char *endptr;
 /*************** linmin ************************/  long lval;
   double dval;
 int ncom;  
 double *pcom,*xicom;  #define NR_END 1
 double (*nrfunc)(double []);  #define FREE_ARG char*
    #define FTOL 1.0e-10
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  #define NRANSI 
   double brent(double ax, double bx, double cx,  #define ITMAX 200 
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  #define TOL 2.0e-4 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  #define CGOLD 0.3819660 
   int j;  #define ZEPS 1.0e-10 
   double xx,xmin,bx,ax;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double fx,fb,fa;  
    #define GOLD 1.618034 
   ncom=n;  #define GLIMIT 100.0 
   pcom=vector(1,n);  #define TINY 1.0e-20 
   xicom=vector(1,n);  
   nrfunc=func;  static double maxarg1,maxarg2;
   for (j=1;j<=n;j++) {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     pcom[j]=p[j];  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     xicom[j]=xi[j];    
   }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   ax=0.0;  #define rint(a) floor(a+0.5)
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  static double sqrarg;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 #ifdef DEBUG  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int agegomp= AGEGOMP;
 #endif  
   for (j=1;j<=n;j++) {  int imx; 
     xi[j] *= xmin;  int stepm=1;
     p[j] += xi[j];  /* Stepm, step in month: minimum step interpolation*/
   }  
   free_vector(xicom,1,n);  int estepm;
   free_vector(pcom,1,n);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /*************** powell ************************/  long *num;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
             double (*func)(double []))  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   void linmin(double p[], double xi[], int n, double *fret,  double *ageexmed,*agecens;
               double (*func)(double []));  double dateintmean=0;
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  double *weight;
   double fp,fptt;  int **s; /* Status */
   double *xits;  double *agedc;
   pt=vector(1,n);  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
   ptt=vector(1,n);                    * covar=matrix(0,NCOVMAX,1,n); 
   xit=vector(1,n);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   xits=vector(1,n);  double  idx; 
   *fret=(*func)(p);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   for (j=1;j<=n;j++) pt[j]=p[j];  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   for (*iter=1;;++(*iter)) {  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
     fp=(*fret);  double *lsurv, *lpop, *tpop;
     ibig=0;  
     del=0.0;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double ftolhess; /* Tolerance for computing hessian */
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /**************** split *************************/
     printf("\n");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     for (i=1;i<=n;i++) {  {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       fptt=(*fret);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #ifdef DEBUG    */ 
       printf("fret=%lf \n",*fret);    char  *ss;                            /* pointer */
 #endif    int   l1, l2;                         /* length counters */
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);    l1 = strlen(path );                   /* length of path */
       if (fabs(fptt-(*fret)) > del) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         del=fabs(fptt-(*fret));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         ibig=i;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       }      strcpy( name, path );               /* we got the fullname name because no directory */
 #ifdef DEBUG      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       printf("%d %.12e",i,(*fret));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       for (j=1;j<=n;j++) {      /* get current working directory */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      /*    extern  char* getcwd ( char *buf , int len);*/
         printf(" x(%d)=%.12e",j,xit[j]);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       }        return( GLOCK_ERROR_GETCWD );
       for(j=1;j<=n;j++)      }
         printf(" p=%.12e",p[j]);      /* got dirc from getcwd*/
       printf("\n");      printf(" DIRC = %s \n",dirc);
 #endif    } else {                              /* strip direcotry from path */
     }      ss++;                               /* after this, the filename */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      l2 = strlen( ss );                  /* length of filename */
 #ifdef DEBUG      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       int k[2],l;      strcpy( name, ss );         /* save file name */
       k[0]=1;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       k[1]=-1;      dirc[l1-l2] = 0;                    /* add zero */
       printf("Max: %.12e",(*func)(p));      printf(" DIRC2 = %s \n",dirc);
       for (j=1;j<=n;j++)    }
         printf(" %.12e",p[j]);    /* We add a separator at the end of dirc if not exists */
       printf("\n");    l1 = strlen( dirc );                  /* length of directory */
       for(l=0;l<=1;l++) {    if( dirc[l1-1] != DIRSEPARATOR ){
         for (j=1;j<=n;j++) {      dirc[l1] =  DIRSEPARATOR;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      dirc[l1+1] = 0; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      printf(" DIRC3 = %s \n",dirc);
         }    }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    ss = strrchr( name, '.' );            /* find last / */
       }    if (ss >0){
 #endif      ss++;
       strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
       free_vector(xit,1,n);      l2= strlen(ss)+1;
       free_vector(xits,1,n);      strncpy( finame, name, l1-l2);
       free_vector(ptt,1,n);      finame[l1-l2]= 0;
       free_vector(pt,1,n);    }
       return;  
     }    return( 0 );                          /* we're done */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /******************************************/
       pt[j]=p[j];  
     }  void replace_back_to_slash(char *s, char*t)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    int i;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    int lg=0;
       if (t < 0.0) {    i=0;
         linmin(p,xit,n,fret,func);    lg=strlen(t);
         for (j=1;j<=n;j++) {    for(i=0; i<= lg; i++) {
           xi[j][ibig]=xi[j][n];      (s[i] = t[i]);
           xi[j][n]=xit[j];      if (t[i]== '\\') s[i]='/';
         }    }
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  char *trimbb(char *out, char *in)
           printf(" %.12e",xit[j]);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         printf("\n");    char *s;
 #endif    s=out;
       }    while (*in != '\0'){
     }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   }        in++;
 }      }
       *out++ = *in++;
 /**** Prevalence limit ****************/    }
     *out='\0';
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return s;
 {  }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  char *cutv(char *blocc, char *alocc, char *in, char occ)
   {
   int i, ii,j,k;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   double min, max, maxmin, maxmax,sumnew=0.;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double **matprod2();       gives blocc="abcdef2ghi" and alocc="j".
   double **out, cov[NCOVMAX], **pmij();       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   double **newm;    */
   double agefin, delaymax=50 ; /* Max number of years to converge */    char *s, *t;
     t=in;s=in;
   for (ii=1;ii<=nlstate+ndeath;ii++)    while (*in != '\0'){
     for (j=1;j<=nlstate+ndeath;j++){      while( *in == occ){
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        *blocc++ = *in++;
     }        s=in;
       }
    cov[1]=1.;      *blocc++ = *in++;
      }
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (s == t) /* occ not found */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      *(blocc-(in-s))='\0';
     newm=savm;    else
     /* Covariates have to be included here again */      *(blocc-(in-s)-1)='\0';
      cov[2]=agefin;    in=s;
      while ( *in != '\0'){
       for (k=1; k<=cptcovn;k++) {      *alocc++ = *in++;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }    *alocc='\0';
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return s;
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   int nbocc(char *s, char occ)
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    int i,j=0;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    int lg=20;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    i=0;
     lg=strlen(s);
     savm=oldm;    for(i=0; i<= lg; i++) {
     oldm=newm;    if  (s[i] == occ ) j++;
     maxmax=0.;    }
     for(j=1;j<=nlstate;j++){    return j;
       min=1.;  }
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /* void cutv(char *u,char *v, char*t, char occ) */
         sumnew=0;  /* { */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
         prlim[i][j]= newm[i][j]/(1-sumnew);  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
         max=FMAX(max,prlim[i][j]);  /*      gives u="abcdef2ghi" and v="j" *\/ */
         min=FMIN(min,prlim[i][j]);  /*   int i,lg,j,p=0; */
       }  /*   i=0; */
       maxmin=max-min;  /*   lg=strlen(t); */
       maxmax=FMAX(maxmax,maxmin);  /*   for(j=0; j<=lg-1; j++) { */
     }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
     if(maxmax < ftolpl){  /*   } */
       return prlim;  
     }  /*   for(j=0; j<p; j++) { */
   }  /*     (u[j] = t[j]); */
 }  /*   } */
   /*      u[p]='\0'; */
 /*************** transition probabilities ***************/  
   /*    for(j=0; j<= lg; j++) { */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 {  /*   } */
   double s1, s2;  /* } */
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  /********************** nrerror ********************/
   
     for(i=1; i<= nlstate; i++){  void nrerror(char error_text[])
     for(j=1; j<i;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    fprintf(stderr,"ERREUR ...\n");
         /*s2 += param[i][j][nc]*cov[nc];*/    fprintf(stderr,"%s\n",error_text);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    exit(EXIT_FAILURE);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  }
       }  /*********************** vector *******************/
       ps[i][j]=s2;  double *vector(int nl, int nh)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  {
     }    double *v;
     for(j=i+1; j<=nlstate+ndeath;j++){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (!v) nrerror("allocation failure in vector");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return v-nl+NR_END;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
   }  {
     /*ps[3][2]=1;*/    free((FREE_ARG)(v+nl-NR_END));
   }
   for(i=1; i<= nlstate; i++){  
      s1=0;  /************************ivector *******************************/
     for(j=1; j<i; j++)  int *ivector(long nl,long nh)
       s1+=exp(ps[i][j]);  {
     for(j=i+1; j<=nlstate+ndeath; j++)    int *v;
       s1+=exp(ps[i][j]);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     ps[i][i]=1./(s1+1.);    if (!v) nrerror("allocation failure in ivector");
     for(j=1; j<i; j++)    return v-nl+NR_END;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /******************free ivector **************************/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  void free_ivector(int *v, long nl, long nh)
   } /* end i */  {
     free((FREE_ARG)(v+nl-NR_END));
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  /************************lvector *******************************/
       ps[ii][ii]=1;  long *lvector(long nl,long nh)
     }  {
   }    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    return v-nl+NR_END;
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /******************free lvector **************************/
     printf("\n ");  void free_lvector(long *v, long nl, long nh)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    free((FREE_ARG)(v+nl-NR_END));
 /*  }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  /******************* imatrix *******************************/
     return ps;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /**************** Product of 2 matrices ******************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    
 {    /* allocate pointers to rows */ 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    if (!m) nrerror("allocation failure 1 in matrix()"); 
   /* in, b, out are matrice of pointers which should have been initialized    m += NR_END; 
      before: only the contents of out is modified. The function returns    m -= nrl; 
      a pointer to pointers identical to out */    
   long i, j, k;    
   for(i=nrl; i<= nrh; i++)    /* allocate rows and set pointers to them */ 
     for(k=ncolol; k<=ncoloh; k++)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         out[i][k] +=in[i][j]*b[j][k];    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
   return out;    
 }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
     /* return pointer to array of pointers to rows */ 
 /************* Higher Matrix Product ***************/    return m; 
   } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /****************** free_imatrix *************************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  void free_imatrix(m,nrl,nrh,ncl,nch)
      duration (i.e. until        int **m;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        long nch,ncl,nrh,nrl; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       /* free an int matrix allocated by imatrix() */ 
      (typically every 2 years instead of every month which is too big).  { 
      Model is determined by parameters x and covariates have to be    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      included manually here.    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
      */  
   /******************* matrix *******************************/
   int i, j, d, h, k;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double **out, cov[NCOVMAX];  {
   double **newm;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m) nrerror("allocation failure 1 in matrix()");
       oldm[i][j]=(i==j ? 1.0 : 0.0);    m += NR_END;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    m -= nrl;
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for(h=1; h <=nhstepm; h++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(d=1; d <=hstepm; d++){    m[nrl] += NR_END;
       newm=savm;    m[nrl] -= ncl;
       /* Covariates have to be included here again */  
       cov[1]=1.;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    return m;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       for (k=1; k<=cptcovage;k++)     */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    free((FREE_ARG)(m+nrl-NR_END));
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /******************* ma3x *******************************/
       oldm=newm;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     for(i=1; i<=nlstate+ndeath; i++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       for(j=1;j<=nlstate+ndeath;j++) {    double ***m;
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
          */    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
   } /* end h */    m -= nrl;
   return po;  
 }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************** log-likelihood *************/    m[nrl] -= ncl;
 double func( double *x)  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double **out;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double sw; /* Sum of weights */    m[nrl][ncl] += NR_END;
   double lli; /* Individual log likelihood */    m[nrl][ncl] -= nll;
   long ipmx;    for (j=ncl+1; j<=nch; j++) 
   /*extern weight */      m[nrl][j]=m[nrl][j-1]+nlay;
   /* We are differentiating ll according to initial status */    
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    for (i=nrl+1; i<=nrh; i++) {
   /*for(i=1;i<imx;i++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     printf(" %d\n",s[4][i]);      for (j=ncl+1; j<=nch; j++) 
   */        m[i][j]=m[i][j-1]+nlay;
   cov[1]=1.;    }
     return m; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    */
     for(mi=1; mi<= wav[i]-1; mi++){  }
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*************************free ma3x ************************/
       for(d=0; d<dh[mi][i]; d++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         newm=savm;  {
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         for (kk=1; kk<=cptcovage;kk++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    free((FREE_ARG)(m+nrl-NR_END));
         }  }
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*************** function subdirf ***********/
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  char *subdirf(char fileres[])
         savm=oldm;  {
         oldm=newm;    /* Caution optionfilefiname is hidden */
            strcpy(tmpout,optionfilefiname);
            strcat(tmpout,"/"); /* Add to the right */
       } /* end mult */    strcat(tmpout,fileres);
          return tmpout;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  /*************** function subdirf2 ***********/
       sw += weight[i];  char *subdirf2(char fileres[], char *preop)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  {
     } /* end of wave */    
   } /* end of individual */    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    strcat(tmpout,"/");
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    strcat(tmpout,preop);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    strcat(tmpout,fileres);
   return -l;    return tmpout;
 }  }
   
   /*************** function subdirf3 ***********/
 /*********** Maximum Likelihood Estimation ***************/  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    
 {    /* Caution optionfilefiname is hidden */
   int i,j, iter;    strcpy(tmpout,optionfilefiname);
   double **xi,*delti;    strcat(tmpout,"/");
   double fret;    strcat(tmpout,preop);
   xi=matrix(1,npar,1,npar);    strcat(tmpout,preop2);
   for (i=1;i<=npar;i++)    strcat(tmpout,fileres);
     for (j=1;j<=npar;j++)    return tmpout;
       xi[i][j]=(i==j ? 1.0 : 0.0);  }
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  /***************** f1dim *************************/
   extern int ncom; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  extern double *pcom,*xicom;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  extern double (*nrfunc)(double []); 
    
 }  double f1dim(double x) 
   { 
 /**** Computes Hessian and covariance matrix ***/    int j; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    double f;
 {    double *xt; 
   double  **a,**y,*x,pd;   
   double **hess;    xt=vector(1,ncom); 
   int i, j,jk;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   int *indx;    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
   double hessii(double p[], double delta, int theta, double delti[]);    return f; 
   double hessij(double p[], double delti[], int i, int j);  } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   hess=matrix(1,npar,1,npar);  { 
     int iter; 
   printf("\nCalculation of the hessian matrix. Wait...\n");    double a,b,d,etemp;
   for (i=1;i<=npar;i++){    double fu,fv,fw,fx;
     printf("%d",i);fflush(stdout);    double ftemp;
     hess[i][i]=hessii(p,ftolhess,i,delti);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     /*printf(" %f ",p[i]);*/    double e=0.0; 
     /*printf(" %lf ",hess[i][i]);*/   
   }    a=(ax < cx ? ax : cx); 
      b=(ax > cx ? ax : cx); 
   for (i=1;i<=npar;i++) {    x=w=v=bx; 
     for (j=1;j<=npar;j++)  {    fw=fv=fx=(*f)(x); 
       if (j>i) {    for (iter=1;iter<=ITMAX;iter++) { 
         printf(".%d%d",i,j);fflush(stdout);      xm=0.5*(a+b); 
         hess[i][j]=hessij(p,delti,i,j);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         hess[j][i]=hess[i][j];          /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         /*printf(" %lf ",hess[i][j]);*/      printf(".");fflush(stdout);
       }      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   printf("\n");      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  #endif
        if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   a=matrix(1,npar,1,npar);        *xmin=x; 
   y=matrix(1,npar,1,npar);        return fx; 
   x=vector(1,npar);      } 
   indx=ivector(1,npar);      ftemp=fu;
   for (i=1;i<=npar;i++)      if (fabs(e) > tol1) { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        r=(x-w)*(fx-fv); 
   ludcmp(a,npar,indx,&pd);        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   for (j=1;j<=npar;j++) {        q=2.0*(q-r); 
     for (i=1;i<=npar;i++) x[i]=0;        if (q > 0.0) p = -p; 
     x[j]=1;        q=fabs(q); 
     lubksb(a,npar,indx,x);        etemp=e; 
     for (i=1;i<=npar;i++){        e=d; 
       matcov[i][j]=x[i];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }        else { 
           d=p/q; 
   printf("\n#Hessian matrix#\n");          u=x+d; 
   for (i=1;i<=npar;i++) {          if (u-a < tol2 || b-u < tol2) 
     for (j=1;j<=npar;j++) {            d=SIGN(tol1,xm-x); 
       printf("%.3e ",hess[i][j]);        } 
     }      } else { 
     printf("\n");        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /* Recompute Inverse */      fu=(*f)(u); 
   for (i=1;i<=npar;i++)      if (fu <= fx) { 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        if (u >= x) a=x; else b=x; 
   ludcmp(a,npar,indx,&pd);        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   /*  printf("\n#Hessian matrix recomputed#\n");          } else { 
             if (u < x) a=u; else b=u; 
   for (j=1;j<=npar;j++) {            if (fu <= fw || w == x) { 
     for (i=1;i<=npar;i++) x[i]=0;              v=w; 
     x[j]=1;              w=u; 
     lubksb(a,npar,indx,x);              fv=fw; 
     for (i=1;i<=npar;i++){              fw=fu; 
       y[i][j]=x[i];            } else if (fu <= fv || v == x || v == w) { 
       printf("%.3e ",y[i][j]);              v=u; 
     }              fv=fu; 
     printf("\n");            } 
   }          } 
   */    } 
     nrerror("Too many iterations in brent"); 
   free_matrix(a,1,npar,1,npar);    *xmin=x; 
   free_matrix(y,1,npar,1,npar);    return fx; 
   free_vector(x,1,npar);  } 
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);  /****************** mnbrak ***********************/
   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 }              double (*func)(double)) 
   { 
 /*************** hessian matrix ****************/    double ulim,u,r,q, dum;
 double hessii( double x[], double delta, int theta, double delti[])    double fu; 
 {   
   int i;    *fa=(*func)(*ax); 
   int l=1, lmax=20;    *fb=(*func)(*bx); 
   double k1,k2;    if (*fb > *fa) { 
   double p2[NPARMAX+1];      SHFT(dum,*ax,*bx,dum) 
   double res;        SHFT(dum,*fb,*fa,dum) 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        } 
   double fx;    *cx=(*bx)+GOLD*(*bx-*ax); 
   int k=0,kmax=10;    *fc=(*func)(*cx); 
   double l1;    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
   fx=func(x);      q=(*bx-*cx)*(*fb-*fa); 
   for (i=1;i<=npar;i++) p2[i]=x[i];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for(l=0 ; l <=lmax; l++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     l1=pow(10,l);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     delts=delt;      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(k=1 ; k <kmax; k=k+1){        fu=(*func)(u); 
       delt = delta*(l1*k);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       p2[theta]=x[theta] +delt;        fu=(*func)(u); 
       k1=func(p2)-fx;        if (fu < *fc) { 
       p2[theta]=x[theta]-delt;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       k2=func(p2)-fx;            SHFT(*fb,*fc,fu,(*func)(u)) 
       /*res= (k1-2.0*fx+k2)/delt/delt; */            } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
              u=ulim; 
 #ifdef DEBUG        fu=(*func)(u); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      } else { 
 #endif        u=(*cx)+GOLD*(*cx-*bx); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fu=(*func)(u); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      } 
         k=kmax;      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        } 
         k=kmax; l=lmax*10.;  } 
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  /*************** linmin ************************/
         delts=delt;  
       }  int ncom; 
     }  double *pcom,*xicom;
   }  double (*nrfunc)(double []); 
   delti[theta]=delts;   
   return res;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
    { 
 }    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 double hessij( double x[], double delti[], int thetai,int thetaj)    double f1dim(double x); 
 {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   int i;                double *fc, double (*func)(double)); 
   int l=1, l1, lmax=20;    int j; 
   double k1,k2,k3,k4,res,fx;    double xx,xmin,bx,ax; 
   double p2[NPARMAX+1];    double fx,fb,fa;
   int k;   
     ncom=n; 
   fx=func(x);    pcom=vector(1,n); 
   for (k=1; k<=2; k++) {    xicom=vector(1,n); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    nrfunc=func; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    for (j=1;j<=n;j++) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      pcom[j]=p[j]; 
     k1=func(p2)-fx;      xicom[j]=xi[j]; 
      } 
     p2[thetai]=x[thetai]+delti[thetai]/k;    ax=0.0; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    xx=1.0; 
     k2=func(p2)-fx;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     p2[thetai]=x[thetai]-delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     k3=func(p2)-fx;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    #endif
     p2[thetai]=x[thetai]-delti[thetai]/k;    for (j=1;j<=n;j++) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      xi[j] *= xmin; 
     k4=func(p2)-fx;      p[j] += xi[j]; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    } 
 #ifdef DEBUG    free_vector(xicom,1,n); 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    free_vector(pcom,1,n); 
 #endif  } 
   }  
   return res;  char *asc_diff_time(long time_sec, char ascdiff[])
 }  {
     long sec_left, days, hours, minutes;
 /************** Inverse of matrix **************/    days = (time_sec) / (60*60*24);
 void ludcmp(double **a, int n, int *indx, double *d)    sec_left = (time_sec) % (60*60*24);
 {    hours = (sec_left) / (60*60) ;
   int i,imax,j,k;    sec_left = (sec_left) %(60*60);
   double big,dum,sum,temp;    minutes = (sec_left) /60;
   double *vv;    sec_left = (sec_left) % (60);
      sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   vv=vector(1,n);    return ascdiff;
   *d=1.0;  }
   for (i=1;i<=n;i++) {  
     big=0.0;  /*************** powell ************************/
     for (j=1;j<=n;j++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       if ((temp=fabs(a[i][j])) > big) big=temp;              double (*func)(double [])) 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  { 
     vv[i]=1.0/big;    void linmin(double p[], double xi[], int n, double *fret, 
   }                double (*func)(double [])); 
   for (j=1;j<=n;j++) {    int i,ibig,j; 
     for (i=1;i<j;i++) {    double del,t,*pt,*ptt,*xit;
       sum=a[i][j];    double fp,fptt;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double *xits;
       a[i][j]=sum;    int niterf, itmp;
     }  
     big=0.0;    pt=vector(1,n); 
     for (i=j;i<=n;i++) {    ptt=vector(1,n); 
       sum=a[i][j];    xit=vector(1,n); 
       for (k=1;k<j;k++)    xits=vector(1,n); 
         sum -= a[i][k]*a[k][j];    *fret=(*func)(p); 
       a[i][j]=sum;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    for (*iter=1;;++(*iter)) { 
         big=dum;      fp=(*fret); 
         imax=i;      ibig=0; 
       }      del=0.0; 
     }      last_time=curr_time;
     if (j != imax) {      (void) gettimeofday(&curr_time,&tzp);
       for (k=1;k<=n;k++) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         dum=a[imax][k];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         a[imax][k]=a[j][k];  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         a[j][k]=dum;     for (i=1;i<=n;i++) {
       }        printf(" %d %.12f",i, p[i]);
       *d = -(*d);        fprintf(ficlog," %d %.12lf",i, p[i]);
       vv[imax]=vv[j];        fprintf(ficrespow," %.12lf", p[i]);
     }      }
     indx[j]=imax;      printf("\n");
     if (a[j][j] == 0.0) a[j][j]=TINY;      fprintf(ficlog,"\n");
     if (j != n) {      fprintf(ficrespow,"\n");fflush(ficrespow);
       dum=1.0/(a[j][j]);      if(*iter <=3){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        tm = *localtime(&curr_time.tv_sec);
     }        strcpy(strcurr,asctime(&tm));
   }  /*       asctime_r(&tm,strcurr); */
   free_vector(vv,1,n);  /* Doesn't work */        forecast_time=curr_time; 
 ;        itmp = strlen(strcurr);
 }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
 void lubksb(double **a, int n, int *indx, double b[])        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   int i,ii=0,ip,j;        for(niterf=10;niterf<=30;niterf+=10){
   double sum;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
   for (i=1;i<=n;i++) {  /*      asctime_r(&tmf,strfor); */
     ip=indx[i];          strcpy(strfor,asctime(&tmf));
     sum=b[ip];          itmp = strlen(strfor);
     b[ip]=b[i];          if(strfor[itmp-1]=='\n')
     if (ii)          strfor[itmp-1]='\0';
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     else if (sum) ii=i;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     b[i]=sum;        }
   }      }
   for (i=n;i>=1;i--) {      for (i=1;i<=n;i++) { 
     sum=b[i];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        fptt=(*fret); 
     b[i]=sum/a[i][i];  #ifdef DEBUG
   }        printf("fret=%lf \n",*fret);
 }        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
 /************ Frequencies ********************/        printf("%d",i);fflush(stdout);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        fprintf(ficlog,"%d",i);fflush(ficlog);
 {  /* Some frequencies */        linmin(p,xit,n,fret,func); 
          if (fabs(fptt-(*fret)) > del) { 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          del=fabs(fptt-(*fret)); 
   double ***freq; /* Frequencies */          ibig=i; 
   double *pp;        } 
   double pos, k2, dateintsum=0,k2cpt=0;  #ifdef DEBUG
   FILE *ficresp;        printf("%d %.12e",i,(*fret));
   char fileresp[FILENAMELENGTH];        fprintf(ficlog,"%d %.12e",i,(*fret));
          for (j=1;j<=n;j++) {
   pp=vector(1,nlstate);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          printf(" x(%d)=%.12e",j,xit[j]);
   strcpy(fileresp,"p");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   strcat(fileresp,fileres);        }
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for(j=1;j<=n;j++) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);          printf(" p=%.12e",p[j]);
     exit(0);          fprintf(ficlog," p=%.12e",p[j]);
   }        }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        printf("\n");
   j1=0;        fprintf(ficlog,"\n");
    #endif
   j=cptcoveff;      } 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
    #ifdef DEBUG
   for(k1=1; k1<=j;k1++){        int k[2],l;
     for(i1=1; i1<=ncodemax[k1];i1++){        k[0]=1;
       j1++;        k[1]=-1;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        printf("Max: %.12e",(*func)(p));
         scanf("%d", i);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
       for (i=-1; i<=nlstate+ndeath; i++)          for (j=1;j<=n;j++) {
         for (jk=-1; jk<=nlstate+ndeath; jk++)            printf(" %.12e",p[j]);
           for(m=agemin; m <= agemax+3; m++)          fprintf(ficlog," %.12e",p[j]);
             freq[i][jk][m]=0;        }
              printf("\n");
       dateintsum=0;        fprintf(ficlog,"\n");
       k2cpt=0;        for(l=0;l<=1;l++) {
       for (i=1; i<=imx; i++) {          for (j=1;j<=n;j++) {
         bool=1;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         if  (cptcovn>0) {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           for (z1=1; z1<=cptcoveff; z1++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          }
               bool=0;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         if (bool==1) {        }
           for(m=firstpass; m<=lastpass; m++){  #endif
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;        free_vector(xit,1,n); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        free_vector(xits,1,n); 
               if (m<lastpass) {        free_vector(ptt,1,n); 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        free_vector(pt,1,n); 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        return; 
               }      } 
                    if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      for (j=1;j<=n;j++) { 
                 dateintsum=dateintsum+k2;        ptt[j]=2.0*p[j]-pt[j]; 
                 k2cpt++;        xit[j]=p[j]-pt[j]; 
               }        pt[j]=p[j]; 
             }      } 
           }      fptt=(*func)(ptt); 
         }      if (fptt < fp) { 
       }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
                if (t < 0.0) { 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
       if  (cptcovn>0) {            xi[j][ibig]=xi[j][n]; 
         fprintf(ficresp, "\n#********** Variable ");            xi[j][n]=xit[j]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }
         fprintf(ficresp, "**********\n#");  #ifdef DEBUG
       }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(i=1; i<=nlstate;i++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          for(j=1;j<=n;j++){
       fprintf(ficresp, "\n");            printf(" %.12e",xit[j]);
                  fprintf(ficlog," %.12e",xit[j]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){          }
         if(i==(int)agemax+3)          printf("\n");
           printf("Total");          fprintf(ficlog,"\n");
         else  #endif
           printf("Age %d", i);        }
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    } 
             pp[jk] += freq[jk][m][i];  } 
         }  
         for(jk=1; jk <=nlstate ; jk++){  /**** Prevalence limit (stable or period prevalence)  ****************/
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           if(pp[jk]>=1.e-10)  {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           else       matrix by transitions matrix until convergence is reached */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
         }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
         for(jk=1; jk <=nlstate ; jk++){    double **matprod2();
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double **out, cov[NCOVMAX+1], **pmij();
             pp[jk] += freq[jk][m][i];    double **newm;
         }    double agefin, delaymax=50 ; /* Max number of years to converge */
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)    for (ii=1;ii<=nlstate+ndeath;ii++)
           pos += pp[jk];      for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(pos>=1.e-5)      }
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           else     cov[1]=1.;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);   
           if( i <= (int) agemax){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             if(pos>=1.e-5){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      newm=savm;
               probs[i][jk][j1]= pp[jk]/pos;      /* Covariates have to be included here again */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      cov[2]=agefin;
             }      
             else      for (k=1; k<=cptcovn;k++) {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           }        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }      }
              for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(jk=-1; jk <=nlstate+ndeath; jk++)      for (k=1; k<=cptcovprod;k++)
           for(m=-1; m <=nlstate+ndeath; m++)        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      
         if(i <= (int) agemax)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           fprintf(ficresp,"\n");      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         printf("\n");      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
     }      
   }      savm=oldm;
   dateintmean=dateintsum/k2cpt;      oldm=newm;
        maxmax=0.;
   fclose(ficresp);      for(j=1;j<=nlstate;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        min=1.;
   free_vector(pp,1,nlstate);        max=0.;
          for(i=1; i<=nlstate; i++) {
   /* End of Freq */          sumnew=0;
 }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
 /************ Prevalence ********************/          max=FMAX(max,prlim[i][j]);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          min=FMIN(min,prlim[i][j]);
 {  /* Some frequencies */        }
          maxmin=max-min;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        maxmax=FMAX(maxmax,maxmin);
   double ***freq; /* Frequencies */      }
   double *pp;      if(maxmax < ftolpl){
   double pos, k2;        return prlim;
       }
   pp=vector(1,nlstate);    }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*************** transition probabilities ***************/ 
   j1=0;  
    double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* According to parameters values stored in x and the covariate's values stored in cov,
         computes the probability to be observed in state j being in state i by appying the
   for(k1=1; k1<=j;k1++){       model to the ncovmodel covariates (including constant and age).
     for(i1=1; i1<=ncodemax[k1];i1++){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
       j1++;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
             ncth covariate in the global vector x is given by the formula:
       for (i=-1; i<=nlstate+ndeath; i++)         j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         for (jk=-1; jk<=nlstate+ndeath; jk++)         j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           for(m=agemin; m <= agemax+3; m++)       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
             freq[i][jk][m]=0;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
             Outputs ps[i][j] the probability to be observed in j being in j according to
       for (i=1; i<=imx; i++) {       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         bool=1;    */
         if  (cptcovn>0) {    double s1, lnpijopii;
           for (z1=1; z1<=cptcoveff; z1++)    /*double t34;*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    int i,j,j1, nc, ii, jj;
               bool=0;  
         }      for(i=1; i<= nlstate; i++){
         if (bool==1) {        for(j=1; j<i;j++){
           for(m=firstpass; m<=lastpass; m++){          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             k2=anint[m][i]+(mint[m][i]/12.);            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
               if(agev[m][i]==0) agev[m][i]=agemax+1;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          }
               if (m<lastpass) {          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                 if (calagedate>0)  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        }
                 else        for(j=i+1; j<=nlstate+ndeath;j++){
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
               }            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
             }  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }          }
         }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       }        }
       for(i=(int)agemin; i <= (int)agemax+3; i++){      }
         for(jk=1; jk <=nlstate ; jk++){      
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for(i=1; i<= nlstate; i++){
             pp[jk] += freq[jk][m][i];        s1=0;
         }        for(j=1; j<i; j++){
         for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           for(m=-1, pos=0; m <=0 ; m++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             pos += freq[jk][m][i];        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
                  s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for(jk=1; jk <=nlstate ; jk++){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        }
             pp[jk] += freq[jk][m][i];        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         }        ps[i][i]=1./(s1+1.);
                /* Computing other pijs */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        for(j=1; j<i; j++)
                  ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(jk=1; jk <=nlstate ; jk++){            for(j=i+1; j<=nlstate+ndeath; j++)
           if( i <= (int) agemax){          ps[i][j]= exp(ps[i][j])*ps[i][i];
             if(pos>=1.e-5){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
               probs[i][jk][j1]= pp[jk]/pos;      } /* end i */
             }      
           }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         }        for(jj=1; jj<= nlstate+ndeath; jj++){
                  ps[ii][jj]=0;
       }          ps[ii][ii]=1;
     }        }
   }      }
       
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   free_vector(pp,1,nlstate);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
 }  /* End of Freq */  /*       } */
   /*       printf("\n "); */
 /************* Waves Concatenation ***************/  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)         /*
 {        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        goto end;*/
      Death is a valid wave (if date is known).      return ps;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  /**************** Product of 2 matrices ******************/
      */  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   int i, mi, m;  {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      double sum=0., jmean=0.;*/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   int j, k=0,jk, ju, jl;       before: only the contents of out is modified. The function returns
   double sum=0.;       a pointer to pointers identical to out */
   jmin=1e+5;    long i, j, k;
   jmax=-1;    for(i=nrl; i<= nrh; i++)
   jmean=0.;      for(k=ncolol; k<=ncoloh; k++)
   for(i=1; i<=imx; i++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     mi=0;          out[i][k] +=in[i][j]*b[j][k];
     m=firstpass;  
     while(s[m][i] <= nlstate){    return out;
       if(s[m][i]>=1)  }
         mw[++mi][i]=m;  
       if(m >=lastpass)  
         break;  /************* Higher Matrix Product ***************/
       else  
         m++;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }/* end while */  {
     if (s[m][i] > nlstate){    /* Computes the transition matrix starting at age 'age' over 
       mi++;     /* Death is another wave */       'nhstepm*hstepm*stepm' months (i.e. until
       /* if(mi==0)  never been interviewed correctly before death */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
          /* Only death is a correct wave */       nhstepm*hstepm matrices. 
       mw[mi][i]=m;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
        for the memory).
     wav[i]=mi;       Model is determined by parameters x and covariates have to be 
     if(mi==0)       included manually here. 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }       */
   
   for(i=1; i<=imx; i++){    int i, j, d, h, k;
     for(mi=1; mi<wav[i];mi++){    double **out, cov[NCOVMAX+1];
       if (stepm <=0)    double **newm;
         dh[mi][i]=1;  
       else{    /* Hstepm could be zero and should return the unit matrix */
         if (s[mw[mi+1][i]][i] > nlstate) {    for (i=1;i<=nlstate+ndeath;i++)
           if (agedc[i] < 2*AGESUP) {      for (j=1;j<=nlstate+ndeath;j++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        oldm[i][j]=(i==j ? 1.0 : 0.0);
           if(j==0) j=1;  /* Survives at least one month after exam */        po[i][j][0]=(i==j ? 1.0 : 0.0);
           k=k+1;      }
           if (j >= jmax) jmax=j;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           if (j <= jmin) jmin=j;    for(h=1; h <=nhstepm; h++){
           sum=sum+j;      for(d=1; d <=hstepm; d++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        newm=savm;
           }        /* Covariates have to be included here again */
         }        cov[1]=1.;
         else{        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for (k=1; k<=cptcovn;k++) 
           k=k+1;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           if (j >= jmax) jmax=j;        for (k=1; k<=cptcovage;k++)
           else if (j <= jmin)jmin=j;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for (k=1; k<=cptcovprod;k++)
           sum=sum+j;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }  
         jk= j/stepm;  
         jl= j -jk*stepm;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         ju= j -(jk+1)*stepm;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         if(jl <= -ju)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           dh[mi][i]=jk;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         else        savm=oldm;
           dh[mi][i]=jk+1;        oldm=newm;
         if(dh[mi][i]==0)      }
           dh[mi][i]=1; /* At least one step */      for(i=1; i<=nlstate+ndeath; i++)
       }        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
   }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   jmean=sum/k;        }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      /*printf("h=%d ",h);*/
  }    } /* end h */
 /*********** Tricode ****************************/  /*     printf("\n H=%d \n",h); */
 void tricode(int *Tvar, int **nbcode, int imx)    return po;
 {  }
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;  
   cptcoveff=0;  /*************** log-likelihood *************/
    double func( double *x)
   for (k=0; k<19; k++) Ndum[k]=0;  {
   for (k=1; k<=7; k++) ncodemax[k]=0;    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double **out;
     for (i=1; i<=imx; i++) {    double sw; /* Sum of weights */
       ij=(int)(covar[Tvar[j]][i]);    double lli; /* Individual log likelihood */
       Ndum[ij]++;    int s1, s2;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double bbh, survp;
       if (ij > cptcode) cptcode=ij;    long ipmx;
     }    /*extern weight */
     /* We are differentiating ll according to initial status */
     for (i=0; i<=cptcode; i++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if(Ndum[i]!=0) ncodemax[j]++;    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     ij=1;    */
     cov[1]=1.;
   
     for (i=1; i<=ncodemax[j]; i++) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {    if(mle==1){
           nbcode[Tvar[j]][ij]=k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                  /* Computes the values of the ncovmodel covariates of the model
           ij++;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
         if (ij > ncodemax[j]) break;           to be observed in j being in i according to the model.
       }           */
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }          /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
  for (k=0; k<19; k++) Ndum[k]=0;           has been calculated etc */
         for(mi=1; mi<= wav[i]-1; mi++){
  for (i=1; i<=ncovmodel-2; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       ij=Tvar[i];            for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  ij=1;          for(d=0; d<dh[mi][i]; d++){
  for (i=1; i<=10; i++) {            newm=savm;
    if((Ndum[i]!=0) && (i<=ncovcol)){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      Tvaraff[ij]=i;            for (kk=1; kk<=cptcovage;kk++) {
      ij++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
    }            }
  }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     cptcoveff=ij-1;            savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /*********** Health Expectancies ****************/        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {           * (in months) between two waves is not a multiple of stepm, we rounded to 
   /* Health expectancies */           * the nearest (and in case of equal distance, to the lowest) interval but now
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double age, agelim, hf;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double ***p3mat,***varhe;           * probability in order to take into account the bias as a fraction of the way
   double **dnewm,**doldm;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   double *xp;           * -stepm/2 to stepm/2 .
   double **gp, **gm;           * For stepm=1 the results are the same as for previous versions of Imach.
   double ***gradg, ***trgradg;           * For stepm > 1 the results are less biased than in previous versions. 
   int theta;           */
           s1=s[mw[mi][i]][i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          s2=s[mw[mi+1][i]][i];
   xp=vector(1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
   dnewm=matrix(1,nlstate*2,1,npar);          /* bias bh is positive if real duration
   doldm=matrix(1,nlstate*2,1,nlstate*2);           * is higher than the multiple of stepm and negative otherwise.
             */
   fprintf(ficreseij,"# Health expectancies\n");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   fprintf(ficreseij,"# Age");          if( s2 > nlstate){ 
   for(i=1; i<=nlstate;i++)            /* i.e. if s2 is a death state and if the date of death is known 
     for(j=1; j<=nlstate;j++)               then the contribution to the likelihood is the probability to 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);               die between last step unit time and current  step unit time, 
   fprintf(ficreseij,"\n");               which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
   if(estepm < stepm){               In version up to 0.92 likelihood was computed
     printf ("Problem %d lower than %d\n",estepm, stepm);          as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
   else  hstepm=estepm;            and not the date of a change in health state. The former idea was
   /* We compute the life expectancy from trapezoids spaced every estepm months          to consider that at each interview the state was recorded
    * This is mainly to measure the difference between two models: for example          (healthy, disable or death) and IMaCh was corrected; but when we
    * if stepm=24 months pijx are given only every 2 years and by summing them          introduced the exact date of death then we should have modified
    * we are calculating an estimate of the Life Expectancy assuming a linear          the contribution of an exact death to the likelihood. This new
    * progression inbetween and thus overestimating or underestimating according          contribution is smaller and very dependent of the step unit
    * to the curvature of the survival function. If, for the same date, we          stepm. It is no more the probability to die between last interview
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          and month of death but the probability to survive from last
    * to compare the new estimate of Life expectancy with the same linear          interview up to one month before death multiplied by the
    * hypothesis. A more precise result, taking into account a more precise          probability to die within a month. Thanks to Chris
    * curvature will be obtained if estepm is as small as stepm. */          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
   /* For example we decided to compute the life expectancy with the smallest unit */          which slows down the processing. The difference can be up to 10%
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          lower mortality.
      nhstepm is the number of hstepm from age to agelim            */
      nstepm is the number of stepm from age to agelin.            lli=log(out[s1][s2] - savm[s1][s2]);
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          } else if  (s2==-2) {
      survival function given by stepm (the optimization length). Unfortunately it            for (j=1,survp=0. ; j<=nlstate; j++) 
      means that if the survival funtion is printed only each two years of age and if              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            /*survp += out[s1][j]; */
      results. So we changed our mind and took the option of the best precision.            lli= log(survp);
   */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          
           else if  (s2==-4) { 
   agelim=AGESUP;            for (j=3,survp=0. ; j<=nlstate; j++)  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* nhstepm age range expressed in number of stepm */            lli= log(survp); 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          } 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/          else if  (s2==-5) { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            for (j=1,survp=0. ; j<=2; j++)  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            lli= log(survp); 
     gp=matrix(0,nhstepm,1,nlstate*2);          } 
     gm=matrix(0,nhstepm,1,nlstate*2);          
           else{
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            } 
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
     /* Computing Variances of health expectancies */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      for(theta=1; theta <=npar; theta++){        } /* end of wave */
       for(i=1; i<=npar; i++){      } /* end of individual */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
       cptj=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate; j++){            for (j=1;j<=nlstate+ndeath;j++){
         for(i=1; i<=nlstate; i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cptj=cptj+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          for(d=0; d<=dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
       for(i=1; i<=npar; i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              savm=oldm;
                  oldm=newm;
       cptj=0;          } /* end mult */
       for(j=1; j<= nlstate; j++){        
         for(i=1;i<=nlstate;i++){          s1=s[mw[mi][i]][i];
           cptj=cptj+1;          s2=s[mw[mi+1][i]][i];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          bbh=(double)bh[mi][i]/(double)stepm; 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           }          ipmx +=1;
         }          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              } /* end of wave */
          } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
       for(j=1; j<= nlstate*2; j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(h=0; h<=nhstepm-1; h++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
      }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /* End theta */            }
           for(d=0; d<dh[mi][i]; d++){
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      for(h=0; h<=nhstepm-1; h++)            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<=nlstate*2;j++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(theta=1; theta <=npar; theta++)            }
         trgradg[h][j][theta]=gradg[h][theta][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
      for(i=1;i<=nlstate*2;i++)            oldm=newm;
       for(j=1;j<=nlstate*2;j++)          } /* end mult */
         varhe[i][j][(int)age] =0.;        
           s1=s[mw[mi][i]][i];
      printf("%d||",(int)age);fflush(stdout);          s2=s[mw[mi+1][i]][i];
     for(h=0;h<=nhstepm-1;h++){          bbh=(double)bh[mi][i]/(double)stepm; 
       for(k=0;k<=nhstepm-1;k++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          ipmx +=1;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          sw += weight[i];
         for(i=1;i<=nlstate*2;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(j=1;j<=nlstate*2;j++)        } /* end of wave */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      } /* end of individual */
       }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
     /* Computing expectancies */          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            }
                    for(d=0; d<dh[mi][i]; d++){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(ficreseij,"%3.0f",age );            }
     cptj=0;          
     for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<=nlstate;j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         cptj++;            savm=oldm;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            oldm=newm;
       }          } /* end mult */
     fprintf(ficreseij,"\n");        
              s1=s[mw[mi][i]][i];
     free_matrix(gm,0,nhstepm,1,nlstate*2);          s2=s[mw[mi+1][i]][i];
     free_matrix(gp,0,nhstepm,1,nlstate*2);          if( s2 > nlstate){ 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);            lli=log(out[s1][s2] - savm[s1][s2]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          }else{
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          }
   free_vector(xp,1,npar);          ipmx +=1;
   free_matrix(dnewm,1,nlstate*2,1,npar);          sw += weight[i];
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 }        } /* end of wave */
       } /* end of individual */
 /************ Variance ******************/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Variance of health expectancies */        for(mi=1; mi<= wav[i]-1; mi++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **newm;            for (j=1;j<=nlstate+ndeath;j++){
   double **dnewm,**doldm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm ;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k, cptcode;            }
   double *xp;          for(d=0; d<dh[mi][i]; d++){
   double **gp, **gm;            newm=savm;
   double ***gradg, ***trgradg;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***p3mat;            for (kk=1; kk<=cptcovage;kk++) {
   double age,agelim, hf;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int theta;            }
           
    fprintf(ficresvij,"# Covariances of life expectancies\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(ficresvij,"# Age");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=nlstate;i++)            savm=oldm;
     for(j=1; j<=nlstate;j++)            oldm=newm;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          } /* end mult */
   fprintf(ficresvij,"\n");        
           s1=s[mw[mi][i]][i];
   xp=vector(1,npar);          s2=s[mw[mi+1][i]][i];
   dnewm=matrix(1,nlstate,1,npar);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   doldm=matrix(1,nlstate,1,nlstate);          ipmx +=1;
            sw += weight[i];
   if(estepm < stepm){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf ("Problem %d lower than %d\n",estepm, stepm);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   }        } /* end of wave */
   else  hstepm=estepm;        } /* end of individual */
   /* For example we decided to compute the life expectancy with the smallest unit */    } /* End of if */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      nhstepm is the number of hstepm from age to agelim    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      nstepm is the number of stepm from age to agelin.    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      Look at hpijx to understand the reason of that which relies in memory size    return -l;
      and note for a fixed period like k years */  }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  /*************** log-likelihood *************/
      means that if the survival funtion is printed only each two years of age and if  double funcone( double *x)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  {
      results. So we changed our mind and took the option of the best precision.    /* Same as likeli but slower because of a lot of printf and if */
   */    int i, ii, j, k, mi, d, kk;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   agelim = AGESUP;    double **out;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double lli; /* Individual log likelihood */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double llt;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int s1, s2;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double bbh, survp;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /*extern weight */
     gp=matrix(0,nhstepm,1,nlstate);    /* We are differentiating ll according to initial status */
     gm=matrix(0,nhstepm,1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     for(theta=1; theta <=npar; theta++){      printf(" %d\n",s[4][i]);
       for(i=1; i<=npar; i++){ /* Computes gradient */    */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    cov[1]=1.;
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(k=1; k<=nlstate; k++) ll[k]=0.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if (popbased==1) {      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(i=1; i<=nlstate;i++)      for(mi=1; mi<= wav[i]-1; mi++){
           prlim[i][i]=probs[(int)age][i][ij];        for (ii=1;ii<=nlstate+ndeath;ii++)
       }          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        for(d=0; d<dh[mi][i]; d++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          newm=savm;
         }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }          for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          savm=oldm;
            oldm=newm;
       if (popbased==1) {        } /* end mult */
         for(i=1; i<=nlstate;i++)        
           prlim[i][i]=probs[(int)age][i][ij];        s1=s[mw[mi][i]][i];
       }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<= nlstate; j++){        /* bias is positive if real duration
         for(h=0; h<=nhstepm; h++){         * is higher than the multiple of stepm and negative otherwise.
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)         */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         }          lli=log(out[s1][s2] - savm[s1][s2]);
       }        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
       for(j=1; j<= nlstate; j++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(h=0; h<=nhstepm; h++){          lli= log(survp);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        }else if (mle==1){
         }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     } /* End theta */        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(h=0; h<=nhstepm; h++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(j=1; j<=nlstate;j++)          lli=log(out[s1][s2]); /* Original formula */
         for(theta=1; theta <=npar; theta++)        } else{  /* mle=0 back to 1 */
           trgradg[h][j][theta]=gradg[h][theta][j];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*lli=log(out[s1][s2]); */ /* Original formula */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        } /* End of if */
     for(i=1;i<=nlstate;i++)        ipmx +=1;
       for(j=1;j<=nlstate;j++)        sw += weight[i];
         vareij[i][j][(int)age] =0.;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(h=0;h<=nhstepm;h++){        if(globpr){
       for(k=0;k<=nhstepm;k++){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);   %11.6f %11.6f %11.6f ", \
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         for(i=1;i<=nlstate;i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(j=1;j<=nlstate;j++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     }          }
           fprintf(ficresilk," %10.6f\n", -llt);
     fprintf(ficresvij,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)      } /* end of wave */
       for(j=1; j<=nlstate;j++){    } /* end of individual */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     fprintf(ficresvij,"\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     free_matrix(gp,0,nhstepm,1,nlstate);    if(globpr==0){ /* First time we count the contributions and weights */
     free_matrix(gm,0,nhstepm,1,nlstate);      gipmx=ipmx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      gsw=sw;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return -l;
   } /* End age */  }
    
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  /*************** function likelione ***********/
   free_matrix(dnewm,1,nlstate,1,nlstate);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
 }    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
 /************ Variance of prevlim ******************/       to check the exact contribution to the likelihood.
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)       Plotting could be done.
 {     */
   /* Variance of prevalence limit */    int k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    if(*globpri !=0){ /* Just counts and sums, no printings */
   double **dnewm,**doldm;      strcpy(fileresilk,"ilk"); 
   int i, j, nhstepm, hstepm;      strcat(fileresilk,fileres);
   int k, cptcode;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double *xp;        printf("Problem with resultfile: %s\n", fileresilk);
   double *gp, *gm;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   double **gradg, **trgradg;      }
   double age,agelim;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int theta;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
          /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      for(k=1; k<=nlstate; k++) 
   fprintf(ficresvpl,"# Age");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   for(i=1; i<=nlstate;i++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       fprintf(ficresvpl," %1d-%1d",i,i);    }
   fprintf(ficresvpl,"\n");  
     *fretone=(*funcone)(p);
   xp=vector(1,npar);    if(*globpri !=0){
   dnewm=matrix(1,nlstate,1,npar);      fclose(ficresilk);
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        fflush(fichtm); 
   hstepm=1*YEARM; /* Every year of age */    } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    return;
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;  /*********** Maximum Likelihood Estimation ***************/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     gp=vector(1,nlstate);  {
     gm=vector(1,nlstate);    int i,j, iter;
     double **xi;
     for(theta=1; theta <=npar; theta++){    double fret;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double fretone; /* Only one call to likelihood */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /*  char filerespow[FILENAMELENGTH];*/
       }    xi=matrix(1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++)
       for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++)
         gp[i] = prlim[i][i];        xi[i][j]=(i==j ? 1.0 : 0.0);
        printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(i=1; i<=npar; i++) /* Computes gradient */    strcpy(filerespow,"pow"); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcat(filerespow,fileres);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(i=1;i<=nlstate;i++)      printf("Problem with resultfile: %s\n", filerespow);
         gm[i] = prlim[i][i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
       for(i=1;i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    for (i=1;i<=nlstate;i++)
     } /* End theta */      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     trgradg =matrix(1,nlstate,1,npar);    fprintf(ficrespow,"\n");
   
     for(j=1; j<=nlstate;j++)    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
     for(i=1;i<=nlstate;i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       varpl[i][(int)age] =0.;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   /**** Computes Hessian and covariance matrix ***/
     fprintf(ficresvpl,"%.0f ",age );  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double  **a,**y,*x,pd;
     fprintf(ficresvpl,"\n");    double **hess;
     free_vector(gp,1,nlstate);    int i, j,jk;
     free_vector(gm,1,nlstate);    int *indx;
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   } /* End age */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
   free_vector(xp,1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   free_matrix(doldm,1,nlstate,1,npar);    double gompertz(double p[]);
   free_matrix(dnewm,1,nlstate,1,nlstate);    hess=matrix(1,npar,1,npar);
   
 }    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 /************ Variance of one-step probabilities  ******************/    for (i=1;i<=npar;i++){
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      printf("%d",i);fflush(stdout);
 {      fprintf(ficlog,"%d",i);fflush(ficlog);
   int i, j, i1, k1, j1, z1;     
   int k=0, cptcode;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double **dnewm,**doldm;      
   double *xp;      /*  printf(" %f ",p[i]);
   double *gp, *gm;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double **gradg, **trgradg;    }
   double age,agelim, cov[NCOVMAX];    
   int theta;    for (i=1;i<=npar;i++) {
   char fileresprob[FILENAMELENGTH];      for (j=1;j<=npar;j++)  {
         if (j>i) { 
   strcpy(fileresprob,"prob");          printf(".%d%d",i,j);fflush(stdout);
   strcat(fileresprob,fileres);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          hess[i][j]=hessij(p,delti,i,j,func,npar);
     printf("Problem with resultfile: %s\n", fileresprob);          
   }          hess[j][i]=hess[i][j];    
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          /*printf(" %lf ",hess[i][j]);*/
          }
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      }
   fprintf(ficresprob,"# Age");    }
   for(i=1; i<=nlstate;i++)    printf("\n");
     for(j=1; j<=(nlstate+ndeath);j++)    fprintf(ficlog,"\n");
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficresprob,"\n");    
     a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   xp=vector(1,npar);    x=vector(1,npar);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    indx=ivector(1,npar);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   cov[1]=1;    ludcmp(a,npar,indx,&pd);
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (j=1;j<=npar;j++) {
   j1=0;      for (i=1;i<=npar;i++) x[i]=0;
   for(k1=1; k1<=1;k1++){      x[j]=1;
     for(i1=1; i1<=ncodemax[k1];i1++){      lubksb(a,npar,indx,x);
     j1++;      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
     if  (cptcovn>0) {      }
       fprintf(ficresprob, "\n#********** Variable ");    }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
       fprintf(ficresprob, "**********\n#");    printf("\n#Hessian matrix#\n");
     }    fprintf(ficlog,"\n#Hessian matrix#\n");
        for (i=1;i<=npar;i++) { 
       for (age=bage; age<=fage; age ++){      for (j=1;j<=npar;j++) { 
         cov[2]=age;        printf("%.3e ",hess[i][j]);
         for (k=1; k<=cptcovn;k++) {        fprintf(ficlog,"%.3e ",hess[i][j]);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      }
                printf("\n");
         }      fprintf(ficlog,"\n");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    }
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* Recompute Inverse */
            for (i=1;i<=npar;i++)
         gradg=matrix(1,npar,1,9);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         trgradg=matrix(1,9,1,npar);    ludcmp(a,npar,indx,&pd);
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    /*  printf("\n#Hessian matrix recomputed#\n");
      
         for(theta=1; theta <=npar; theta++){    for (j=1;j<=npar;j++) {
           for(i=1; i<=npar; i++)      for (i=1;i<=npar;i++) x[i]=0;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      x[j]=1;
                lubksb(a,npar,indx,x);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (i=1;i<=npar;i++){ 
                  y[i][j]=x[i];
           k=0;        printf("%.3e ",y[i][j]);
           for(i=1; i<= (nlstate+ndeath); i++){        fprintf(ficlog,"%.3e ",y[i][j]);
             for(j=1; j<=(nlstate+ndeath);j++){      }
               k=k+1;      printf("\n");
               gp[k]=pmmij[i][j];      fprintf(ficlog,"\n");
             }    }
           }    */
            
           for(i=1; i<=npar; i++)    free_matrix(a,1,npar,1,npar);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_matrix(y,1,npar,1,npar);
        free_vector(x,1,npar);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_ivector(indx,1,npar);
           k=0;    free_matrix(hess,1,npar,1,npar);
           for(i=1; i<=(nlstate+ndeath); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;  }
               gm[k]=pmmij[i][j];  
             }  /*************** hessian matrix ****************/
           }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
        {
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    int i;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      int l=1, lmax=20;
         }    double k1,k2;
     double p2[MAXPARM+1]; /* identical to x */
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    double res;
           for(theta=1; theta <=npar; theta++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
             trgradg[j][theta]=gradg[theta][j];    double fx;
            int k=0,kmax=10;
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    double l1;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);  
            fx=func(x);
         pmij(pmmij,cov,ncovmodel,x,nlstate);    for (i=1;i<=npar;i++) p2[i]=x[i];
            for(l=0 ; l <=lmax; l++){
         k=0;      l1=pow(10,l);
         for(i=1; i<=(nlstate+ndeath); i++){      delts=delt;
           for(j=1; j<=(nlstate+ndeath);j++){      for(k=1 ; k <kmax; k=k+1){
             k=k+1;        delt = delta*(l1*k);
             gm[k]=pmmij[i][j];        p2[theta]=x[theta] +delt;
           }        k1=func(p2)-fx;
         }        p2[theta]=x[theta]-delt;
              k2=func(p2)-fx;
      /*printf("\n%d ",(int)age);        /*res= (k1-2.0*fx+k2)/delt/delt; */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        
      }*/  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficresprob,"\n%d ",(int)age);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            k=kmax;
       }        }
     }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          k=kmax; l=lmax*10.;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          delts=delt;
   }        }
   free_vector(xp,1,npar);      }
   fclose(ficresprob);    }
      delti[theta]=delts;
 }    return res; 
     
 /******************* Printing html file ***********/  }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
  int lastpass, int stepm, int weightopt, char model[],\  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  {
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    int i;
  char version[], int popforecast, int estepm ){    int l=1, l1, lmax=20;
   int jj1, k1, i1, cpt;    double k1,k2,k3,k4,res,fx;
   FILE *fichtm;    double p2[MAXPARM+1];
   /*char optionfilehtm[FILENAMELENGTH];*/    int k;
   
   strcpy(optionfilehtm,optionfile);    fx=func(x);
   strcat(optionfilehtm,".htm");    for (k=1; k<=2; k++) {
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      for (i=1;i<=npar;i++) p2[i]=x[i];
     printf("Problem with %s \n",optionfilehtm), exit(0);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      p2[thetai]=x[thetai]+delti[thetai]/k;
 \n      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 Total number of observations=%d <br>\n      k2=func(p2)-fx;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    
 <hr  size=\"2\" color=\"#EC5E5E\">      p2[thetai]=x[thetai]-delti[thetai]/k;
  <ul><li>Outputs files<br>\n      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      k3=func(p2)-fx;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      p2[thetai]=x[thetai]-delti[thetai]/k;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      k4=func(p2)-fx;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
  fprintf(fichtm,"\n      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  #endif
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    return res;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  }
   
  if(popforecast==1) fprintf(fichtm,"\n  /************** Inverse of matrix **************/
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  void ludcmp(double **a, int n, int *indx, double *d) 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  { 
         <br>",fileres,fileres,fileres,fileres);    int i,imax,j,k; 
  else    double big,dum,sum,temp; 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    double *vv; 
 fprintf(fichtm," <li>Graphs</li><p>");   
     vv=vector(1,n); 
  m=cptcoveff;    *d=1.0; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for (i=1;i<=n;i++) { 
       big=0.0; 
  jj1=0;      for (j=1;j<=n;j++) 
  for(k1=1; k1<=m;k1++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
    for(i1=1; i1<=ncodemax[k1];i1++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
        jj1++;      vv[i]=1.0/big; 
        if (cptcovn > 0) {    } 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    for (j=1;j<=n;j++) { 
          for (cpt=1; cpt<=cptcoveff;cpt++)      for (i=1;i<j;i++) { 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        sum=a[i][j]; 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
        }        a[i][j]=sum; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.png<br>      } 
 <img src=\"pe%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          big=0.0; 
        for(cpt=1; cpt<nlstate;cpt++){      for (i=j;i<=n;i++) { 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.png<br>        sum=a[i][j]; 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for (k=1;k<j;k++) 
        }          sum -= a[i][k]*a[k][j]; 
     for(cpt=1; cpt<=nlstate;cpt++) {        a[i][j]=sum; 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 interval) in state (%d): v%s%d%d.png <br>          big=dum; 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            imax=i; 
      }        } 
      for(cpt=1; cpt<=nlstate;cpt++) {      } 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      if (j != imax) { 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for (k=1;k<=n;k++) { 
      }          dum=a[imax][k]; 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          a[imax][k]=a[j][k]; 
 health expectancies in states (1) and (2): e%s%d.png<br>          a[j][k]=dum; 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        } 
 fprintf(fichtm,"\n</body>");        *d = -(*d); 
    }        vv[imax]=vv[j]; 
    }      } 
 fclose(fichtm);      indx[j]=imax; 
 }      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
 /******************* Gnuplot file **************/        dum=1.0/(a[j][j]); 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    } 
     free_vector(vv,1,n);  /* Doesn't work */
   strcpy(optionfilegnuplot,optionfilefiname);  ;
   strcat(optionfilegnuplot,".gp.txt");  } 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);  void lubksb(double **a, int n, int *indx, double b[]) 
   }  { 
     int i,ii=0,ip,j; 
 #ifdef windows    double sum; 
     fprintf(ficgp,"cd \"%s\" \n",pathc);   
 #endif    for (i=1;i<=n;i++) { 
 m=pow(2,cptcoveff);      ip=indx[i]; 
        sum=b[ip]; 
  /* 1eme*/      b[ip]=b[i]; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {      if (ii) 
    for (k1=1; k1<= m ; k1 ++) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
 #ifdef windows      b[i]=sum; 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);    } 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    for (i=n;i>=1;i--) { 
 #endif      sum=b[i]; 
 #ifdef unix      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);      b[i]=sum/a[i][i]; 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    } 
 #endif  } 
   
 for (i=1; i<= nlstate ; i ++) {  void pstamp(FILE *fichier)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 }  }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {  /************ Frequencies ********************/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {  /* Some frequencies */
 }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    int i, m, jk, k1,i1, j1, bool, z1,j;
      for (i=1; i<= nlstate ; i ++) {    int first;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double ***freq; /* Frequencies */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *pp, **prop;
 }      double pos,posprop, k2, dateintsum=0,k2cpt=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    char fileresp[FILENAMELENGTH];
 #ifdef unix    
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    pp=vector(1,nlstate);
 #endif    prop=matrix(1,nlstate,iagemin,iagemax+3);
    }    strcpy(fileresp,"p");
   }    strcat(fileresp,fileres);
   /*2 eme*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   for (k1=1; k1<= m ; k1 ++) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n\n",strtok(optionfile, "."),k1);      exit(0);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    }
        freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for (i=1; i<= nlstate+1 ; i ++) {    j1=0;
       k=2*i;    
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    j=cptcoveff;
       for (j=1; j<= nlstate+1 ; j ++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    first=1;
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    for(k1=1; k1<=j;k1++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        j1++;
       for (j=1; j<= nlstate+1 ; j ++) {        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          scanf("%d", i);*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for (i=-5; i<=nlstate+ndeath; i++)  
 }            for (jk=-5; jk<=nlstate+ndeath; jk++)  
       fprintf(ficgp,"\" t\"\" w l 0,");            for(m=iagemin; m <= iagemax+3; m++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              freq[i][jk][m]=0;
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1; i<=nlstate; i++)  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(m=iagemin; m <= iagemax+3; m++)
 }            prop[i][m]=0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        
       else fprintf(ficgp,"\" t\"\" w l 0,");        dateintsum=0;
     }        k2cpt=0;
   }        for (i=1; i<=imx; i++) {
            bool=1;
   /*3eme*/          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   for (k1=1; k1<= m ; k1 ++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for (cpt=1; cpt<= nlstate ; cpt ++) {                bool=0;
       k=2+nlstate*(2*cpt-2);          }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);          if (bool==1){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            for(m=firstpass; m<=lastpass; m++){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              k2=anint[m][i]+(mint[m][i]/12.);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 */                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for (i=1; i< nlstate ; i ++) {                }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       }                  dateintsum=dateintsum+k2;
     }                  k2cpt++;
   }                }
                  /*}*/
   /* CV preval stat */            }
     for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<nlstate ; cpt ++) {        }
       k=3;         
       fprintf(ficgp,"set out \"p%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        pstamp(ficresp);
         if  (cptcovn>0) {
       for (i=1; i< nlstate ; i ++)          fprintf(ficresp, "\n#********** Variable "); 
         fprintf(ficgp,"+$%d",k+i+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          fprintf(ficresp, "**********\n#");
              }
       l=3+(nlstate+ndeath)*cpt;        for(i=1; i<=nlstate;i++) 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for (i=1; i< nlstate ; i ++) {        fprintf(ficresp, "\n");
         l=3+(nlstate+ndeath)*cpt;        
         fprintf(ficgp,"+$%d",l+i+1);        for(i=iagemin; i <= iagemax+3; i++){
       }          if(i==iagemax+3){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              fprintf(ficlog,"Total");
     }          }else{
   }              if(first==1){
                first=0;
   /* proba elementaires */              printf("See log file for details...\n");
    for(i=1,jk=1; i <=nlstate; i++){            }
     for(k=1; k <=(nlstate+ndeath); k++){            fprintf(ficlog,"Age %d", i);
       if (k != i) {          }
         for(j=1; j <=ncovmodel; j++){          for(jk=1; jk <=nlstate ; jk++){
                    for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              pp[jk] += freq[jk][m][i]; 
           jk++;          }
           fprintf(ficgp,"\n");          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pos=0; m <=0 ; m++)
       }              pos += freq[jk][m][i];
     }            if(pp[jk]>=1.e-10){
    }              if(first==1){
                 printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    for(jk=1; jk <=m; jk++) {              }
      fprintf(ficgp,"\nset out \"pe%s%d.png\" \n\n",strtok(optionfile, "."),jk);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            }else{
      i=1;              if(first==1)
      for(k2=1; k2<=nlstate; k2++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
        k3=i;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
        for(k=1; k<=(nlstate+ndeath); k++) {            }
          if (k != k2){          }
            fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
            ij=1;          for(jk=1; jk <=nlstate ; jk++){
            for(j=3; j <=ncovmodel; j++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
              if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              pp[jk] += freq[jk][m][i];
                fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }       
                ij++;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              }            pos += pp[jk];
              else            posprop += prop[jk][i];
                fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
            }          for(jk=1; jk <=nlstate ; jk++){
            fprintf(ficgp,")/(1");            if(pos>=1.e-5){
                          if(first==1)
            for(k1=1; k1 <=nlstate; k1++){                  printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
              ij=1;            }else{
              for(j=3; j <=ncovmodel; j++){              if(first==1)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                  ij++;            }
                }            if( i <= iagemax){
                else              if(pos>=1.e-5){
                  fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
              }                /*probs[i][jk][j1]= pp[jk]/pos;*/
              fprintf(ficgp,")");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
            }              }
            fprintf(ficgp,") t \"p%d%d\" ", k2,k);              else
            if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
            i=i+ncovmodel;            }
          }          }
        }          
      }          for(jk=-1; jk <=nlstate+ndeath; jk++)
    }            for(m=-1; m <=nlstate+ndeath; m++)
                  if(freq[jk][m][i] !=0 ) {
    fclose(ficgp);              if(first==1)
 }  /* end gnuplot */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
 /*************** Moving average **************/          if(i <= iagemax)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            fprintf(ficresp,"\n");
           if(first==1)
   int i, cpt, cptcod;            printf("Others in log...\n");
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          fprintf(ficlog,"\n");
       for (i=1; i<=nlstate;i++)        }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      }
           mobaverage[(int)agedeb][i][cptcod]=0.;    }
        dateintmean=dateintsum/k2cpt; 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){   
       for (i=1; i<=nlstate;i++){    fclose(ficresp);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           for (cpt=0;cpt<=4;cpt++){    free_vector(pp,1,nlstate);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           }    /* End of Freq */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  }
         }  
       }  /************ Prevalence ********************/
     }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
      {  
 }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
 /************** Forecasting ******************/    */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){   
      int i, m, jk, k1, i1, j1, bool, z1,j;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double ***freq; /* Frequencies */
   int *popage;    double *pp, **prop;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double pos,posprop; 
   double *popeffectif,*popcount;    double  y2; /* in fractional years */
   double ***p3mat;    int iagemin, iagemax;
   char fileresf[FILENAMELENGTH];  
     iagemin= (int) agemin;
  agelim=AGESUP;    iagemax= (int) agemax;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      j1=0;
      
   strcpy(fileresf,"f");    j=cptcoveff;
   strcat(fileresf,fileres);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if((ficresf=fopen(fileresf,"w"))==NULL) {    
     printf("Problem with forecast resultfile: %s\n", fileresf);    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);        j1++;
         
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   if (mobilav==1) {            prop[i][m]=0.0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for (i=1; i<=imx; i++) { /* Each individual */
   }          bool=1;
           if  (cptcovn>0) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for (z1=1; z1<=cptcoveff; z1++) 
   if (stepm<=12) stepsize=1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   agelim=AGESUP;          } 
            if (bool==1) { 
   hstepm=1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   hstepm=hstepm/stepm;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   yp1=modf(dateintmean,&yp);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   anprojmean=yp;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   yp2=modf((yp1*12),&yp);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   mprojmean=yp;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   yp1=modf((yp2*30.5),&yp);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   jprojmean=yp;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   if(jprojmean==0) jprojmean=1;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if(mprojmean==0) jprojmean=1;                  prop[s[m][i]][iagemax+3] += weight[i]; 
                  } 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              }
              } /* end selection of waves */
   for(cptcov=1;cptcov<=i2;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;        for(i=iagemin; i <= iagemax+3; i++){  
       fprintf(ficresf,"\n#******");          
       for(j=1;j<=cptcoveff;j++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            posprop += prop[jk][i]; 
       }          } 
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");          for(jk=1; jk <=nlstate ; jk++){     
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            if( i <=  iagemax){ 
                    if(posprop>=1.e-5){ 
                      probs[i][jk][j1]= prop[jk][i]/posprop;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              } else
         fprintf(ficresf,"\n");                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              } 
           }/* end jk */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }/* end i */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      } /* end i1 */
           nhstepm = nhstepm/hstepm;    } /* end k1 */
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           oldm=oldms;savm=savms;    /*free_vector(pp,1,nlstate);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
          }  /* End of prevalence */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  /************* Waves Concatenation ***************/
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             for(j=1; j<=nlstate+ndeath;j++) {  {
               kk1=0.;kk2=0;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               for(i=1; i<=nlstate;i++) {                     Death is a valid wave (if date is known).
                 if (mobilav==1)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                 else {       and mw[mi+1][i]. dh depends on stepm.
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       */
                 }  
                    int i, mi, m;
               }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               if (h==(int)(calagedate+12*cpt)){       double sum=0., jmean=0.;*/
                 fprintf(ficresf," %.3f", kk1);    int first;
                            int j, k=0,jk, ju, jl;
               }    double sum=0.;
             }    first=0;
           }    jmin=1e+5;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    jmax=-1;
         }    jmean=0.;
       }    for(i=1; i<=imx; i++){
     }      mi=0;
   }      m=firstpass;
              while(s[m][i] <= nlstate){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
   fclose(ficresf);        if(m >=lastpass)
 }          break;
 /************** Forecasting ******************/        else
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          m++;
        }/* end while */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      if (s[m][i] > nlstate){
   int *popage;        mi++;     /* Death is another wave */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        /* if(mi==0)  never been interviewed correctly before death */
   double *popeffectif,*popcount;           /* Only death is a correct wave */
   double ***p3mat,***tabpop,***tabpopprev;        mw[mi][i]=m;
   char filerespop[FILENAMELENGTH];      }
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      wav[i]=mi;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if(mi==0){
   agelim=AGESUP;        nbwarn++;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          first=1;
          }
          if(first==1){
   strcpy(filerespop,"pop");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   strcat(filerespop,fileres);        }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      } /* end mi==0 */
     printf("Problem with forecast resultfile: %s\n", filerespop);    } /* End individuals */
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        if (stepm <=0)
           dh[mi][i]=1;
   if (mobilav==1) {        else{
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     movingaverage(agedeb, fage, ageminpar, mobaverage);            if (agedc[i] < 2*AGESUP) {
   }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
   stepsize=(int) (stepm+YEARM-1)/YEARM;              else if(j<0){
   if (stepm<=12) stepsize=1;                nberr++;
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   agelim=AGESUP;                j=1; /* Temporary Dangerous patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   hstepm=1;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   hstepm=hstepm/stepm;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                }
   if (popforecast==1) {              k=k+1;
     if((ficpop=fopen(popfile,"r"))==NULL) {              if (j >= jmax){
       printf("Problem with population file : %s\n",popfile);exit(0);                jmax=j;
     }                ijmax=i;
     popage=ivector(0,AGESUP);              }
     popeffectif=vector(0,AGESUP);              if (j <= jmin){
     popcount=vector(0,AGESUP);                jmin=j;
                    ijmin=i;
     i=1;                }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              sum=sum+j;
                  /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     imx=i;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            }
   }          }
           else{
   for(cptcov=1;cptcov<=i2;cptcov++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       k=k+1;  
       fprintf(ficrespop,"\n#******");            k=k+1;
       for(j=1;j<=cptcoveff;j++) {            if (j >= jmax) {
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              jmax=j;
       }              ijmax=i;
       fprintf(ficrespop,"******\n");            }
       fprintf(ficrespop,"# Age");            else if (j <= jmin){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              jmin=j;
       if (popforecast==1)  fprintf(ficrespop," [Population]");              ijmin=i;
                  }
       for (cpt=0; cpt<=0;cpt++) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                    if(j<0){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              nberr++;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           nhstepm = nhstepm/hstepm;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            sum=sum+j;
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            jk= j/stepm;
                  jl= j -jk*stepm;
           for (h=0; h<=nhstepm; h++){          ju= j -(jk+1)*stepm;
             if (h==(int) (calagedate+YEARM*cpt)) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            if(jl==0){
             }              dh[mi][i]=jk;
             for(j=1; j<=nlstate+ndeath;j++) {              bh[mi][i]=0;
               kk1=0.;kk2=0;            }else{ /* We want a negative bias in order to only have interpolation ie
               for(i=1; i<=nlstate;i++) {                                  * to avoid the price of an extra matrix product in likelihood */
                 if (mobilav==1)              dh[mi][i]=jk+1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              bh[mi][i]=ju;
                 else {            }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          }else{
                 }            if(jl <= -ju){
               }              dh[mi][i]=jk;
               if (h==(int)(calagedate+12*cpt)){              bh[mi][i]=jl;       /* bias is positive if real duration
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                                   * is higher than the multiple of stepm and negative otherwise.
                   /*fprintf(ficrespop," %.3f", kk1);                                   */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            }
               }            else{
             }              dh[mi][i]=jk+1;
             for(i=1; i<=nlstate;i++){              bh[mi][i]=ju;
               kk1=0.;            }
                 for(j=1; j<=nlstate;j++){            if(dh[mi][i]==0){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              dh[mi][i]=1; /* At least one step */
                 }              bh[mi][i]=ju; /* At least one step */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }            }
           } /* end if mle */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      } /* end wave */
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    jmean=sum/k;
         }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }
   /******/  
   /*********** Tricode ****************************/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  void tricode(int *Tvar, int **nbcode, int imx)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* Uses cptcovn+2*cptcovprod as the number of covariates */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
           nhstepm = nhstepm/hstepm;  
              int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int modmaxcovj=0; /* Modality max of covariates j */
           oldm=oldms;savm=savms;    cptcoveff=0; 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     
           for (h=0; h<=nhstepm; h++){    for (k=0; k<maxncov; k++) Ndum[k]=0;
             if (h==(int) (calagedate+YEARM*cpt)) {    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
             for(j=1; j<=nlstate+ndeath;j++) {      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
               kk1=0.;kk2=0;                                 modality of this covariate Vj*/ 
               for(i=1; i<=nlstate;i++) {                      ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                                            modality of the nth covariate of individual i. */
               }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
             }        if (ij > modmaxcovj) modmaxcovj=ij; 
           }        /* getting the maximum value of the modality of the covariate
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         }           female is 1, then modmaxcovj=1.*/
       }      }
    }      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   }      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
          if( Ndum[i] != 0 )
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          ncodemax[j]++; 
         /* Number of modalities of the j th covariate. In fact
   if (popforecast==1) {           ncodemax[j]=2 (dichotom. variables only) but it could be more for
     free_ivector(popage,0,AGESUP);           historical reasons */
     free_vector(popeffectif,0,AGESUP);      } /* Ndum[-1] number of undefined modalities */
     free_vector(popcount,0,AGESUP);  
   }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      ij=1; 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
   fclose(ficrespop);        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
 }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 /***********************************************/                                       k is a modality. If we have model=V1+V1*sex 
 /**************** Main Program *****************/                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 /***********************************************/            ij++;
           }
 int main(int argc, char *argv[])          if (ij > ncodemax[j]) break; 
 {        }  /* end of loop on */
       } /* end of loop on modality */ 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   double agedeb, agefin,hf;    
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    for (k=0; k< maxncov; k++) Ndum[k]=0;
     
   double fret;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   double **xi,tmp,delta;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   double dum; /* Dummy variable */     Ndum[ij]++;
   double ***p3mat;   }
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];   ij=1;
   char title[MAXLINE];   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];     if((Ndum[i]!=0) && (i<=ncovcol)){
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];       Tvaraff[ij]=i; /*For printing */
         ij++;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];     }
    }
   char filerest[FILENAMELENGTH];   ij--;
   char fileregp[FILENAMELENGTH];   cptcoveff=ij; /*Number of simple covariates*/
   char popfile[FILENAMELENGTH];  }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;  /*********** Health Expectancies ****************/
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  {
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    /* Health expectancies, no variances */
   int mobilav=0,popforecast=0;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   int hstepm, nhstepm;    int nhstepma, nstepma; /* Decreasing with age */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    double age, agelim, hf;
     double ***p3mat;
   double bage, fage, age, agelim, agebase;    double eip;
   double ftolpl=FTOL;  
   double **prlim;    pstamp(ficreseij);
   double *severity;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   double ***param; /* Matrix of parameters */    fprintf(ficreseij,"# Age");
   double  *p;    for(i=1; i<=nlstate;i++){
   double **matcov; /* Matrix of covariance */      for(j=1; j<=nlstate;j++){
   double ***delti3; /* Scale */        fprintf(ficreseij," e%1d%1d ",i,j);
   double *delti; /* Scale */      }
   double ***eij, ***vareij;      fprintf(ficreseij," e%1d. ",i);
   double **varpl; /* Variances of prevalence limits by age */    }
   double *epj, vepp;    fprintf(ficreseij,"\n");
   double kk1, kk2;  
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    
      if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";    }
   char *alph[]={"a","a","b","c","d","e"}, str[4];    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   char z[1]="c", occ;     * if stepm=24 months pijx are given only every 2 years and by summing them
 #include <sys/time.h>     * we are calculating an estimate of the Life Expectancy assuming a linear 
 #include <time.h>     * progression in between and thus overestimating or underestimating according
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];     * to the curvature of the survival function. If, for the same date, we 
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /* long total_usecs;     * to compare the new estimate of Life expectancy with the same linear 
   struct timeval start_time, end_time;     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("\n%s",version);       nhstepm is the number of hstepm from age to agelim 
   if(argc <=1){       nstepm is the number of stepm from age to agelin. 
     printf("\nEnter the parameter file name: ");       Look at hpijx to understand the reason of that which relies in memory size
     scanf("%s",pathtot);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else{       survival function given by stepm (the optimization length). Unfortunately it
     strcpy(pathtot,argv[1]);       means that if the survival funtion is printed only each two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       results. So we changed our mind and took the option of the best precision.
   /*cygwin_split_path(pathtot,path,optionfile);    */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /* cutv(path,optionfile,pathtot,'\\');*/  
     agelim=AGESUP;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    /* If stepm=6 months */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   chdir(path);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   replace(pathc,path);      
   /* nhstepm age range expressed in number of stepm */
 /*-------- arguments in the command line --------*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcpy(fileres,"r");    /* if (stepm >= YEARM) hstepm=1;*/
   strcat(fileres, optionfilefiname);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcat(fileres,".txt");    /* Other files have txt extension */    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   /*---------arguments file --------*/    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     printf("Problem with optionfile %s\n",optionfile);      /* if (stepm >= YEARM) hstepm=1;*/
     goto end;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   }  
       /* If stepm=6 months */
   strcpy(filereso,"o");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   strcat(filereso,fileres);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if((ficparo=fopen(filereso,"w"))==NULL) {      
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   }      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){      printf("%d|",(int)age);fflush(stdout);
     ungetc(c,ficpar);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fgets(line, MAXLINE, ficpar);      
     puts(line);      /* Computing expectancies */
     fputs(line,ficparo);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   ungetc(c,ficpar);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficreseij,"%3.0f",age );
     puts(line);      for(i=1; i<=nlstate;i++){
     fputs(line,ficparo);        eip=0;
   }        for(j=1; j<=nlstate;j++){
   ungetc(c,ficpar);          eip +=eij[i][j][(int)age];
            fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
            }
   covar=matrix(0,NCOVMAX,1,n);        fprintf(ficreseij,"%9.4f", eip );
   cptcovn=0;      }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      fprintf(ficreseij,"\n");
       
   ncovmodel=2+cptcovn;    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   /* Read guess parameters */    fprintf(ficlog,"\n");
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     puts(line);  
     fputs(line,ficparo);  {
   }    /* Covariances of health expectancies eij and of total life expectancies according
   ungetc(c,ficpar);     to initial status i, ei. .
      */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     for(i=1; i <=nlstate; i++)    int nhstepma, nstepma; /* Decreasing with age */
     for(j=1; j <=nlstate+ndeath-1; j++){    double age, agelim, hf;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double ***p3matp, ***p3matm, ***varhe;
       fprintf(ficparo,"%1d%1d",i1,j1);    double **dnewm,**doldm;
       printf("%1d%1d",i,j);    double *xp, *xm;
       for(k=1; k<=ncovmodel;k++){    double **gp, **gm;
         fscanf(ficpar," %lf",&param[i][j][k]);    double ***gradg, ***trgradg;
         printf(" %lf",param[i][j][k]);    int theta;
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    double eip, vip;
       fscanf(ficpar,"\n");  
       printf("\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       fprintf(ficparo,"\n");    xp=vector(1,npar);
     }    xm=vector(1,npar);
      dnewm=matrix(1,nlstate*nlstate,1,npar);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   p=param[1][1];    pstamp(ficresstdeij);
      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficresstdeij,"# Age");
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++){
     ungetc(c,ficpar);      for(j=1; j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     puts(line);      fprintf(ficresstdeij," e%1d. ",i);
     fputs(line,ficparo);    }
   }    fprintf(ficresstdeij,"\n");
   ungetc(c,ficpar);  
     pstamp(ficrescveij);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficrescveij,"# Age");
   for(i=1; i <=nlstate; i++){    for(i=1; i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){      for(j=1; j<=nlstate;j++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);        cptj= (j-1)*nlstate+i;
       printf("%1d%1d",i,j);        for(i2=1; i2<=nlstate;i2++)
       fprintf(ficparo,"%1d%1d",i1,j1);          for(j2=1; j2<=nlstate;j2++){
       for(k=1; k<=ncovmodel;k++){            cptj2= (j2-1)*nlstate+i2;
         fscanf(ficpar,"%le",&delti3[i][j][k]);            if(cptj2 <= cptj)
         printf(" %le",delti3[i][j][k]);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         fprintf(ficparo," %le",delti3[i][j][k]);          }
       }      }
       fscanf(ficpar,"\n");    fprintf(ficrescveij,"\n");
       printf("\n");    
       fprintf(ficparo,"\n");    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   delti=delti3[1][1];    else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
   /* Reads comments: lines beginning with '#' */     * This is mainly to measure the difference between two models: for example
   while((c=getc(ficpar))=='#' && c!= EOF){     * if stepm=24 months pijx are given only every 2 years and by summing them
     ungetc(c,ficpar);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     fgets(line, MAXLINE, ficpar);     * progression in between and thus overestimating or underestimating according
     puts(line);     * to the curvature of the survival function. If, for the same date, we 
     fputs(line,ficparo);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
   ungetc(c,ficpar);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){    /* For example we decided to compute the life expectancy with the smallest unit */
     fscanf(ficpar,"%s",&str);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     printf("%s",str);       nhstepm is the number of hstepm from age to agelim 
     fprintf(ficparo,"%s",str);       nstepm is the number of stepm from age to agelin. 
     for(j=1; j <=i; j++){       Look at hpijx to understand the reason of that which relies in memory size
       fscanf(ficpar," %le",&matcov[i][j]);       and note for a fixed period like estepm months */
       printf(" %.5le",matcov[i][j]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficparo," %.5le",matcov[i][j]);       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed only each two years of age and if
     fscanf(ficpar,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     printf("\n");       results. So we changed our mind and took the option of the best precision.
     fprintf(ficparo,"\n");    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)    /* If stepm=6 months */
       matcov[i][j]=matcov[j][i];    /* nhstepm age range expressed in number of stepm */
        agelim=AGESUP;
   printf("\n");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     /*-------- Rewriting paramater file ----------*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      strcpy(rfileres,"r");    /* "Rparameterfile */    
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      strcat(rfileres,".");    /* */    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     if((ficres =fopen(rfileres,"w"))==NULL) {    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(ficres,"#%s\n",version);  
        for (age=bage; age<=fage; age ++){ 
     /*-------- data file ----------*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     if((fic=fopen(datafile,"r"))==NULL)    {      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       printf("Problem with datafile: %s\n", datafile);goto end;      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
     n= lastobs;      /* If stepm=6 months */
     severity = vector(1,maxwav);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     outcome=imatrix(1,maxwav+1,1,n);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     num=ivector(1,n);      
     moisnais=vector(1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     annais=vector(1,n);  
     moisdc=vector(1,n);      /* Computing  Variances of health expectancies */
     andc=vector(1,n);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     agedc=vector(1,n);         decrease memory allocation */
     cod=ivector(1,n);      for(theta=1; theta <=npar; theta++){
     weight=vector(1,n);        for(i=1; i<=npar; i++){ 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     mint=matrix(1,maxwav,1,n);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     anint=matrix(1,maxwav,1,n);        }
     s=imatrix(1,maxwav+1,1,n);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     adl=imatrix(1,maxwav+1,1,n);            hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     tab=ivector(1,NCOVMAX);    
     ncodemax=ivector(1,8);        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
     i=1;            for(h=0; h<=nhstepm-1; h++){
     while (fgets(line, MAXLINE, fic) != NULL)    {              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       if ((i >= firstobs) && (i <=lastobs)) {              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                    }
         for (j=maxwav;j>=1;j--){          }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        }
           strcpy(line,stra);       
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(ij=1; ij<= nlstate*nlstate; ij++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(h=0; h<=nhstepm-1; h++){
         }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                  }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      }/* End theta */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      
       
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(h=0; h<=nhstepm-1; h++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            trgradg[h][j][theta]=gradg[h][theta][j];
         for (j=ncovcol;j>=1;j--){      
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }       for(ij=1;ij<=nlstate*nlstate;ij++)
         num[i]=atol(stra);        for(ji=1;ji<=nlstate*nlstate;ji++)
                  varhe[ij][ji][(int)age] =0.;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         i=i+1;       for(h=0;h<=nhstepm-1;h++){
       }        for(k=0;k<=nhstepm-1;k++){
     }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     /* printf("ii=%d", ij);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
        scanf("%d",i);*/          for(ij=1;ij<=nlstate*nlstate;ij++)
   imx=i-1; /* Number of individuals */            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   /* for (i=1; i<=imx; i++){        }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      /* Computing expectancies */
     }*/      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
    /*  for (i=1; i<=imx; i++){      for(i=1; i<=nlstate;i++)
      if (s[4][i]==9)  s[4][i]=-1;        for(j=1; j<=nlstate;j++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
              
   /* Calculation of the number of parameter from char model*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);          }
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);      fprintf(ficresstdeij,"%3.0f",age );
   Tage=ivector(1,15);            for(i=1; i<=nlstate;i++){
            eip=0.;
   if (strlen(model) >1){        vip=0.;
     j=0, j1=0, k1=1, k2=1;        for(j=1; j<=nlstate;j++){
     j=nbocc(model,'+');          eip += eij[i][j][(int)age];
     j1=nbocc(model,'*');          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     cptcovn=j+1;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     cptcovprod=j1;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
            }
     strcpy(modelsav,model);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      }
       printf("Error. Non available option model=%s ",model);      fprintf(ficresstdeij,"\n");
       goto end;  
     }      fprintf(ficrescveij,"%3.0f",age );
          for(i=1; i<=nlstate;i++)
     for(i=(j+1); i>=1;i--){        for(j=1; j<=nlstate;j++){
       cutv(stra,strb,modelsav,'+');          cptj= (j-1)*nlstate+i;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          for(i2=1; i2<=nlstate;i2++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            for(j2=1; j2<=nlstate;j2++){
       /*scanf("%d",i);*/              cptj2= (j2-1)*nlstate+i2;
       if (strchr(strb,'*')) {              if(cptj2 <= cptj)
         cutv(strd,strc,strb,'*');                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         if (strcmp(strc,"age")==0) {            }
           cptcovprod--;        }
           cutv(strb,stre,strd,'V');      fprintf(ficrescveij,"\n");
           Tvar[i]=atoi(stre);     
           cptcovage++;    }
             Tage[cptcovage]=i;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
             /*printf("stre=%s ", stre);*/    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         else if (strcmp(strd,"age")==0) {    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           cptcovprod--;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cutv(strb,stre,strc,'V');    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvar[i]=atoi(stre);    printf("\n");
           cptcovage++;    fprintf(ficlog,"\n");
           Tage[cptcovage]=i;  
         }    free_vector(xm,1,npar);
         else {    free_vector(xp,1,npar);
           cutv(strb,stre,strc,'V');    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           Tvar[i]=ncovcol+k1;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           cutv(strb,strc,strd,'V');    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           Tprod[k1]=i;  }
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);  /************ Variance ******************/
           Tvar[cptcovn+k2]=Tvard[k1][1];  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  {
           for (k=1; k<=lastobs;k++)    /* Variance of health expectancies */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           k1++;    /* double **newm;*/
           k2=k2+2;    double **dnewm,**doldm;
         }    double **dnewmp,**doldmp;
       }    int i, j, nhstepm, hstepm, h, nstepm ;
       else {    int k, cptcode;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double *xp;
        /*  scanf("%d",i);*/    double **gp, **gm;  /* for var eij */
       cutv(strd,strc,strb,'V');    double ***gradg, ***trgradg; /*for var eij */
       Tvar[i]=atoi(strc);    double **gradgp, **trgradgp; /* for var p point j */
       }    double *gpp, *gmp; /* for var p point j */
       strcpy(modelsav,stra);      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double ***p3mat;
         scanf("%d",i);*/    double age,agelim, hf;
     }    double ***mobaverage;
 }    int theta;
      char digit[4];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    char digitp[25];
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/    char fileresprobmorprev[FILENAMELENGTH];
     fclose(fic);  
     if(popbased==1){
     /*  if(mle==1){*/      if(mobilav!=0)
     if (weightopt != 1) { /* Maximisation without weights*/        strcpy(digitp,"-populbased-mobilav-");
       for(i=1;i<=n;i++) weight[i]=1.0;      else strcpy(digitp,"-populbased-nomobil-");
     }    }
     /*-calculation of age at interview from date of interview and age at death -*/    else 
     agev=matrix(1,maxwav,1,imx);      strcpy(digitp,"-stablbased-");
   
     for (i=1; i<=imx; i++) {    if (mobilav!=0) {
       for(m=2; (m<= maxwav); m++) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          anint[m][i]=9999;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          s[m][i]=-1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }      }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    }
       }  
     }    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     for (i=1; i<=imx; i++)  {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for(m=1; (m<= maxwav); m++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         if(s[m][i] >0){    strcat(fileresprobmorprev,fileres);
           if (s[m][i] >= nlstate+1) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             if(agedc[i]>0)      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               if(moisdc[i]!=99 && andc[i]!=9999)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                 agev[m][i]=agedc[i];    }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
            else {   
               if (andc[i]!=9999){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    pstamp(ficresprobmorprev);
               agev[m][i]=-1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
               }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           }      fprintf(ficresprobmorprev," p.%-d SE",j);
           else if(s[m][i] !=9){ /* Should no more exist */      for(i=1; i<=nlstate;i++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             if(mint[m][i]==99 || anint[m][i]==9999)    }  
               agev[m][i]=1;    fprintf(ficresprobmorprev,"\n");
             else if(agev[m][i] <agemin){    fprintf(ficgp,"\n# Routine varevsij");
               agemin=agev[m][i];    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             else if(agev[m][i] >agemax){  /*   } */
               agemax=agev[m][i];    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    pstamp(ficresvij);
             }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
             /*agev[m][i]=anint[m][i]-annais[i];*/    if(popbased==1)
             /*   agev[m][i] = age[i]+2*m;*/      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
           }    else
           else { /* =9 */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
             agev[m][i]=1;    fprintf(ficresvij,"# Age");
             s[m][i]=-1;    for(i=1; i<=nlstate;i++)
           }      for(j=1; j<=nlstate;j++)
         }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         else /*= 0 Unknown */    fprintf(ficresvij,"\n");
           agev[m][i]=1;  
       }    xp=vector(1,npar);
        dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
     for (i=1; i<=imx; i++)  {    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       for(m=1; (m<= maxwav); m++){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           goto end;    gpp=vector(nlstate+1,nlstate+ndeath);
         }    gmp=vector(nlstate+1,nlstate+ndeath);
       }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     }    
     if(estepm < stepm){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     free_vector(severity,1,maxwav);    else  hstepm=estepm;   
     free_imatrix(outcome,1,maxwav+1,1,n);    /* For example we decided to compute the life expectancy with the smallest unit */
     free_vector(moisnais,1,n);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     free_vector(annais,1,n);       nhstepm is the number of hstepm from age to agelim 
     /* free_matrix(mint,1,maxwav,1,n);       nstepm is the number of stepm from age to agelin. 
        free_matrix(anint,1,maxwav,1,n);*/       Look at function hpijx to understand why (it is linked to memory size questions) */
     free_vector(moisdc,1,n);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     free_vector(andc,1,n);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
           you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     wav=ivector(1,imx);       results. So we changed our mind and took the option of the best precision.
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        agelim = AGESUP;
     /* Concatenates waves */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       Tcode=ivector(1,100);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      gp=matrix(0,nhstepm,1,nlstate);
       ncodemax[1]=1;      gm=matrix(0,nhstepm,1,nlstate);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
        
    codtab=imatrix(1,100,1,10);      for(theta=1; theta <=npar; theta++){
    h=0;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
    m=pow(2,cptcoveff);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
    for(k=1;k<=cptcoveff; k++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      for(i=1; i <=(m/pow(2,k));i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        if (popbased==1) {
            h++;          if(mobilav ==0){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            for(i=1; i<=nlstate;i++)
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/              prlim[i][i]=probs[(int)age][i][ij];
          }          }else{ /* mobilav */ 
        }            for(i=1; i<=nlstate;i++)
      }              prlim[i][i]=mobaverage[(int)age][i][ij];
    }          }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        }
       codtab[1][2]=1;codtab[2][2]=2; */    
    /* for(i=1; i <=m ;i++){        for(j=1; j<= nlstate; j++){
       for(k=1; k <=cptcovn; k++){          for(h=0; h<=nhstepm; h++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       printf("\n");          }
       }        }
       scanf("%d",i);*/        /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
    /* Calculates basic frequencies. Computes observed prevalence at single age           as a weighted average of prlim.
        and prints on file fileres'p'. */        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gpp[j]=0.; i<= nlstate; i++)
                gpp[j] += prlim[i][i]*p3mat[i][j][1];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }    
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* end probability of death */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     /* For Powell, parameters are in a vector p[] starting at p[1]        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */   
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        if (popbased==1) {
           if(mobilav ==0){
     if(mle==1){            for(i=1; i<=nlstate;i++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              prlim[i][i]=probs[(int)age][i][ij];
     }          }else{ /* mobilav */ 
                for(i=1; i<=nlstate;i++)
     /*--------- results files --------------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          }
          }
   
    jk=1;        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for(h=0; h<=nhstepm; h++){
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
      for(k=1; k <=(nlstate+ndeath); k++){          }
        if (k != i)        }
          {        /* This for computing probability of death (h=1 means
            printf("%d%d ",i,k);           computed over hstepm matrices product = hstepm*stepm months) 
            fprintf(ficres,"%1d%1d ",i,k);           as a weighted average of prlim.
            for(j=1; j <=ncovmodel; j++){        */
              printf("%f ",p[jk]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              fprintf(ficres,"%f ",p[jk]);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
              jk++;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
            }        }    
            printf("\n");        /* end probability of death */
            fprintf(ficres,"\n");  
          }        for(j=1; j<= nlstate; j++) /* vareij */
      }          for(h=0; h<=nhstepm; h++){
    }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  if(mle==1){          }
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     hesscov(matcov, p, npar, delti, ftolhess, func);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
  }        }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");      } /* End theta */
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);      for(h=0; h<=nhstepm; h++) /* veij */
           printf("%1d%1d",i,j);        for(j=1; j<=nlstate;j++)
           for(k=1; k<=ncovmodel;k++){          for(theta=1; theta <=npar; theta++)
             printf(" %.5e",delti[jk]);            trgradg[h][j][theta]=gradg[h][theta][j];
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           }        for(theta=1; theta <=npar; theta++)
           printf("\n");          trgradgp[j][theta]=gradgp[theta][j];
           fprintf(ficres,"\n");    
         }  
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      }      for(i=1;i<=nlstate;i++)
            for(j=1;j<=nlstate;j++)
     k=1;          vareij[i][j][(int)age] =0.;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for(h=0;h<=nhstepm;h++){
     for(i=1;i<=npar;i++){        for(k=0;k<=nhstepm;k++){
       /*  if (k>nlstate) k=1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       i1=(i-1)/(ncovmodel*nlstate)+1;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for(i=1;i<=nlstate;i++)
       printf("%s%d%d",alph[k],i1,tab[i]);*/            for(j=1;j<=nlstate;j++)
       fprintf(ficres,"%3d",i);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       printf("%3d",i);        }
       for(j=1; j<=i;j++){      }
         fprintf(ficres," %.5e",matcov[i][j]);    
         printf(" %.5e",matcov[i][j]);      /* pptj */
       }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       fprintf(ficres,"\n");      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       printf("\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       k++;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     }          varppt[j][i]=doldmp[j][i];
          /* end ppptj */
     while((c=getc(ficpar))=='#' && c!= EOF){      /*  x centered again */
       ungetc(c,ficpar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fgets(line, MAXLINE, ficpar);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       puts(line);   
       fputs(line,ficparo);      if (popbased==1) {
     }        if(mobilav ==0){
     ungetc(c,ficpar);          for(i=1; i<=nlstate;i++)
     estepm=0;            prlim[i][i]=probs[(int)age][i][ij];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        }else{ /* mobilav */ 
     if (estepm==0 || estepm < stepm) estepm=stepm;          for(i=1; i<=nlstate;i++)
     if (fage <= 2) {            prlim[i][i]=mobaverage[(int)age][i][ij];
       bage = ageminpar;        }
       fage = agemaxpar;      }
     }               
          /* This for computing probability of death (h=1 means
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);         as a weighted average of prlim.
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     ungetc(c,ficpar);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     fgets(line, MAXLINE, ficpar);      }    
     puts(line);      /* end probability of death */
     fputs(line,ficparo);  
   }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   ungetc(c,ficpar);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        for(i=1; i<=nlstate;i++){
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
            } 
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresprobmorprev,"\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficresvij,"%.0f ",age );
     puts(line);      for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);        for(j=1; j<=nlstate;j++){
   }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   ungetc(c,ficpar);        }
        fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      free_matrix(gm,0,nhstepm,1,nlstate);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   fscanf(ficpar,"pop_based=%d\n",&popbased);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"pop_based=%d\n",popbased);      } /* End age */
   fprintf(ficres,"pop_based=%d\n",popbased);      free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     puts(line);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fputs(line,ficparo);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   ungetc(c,ficpar);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
 while((c=getc(ficpar))=='#' && c!= EOF){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     ungetc(c,ficpar);  */
     fgets(line, MAXLINE, ficpar);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     puts(line);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     fputs(line,ficparo);  
   }    free_vector(xp,1,npar);
   ungetc(c,ficpar);    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fclose(ficresprobmorprev);
     fflush(ficgp);
 /*------------ gnuplot -------------*/    fflush(fichtm); 
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);  }  /* end varevsij */
    
 /*------------ free_vector  -------------*/  /************ Variance of prevlim ******************/
  chdir(path);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
    {
  free_ivector(wav,1,imx);    /* Variance of prevalence limit */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      double **newm;
  free_ivector(num,1,n);    double **dnewm,**doldm;
  free_vector(agedc,1,n);    int i, j, nhstepm, hstepm;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    int k, cptcode;
  fclose(ficparo);    double *xp;
  fclose(ficres);    double *gp, *gm;
     double **gradg, **trgradg;
 /*--------- index.htm --------*/    double age,agelim;
     int theta;
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    
     pstamp(ficresvpl);
      fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   /*--------------- Prevalence limit --------------*/    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
   strcpy(filerespl,"pl");        fprintf(ficresvpl," %1d-%1d",i,i);
   strcat(filerespl,fileres);    fprintf(ficresvpl,"\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    doldm=matrix(1,nlstate,1,nlstate);
   fprintf(ficrespl,"#Prevalence limit\n");    
   fprintf(ficrespl,"#Age ");    hstepm=1*YEARM; /* Every year of age */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   fprintf(ficrespl,"\n");    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   prlim=matrix(1,nlstate,1,nlstate);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if (stepm >= YEARM) hstepm=1;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      gradg=matrix(1,npar,1,nlstate);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      gp=vector(1,nlstate);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      gm=vector(1,nlstate);
   k=0;  
   agebase=ageminpar;      for(theta=1; theta <=npar; theta++){
   agelim=agemaxpar;        for(i=1; i<=npar; i++){ /* Computes gradient */
   ftolpl=1.e-10;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   i1=cptcoveff;        }
   if (cptcovn < 1){i1=1;}        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){          gp[i] = prlim[i][i];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      
         k=k+1;        for(i=1; i<=npar; i++) /* Computes gradient */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficrespl,"\n#******");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(j=1;j<=cptcoveff;j++)        for(i=1;i<=nlstate;i++)
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          gm[i] = prlim[i][i];
         fprintf(ficrespl,"******\n");  
                for(i=1;i<=nlstate;i++)
         for (age=agebase; age<=agelim; age++){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      } /* End theta */
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)      trgradg =matrix(1,nlstate,1,npar);
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");      for(j=1; j<=nlstate;j++)
         }        for(theta=1; theta <=npar; theta++)
       }          trgradg[j][theta]=gradg[theta][j];
     }  
   fclose(ficrespl);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   /*------------- h Pij x at various ages ------------*/      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      for(i=1;i<=nlstate;i++)
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }      fprintf(ficresvpl,"%.0f ",age );
   printf("Computing pij: result on file '%s' \n", filerespij);      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficresvpl,"\n");
   /*if (stepm<=24) stepsize=2;*/      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   agelim=AGESUP;      free_matrix(gradg,1,npar,1,nlstate);
   hstepm=stepsize*YEARM; /* Every year of age */      free_matrix(trgradg,1,nlstate,1,npar);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    } /* End age */
    
   k=0;    free_vector(xp,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    free_matrix(doldm,1,nlstate,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    free_matrix(dnewm,1,nlstate,1,nlstate);
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");  }
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /************ Variance of one-step probabilities  ******************/
         fprintf(ficrespij,"******\n");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
          {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    int i, j=0,  i1, k1, l1, t, tj;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int k2, l2, j1,  z1;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int k=0,l, cptcode;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int first=1, first1;
           oldm=oldms;savm=savms;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double **dnewm,**doldm;
           fprintf(ficrespij,"# Age");    double *xp;
           for(i=1; i<=nlstate;i++)    double *gp, *gm;
             for(j=1; j<=nlstate+ndeath;j++)    double **gradg, **trgradg;
               fprintf(ficrespij," %1d-%1d",i,j);    double **mu;
           fprintf(ficrespij,"\n");    double age,agelim, cov[NCOVMAX];
            for (h=0; h<=nhstepm; h++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    int theta;
             for(i=1; i<=nlstate;i++)    char fileresprob[FILENAMELENGTH];
               for(j=1; j<=nlstate+ndeath;j++)    char fileresprobcov[FILENAMELENGTH];
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    char fileresprobcor[FILENAMELENGTH];
             fprintf(ficrespij,"\n");  
              }    double ***varpij;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");    strcpy(fileresprob,"prob"); 
         }    strcat(fileresprob,fileres);
     }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    }
     strcpy(fileresprobcov,"probcov"); 
   fclose(ficrespij);    strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
   /*---------- Forecasting ------------------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   if((stepm == 1) && (strcmp(model,".")==0)){    }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    strcpy(fileresprobcor,"probcor"); 
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    strcat(fileresprobcor,fileres);
   }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   else{      printf("Problem with resultfile: %s\n", fileresprobcor);
     erreur=108;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    }
   }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   /*---------- Health expectancies and variances ------------*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   strcpy(filerest,"t");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   strcat(filerest,fileres);    pstamp(ficresprob);
   if((ficrest=fopen(filerest,"w"))==NULL) {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(ficresprob,"# Age");
   }    pstamp(ficresprobcov);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
   strcpy(filerese,"e");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   strcat(filerese,fileres);    fprintf(ficresprobcor,"# Age");
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    for(i=1; i<=nlstate;i++)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
  strcpy(fileresv,"v");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   strcat(fileresv,fileres);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      }  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   /* fprintf(ficresprob,"\n");
   }    fprintf(ficresprobcov,"\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(ficresprobcor,"\n");
   calagedate=-1;   */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   k=0;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   for(cptcov=1;cptcov<=i1;cptcov++){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       k=k+1;    first=1;
       fprintf(ficrest,"\n#****** ");    fprintf(ficgp,"\n# Routine varprob");
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n");
       fprintf(ficrest,"******\n");  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       fprintf(ficreseij,"\n#****** ");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       for(j=1;j<=cptcoveff;j++)    file %s<br>\n",optionfilehtmcov);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       fprintf(ficreseij,"******\n");  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(ficresvij,"\n#****** ");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       for(j=1;j<=cptcoveff;j++)  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       fprintf(ficresvij,"******\n");  standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       oldm=oldms;savm=savms;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
      cov[1]=1;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    tj=cptcoveff;
       oldm=oldms;savm=savms;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    j1=0;
        for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
          j1++;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        if  (cptcovn>0) {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(ficresprob, "\n#********** Variable "); 
       fprintf(ficrest,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
       epj=vector(1,nlstate+1);          fprintf(ficresprobcov, "\n#********** Variable "); 
       for(age=bage; age <=fage ;age++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficresprobcov, "**********\n#\n");
         if (popbased==1) {          
           for(i=1; i<=nlstate;i++)          fprintf(ficgp, "\n#********** Variable "); 
             prlim[i][i]=probs[(int)age][i][k];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficgp, "**********\n#\n");
                  
         fprintf(ficrest," %4.0f",age);          
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          
           }          fprintf(ficresprobcor, "\n#********** Variable ");    
           epj[nlstate+1] +=epj[j];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresprobcor, "**********\n#");    
         }
         for(i=1, vepp=0.;i <=nlstate;i++)        
           for(j=1;j <=nlstate;j++)        for (age=bage; age<=fage; age ++){ 
             vepp += vareij[i][j][(int)age];          cov[2]=age;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          for (k=1; k<=cptcovn;k++) {
         for(j=1;j <=nlstate;j++){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          }
         }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         fprintf(ficrest,"\n");          for (k=1; k<=cptcovprod;k++)
       }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }          
   }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 free_matrix(mint,1,maxwav,1,n);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     free_vector(weight,1,n);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   fclose(ficreseij);      
   fclose(ficresvij);          for(theta=1; theta <=npar; theta++){
   fclose(ficrest);            for(i=1; i<=npar; i++)
   fclose(ficpar);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   free_vector(epj,1,nlstate+1);            
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /*------- Variance limit prevalence------*/              
             k=0;
   strcpy(fileresvpl,"vpl");            for(i=1; i<= (nlstate); i++){
   strcat(fileresvpl,fileres);              for(j=1; j<=(nlstate+ndeath);j++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                k=k+1;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                gp[k]=pmmij[i][j];
     exit(0);              }
   }            }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            
             for(i=1; i<=npar; i++)
   k=0;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   for(cptcov=1;cptcov<=i1;cptcov++){      
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       k=k+1;            k=0;
       fprintf(ficresvpl,"\n#****** ");            for(i=1; i<=(nlstate); i++){
       for(j=1;j<=cptcoveff;j++)              for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                k=k+1;
       fprintf(ficresvpl,"******\n");                gm[k]=pmmij[i][j];
                    }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            }
       oldm=oldms;savm=savms;       
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  }          }
   
   fclose(ficresvpl);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
   /*---------- End : free ----------------*/              trgradg[j][theta]=gradg[theta][j];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          
            matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          
            k=0;
   free_matrix(matcov,1,npar,1,npar);          for(i=1; i<=(nlstate); i++){
   free_vector(delti,1,npar);            for(j=1; j<=(nlstate+ndeath);j++){
   free_matrix(agev,1,maxwav,1,imx);              k=k+1;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              mu[k][(int) age]=pmmij[i][j];
             }
   if(erreur >0)          }
     printf("End of Imach with error or warning %d\n",erreur);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   else   printf("End of Imach\n");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              varpij[i][j][(int)age] = doldm[i][j];
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          /*printf("\n%d ",(int)age);
   /*printf("Total time was %d uSec.\n", total_usecs);*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   /*------ End -----------*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
  end:  
 #ifdef windows          fprintf(ficresprob,"\n%d ",(int)age);
   /* chdir(pathcd);*/          fprintf(ficresprobcov,"\n%d ",(int)age);
 #endif          fprintf(ficresprobcor,"\n%d ",(int)age);
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  /*system("cd ../gp37mgw");*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  strcpy(plotcmd,GNUPLOTPROGRAM);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
  strcat(plotcmd," ");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
  strcat(plotcmd,optionfilegnuplot);          }
  system(plotcmd);          i=0;
           for (k=1; k<=(nlstate);k++){
 #ifdef windows            for (l=1; l<=(nlstate+ndeath);l++){ 
   while (z[0] != 'q') {              i=i++;
     /* chdir(path); */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     scanf("%s",z);              for (j=1; j<=i;j++){
     if (z[0] == 'c') system("./imach");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     else if (z[0] == 'e') system(optionfilehtm);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     else if (z[0] == 'g') system(plotcmd);              }
     else if (z[0] == 'q') exit(0);            }
   }          }/* end of loop for state */
 #endif        } /* end of loop for age */
 }  
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 1,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
         else fprintf(ficgp,"\" t\"\" w l lt 1,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.42  
changed lines
  Added in v.1.142


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>