Diff for /imach/src/imach.c between versions 1.42 and 1.171

version 1.42, 2002/05/21 18:44:41 version 1.171, 2014/12/23 13:26:59
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.171  2014/12/23 13:26:59  brouard
      Summary: Back from Visual C
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Still problem with utsname.h on Windows
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.170  2014/12/23 11:17:12  brouard
   case of a health survey which is our main interest) -2- at least a    Summary: Cleaning some \%% back to %%
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.169  2014/12/22 23:08:31  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: 0.98p
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.168  2014/12/22 15:17:42  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Summary: update
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.167  2014/12/22 13:50:56  brouard
   you to do it.  More covariates you add, slower the    Summary: Testing uname and compiler version and if compiled 32 or 64
   convergence.  
     Testing on Linux 64
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.166  2014/12/22 11:40:47  brouard
   identical for each individual. Also, if a individual missed an    *** empty log message ***
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    * imach.c (Module): Merging 1.61 to 1.162
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.164  2014/12/16 10:52:11  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    * imach.c (Module): Merging 1.61 to 1.162
   hPijx.  
     Revision 1.163  2014/12/16 10:30:11  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Module): Merging 1.61 to 1.162
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.162  2014/09/25 11:43:39  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: temporary backup 0.99!
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.1  2014/09/16 11:06:58  brouard
   from the European Union.    Summary: With some code (wrong) for nlopt
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Author:
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.161  2014/09/15 20:41:41  brouard
      Summary: Problem with macro SQR on Intel compiler
 #include <math.h>  
 #include <stdio.h>    Revision 1.160  2014/09/02 09:24:05  brouard
 #include <stdlib.h>    *** empty log message ***
 #include <unistd.h>  
     Revision 1.159  2014/09/01 10:34:10  brouard
 #define MAXLINE 256    Summary: WIN32
 #define GNUPLOTPROGRAM "gnuplot"    Author: Brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.158  2014/08/27 17:11:51  brouard
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.157  2014/08/27 16:26:55  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: Preparing windows Visual studio version
     Author: Brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
 #define NINTERVMAX 8    just make the differences in raw time format (time(&now).
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Trying to suppress #ifdef LINUX
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add xdg-open for __linux in order to open default browser.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.156  2014/08/25 20:10:10  brouard
 #define YEARM 12. /* Number of months per year */    *** empty log message ***
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
 int erreur; /* Error number */  
 int nvar;    Revision 1.154  2014/06/20 17:32:08  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Summary: Outputs now all graphs of convergence to period prevalence
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.153  2014/06/20 16:45:46  brouard
 int ndeath=1; /* Number of dead states */    Summary: If 3 live state, convergence to period prevalence on same graph
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Author: Brouard
 int popbased=0;  
     Revision 1.152  2014/06/18 17:54:09  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.151  2014/06/18 16:43:30  brouard
 int mle, weightopt;    *** empty log message ***
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.150  2014/06/18 16:42:35  brouard
 double jmean; /* Mean space between 2 waves */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Author: brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.149  2014/06/18 15:51:14  brouard
 FILE *ficgp,*ficresprob,*ficpop;    Summary: Some fixes in parameter files errors
 FILE *ficreseij;    Author: Nicolas Brouard
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.148  2014/06/17 17:38:48  brouard
   char fileresv[FILENAMELENGTH];    Summary: Nothing new
  FILE  *ficresvpl;    Author: Brouard
   char fileresvpl[FILENAMELENGTH];  
     Just a new packaging for OS/X version 0.98nS
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.147  2014/06/16 10:33:11  brouard
 #define FTOL 1.0e-10    *** empty log message ***
   
 #define NRANSI    Revision 1.146  2014/06/16 10:20:28  brouard
 #define ITMAX 200    Summary: Merge
     Author: Brouard
 #define TOL 2.0e-4  
     Merge, before building revised version.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.145  2014/06/10 21:23:15  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: Debugging with valgrind
     Author: Nicolas Brouard
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Lot of changes in order to output the results with some covariates
 #define TINY 1.0e-20    After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
 static double maxarg1,maxarg2;    No more memory valgrind error but a lot has to be done in order to
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    continue the work of splitting the code into subroutines.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Also, decodemodel has been improved. Tricode is still not
      optimal. nbcode should be improved. Documentation has been added in
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    the source code.
 #define rint(a) floor(a+0.5)  
     Revision 1.143  2014/01/26 09:45:38  brouard
 static double sqrarg;    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 int imx;  
 int stepm;    Revision 1.142  2014/01/26 03:57:36  brouard
 /* Stepm, step in month: minimum step interpolation*/    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
 int estepm;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.141  2014/01/26 02:42:01  brouard
 int m,nb;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.140  2011/09/02 10:37:54  brouard
 double **pmmij, ***probs, ***mobaverage;    Summary: times.h is ok with mingw32 now.
 double dateintmean=0;  
     Revision 1.139  2010/06/14 07:50:17  brouard
 double *weight;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 int **s; /* Status */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
 /**************** split *************************/    than V1+V2. A lot of change to be done. Unstable.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.136  2010/04/26 20:30:53  brouard
    char *s;                             /* pointer */    (Module): merging some libgsl code. Fixing computation
    int  l1, l2;                         /* length counters */    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
    l1 = strlen( path );                 /* length of path */    Some cleaning of code and comments added.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.135  2009/10/29 15:33:14  brouard
    s = strrchr( path, '\\' );           /* find last / */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.134  2009/10/29 13:18:53  brouard
 #endif    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.133  2009/07/06 10:21:25  brouard
       extern char       *getwd( );    just nforces
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.132  2009/07/06 08:22:05  brouard
 #else    Many tings
       extern char       *getcwd( );  
     Revision 1.131  2009/06/20 16:22:47  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Some dimensions resccaled
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.130  2009/05/26 06:44:34  brouard
       }    (Module): Max Covariate is now set to 20 instead of 8. A
       strcpy( name, path );             /* we've got it */    lot of cleaning with variables initialized to 0. Trying to make
    } else {                             /* strip direcotry from path */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.129  2007/08/31 13:49:27  lievre
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.128  2006/06/30 13:02:05  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Clarifications on computing e.j
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.127  2006/04/28 18:11:50  brouard
 #ifdef windows    (Module): Yes the sum of survivors was wrong since
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    imach-114 because nhstepm was no more computed in the age
 #else    loop. Now we define nhstepma in the age loop.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): In order to speed up (in case of numerous covariates) we
 #endif    compute health expectancies (without variances) in a first step
    s = strrchr( name, '.' );            /* find last / */    and then all the health expectancies with variances or standard
    s++;    deviation (needs data from the Hessian matrices) which slows the
    strcpy(ext,s);                       /* save extension */    computation.
    l1= strlen( name);    In the future we should be able to stop the program is only health
    l2= strlen( s)+1;    expectancies and graph are needed without standard deviations.
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.126  2006/04/28 17:23:28  brouard
    return( 0 );                         /* we're done */    (Module): Yes the sum of survivors was wrong since
 }    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
 /******************************************/  
     Revision 1.125  2006/04/04 15:20:31  lievre
 void replace(char *s, char*t)    Errors in calculation of health expectancies. Age was not initialized.
 {    Forecasting file added.
   int i;  
   int lg=20;    Revision 1.124  2006/03/22 17:13:53  lievre
   i=0;    Parameters are printed with %lf instead of %f (more numbers after the comma).
   lg=strlen(t);    The log-likelihood is printed in the log file
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.123  2006/03/20 10:52:43  brouard
     if (t[i]== '\\') s[i]='/';    * imach.c (Module): <title> changed, corresponds to .htm file
   }    name. <head> headers where missing.
 }  
     * imach.c (Module): Weights can have a decimal point as for
 int nbocc(char *s, char occ)    English (a comma might work with a correct LC_NUMERIC environment,
 {    otherwise the weight is truncated).
   int i,j=0;    Modification of warning when the covariates values are not 0 or
   int lg=20;    1.
   i=0;    Version 0.98g
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.122  2006/03/20 09:45:41  brouard
   if  (s[i] == occ ) j++;    (Module): Weights can have a decimal point as for
   }    English (a comma might work with a correct LC_NUMERIC environment,
   return j;    otherwise the weight is truncated).
 }    Modification of warning when the covariates values are not 0 or
     1.
 void cutv(char *u,char *v, char*t, char occ)    Version 0.98g
 {  
   int i,lg,j,p=0;    Revision 1.121  2006/03/16 17:45:01  lievre
   i=0;    * imach.c (Module): Comments concerning covariates added
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    * imach.c (Module): refinements in the computation of lli if
   }    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.120  2006/03/16 15:10:38  lievre
     (u[j] = t[j]);    (Module): refinements in the computation of lli if
   }    status=-2 in order to have more reliable computation if stepm is
      u[p]='\0';    not 1 month. Version 0.98f
   
    for(j=0; j<= lg; j++) {    Revision 1.119  2006/03/15 17:42:26  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Module): Bug if status = -2, the loglikelihood was
   }    computed as likelihood omitting the logarithm. Version O.98e
 }  
     Revision 1.118  2006/03/14 18:20:07  brouard
 /********************** nrerror ********************/    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 void nrerror(char error_text[])    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   fprintf(stderr,"ERREUR ...\n");    (Module): Version 0.98d
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.117  2006/03/14 17:16:22  brouard
 }    (Module): varevsij Comments added explaining the second
 /*********************** vector *******************/    table of variances if popbased=1 .
 double *vector(int nl, int nh)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   double *v;    (Module): Version 0.98d
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.116  2006/03/06 10:29:27  brouard
   return v-nl+NR_END;    (Module): Variance-covariance wrong links and
 }    varian-covariance of ej. is needed (Saito).
   
 /************************ free vector ******************/    Revision 1.115  2006/02/27 12:17:45  brouard
 void free_vector(double*v, int nl, int nh)    (Module): One freematrix added in mlikeli! 0.98c
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.114  2006/02/26 12:57:58  brouard
 }    (Module): Some improvements in processing parameter
     filename with strsep.
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.113  2006/02/24 14:20:24  brouard
 {    (Module): Memory leaks checks with valgrind and:
   int *v;    datafile was not closed, some imatrix were not freed and on matrix
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    allocation too.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.112  2006/01/30 09:55:26  brouard
 }    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 /******************free ivector **************************/    Revision 1.111  2006/01/25 20:38:18  brouard
 void free_ivector(int *v, long nl, long nh)    (Module): Lots of cleaning and bugs added (Gompertz)
 {    (Module): Comments can be added in data file. Missing date values
   free((FREE_ARG)(v+nl-NR_END));    can be a simple dot '.'.
 }  
     Revision 1.110  2006/01/25 00:51:50  brouard
 /******************* imatrix *******************************/    (Module): Lots of cleaning and bugs added (Gompertz)
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.109  2006/01/24 19:37:15  brouard
 {    (Module): Comments (lines starting with a #) are allowed in data.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.108  2006/01/19 18:05:42  lievre
      Gnuplot problem appeared...
   /* allocate pointers to rows */    To be fixed
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.107  2006/01/19 16:20:37  brouard
   m += NR_END;    Test existence of gnuplot in imach path
   m -= nrl;  
      Revision 1.106  2006/01/19 13:24:36  brouard
      Some cleaning and links added in html output
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.105  2006/01/05 20:23:19  lievre
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    *** empty log message ***
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.104  2005/09/30 16:11:43  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    (Module): If the status is missing at the last wave but we know
      that the person is alive, then we can code his/her status as -2
   /* return pointer to array of pointers to rows */    (instead of missing=-1 in earlier versions) and his/her
   return m;    contributions to the likelihood is 1 - Prob of dying from last
 }    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.103  2005/09/30 15:54:49  lievre
       int **m;    (Module): sump fixed, loop imx fixed, and simplifications.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.102  2004/09/15 17:31:30  brouard
 {    Add the possibility to read data file including tab characters.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.101  2004/09/15 10:38:38  brouard
 }    Fix on curr_time
   
 /******************* matrix *******************************/    Revision 1.100  2004/07/12 18:29:06  brouard
 double **matrix(long nrl, long nrh, long ncl, long nch)    Add version for Mac OS X. Just define UNIX in Makefile
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.99  2004/06/05 08:57:40  brouard
   double **m;    *** empty log message ***
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.98  2004/05/16 15:05:56  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    New version 0.97 . First attempt to estimate force of mortality
   m += NR_END;    directly from the data i.e. without the need of knowing the health
   m -= nrl;    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    other analysis, in order to test if the mortality estimated from the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    cross-longitudinal survey is different from the mortality estimated
   m[nrl] += NR_END;    from other sources like vital statistic data.
   m[nrl] -= ncl;  
     The same imach parameter file can be used but the option for mle should be -3.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Agnès, who wrote this part of the code, tried to keep most of the
 }    former routines in order to include the new code within the former code.
   
 /*************************free matrix ************************/    The output is very simple: only an estimate of the intercept and of
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    the slope with 95% confident intervals.
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Current limitations:
   free((FREE_ARG)(m+nrl-NR_END));    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.97  2004/02/20 13:25:42  lievre
 {    Version 0.96d. Population forecasting command line is (temporarily)
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    suppressed.
   double ***m;  
     Revision 1.96  2003/07/15 15:38:55  brouard
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   if (!m) nrerror("allocation failure 1 in matrix()");    rewritten within the same printf. Workaround: many printfs.
   m += NR_END;  
   m -= nrl;    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Repository): Using imachwizard code to output a more meaningful covariance
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    matrix (cov(a12,c31) instead of numbers.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.93  2003/06/25 16:33:55  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    (Module): On windows (cygwin) function asctime_r doesn't
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    exist so I changed back to asctime which exists.
   m[nrl][ncl] += NR_END;    (Module): Version 0.96b
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Revision 1.92  2003/06/25 16:30:45  brouard
     m[nrl][j]=m[nrl][j-1]+nlay;    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.91  2003/06/25 15:30:29  brouard
     for (j=ncl+1; j<=nch; j++)    * imach.c (Repository): Duplicated warning errors corrected.
       m[i][j]=m[i][j-1]+nlay;    (Repository): Elapsed time after each iteration is now output. It
   }    helps to forecast when convergence will be reached. Elapsed time
   return m;    is stamped in powell.  We created a new html file for the graphs
 }    concerning matrix of covariance. It has extension -cov.htm.
   
 /*************************free ma3x ************************/    Revision 1.90  2003/06/24 12:34:15  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    of the covariance matrix to be input.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.89  2003/06/24 12:30:52  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /***************** f1dim *************************/    of the covariance matrix to be input.
 extern int ncom;  
 extern double *pcom,*xicom;    Revision 1.88  2003/06/23 17:54:56  brouard
 extern double (*nrfunc)(double []);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    
 double f1dim(double x)    Revision 1.87  2003/06/18 12:26:01  brouard
 {    Version 0.96
   int j;  
   double f;    Revision 1.86  2003/06/17 20:04:08  brouard
   double *xt;    (Module): Change position of html and gnuplot routines and added
      routine fileappend.
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.85  2003/06/17 13:12:43  brouard
   f=(*nrfunc)(xt);    * imach.c (Repository): Check when date of death was earlier that
   free_vector(xt,1,ncom);    current date of interview. It may happen when the death was just
   return f;    prior to the death. In this case, dh was negative and likelihood
 }    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 /*****************brent *************************/    interview.
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    (Repository): Because some people have very long ID (first column)
 {    we changed int to long in num[] and we added a new lvector for
   int iter;    memory allocation. But we also truncated to 8 characters (left
   double a,b,d,etemp;    truncation)
   double fu,fv,fw,fx;    (Repository): No more line truncation errors.
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.84  2003/06/13 21:44:43  brouard
   double e=0.0;    * imach.c (Repository): Replace "freqsummary" at a correct
      place. It differs from routine "prevalence" which may be called
   a=(ax < cx ? ax : cx);    many times. Probs is memory consuming and must be used with
   b=(ax > cx ? ax : cx);    parcimony.
   x=w=v=bx;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    Revision 1.83  2003/06/10 13:39:11  lievre
     xm=0.5*(a+b);    *** empty log message ***
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Revision 1.82  2003/06/05 15:57:20  brouard
     printf(".");fflush(stdout);    Add log in  imach.c and  fullversion number is now printed.
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /*
 #endif     Interpolated Markov Chain
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;    Short summary of the programme:
       return fx;    
     }    This program computes Healthy Life Expectancies from
     ftemp=fu;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     if (fabs(e) > tol1) {    first survey ("cross") where individuals from different ages are
       r=(x-w)*(fx-fv);    interviewed on their health status or degree of disability (in the
       q=(x-v)*(fx-fw);    case of a health survey which is our main interest) -2- at least a
       p=(x-v)*q-(x-w)*r;    second wave of interviews ("longitudinal") which measure each change
       q=2.0*(q-r);    (if any) in individual health status.  Health expectancies are
       if (q > 0.0) p = -p;    computed from the time spent in each health state according to a
       q=fabs(q);    model. More health states you consider, more time is necessary to reach the
       etemp=e;    Maximum Likelihood of the parameters involved in the model.  The
       e=d;    simplest model is the multinomial logistic model where pij is the
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    probability to be observed in state j at the second wave
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    conditional to be observed in state i at the first wave. Therefore
       else {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
         d=p/q;    'age' is age and 'sex' is a covariate. If you want to have a more
         u=x+d;    complex model than "constant and age", you should modify the program
         if (u-a < tol2 || b-u < tol2)    where the markup *Covariates have to be included here again* invites
           d=SIGN(tol1,xm-x);    you to do it.  More covariates you add, slower the
       }    convergence.
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    The advantage of this computer programme, compared to a simple
     }    multinomial logistic model, is clear when the delay between waves is not
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    identical for each individual. Also, if a individual missed an
     fu=(*f)(u);    intermediate interview, the information is lost, but taken into
     if (fu <= fx) {    account using an interpolation or extrapolation.  
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    hPijx is the probability to be observed in state i at age x+h
         SHFT(fv,fw,fx,fu)    conditional to the observed state i at age x. The delay 'h' can be
         } else {    split into an exact number (nh*stepm) of unobserved intermediate
           if (u < x) a=u; else b=u;    states. This elementary transition (by month, quarter,
           if (fu <= fw || w == x) {    semester or year) is modelled as a multinomial logistic.  The hPx
             v=w;    matrix is simply the matrix product of nh*stepm elementary matrices
             w=u;    and the contribution of each individual to the likelihood is simply
             fv=fw;    hPijx.
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    Also this programme outputs the covariance matrix of the parameters but also
             v=u;    of the life expectancies. It also computes the period (stable) prevalence. 
             fv=fu;    
           }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
         }             Institut national d'études démographiques, Paris.
   }    This software have been partly granted by Euro-REVES, a concerted action
   nrerror("Too many iterations in brent");    from the European Union.
   *xmin=x;    It is copyrighted identically to a GNU software product, ie programme and
   return fx;    software can be distributed freely for non commercial use. Latest version
 }    can be accessed at http://euroreves.ined.fr/imach .
   
 /****************** mnbrak ***********************/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    
             double (*func)(double))    **********************************************************************/
 {  /*
   double ulim,u,r,q, dum;    main
   double fu;    read parameterfile
      read datafile
   *fa=(*func)(*ax);    concatwav
   *fb=(*func)(*bx);    freqsummary
   if (*fb > *fa) {    if (mle >= 1)
     SHFT(dum,*ax,*bx,dum)      mlikeli
       SHFT(dum,*fb,*fa,dum)    print results files
       }    if mle==1 
   *cx=(*bx)+GOLD*(*bx-*ax);       computes hessian
   *fc=(*func)(*cx);    read end of parameter file: agemin, agemax, bage, fage, estepm
   while (*fb > *fc) {        begin-prev-date,...
     r=(*bx-*ax)*(*fb-*fc);    open gnuplot file
     q=(*bx-*cx)*(*fb-*fa);    open html file
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     ulim=(*bx)+GLIMIT*(*cx-*bx);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     if ((*bx-u)*(u-*cx) > 0.0) {      freexexit2 possible for memory heap.
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {    h Pij x                         | pij_nom  ficrestpij
       fu=(*func)(u);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       if (fu < *fc) {         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
           SHFT(*fb,*fc,fu,(*func)(u))  
           }         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       u=ulim;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       fu=(*func)(u);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     } else {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    forecasting if prevfcast==1 prevforecast call prevalence()
     }    health expectancies
     SHFT(*ax,*bx,*cx,u)    Variance-covariance of DFLE
       SHFT(*fa,*fb,*fc,fu)    prevalence()
       }     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /*************** linmin ************************/    total life expectancies
     Variance of period (stable) prevalence
 int ncom;   end
 double *pcom,*xicom;  */
 double (*nrfunc)(double []);  
    #define POWELL /* Instead of NLOPT */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  #include <math.h>
   double brent(double ax, double bx, double cx,  #include <stdio.h>
                double (*f)(double), double tol, double *xmin);  #include <stdlib.h>
   double f1dim(double x);  #include <string.h>
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  #ifdef _WIN32
   int j;  #include <io.h>
   double xx,xmin,bx,ax;  #else
   double fx,fb,fa;  #include <unistd.h>
    #endif
   ncom=n;  
   pcom=vector(1,n);  #include <limits.h>
   xicom=vector(1,n);  #include <sys/types.h>
   nrfunc=func;  
   for (j=1;j<=n;j++) {  #if defined(__GNUC__)
     pcom[j]=p[j];  #include <sys/utsname.h> /* Doesn't work on Windows */
     xicom[j]=xi[j];  #endif
   }  
   ax=0.0;  #include <sys/stat.h>
   xx=1.0;  #include <errno.h>
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* extern int errno; */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  /* #ifdef LINUX */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /* #include <time.h> */
 #endif  /* #include "timeval.h" */
   for (j=1;j<=n;j++) {  /* #else */
     xi[j] *= xmin;  /* #include <sys/time.h> */
     p[j] += xi[j];  /* #endif */
   }  
   free_vector(xicom,1,n);  #include <time.h>
   free_vector(pcom,1,n);  
 }  #ifdef GSL
   #include <gsl/gsl_errno.h>
 /*************** powell ************************/  #include <gsl/gsl_multimin.h>
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #endif
             double (*func)(double []))  
 {  
   void linmin(double p[], double xi[], int n, double *fret,  #ifdef NLOPT
               double (*func)(double []));  #include <nlopt.h>
   int i,ibig,j;  typedef struct {
   double del,t,*pt,*ptt,*xit;    double (* function)(double [] );
   double fp,fptt;  } myfunc_data ;
   double *xits;  #endif
   pt=vector(1,n);  
   ptt=vector(1,n);  /* #include <libintl.h> */
   xit=vector(1,n);  /* #define _(String) gettext (String) */
   xits=vector(1,n);  
   *fret=(*func)(p);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  #define GNUPLOTPROGRAM "gnuplot"
     fp=(*fret);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     ibig=0;  #define FILENAMELENGTH 132
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     for (i=1;i<=n;i++)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     for (i=1;i<=n;i++) {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  #define NINTERVMAX 8
 #ifdef DEBUG  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       printf("fret=%lf \n",*fret);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 #endif  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       printf("%d",i);fflush(stdout);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       linmin(p,xit,n,fret,func);  #define MAXN 20000
       if (fabs(fptt-(*fret)) > del) {  #define YEARM 12. /**< Number of months per year */
         del=fabs(fptt-(*fret));  #define AGESUP 130
         ibig=i;  #define AGEBASE 40
       }  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 #ifdef DEBUG  #ifdef _WIN32
       printf("%d %.12e",i,(*fret));  #define DIRSEPARATOR '\\'
       for (j=1;j<=n;j++) {  #define CHARSEPARATOR "\\"
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #define ODIRSEPARATOR '/'
         printf(" x(%d)=%.12e",j,xit[j]);  #else
       }  #define DIRSEPARATOR '/'
       for(j=1;j<=n;j++)  #define CHARSEPARATOR "/"
         printf(" p=%.12e",p[j]);  #define ODIRSEPARATOR '\\'
       printf("\n");  #endif
 #endif  
     }  /* $Id$ */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /* $State$ */
 #ifdef DEBUG  
       int k[2],l;  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       k[0]=1;  char fullversion[]="$Revision$ $Date$"; 
       k[1]=-1;  char strstart[80];
       printf("Max: %.12e",(*func)(p));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       for (j=1;j<=n;j++)  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         printf(" %.12e",p[j]);  int nvar=0, nforce=0; /* Number of variables, number of forces */
       printf("\n");  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       for(l=0;l<=1;l++) {  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
         for (j=1;j<=n;j++) {  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
         }  int cptcovprodnoage=0; /**< Number of covariate products without age */   
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       }  int cptcov=0; /* Working variable */
 #endif  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
       free_vector(xit,1,n);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       free_vector(xits,1,n);  int popbased=0;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  int *wav; /* Number of waves for this individuual 0 is possible */
       return;  int maxwav=0; /* Maxim number of waves */
     }  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     for (j=1;j<=n;j++) {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       ptt[j]=2.0*p[j]-pt[j];                     to the likelihood and the sum of weights (done by funcone)*/
       xit[j]=p[j]-pt[j];  int mle=1, weightopt=0;
       pt[j]=p[j];  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     fptt=(*func)(ptt);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     if (fptt < fp) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int countcallfunc=0;  /* Count the number of calls to func */
       if (t < 0.0) {  double jmean=1; /* Mean space between 2 waves */
         linmin(p,xit,n,fret,func);  double **matprod2(); /* test */
         for (j=1;j<=n;j++) {  double **oldm, **newm, **savm; /* Working pointers to matrices */
           xi[j][ibig]=xi[j][n];  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
           xi[j][n]=xit[j];  /*FILE *fic ; */ /* Used in readdata only */
         }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #ifdef DEBUG  FILE *ficlog, *ficrespow;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int globpr=0; /* Global variable for printing or not */
         for(j=1;j<=n;j++)  double fretone; /* Only one call to likelihood */
           printf(" %.12e",xit[j]);  long ipmx=0; /* Number of contributions */
         printf("\n");  double sw; /* Sum of weights */
 #endif  char filerespow[FILENAMELENGTH];
       }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     }  FILE *ficresilk;
   }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 /**** Prevalence limit ****************/  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  FILE *ficresstdeij;
 {  char fileresstde[FILENAMELENGTH];
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  FILE *ficrescveij;
      matrix by transitions matrix until convergence is reached */  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
   int i, ii,j,k;  char fileresv[FILENAMELENGTH];
   double min, max, maxmin, maxmax,sumnew=0.;  FILE  *ficresvpl;
   double **matprod2();  char fileresvpl[FILENAMELENGTH];
   double **out, cov[NCOVMAX], **pmij();  char title[MAXLINE];
   double **newm;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double agefin, delaymax=50 ; /* Max number of years to converge */  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   for (ii=1;ii<=nlstate+ndeath;ii++)  char command[FILENAMELENGTH];
     for (j=1;j<=nlstate+ndeath;j++){  int  outcmd=0;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
    cov[1]=1.;  char filelog[FILENAMELENGTH]; /* Log file */
    char filerest[FILENAMELENGTH];
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char fileregp[FILENAMELENGTH];
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char popfile[FILENAMELENGTH];
     newm=savm;  
     /* Covariates have to be included here again */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
      cov[2]=agefin;  
    /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       for (k=1; k<=cptcovn;k++) {  /* struct timezone tzp; */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /* extern int gettimeofday(); */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  struct tm tml, *gmtime(), *localtime();
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  extern time_t time();
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  struct tm tm;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  char strcurr[80], strfor[80];
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   char *endptr;
     savm=oldm;  long lval;
     oldm=newm;  double dval;
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  #define NR_END 1
       min=1.;  #define FREE_ARG char*
       max=0.;  #define FTOL 1.0e-10
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  #define NRANSI 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #define ITMAX 200 
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  #define TOL 2.0e-4 
         min=FMIN(min,prlim[i][j]);  
       }  #define CGOLD 0.3819660 
       maxmin=max-min;  #define ZEPS 1.0e-10 
       maxmax=FMAX(maxmax,maxmin);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     }  
     if(maxmax < ftolpl){  #define GOLD 1.618034 
       return prlim;  #define GLIMIT 100.0 
     }  #define TINY 1.0e-20 
   }  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /*************** transition probabilities ***************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 {  #define rint(a) floor(a+0.5)
   double s1, s2;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   /*double t34;*/  /* #define mytinydouble 1.0e-16 */
   int i,j,j1, nc, ii, jj;  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     for(i=1; i<= nlstate; i++){  /* static double dsqrarg; */
     for(j=1; j<i;j++){  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  static double sqrarg;
         /*s2 += param[i][j][nc]*cov[nc];*/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  int agegomp= AGEGOMP;
       }  
       ps[i][j]=s2;  int imx; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  int stepm=1;
     }  /* Stepm, step in month: minimum step interpolation*/
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int estepm;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  int m,nb;
       ps[i][j]=s2;  long *num;
     }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     /*ps[3][2]=1;*/  double **pmmij, ***probs;
   double *ageexmed,*agecens;
   for(i=1; i<= nlstate; i++){  double dateintmean=0;
      s1=0;  
     for(j=1; j<i; j++)  double *weight;
       s1+=exp(ps[i][j]);  int **s; /* Status */
     for(j=i+1; j<=nlstate+ndeath; j++)  double *agedc;
       s1+=exp(ps[i][j]);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     ps[i][i]=1./(s1+1.);                    * covar=matrix(0,NCOVMAX,1,n); 
     for(j=1; j<i; j++)                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  double  idx; 
     for(j=i+1; j<=nlstate+ndeath; j++)  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int *Ndum; /** Freq of modality (tricode */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   } /* end i */  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       ps[ii][jj]=0;  double ftolhess; /**< Tolerance for computing hessian */
       ps[ii][ii]=1;  
     }  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     for(jj=1; jj<= nlstate+ndeath; jj++){    */ 
      printf("%lf ",ps[ii][jj]);    char  *ss;                            /* pointer */
    }    int   l1, l2;                         /* length counters */
     printf("\n ");  
     }    l1 = strlen(path );                   /* length of path */
     printf("\n ");printf("%lf ",cov[2]);*/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   goto end;*/      strcpy( name, path );               /* we got the fullname name because no directory */
     return ps;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /**************** Product of 2 matrices ******************/      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        return( GLOCK_ERROR_GETCWD );
 {      }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      /* got dirc from getcwd*/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      printf(" DIRC = %s \n",dirc);
   /* in, b, out are matrice of pointers which should have been initialized    } else {                              /* strip direcotry from path */
      before: only the contents of out is modified. The function returns      ss++;                               /* after this, the filename */
      a pointer to pointers identical to out */      l2 = strlen( ss );                  /* length of filename */
   long i, j, k;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(i=nrl; i<= nrh; i++)      strcpy( name, ss );         /* save file name */
     for(k=ncolol; k<=ncoloh; k++)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      dirc[l1-l2] = 0;                    /* add zero */
         out[i][k] +=in[i][j]*b[j][k];      printf(" DIRC2 = %s \n",dirc);
     }
   return out;    /* We add a separator at the end of dirc if not exists */
 }    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /************* Higher Matrix Product ***************/      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    }
 {    ss = strrchr( name, '.' );            /* find last / */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    if (ss >0){
      duration (i.e. until      ss++;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      strcpy(ext,ss);                     /* save extension */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      l1= strlen( name);
      (typically every 2 years instead of every month which is too big).      l2= strlen(ss)+1;
      Model is determined by parameters x and covariates have to be      strncpy( finame, name, l1-l2);
      included manually here.      finame[l1-l2]= 0;
     }
      */  
     return( 0 );                          /* we're done */
   int i, j, d, h, k;  }
   double **out, cov[NCOVMAX];  
   double **newm;  
   /******************************************/
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  void replace_back_to_slash(char *s, char*t)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    int i;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    int lg=0;
     }    i=0;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    lg=strlen(t);
   for(h=1; h <=nhstepm; h++){    for(i=0; i<= lg; i++) {
     for(d=1; d <=hstepm; d++){      (s[i] = t[i]);
       newm=savm;      if (t[i]== '\\') s[i]='/';
       /* Covariates have to be included here again */    }
       cov[1]=1.;  }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char *trimbb(char *out, char *in)
       for (k=1; k<=cptcovage;k++)  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    char *s;
       for (k=1; k<=cptcovprod;k++)    s=out;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    while (*in != '\0'){
       while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      *out++ = *in++;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    *out='\0';
       savm=oldm;    return s;
       oldm=newm;  }
     }  
     for(i=1; i<=nlstate+ndeath; i++)  char *cutl(char *blocc, char *alocc, char *in, char occ)
       for(j=1;j<=nlstate+ndeath;j++) {  {
         po[i][j][h]=newm[i][j];    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
          */       gives blocc="abcdef2ghi" and alocc="j".
       }       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   } /* end h */    */
   return po;    char *s, *t;
 }    t=in;s=in;
     while ((*in != occ) && (*in != '\0')){
       *alocc++ = *in++;
 /*************** log-likelihood *************/    }
 double func( double *x)    if( *in == occ){
 {      *(alocc)='\0';
   int i, ii, j, k, mi, d, kk;      s=++in;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    }
   double **out;   
   double sw; /* Sum of weights */    if (s == t) {/* occ not found */
   double lli; /* Individual log likelihood */      *(alocc-(in-s))='\0';
   long ipmx;      in=s;
   /*extern weight */    }
   /* We are differentiating ll according to initial status */    while ( *in != '\0'){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      *blocc++ = *in++;
   /*for(i=1;i<imx;i++)    }
     printf(" %d\n",s[4][i]);  
   */    *blocc='\0';
   cov[1]=1.;    return t;
   }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  char *cutv(char *blocc, char *alocc, char *in, char occ)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     for(mi=1; mi<= wav[i]-1; mi++){       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       for (ii=1;ii<=nlstate+ndeath;ii++)       gives blocc="abcdef2ghi" and alocc="j".
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       for(d=0; d<dh[mi][i]; d++){    */
         newm=savm;    char *s, *t;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    t=in;s=in;
         for (kk=1; kk<=cptcovage;kk++) {    while (*in != '\0'){
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      while( *in == occ){
         }        *blocc++ = *in++;
                s=in;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      *blocc++ = *in++;
         savm=oldm;    }
         oldm=newm;    if (s == t) /* occ not found */
              *(blocc-(in-s))='\0';
            else
       } /* end mult */      *(blocc-(in-s)-1)='\0';
          in=s;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    while ( *in != '\0'){
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      *alocc++ = *in++;
       ipmx +=1;    }
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    *alocc='\0';
     } /* end of wave */    return s;
   } /* end of individual */  }
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  int nbocc(char *s, char occ)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int i,j=0;
   return -l;    int lg=20;
 }    i=0;
     lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /*********** Maximum Likelihood Estimation ***************/    if  (s[i] == occ ) j++;
     }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    return j;
 {  }
   int i,j, iter;  
   double **xi,*delti;  /* void cutv(char *u,char *v, char*t, char occ) */
   double fret;  /* { */
   xi=matrix(1,npar,1,npar);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   for (i=1;i<=npar;i++)  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     for (j=1;j<=npar;j++)  /*      gives u="abcdef2ghi" and v="j" *\/ */
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*   int i,lg,j,p=0; */
   printf("Powell\n");  /*   i=0; */
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*   lg=strlen(t); */
   /*   for(j=0; j<=lg-1; j++) { */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*   } */
   
 }  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
 /**** Computes Hessian and covariance matrix ***/  /*   } */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*      u[p]='\0'; */
 {  
   double  **a,**y,*x,pd;  /*    for(j=0; j<= lg; j++) { */
   double **hess;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   int i, j,jk;  /*   } */
   int *indx;  /* } */
   
   double hessii(double p[], double delta, int theta, double delti[]);  #ifdef _WIN32
   double hessij(double p[], double delti[], int i, int j);  char * strsep(char **pp, const char *delim)
   void lubksb(double **a, int npar, int *indx, double b[]) ;  {
   void ludcmp(double **a, int npar, int *indx, double *d) ;    char *p, *q;
            
   hess=matrix(1,npar,1,npar);    if ((p = *pp) == NULL)
       return 0;
   printf("\nCalculation of the hessian matrix. Wait...\n");    if ((q = strpbrk (p, delim)) != NULL)
   for (i=1;i<=npar;i++){    {
     printf("%d",i);fflush(stdout);      *pp = q + 1;
     hess[i][i]=hessii(p,ftolhess,i,delti);      *q = '\0';
     /*printf(" %f ",p[i]);*/    }
     /*printf(" %lf ",hess[i][i]);*/    else
   }      *pp = 0;
      return p;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++)  {  #endif
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /********************** nrerror ********************/
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      void nrerror(char error_text[])
         /*printf(" %lf ",hess[i][j]);*/  {
       }    fprintf(stderr,"ERREUR ...\n");
     }    fprintf(stderr,"%s\n",error_text);
   }    exit(EXIT_FAILURE);
   printf("\n");  }
   /*********************** vector *******************/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  double *vector(int nl, int nh)
    {
   a=matrix(1,npar,1,npar);    double *v;
   y=matrix(1,npar,1,npar);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   x=vector(1,npar);    if (!v) nrerror("allocation failure in vector");
   indx=ivector(1,npar);    return v-nl+NR_END;
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    free((FREE_ARG)(v+nl-NR_END));
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /************************ivector *******************************/
       matcov[i][j]=x[i];  int *ivector(long nl,long nh)
     }  {
   }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   printf("\n#Hessian matrix#\n");    if (!v) nrerror("allocation failure in ivector");
   for (i=1;i<=npar;i++) {    return v-nl+NR_END;
     for (j=1;j<=npar;j++) {  }
       printf("%.3e ",hess[i][j]);  
     }  /******************free ivector **************************/
     printf("\n");  void free_ivector(int *v, long nl, long nh)
   }  {
     free((FREE_ARG)(v+nl-NR_END));
   /* Recompute Inverse */  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /************************lvector *******************************/
   ludcmp(a,npar,indx,&pd);  long *lvector(long nl,long nh)
   {
   /*  printf("\n#Hessian matrix recomputed#\n");    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   for (j=1;j<=npar;j++) {    if (!v) nrerror("allocation failure in ivector");
     for (i=1;i<=npar;i++) x[i]=0;    return v-nl+NR_END;
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /******************free lvector **************************/
       y[i][j]=x[i];  void free_lvector(long *v, long nl, long nh)
       printf("%.3e ",y[i][j]);  {
     }    free((FREE_ARG)(v+nl-NR_END));
     printf("\n");  }
   }  
   */  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
   free_matrix(a,1,npar,1,npar);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free_matrix(y,1,npar,1,npar);  { 
   free_vector(x,1,npar);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   free_ivector(indx,1,npar);    int **m; 
   free_matrix(hess,1,npar,1,npar);    
     /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 /*************** hessian matrix ****************/    m -= nrl; 
 double hessii( double x[], double delta, int theta, double delti[])    
 {    
   int i;    /* allocate rows and set pointers to them */ 
   int l=1, lmax=20;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double k1,k2;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double p2[NPARMAX+1];    m[nrl] += NR_END; 
   double res;    m[nrl] -= ncl; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    
   double fx;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   int k=0,kmax=10;    
   double l1;    /* return pointer to array of pointers to rows */ 
     return m; 
   fx=func(x);  } 
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  /****************** free_imatrix *************************/
     l1=pow(10,l);  void free_imatrix(m,nrl,nrh,ncl,nch)
     delts=delt;        int **m;
     for(k=1 ; k <kmax; k=k+1){        long nch,ncl,nrh,nrl; 
       delt = delta*(l1*k);       /* free an int matrix allocated by imatrix() */ 
       p2[theta]=x[theta] +delt;  { 
       k1=func(p2)-fx;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       p2[theta]=x[theta]-delt;    free((FREE_ARG) (m+nrl-NR_END)); 
       k2=func(p2)-fx;  } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /******************* matrix *******************************/
        double **matrix(long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG  {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 #endif    double **m;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         k=kmax;    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    m -= nrl;
         k=kmax; l=lmax*10.;  
       }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         delts=delt;    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
     }  
   }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   delti[theta]=delts;    return m;
   return res;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
    m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 }  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
      */
 double hessij( double x[], double delti[], int thetai,int thetaj)  }
 {  
   int i;  /*************************free matrix ************************/
   int l=1, l1, lmax=20;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double k1,k2,k3,k4,res,fx;  {
   double p2[NPARMAX+1];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int k;    free((FREE_ARG)(m+nrl-NR_END));
   }
   fx=func(x);  
   for (k=1; k<=2; k++) {  /******************* ma3x *******************************/
     for (i=1;i<=npar;i++) p2[i]=x[i];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     k1=func(p2)-fx;    double ***m;
    
     p2[thetai]=x[thetai]+delti[thetai]/k;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if (!m) nrerror("allocation failure 1 in matrix()");
     k2=func(p2)-fx;    m += NR_END;
      m -= nrl;
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     k3=func(p2)-fx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
     p2[thetai]=x[thetai]-delti[thetai]/k;    m[nrl] -= ncl;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #endif    m[nrl][ncl] += NR_END;
   }    m[nrl][ncl] -= nll;
   return res;    for (j=ncl+1; j<=nch; j++) 
 }      m[nrl][j]=m[nrl][j-1]+nlay;
     
 /************** Inverse of matrix **************/    for (i=nrl+1; i<=nrh; i++) {
 void ludcmp(double **a, int n, int *indx, double *d)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 {      for (j=ncl+1; j<=nch; j++) 
   int i,imax,j,k;        m[i][j]=m[i][j-1]+nlay;
   double big,dum,sum,temp;    }
   double *vv;    return m; 
      /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   vv=vector(1,n);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   *d=1.0;    */
   for (i=1;i<=n;i++) {  }
     big=0.0;  
     for (j=1;j<=n;j++)  /*************************free ma3x ************************/
       if ((temp=fabs(a[i][j])) > big) big=temp;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  {
     vv[i]=1.0/big;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
     for (i=1;i<j;i++) {  }
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*************** function subdirf ***********/
       a[i][j]=sum;  char *subdirf(char fileres[])
     }  {
     big=0.0;    /* Caution optionfilefiname is hidden */
     for (i=j;i<=n;i++) {    strcpy(tmpout,optionfilefiname);
       sum=a[i][j];    strcat(tmpout,"/"); /* Add to the right */
       for (k=1;k<j;k++)    strcat(tmpout,fileres);
         sum -= a[i][k]*a[k][j];    return tmpout;
       a[i][j]=sum;  }
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  /*************** function subdirf2 ***********/
         imax=i;  char *subdirf2(char fileres[], char *preop)
       }  {
     }    
     if (j != imax) {    /* Caution optionfilefiname is hidden */
       for (k=1;k<=n;k++) {    strcpy(tmpout,optionfilefiname);
         dum=a[imax][k];    strcat(tmpout,"/");
         a[imax][k]=a[j][k];    strcat(tmpout,preop);
         a[j][k]=dum;    strcat(tmpout,fileres);
       }    return tmpout;
       *d = -(*d);  }
       vv[imax]=vv[j];  
     }  /*************** function subdirf3 ***********/
     indx[j]=imax;  char *subdirf3(char fileres[], char *preop, char *preop2)
     if (a[j][j] == 0.0) a[j][j]=TINY;  {
     if (j != n) {    
       dum=1.0/(a[j][j]);    /* Caution optionfilefiname is hidden */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
   free_vector(vv,1,n);  /* Doesn't work */    strcat(tmpout,preop2);
 ;    strcat(tmpout,fileres);
 }    return tmpout;
   }
 void lubksb(double **a, int n, int *indx, double b[])  
 {  char *asc_diff_time(long time_sec, char ascdiff[])
   int i,ii=0,ip,j;  {
   double sum;    long sec_left, days, hours, minutes;
      days = (time_sec) / (60*60*24);
   for (i=1;i<=n;i++) {    sec_left = (time_sec) % (60*60*24);
     ip=indx[i];    hours = (sec_left) / (60*60) ;
     sum=b[ip];    sec_left = (sec_left) %(60*60);
     b[ip]=b[i];    minutes = (sec_left) /60;
     if (ii)    sec_left = (sec_left) % (60);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     else if (sum) ii=i;    return ascdiff;
     b[i]=sum;  }
   }  
   for (i=n;i>=1;i--) {  /***************** f1dim *************************/
     sum=b[i];  extern int ncom; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  extern double *pcom,*xicom;
     b[i]=sum/a[i][i];  extern double (*nrfunc)(double []); 
   }   
 }  double f1dim(double x) 
   { 
 /************ Frequencies ********************/    int j; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double f;
 {  /* Some frequencies */    double *xt; 
     
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    xt=vector(1,ncom); 
   double ***freq; /* Frequencies */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double *pp;    f=(*nrfunc)(xt); 
   double pos, k2, dateintsum=0,k2cpt=0;    free_vector(xt,1,ncom); 
   FILE *ficresp;    return f; 
   char fileresp[FILENAMELENGTH];  } 
    
   pp=vector(1,nlstate);  /*****************brent *************************/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   strcpy(fileresp,"p");  { 
   strcat(fileresp,fileres);    int iter; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double a,b,d,etemp;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double fu=0,fv,fw,fx;
     exit(0);    double ftemp=0.;
   }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double e=0.0; 
   j1=0;   
      a=(ax < cx ? ax : cx); 
   j=cptcoveff;    b=(ax > cx ? ax : cx); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    x=w=v=bx; 
      fw=fv=fx=(*f)(x); 
   for(k1=1; k1<=j;k1++){    for (iter=1;iter<=ITMAX;iter++) { 
     for(i1=1; i1<=ncodemax[k1];i1++){      xm=0.5*(a+b); 
       j1++;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         scanf("%d", i);*/      printf(".");fflush(stdout);
       for (i=-1; i<=nlstate+ndeath; i++)        fprintf(ficlog,".");fflush(ficlog);
         for (jk=-1; jk<=nlstate+ndeath; jk++)    #ifdef DEBUGBRENT
           for(m=agemin; m <= agemax+3; m++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
             freq[i][jk][m]=0;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
            /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       dateintsum=0;  #endif
       k2cpt=0;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       for (i=1; i<=imx; i++) {        *xmin=x; 
         bool=1;        return fx; 
         if  (cptcovn>0) {      } 
           for (z1=1; z1<=cptcoveff; z1++)      ftemp=fu;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      if (fabs(e) > tol1) { 
               bool=0;        r=(x-w)*(fx-fv); 
         }        q=(x-v)*(fx-fw); 
         if (bool==1) {        p=(x-v)*q-(x-w)*r; 
           for(m=firstpass; m<=lastpass; m++){        q=2.0*(q-r); 
             k2=anint[m][i]+(mint[m][i]/12.);        if (q > 0.0) p = -p; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        q=fabs(q); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        etemp=e; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        e=d; 
               if (m<lastpass) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        else { 
               }          d=p/q; 
                        u=x+d; 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          if (u-a < tol2 || b-u < tol2) 
                 dateintsum=dateintsum+k2;            d=SIGN(tol1,xm-x); 
                 k2cpt++;        } 
               }      } else { 
             }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           }      } 
         }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       }      fu=(*f)(u); 
              if (fu <= fx) { 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
       if  (cptcovn>0) {          SHFT(fv,fw,fx,fu) 
         fprintf(ficresp, "\n#********** Variable ");          } else { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            if (u < x) a=u; else b=u; 
         fprintf(ficresp, "**********\n#");            if (fu <= fw || w == x) { 
       }              v=w; 
       for(i=1; i<=nlstate;i++)              w=u; 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);              fv=fw; 
       fprintf(ficresp, "\n");              fw=fu; 
                  } else if (fu <= fv || v == x || v == w) { 
       for(i=(int)agemin; i <= (int)agemax+3; i++){              v=u; 
         if(i==(int)agemax+3)              fv=fu; 
           printf("Total");            } 
         else          } 
           printf("Age %d", i);    } 
         for(jk=1; jk <=nlstate ; jk++){    nrerror("Too many iterations in brent"); 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    *xmin=x; 
             pp[jk] += freq[jk][m][i];    return fx; 
         }  } 
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  /****************** mnbrak ***********************/
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              double (*func)(double)) 
           else  { 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double ulim,u,r,q, dum;
         }    double fu; 
    
         for(jk=1; jk <=nlstate ; jk++){    *fa=(*func)(*ax); 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    *fb=(*func)(*bx); 
             pp[jk] += freq[jk][m][i];    if (*fb > *fa) { 
         }      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        } 
           pos += pp[jk];    *cx=(*bx)+GOLD*(*bx-*ax); 
         for(jk=1; jk <=nlstate ; jk++){    *fc=(*func)(*cx); 
           if(pos>=1.e-5)    while (*fb > *fc) { /* Declining fa, fb, fc */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      r=(*bx-*ax)*(*fb-*fc); 
           else      q=(*bx-*cx)*(*fb-*fa); 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
           if( i <= (int) agemax){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
             if(pos>=1.e-5){      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
               probs[i][jk][j1]= pp[jk]/pos;        fu=(*func)(u); 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  #ifdef DEBUG
             }        /* f(x)=A(x-u)**2+f(u) */
             else        double A, fparabu; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
           }        fparabu= *fa - A*(*ax-u)*(*ax-u);
         }        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         for(jk=-1; jk <=nlstate+ndeath; jk++)  #endif 
           for(m=-1; m <=nlstate+ndeath; m++)      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        fu=(*func)(u); 
         if(i <= (int) agemax)        if (fu < *fc) { 
           fprintf(ficresp,"\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         printf("\n");            SHFT(*fb,*fc,fu,(*func)(u)) 
       }            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   }        u=ulim; 
   dateintmean=dateintsum/k2cpt;        fu=(*func)(u); 
        } else { 
   fclose(ficresp);        u=(*cx)+GOLD*(*cx-*bx); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        fu=(*func)(u); 
   free_vector(pp,1,nlstate);      } 
        SHFT(*ax,*bx,*cx,u) 
   /* End of Freq */        SHFT(*fa,*fb,*fc,fu) 
 }        } 
   } 
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  /*************** linmin ************************/
 {  /* Some frequencies */  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
    resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   double ***freq; /* Frequencies */  the value of func at the returned location p . This is actually all accomplished by calling the
   double *pp;  routines mnbrak and brent .*/
   double pos, k2;  int ncom; 
   double *pcom,*xicom;
   pp=vector(1,nlstate);  double (*nrfunc)(double []); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);   
    void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  { 
   j1=0;    double brent(double ax, double bx, double cx, 
                   double (*f)(double), double tol, double *xmin); 
   j=cptcoveff;    double f1dim(double x); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                  double *fc, double (*func)(double)); 
   for(k1=1; k1<=j;k1++){    int j; 
     for(i1=1; i1<=ncodemax[k1];i1++){    double xx,xmin,bx,ax; 
       j1++;    double fx,fb,fa;
         
       for (i=-1; i<=nlstate+ndeath; i++)      ncom=n; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      pcom=vector(1,n); 
           for(m=agemin; m <= agemax+3; m++)    xicom=vector(1,n); 
             freq[i][jk][m]=0;    nrfunc=func; 
          for (j=1;j<=n;j++) { 
       for (i=1; i<=imx; i++) {      pcom[j]=p[j]; 
         bool=1;      xicom[j]=xi[j]; 
         if  (cptcovn>0) {    } 
           for (z1=1; z1<=cptcoveff; z1++)    ax=0.0; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    xx=1.0; 
               bool=0;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
         }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
         if (bool==1) {  #ifdef DEBUG
           for(m=firstpass; m<=lastpass; m++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             k2=anint[m][i]+(mint[m][i]/12.);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  #endif
               if(agev[m][i]==0) agev[m][i]=agemax+1;    for (j=1;j<=n;j++) { 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      xi[j] *= xmin; 
               if (m<lastpass) {      p[j] += xi[j]; 
                 if (calagedate>0)    } 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    free_vector(xicom,1,n); 
                 else    free_vector(pcom,1,n); 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  } 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
               }  
             }  /*************** powell ************************/
           }  /*
         }  Minimization of a function func of n variables. Input consists of an initial starting point
       }  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
       for(i=(int)agemin; i <= (int)agemax+3; i++){  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
         for(jk=1; jk <=nlstate ; jk++){  such that failure to decrease by more than this amount on one iteration signals doneness. On
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
             pp[jk] += freq[jk][m][i];  function value at p , and iter is the number of iterations taken. The routine linmin is used.
         }   */
         for(jk=1; jk <=nlstate ; jk++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
           for(m=-1, pos=0; m <=0 ; m++)              double (*func)(double [])) 
             pos += freq[jk][m][i];  { 
         }    void linmin(double p[], double xi[], int n, double *fret, 
                        double (*func)(double [])); 
         for(jk=1; jk <=nlstate ; jk++){    int i,ibig,j; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double del,t,*pt,*ptt,*xit;
             pp[jk] += freq[jk][m][i];    double fp,fptt;
         }    double *xits;
            int niterf, itmp;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  
            pt=vector(1,n); 
         for(jk=1; jk <=nlstate ; jk++){        ptt=vector(1,n); 
           if( i <= (int) agemax){    xit=vector(1,n); 
             if(pos>=1.e-5){    xits=vector(1,n); 
               probs[i][jk][j1]= pp[jk]/pos;    *fret=(*func)(p); 
             }    for (j=1;j<=n;j++) pt[j]=p[j]; 
           }      rcurr_time = time(NULL);  
         }    for (*iter=1;;++(*iter)) { 
              fp=(*fret); 
       }      ibig=0; 
     }      del=0.0; 
   }      rlast_time=rcurr_time;
       /* (void) gettimeofday(&curr_time,&tzp); */
        rcurr_time = time(NULL);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      curr_time = *localtime(&rcurr_time);
   free_vector(pp,1,nlstate);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
        fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 }  /* End of Freq */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
      for (i=1;i<=n;i++) {
 /************* Waves Concatenation ***************/        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        fprintf(ficrespow," %.12lf", p[i]);
 {      }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      printf("\n");
      Death is a valid wave (if date is known).      fprintf(ficlog,"\n");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      fprintf(ficrespow,"\n");fflush(ficrespow);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      if(*iter <=3){
      and mw[mi+1][i]. dh depends on stepm.        tml = *localtime(&rcurr_time);
      */        strcpy(strcurr,asctime(&tml));
         rforecast_time=rcurr_time; 
   int i, mi, m;        itmp = strlen(strcurr);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
      double sum=0., jmean=0.;*/          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   int j, k=0,jk, ju, jl;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   double sum=0.;        for(niterf=10;niterf<=30;niterf+=10){
   jmin=1e+5;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
   jmax=-1;          forecast_time = *localtime(&rforecast_time);
   jmean=0.;          strcpy(strfor,asctime(&forecast_time));
   for(i=1; i<=imx; i++){          itmp = strlen(strfor);
     mi=0;          if(strfor[itmp-1]=='\n')
     m=firstpass;          strfor[itmp-1]='\0';
     while(s[m][i] <= nlstate){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       if(s[m][i]>=1)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         mw[++mi][i]=m;        }
       if(m >=lastpass)      }
         break;      for (i=1;i<=n;i++) { 
       else        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         m++;        fptt=(*fret); 
     }/* end while */  #ifdef DEBUG
     if (s[m][i] > nlstate){            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       mi++;     /* Death is another wave */            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       /* if(mi==0)  never been interviewed correctly before death */  #endif
          /* Only death is a correct wave */        printf("%d",i);fflush(stdout);
       mw[mi][i]=m;        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
     wav[i]=mi;          del=fabs(fptt-(*fret)); 
     if(mi==0)          ibig=i; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        } 
   }  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   for(i=1; i<=imx; i++){        fprintf(ficlog,"%d %.12e",i,(*fret));
     for(mi=1; mi<wav[i];mi++){        for (j=1;j<=n;j++) {
       if (stepm <=0)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         dh[mi][i]=1;          printf(" x(%d)=%.12e",j,xit[j]);
       else{          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         if (s[mw[mi+1][i]][i] > nlstate) {        }
           if (agedc[i] < 2*AGESUP) {        for(j=1;j<=n;j++) {
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          printf(" p(%d)=%.12e",j,p[j]);
           if(j==0) j=1;  /* Survives at least one month after exam */          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
           k=k+1;        }
           if (j >= jmax) jmax=j;        printf("\n");
           if (j <= jmin) jmin=j;        fprintf(ficlog,"\n");
           sum=sum+j;  #endif
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      } /* end i */
           }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         }  #ifdef DEBUG
         else{        int k[2],l;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        k[0]=1;
           k=k+1;        k[1]=-1;
           if (j >= jmax) jmax=j;        printf("Max: %.12e",(*func)(p));
           else if (j <= jmin)jmin=j;        fprintf(ficlog,"Max: %.12e",(*func)(p));
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        for (j=1;j<=n;j++) {
           sum=sum+j;          printf(" %.12e",p[j]);
         }          fprintf(ficlog," %.12e",p[j]);
         jk= j/stepm;        }
         jl= j -jk*stepm;        printf("\n");
         ju= j -(jk+1)*stepm;        fprintf(ficlog,"\n");
         if(jl <= -ju)        for(l=0;l<=1;l++) {
           dh[mi][i]=jk;          for (j=1;j<=n;j++) {
         else            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           dh[mi][i]=jk+1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         if(dh[mi][i]==0)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           dh[mi][i]=1; /* At least one step */          }
       }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }        }
   jmean=sum/k;  #endif
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }  
 /*********** Tricode ****************************/        free_vector(xit,1,n); 
 void tricode(int *Tvar, int **nbcode, int imx)        free_vector(xits,1,n); 
 {        free_vector(ptt,1,n); 
   int Ndum[20],ij=1, k, j, i;        free_vector(pt,1,n); 
   int cptcode=0;        return; 
   cptcoveff=0;      } 
        if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (k=0; k<19; k++) Ndum[k]=0;      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
   for (k=1; k<=7; k++) ncodemax[k]=0;        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        pt[j]=p[j]; 
     for (i=1; i<=imx; i++) {      } 
       ij=(int)(covar[Tvar[j]][i]);      fptt=(*func)(ptt); 
       Ndum[ij]++;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
       if (ij > cptcode) cptcode=ij;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
     }        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
         /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
     for (i=0; i<=cptcode; i++) {        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       if(Ndum[i]!=0) ncodemax[j]++;        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
     }        /* Thus we compare delta(2h) with observed f1-f3 */
     ij=1;        /* or best gain on one ancient line 'del' with total  */
         /* gain f1-f2 = f1 - f2 - 'del' with del  */
         /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
         if (Ndum[k] != 0) {        t= t- del*SQR(fp-fptt);
           nbcode[Tvar[j]][ij]=k;        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
                  fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
           ij++;  #ifdef DEBUG
         }        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         if (ij > ncodemax[j]) break;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       }          fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     }               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   }          printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
  for (k=0; k<19; k++) Ndum[k]=0;  #endif
         if (t < 0.0) { /* Then we use it for last direction */
  for (i=1; i<=ncovmodel-2; i++) {          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
       ij=Tvar[i];          for (j=1;j<=n;j++) { 
       Ndum[ij]++;            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
     }            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
           }
  ij=1;          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
  for (i=1; i<=10; i++) {          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;  #ifdef DEBUG
      ij++;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
    }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  }          for(j=1;j<=n;j++){
              printf(" %.12e",xit[j]);
     cptcoveff=ij-1;            fprintf(ficlog," %.12e",xit[j]);
 }          }
           printf("\n");
 /*********** Health Expectancies ****************/          fprintf(ficlog,"\n");
   #endif
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        } /* end of t negative */
       } /* end if (fptt < fp)  */
 {    } 
   /* Health expectancies */  } 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  
   double age, agelim, hf;  /**** Prevalence limit (stable or period prevalence)  ****************/
   double ***p3mat,***varhe;  
   double **dnewm,**doldm;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double *xp;  {
   double **gp, **gm;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double ***gradg, ***trgradg;       matrix by transitions matrix until convergence is reached */
   int theta;    
     int i, ii,j,k;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    double min, max, maxmin, maxmax,sumnew=0.;
   xp=vector(1,npar);    /* double **matprod2(); */ /* test */
   dnewm=matrix(1,nlstate*2,1,npar);    double **out, cov[NCOVMAX+1], **pmij();
   doldm=matrix(1,nlstate*2,1,nlstate*2);    double **newm;
      double agefin, delaymax=50 ; /* Max number of years to converge */
   fprintf(ficreseij,"# Health expectancies\n");    
   fprintf(ficreseij,"# Age");    for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=nlstate;i++)      for (j=1;j<=nlstate+ndeath;j++){
     for(j=1; j<=nlstate;j++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      }
   fprintf(ficreseij,"\n");    
     cov[1]=1.;
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   else  hstepm=estepm;        newm=savm;
   /* We compute the life expectancy from trapezoids spaced every estepm months      /* Covariates have to be included here again */
    * This is mainly to measure the difference between two models: for example      cov[2]=agefin;
    * if stepm=24 months pijx are given only every 2 years and by summing them      
    * we are calculating an estimate of the Life Expectancy assuming a linear      for (k=1; k<=cptcovn;k++) {
    * progression inbetween and thus overestimating or underestimating according        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
    * to the curvature of the survival function. If, for the same date, we        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      }
    * to compare the new estimate of Life expectancy with the same linear      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
    * hypothesis. A more precise result, taking into account a more precise      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
    * curvature will be obtained if estepm is as small as stepm. */      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       
   /* For example we decided to compute the life expectancy with the smallest unit */      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      nhstepm is the number of hstepm from age to agelim      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
      nstepm is the number of stepm from age to agelin.      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
      Look at hpijx to understand the reason of that which relies in memory size      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
      and note for a fixed period like estepm months */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      
      survival function given by stepm (the optimization length). Unfortunately it      savm=oldm;
      means that if the survival funtion is printed only each two years of age and if      oldm=newm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      maxmax=0.;
      results. So we changed our mind and took the option of the best precision.      for(j=1;j<=nlstate;j++){
   */        min=1.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        max=0.;
         for(i=1; i<=nlstate; i++) {
   agelim=AGESUP;          sumnew=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     /* nhstepm age range expressed in number of stepm */          prlim[i][j]= newm[i][j]/(1-sumnew);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          max=FMAX(max,prlim[i][j]);
     /* if (stepm >= YEARM) hstepm=1;*/          min=FMIN(min,prlim[i][j]);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        maxmin=max-min;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        maxmax=FMAX(maxmax,maxmin);
     gp=matrix(0,nhstepm,1,nlstate*2);      } /* j loop */
     gm=matrix(0,nhstepm,1,nlstate*2);      if(maxmax < ftolpl){
         return prlim;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    } /* age loop */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      return prlim; /* should not reach here */
    }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  /*************** transition probabilities ***************/ 
   
     /* Computing Variances of health expectancies */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
      for(theta=1; theta <=npar; theta++){    /* According to parameters values stored in x and the covariate's values stored in cov,
       for(i=1; i<=npar; i++){       computes the probability to be observed in state j being in state i by appying the
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       model to the ncovmodel covariates (including constant and age).
       }       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         ncth covariate in the global vector x is given by the formula:
       cptj=0;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
       for(j=1; j<= nlstate; j++){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         for(i=1; i<=nlstate; i++){       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           cptj=cptj+1;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){       Outputs ps[i][j] the probability to be observed in j being in j according to
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
           }    */
         }    double s1, lnpijopii;
       }    /*double t34;*/
          int i,j, nc, ii, jj;
        
       for(i=1; i<=npar; i++)      for(i=1; i<= nlstate; i++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(j=1; j<i;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                  /*lnpijopii += param[i][j][nc]*cov[nc];*/
       cptj=0;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
       for(j=1; j<= nlstate; j++){  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         for(i=1;i<=nlstate;i++){          }
           cptj=cptj+1;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        }
           }        for(j=i+1; j<=nlstate+ndeath;j++){
         }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       }            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
      /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }
       for(j=1; j<= nlstate*2; j++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         for(h=0; h<=nhstepm-1; h++){        }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }      
       for(i=1; i<= nlstate; i++){
      }        s1=0;
            for(j=1; j<i; j++){
 /* End theta */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        }
         for(j=i+1; j<=nlstate+ndeath; j++){
      for(h=0; h<=nhstepm-1; h++)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       for(j=1; j<=nlstate*2;j++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         for(theta=1; theta <=npar; theta++)        }
         trgradg[h][j][theta]=gradg[h][theta][j];        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         ps[i][i]=1./(s1+1.);
         /* Computing other pijs */
      for(i=1;i<=nlstate*2;i++)        for(j=1; j<i; j++)
       for(j=1;j<=nlstate*2;j++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
         varhe[i][j][(int)age] =0.;        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
      printf("%d||",(int)age);fflush(stdout);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for(h=0;h<=nhstepm-1;h++){      } /* end i */
       for(k=0;k<=nhstepm-1;k++){      
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        for(jj=1; jj<= nlstate+ndeath; jj++){
         for(i=1;i<=nlstate*2;i++)          ps[ii][jj]=0;
           for(j=1;j<=nlstate*2;j++)          ps[ii][ii]=1;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        }
       }      }
     }      
       
            /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     /* Computing expectancies */      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     for(i=1; i<=nlstate;i++)      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       for(j=1; j<=nlstate;j++)      /*   } */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      /*   printf("\n "); */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      /* } */
                /* printf("\n ");printf("%lf ",cov[2]);*/
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
         }        goto end;*/
       return ps;
     fprintf(ficreseij,"%3.0f",age );  }
     cptj=0;  
     for(i=1; i<=nlstate;i++)  /**************** Product of 2 matrices ******************/
       for(j=1; j<=nlstate;j++){  
         cptj++;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  {
       }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     fprintf(ficreseij,"\n");       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
        /* in, b, out are matrice of pointers which should have been initialized 
     free_matrix(gm,0,nhstepm,1,nlstate*2);       before: only the contents of out is modified. The function returns
     free_matrix(gp,0,nhstepm,1,nlstate*2);       a pointer to pointers identical to out */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    int i, j, k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    for(i=nrl; i<= nrh; i++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(k=ncolol; k<=ncoloh; k++){
   }        out[i][k]=0.;
   free_vector(xp,1,npar);        for(j=ncl; j<=nch; j++)
   free_matrix(dnewm,1,nlstate*2,1,npar);          out[i][k] +=in[i][j]*b[j][k];
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    return out;
 }  }
   
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  /************* Higher Matrix Product ***************/
 {  
   /* Variance of health expectancies */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  {
   double **newm;    /* Computes the transition matrix starting at age 'age' over 
   double **dnewm,**doldm;       'nhstepm*hstepm*stepm' months (i.e. until
   int i, j, nhstepm, hstepm, h, nstepm ;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int k, cptcode;       nhstepm*hstepm matrices. 
   double *xp;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double **gp, **gm;       (typically every 2 years instead of every month which is too big 
   double ***gradg, ***trgradg;       for the memory).
   double ***p3mat;       Model is determined by parameters x and covariates have to be 
   double age,agelim, hf;       included manually here. 
   int theta;  
        */
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");    int i, j, d, h, k;
   for(i=1; i<=nlstate;i++)    double **out, cov[NCOVMAX+1];
     for(j=1; j<=nlstate;j++)    double **newm;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   xp=vector(1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   dnewm=matrix(1,nlstate,1,npar);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   if(estepm < stepm){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(h=1; h <=nhstepm; h++){
   }      for(d=1; d <=hstepm; d++){
   else  hstepm=estepm;          newm=savm;
   /* For example we decided to compute the life expectancy with the smallest unit */        /* Covariates have to be included here again */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        cov[1]=1.;
      nhstepm is the number of hstepm from age to agelim        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
      nstepm is the number of stepm from age to agelin.        for (k=1; k<=cptcovn;k++) 
      Look at hpijx to understand the reason of that which relies in memory size          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      and note for a fixed period like k years */        for (k=1; k<=cptcovage;k++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      survival function given by stepm (the optimization length). Unfortunately it        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
      means that if the survival funtion is printed only each two years of age and if          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  
   */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   agelim = AGESUP;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        savm=oldm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        oldm=newm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for(i=1; i<=nlstate+ndeath; i++)
     gp=matrix(0,nhstepm,1,nlstate);        for(j=1;j<=nlstate+ndeath;j++) {
     gm=matrix(0,nhstepm,1,nlstate);          po[i][j][h]=newm[i][j];
           /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){ /* Computes gradient */      /*printf("h=%d ",h);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    } /* end h */
       }  /*     printf("\n H=%d \n",h); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return po;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
   
       if (popbased==1) {  #ifdef NLOPT
         for(i=1; i<=nlstate;i++)    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
           prlim[i][i]=probs[(int)age][i][ij];    double fret;
       }    double *xt;
      int j;
       for(j=1; j<= nlstate; j++){    myfunc_data *d2 = (myfunc_data *) pd;
         for(h=0; h<=nhstepm; h++){  /* xt = (p1-1); */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    xt=vector(1,n); 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
         }  
       }    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
        /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
       for(i=1; i<=npar; i++) /* Computes gradient */    printf("Function = %.12lf ",fret);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   free_vector(xt,1,n);
      return fret;
       if (popbased==1) {  }
         for(i=1; i<=nlstate;i++)  #endif
           prlim[i][i]=probs[(int)age][i][ij];  
       }  /*************** log-likelihood *************/
   double func( double *x)
       for(j=1; j<= nlstate; j++){  {
         for(h=0; h<=nhstepm; h++){    int i, ii, j, k, mi, d, kk;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double **out;
         }    double sw; /* Sum of weights */
       }    double lli; /* Individual log likelihood */
     int s1, s2;
       for(j=1; j<= nlstate; j++)    double bbh, survp;
         for(h=0; h<=nhstepm; h++){    long ipmx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /*extern weight */
         }    /* We are differentiating ll according to initial status */
     } /* End theta */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      printf(" %d\n",s[4][i]);
     */
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    ++countcallfunc;
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];    cov[1]=1.;
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    if(mle==1){
         vareij[i][j][(int)age] =0.;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /* Computes the values of the ncovmodel covariates of the model
     for(h=0;h<=nhstepm;h++){           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       for(k=0;k<=nhstepm;k++){           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);           to be observed in j being in i according to the model.
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);         */
         for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
           for(j=1;j<=nlstate;j++)          cov[2+k]=covar[Tvar[k]][i];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        }
       }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
     }           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
     fprintf(ficresvij,"%.0f ",age );        for(mi=1; mi<= wav[i]-1; mi++){
     for(i=1; i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<=nlstate;j++){            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresvij,"\n");            }
     free_matrix(gp,0,nhstepm,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
     free_matrix(gm,0,nhstepm,1,nlstate);            newm=savm;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   } /* End age */            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(xp,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(doldm,1,nlstate,1,npar);            savm=oldm;
   free_matrix(dnewm,1,nlstate,1,nlstate);            oldm=newm;
           } /* end mult */
 }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 /************ Variance of prevlim ******************/          /* But now since version 0.9 we anticipate for bias at large stepm.
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {           * (in months) between two waves is not a multiple of stepm, we rounded to 
   /* Variance of prevalence limit */           * the nearest (and in case of equal distance, to the lowest) interval but now
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double **newm;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double **dnewm,**doldm;           * probability in order to take into account the bias as a fraction of the way
   int i, j, nhstepm, hstepm;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int k, cptcode;           * -stepm/2 to stepm/2 .
   double *xp;           * For stepm=1 the results are the same as for previous versions of Imach.
   double *gp, *gm;           * For stepm > 1 the results are less biased than in previous versions. 
   double **gradg, **trgradg;           */
   double age,agelim;          s1=s[mw[mi][i]][i];
   int theta;          s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          /* bias bh is positive if real duration
   fprintf(ficresvpl,"# Age");           * is higher than the multiple of stepm and negative otherwise.
   for(i=1; i<=nlstate;i++)           */
       fprintf(ficresvpl," %1d-%1d",i,i);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   fprintf(ficresvpl,"\n");          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
   xp=vector(1,npar);               then the contribution to the likelihood is the probability to 
   dnewm=matrix(1,nlstate,1,npar);               die between last step unit time and current  step unit time, 
   doldm=matrix(1,nlstate,1,nlstate);               which is also equal to probability to die before dh 
                 minus probability to die before dh-stepm . 
   hstepm=1*YEARM; /* Every year of age */               In version up to 0.92 likelihood was computed
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          as if date of death was unknown. Death was treated as any other
   agelim = AGESUP;          health state: the date of the interview describes the actual state
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          and not the date of a change in health state. The former idea was
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          to consider that at each interview the state was recorded
     if (stepm >= YEARM) hstepm=1;          (healthy, disable or death) and IMaCh was corrected; but when we
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          introduced the exact date of death then we should have modified
     gradg=matrix(1,npar,1,nlstate);          the contribution of an exact death to the likelihood. This new
     gp=vector(1,nlstate);          contribution is smaller and very dependent of the step unit
     gm=vector(1,nlstate);          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
     for(theta=1; theta <=npar; theta++){          interview up to one month before death multiplied by the
       for(i=1; i<=npar; i++){ /* Computes gradient */          probability to die within a month. Thanks to Chris
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          Jackson for correcting this bug.  Former versions increased
       }          mortality artificially. The bad side is that we add another loop
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          which slows down the processing. The difference can be up to 10%
       for(i=1;i<=nlstate;i++)          lower mortality.
         gp[i] = prlim[i][i];            */
                lli=log(out[s1][s2] - savm[s1][s2]);
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          } else if  (s2==-2) {
       for(i=1;i<=nlstate;i++)            for (j=1,survp=0. ; j<=nlstate; j++) 
         gm[i] = prlim[i][i];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             /*survp += out[s1][j]; */
       for(i=1;i<=nlstate;i++)            lli= log(survp);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          }
     } /* End theta */          
           else if  (s2==-4) { 
     trgradg =matrix(1,nlstate,1,npar);            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(j=1; j<=nlstate;j++)            lli= log(survp); 
       for(theta=1; theta <=npar; theta++)          } 
         trgradg[j][theta]=gradg[theta][j];  
           else if  (s2==-5) { 
     for(i=1;i<=nlstate;i++)            for (j=1,survp=0. ; j<=2; j++)  
       varpl[i][(int)age] =0.;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            lli= log(survp); 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          } 
     for(i=1;i<=nlstate;i++)          
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     fprintf(ficresvpl,"%.0f ",age );            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for(i=1; i<=nlstate;i++)          } 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     fprintf(ficresvpl,"\n");          /*if(lli ==000.0)*/
     free_vector(gp,1,nlstate);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     free_vector(gm,1,nlstate);          ipmx +=1;
     free_matrix(gradg,1,npar,1,nlstate);          sw += weight[i];
     free_matrix(trgradg,1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   } /* End age */        } /* end of wave */
       } /* end of individual */
   free_vector(xp,1,npar);    }  else if(mle==2){
   free_matrix(doldm,1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_matrix(dnewm,1,nlstate,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************ Variance of one-step probabilities  ******************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i, j, i1, k1, j1, z1;          for(d=0; d<=dh[mi][i]; d++){
   int k=0, cptcode;            newm=savm;
   double **dnewm,**doldm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *xp;            for (kk=1; kk<=cptcovage;kk++) {
   double *gp, *gm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **gradg, **trgradg;            }
   double age,agelim, cov[NCOVMAX];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int theta;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char fileresprob[FILENAMELENGTH];            savm=oldm;
             oldm=newm;
   strcpy(fileresprob,"prob");          } /* end mult */
   strcat(fileresprob,fileres);        
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with resultfile: %s\n", fileresprob);          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            ipmx +=1;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");          sw += weight[i];
   fprintf(ficresprob,"# Age");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=nlstate;i++)        } /* end of wave */
     for(j=1; j<=(nlstate+ndeath);j++)      } /* end of individual */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresprob,"\n");        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   xp=vector(1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            }
            for(d=0; d<dh[mi][i]; d++){
   cov[1]=1;            newm=savm;
   j=cptcoveff;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (kk=1; kk<=cptcovage;kk++) {
   j1=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(k1=1; k1<=1;k1++){            }
     for(i1=1; i1<=ncodemax[k1];i1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     j1++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     if  (cptcovn>0) {            oldm=newm;
       fprintf(ficresprob, "\n#********** Variable ");          } /* end mult */
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        
       fprintf(ficresprob, "**********\n#");          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
       for (age=bage; age<=fage; age ++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         cov[2]=age;          ipmx +=1;
         for (k=1; k<=cptcovn;k++) {          sw += weight[i];
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                  } /* end of wave */
         }      } /* end of individual */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         for (k=1; k<=cptcovprod;k++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
         gradg=matrix(1,npar,1,9);          for (ii=1;ii<=nlstate+ndeath;ii++)
         trgradg=matrix(1,9,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                }
         for(theta=1; theta <=npar; theta++){          for(d=0; d<dh[mi][i]; d++){
           for(i=1; i<=npar; i++)            newm=savm;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                      for (kk=1; kk<=cptcovage;kk++) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                      }
           k=0;          
           for(i=1; i<= (nlstate+ndeath); i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             for(j=1; j<=(nlstate+ndeath);j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               k=k+1;            savm=oldm;
               gp[k]=pmmij[i][j];            oldm=newm;
             }          } /* end mult */
           }        
                    s1=s[mw[mi][i]][i];
           for(i=1; i<=npar; i++)          s2=s[mw[mi+1][i]][i];
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          if( s2 > nlstate){ 
                lli=log(out[s1][s2] - savm[s1][s2]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          }else{
           k=0;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(i=1; i<=(nlstate+ndeath); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){          ipmx +=1;
               k=k+1;          sw += weight[i];
               gm[k]=pmmij[i][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           }        } /* end of wave */
            } /* end of individual */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(theta=1; theta <=npar; theta++)            for (j=1;j<=nlstate+ndeath;j++){
             trgradg[j][theta]=gradg[theta][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
         pmij(pmmij,cov,ncovmodel,x,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
         k=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(i=1; i<=(nlstate+ndeath); i++){            }
           for(j=1; j<=(nlstate+ndeath);j++){          
             k=k+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             gm[k]=pmmij[i][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
                } /* end mult */
      /*printf("\n%d ",(int)age);        
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          s1=s[mw[mi][i]][i];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          s2=s[mw[mi+1][i]][i];
      }*/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
         fprintf(ficresprob,"\n%d ",(int)age);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        } /* end of wave */
        } /* end of individual */
       }    } /* End of if */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    return -l;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  }
   }  
   free_vector(xp,1,npar);  /*************** log-likelihood *************/
   fclose(ficresprob);  double funcone( double *x)
    {
 }    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
 /******************* Printing html file ***********/    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    double **out;
  int lastpass, int stepm, int weightopt, char model[],\    double lli; /* Individual log likelihood */
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    double llt;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    int s1, s2;
  char version[], int popforecast, int estepm ){    double bbh, survp;
   int jj1, k1, i1, cpt;    /*extern weight */
   FILE *fichtm;    /* We are differentiating ll according to initial status */
   /*char optionfilehtm[FILENAMELENGTH];*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   strcpy(optionfilehtm,optionfile);      printf(" %d\n",s[4][i]);
   strcat(optionfilehtm,".htm");    */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    cov[1]=1.;
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 \n      for(mi=1; mi<= wav[i]-1; mi++){
 Total number of observations=%d <br>\n        for (ii=1;ii<=nlstate+ndeath;ii++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          for (j=1;j<=nlstate+ndeath;j++){
 <hr  size=\"2\" color=\"#EC5E5E\">            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  <ul><li>Outputs files<br>\n            savm[ii][j]=(ii==j ? 1.0 : 0.0);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n        for(d=0; d<dh[mi][i]; d++){
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          newm=savm;
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          for (kk=1; kk<=cptcovage;kk++) {
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
  fprintf(fichtm,"\n          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          savm=oldm;
           oldm=newm;
  if(popforecast==1) fprintf(fichtm,"\n        } /* end mult */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        s1=s[mw[mi][i]][i];
         <br>",fileres,fileres,fileres,fileres);        s2=s[mw[mi+1][i]][i];
  else        bbh=(double)bh[mi][i]/(double)stepm; 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        /* bias is positive if real duration
 fprintf(fichtm," <li>Graphs</li><p>");         * is higher than the multiple of stepm and negative otherwise.
          */
  m=cptcoveff;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
  jj1=0;          for (j=1,survp=0. ; j<=nlstate; j++) 
  for(k1=1; k1<=m;k1++){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    for(i1=1; i1<=ncodemax[k1];i1++){          lli= log(survp);
        jj1++;        }else if (mle==1){
        if (cptcovn > 0) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        } else if(mle==2){
          for (cpt=1; cpt<=cptcoveff;cpt++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        } else if(mle==3){  /* exponential inter-extrapolation */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
        }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.png<br>          lli=log(out[s1][s2]); /* Original formula */
 <img src=\"pe%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            } else{  /* mle=0 back to 1 */
        for(cpt=1; cpt<nlstate;cpt++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.png<br>          /*lli=log(out[s1][s2]); */ /* Original formula */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        } /* End of if */
        }        ipmx +=1;
     for(cpt=1; cpt<=nlstate;cpt++) {        sw += weight[i];
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 interval) in state (%d): v%s%d%d.png <br>        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          if(globpr){
      }          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
      for(cpt=1; cpt<=nlstate;cpt++) {   %11.6f %11.6f %11.6f ", \
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
      }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            llt +=ll[k]*gipmx/gsw;
 health expectancies in states (1) and (2): e%s%d.png<br>            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
 fprintf(fichtm,"\n</body>");          fprintf(ficresilk," %10.6f\n", -llt);
    }        }
    }      } /* end of wave */
 fclose(fichtm);    } /* end of individual */
 }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 /******************* Gnuplot file **************/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      gsw=sw;
     }
   strcpy(optionfilegnuplot,optionfilefiname);    return -l;
   strcat(optionfilegnuplot,".gp.txt");  }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);  
   }  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 #ifdef windows  {
     fprintf(ficgp,"cd \"%s\" \n",pathc);    /* This routine should help understanding what is done with 
 #endif       the selection of individuals/waves and
 m=pow(2,cptcoveff);       to check the exact contribution to the likelihood.
         Plotting could be done.
  /* 1eme*/     */
   for (cpt=1; cpt<= nlstate ; cpt ++) {    int k;
    for (k1=1; k1<= m ; k1 ++) {  
     if(*globpri !=0){ /* Just counts and sums, no printings */
 #ifdef windows      strcpy(fileresilk,"ilk"); 
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);      strcat(fileresilk,fileres);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 #endif        printf("Problem with resultfile: %s\n", fileresilk);
 #ifdef unix        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);      }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 #endif      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 for (i=1; i<= nlstate ; i ++) {      for(k=1; k<=nlstate; k++) 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 }    }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {    *fretone=(*funcone)(p);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    if(*globpri !=0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fclose(ficresilk);
 }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      fflush(fichtm); 
      for (i=1; i<= nlstate ; i ++) {    } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    return;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix  /*********** Maximum Likelihood Estimation ***************/
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  
 #endif  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    }  {
   }    int i,j, iter=0;
   /*2 eme*/    double **xi;
     double fret;
   for (k1=1; k1<= m ; k1 ++) {    double fretone; /* Only one call to likelihood */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n\n",strtok(optionfile, "."),k1);    /*  char filerespow[FILENAMELENGTH];*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
      #ifdef NLOPT
     for (i=1; i<= nlstate+1 ; i ++) {    int creturn;
       k=2*i;    nlopt_opt opt;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
       for (j=1; j<= nlstate+1 ; j ++) {    double *lb;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double minf; /* the minimum objective value, upon return */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double * p1; /* Shifted parameters from 0 instead of 1 */
 }      myfunc_data dinst, *d = &dinst;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  #endif
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    xi=matrix(1,npar,1,npar);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (i=1;i<=npar;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for (j=1;j<=npar;j++)
 }          xi[i][j]=(i==j ? 1.0 : 0.0);
       fprintf(ficgp,"\" t\"\" w l 0,");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    strcpy(filerespow,"pow"); 
       for (j=1; j<= nlstate+1 ; j ++) {    strcat(filerespow,fileres);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");      printf("Problem with resultfile: %s\n", filerespow);
 }        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    }
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     }    for (i=1;i<=nlstate;i++)
   }      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   /*3eme*/    fprintf(ficrespow,"\n");
   #ifdef POWELL
   for (k1=1; k1<= m ; k1 ++) {    powell(p,xi,npar,ftol,&iter,&fret,func);
     for (cpt=1; cpt<= nlstate ; cpt ++) {  #endif
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);  #ifdef NLOPT
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  #ifdef NEWUOA
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  #else
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  #endif
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    lb=vector(0,npar-1);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     nlopt_set_lower_bounds(opt, lb);
 */    nlopt_set_initial_step1(opt, 0.1);
       for (i=1; i< nlstate ; i ++) {    
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
     d->function = func;
       }    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     }    nlopt_set_min_objective(opt, myfunc, d);
   }    nlopt_set_xtol_rel(opt, ftol);
      if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   /* CV preval stat */      printf("nlopt failed! %d\n",creturn); 
     for (k1=1; k1<= m ; k1 ++) {    }
     for (cpt=1; cpt<nlstate ; cpt ++) {    else {
       k=3;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       fprintf(ficgp,"set out \"p%s%d%d.png\" \n\n",strtok(optionfile, "."),cpt,k1);      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      iter=1; /* not equal */
     }
       for (i=1; i< nlstate ; i ++)    nlopt_destroy(opt);
         fprintf(ficgp,"+$%d",k+i+1);  #endif
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    free_matrix(xi,1,npar,1,npar);
          fclose(ficrespow);
       l=3+(nlstate+ndeath)*cpt;    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
       for (i=1; i< nlstate ; i ++) {    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);  }
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    /**** Computes Hessian and covariance matrix ***/
     }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   }    {
      double  **a,**y,*x,pd;
   /* proba elementaires */    double **hess;
    for(i=1,jk=1; i <=nlstate; i++){    int i, j;
     for(k=1; k <=(nlstate+ndeath); k++){    int *indx;
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
            double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    void lubksb(double **a, int npar, int *indx, double b[]) ;
           jk++;    void ludcmp(double **a, int npar, int *indx, double *d) ;
           fprintf(ficgp,"\n");    double gompertz(double p[]);
         }    hess=matrix(1,npar,1,npar);
       }  
     }    printf("\nCalculation of the hessian matrix. Wait...\n");
    }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
    for(jk=1; jk <=m; jk++) {      printf("%d",i);fflush(stdout);
      fprintf(ficgp,"\nset out \"pe%s%d.png\" \n\n",strtok(optionfile, "."),jk);      fprintf(ficlog,"%d",i);fflush(ficlog);
      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);     
      i=1;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
      for(k2=1; k2<=nlstate; k2++) {      
        k3=i;      /*  printf(" %f ",p[i]);
        for(k=1; k<=(nlstate+ndeath); k++) {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
          if (k != k2){    }
            fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    
            ij=1;    for (i=1;i<=npar;i++) {
            for(j=3; j <=ncovmodel; j++) {      for (j=1;j<=npar;j++)  {
              if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        if (j>i) { 
                fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          printf(".%d%d",i,j);fflush(stdout);
                ij++;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
              }          hess[i][j]=hessij(p,delti,i,j,func,npar);
              else          
                fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          hess[j][i]=hess[i][j];    
            }          /*printf(" %lf ",hess[i][j]);*/
            fprintf(ficgp,")/(1");        }
                  }
            for(k1=1; k1 <=nlstate; k1++){      }
              fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    printf("\n");
              ij=1;    fprintf(ficlog,"\n");
              for(j=3; j <=ncovmodel; j++){  
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                  fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                  ij++;    
                }    a=matrix(1,npar,1,npar);
                else    y=matrix(1,npar,1,npar);
                  fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    x=vector(1,npar);
              }    indx=ivector(1,npar);
              fprintf(ficgp,")");    for (i=1;i<=npar;i++)
            }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
            fprintf(ficgp,") t \"p%d%d\" ", k2,k);    ludcmp(a,npar,indx,&pd);
            if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
            i=i+ncovmodel;    for (j=1;j<=npar;j++) {
          }      for (i=1;i<=npar;i++) x[i]=0;
        }      x[j]=1;
      }      lubksb(a,npar,indx,x);
    }      for (i=1;i<=npar;i++){ 
            matcov[i][j]=x[i];
    fclose(ficgp);      }
 }  /* end gnuplot */    }
   
     printf("\n#Hessian matrix#\n");
 /*************** Moving average **************/    fprintf(ficlog,"\n#Hessian matrix#\n");
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   int i, cpt, cptcod;        printf("%.3e ",hess[i][j]);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        fprintf(ficlog,"%.3e ",hess[i][j]);
       for (i=1; i<=nlstate;i++)      }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      printf("\n");
           mobaverage[(int)agedeb][i][cptcod]=0.;      fprintf(ficlog,"\n");
        }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  
       for (i=1; i<=nlstate;i++){    /* Recompute Inverse */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for (i=1;i<=npar;i++)
           for (cpt=0;cpt<=4;cpt++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    ludcmp(a,npar,indx,&pd);
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    /*  printf("\n#Hessian matrix recomputed#\n");
         }  
       }    for (j=1;j<=npar;j++) {
     }      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
 }      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
 /************** Forecasting ******************/        printf("%.3e ",y[i][j]);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        fprintf(ficlog,"%.3e ",y[i][j]);
        }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      printf("\n");
   int *popage;      fprintf(ficlog,"\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;    */
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
  agelim=AGESUP;    free_vector(x,1,npar);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    
    }
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);  /*************** hessian matrix ****************/
   if((ficresf=fopen(fileresf,"w"))==NULL) {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     printf("Problem with forecast resultfile: %s\n", fileresf);  {
   }    int i;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    int l=1, lmax=20;
     double k1,k2;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double p2[MAXPARM+1]; /* identical to x */
     double res;
   if (mobilav==1) {    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double fx;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    int k=0,kmax=10;
   }    double l1;
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fx=func(x);
   if (stepm<=12) stepsize=1;    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   agelim=AGESUP;      l1=pow(10,l);
        delts=delt;
   hstepm=1;      for(k=1 ; k <kmax; k=k+1){
   hstepm=hstepm/stepm;        delt = delta*(l1*k);
   yp1=modf(dateintmean,&yp);        p2[theta]=x[theta] +delt;
   anprojmean=yp;        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   yp2=modf((yp1*12),&yp);        p2[theta]=x[theta]-delt;
   mprojmean=yp;        k2=func(p2)-fx;
   yp1=modf((yp2*30.5),&yp);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   jprojmean=yp;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   if(jprojmean==0) jprojmean=1;        
   if(mprojmean==0) jprojmean=1;  #ifdef DEBUGHESS
          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    #endif
   for(cptcov=1;cptcov<=i2;cptcov++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       k=k+1;          k=kmax;
       fprintf(ficresf,"\n#******");        }
       for(j=1;j<=cptcoveff;j++) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          k=kmax; l=lmax*10;
       }        }
       fprintf(ficresf,"******\n");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       fprintf(ficresf,"# StartingAge FinalAge");          delts=delt;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);        }
            }
          }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    delti[theta]=delts;
         fprintf(ficresf,"\n");    return res; 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      
   }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           nhstepm = nhstepm/hstepm;  {
              int i;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int l=1, lmax=20;
           oldm=oldms;savm=savms;    double k1,k2,k3,k4,res,fx;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double p2[MAXPARM+1];
            int k;
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    fx=func(x);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    for (k=1; k<=2; k++) {
             }      for (i=1;i<=npar;i++) p2[i]=x[i];
             for(j=1; j<=nlstate+ndeath;j++) {      p2[thetai]=x[thetai]+delti[thetai]/k;
               kk1=0.;kk2=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               for(i=1; i<=nlstate;i++) {                    k1=func(p2)-fx;
                 if (mobilav==1)    
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      p2[thetai]=x[thetai]+delti[thetai]/k;
                 else {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      k2=func(p2)-fx;
                 }    
                      p2[thetai]=x[thetai]-delti[thetai]/k;
               }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               if (h==(int)(calagedate+12*cpt)){      k3=func(p2)-fx;
                 fprintf(ficresf," %.3f", kk1);    
                              p2[thetai]=x[thetai]-delti[thetai]/k;
               }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             }      k4=func(p2)-fx;
           }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUG
         }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     }  #endif
   }    }
            return res;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   
   fclose(ficresf);  /************** Inverse of matrix **************/
 }  void ludcmp(double **a, int n, int *indx, double *d) 
 /************** Forecasting ******************/  { 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    int i,imax,j,k; 
      double big,dum,sum,temp; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double *vv; 
   int *popage;   
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    vv=vector(1,n); 
   double *popeffectif,*popcount;    *d=1.0; 
   double ***p3mat,***tabpop,***tabpopprev;    for (i=1;i<=n;i++) { 
   char filerespop[FILENAMELENGTH];      big=0.0; 
       for (j=1;j<=n;j++) 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   agelim=AGESUP;      vv[i]=1.0/big; 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    } 
      for (j=1;j<=n;j++) { 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for (i=1;i<j;i++) { 
          sum=a[i][j]; 
          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   strcpy(filerespop,"pop");        a[i][j]=sum; 
   strcat(filerespop,fileres);      } 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      big=0.0; 
     printf("Problem with forecast resultfile: %s\n", filerespop);      for (i=j;i<=n;i++) { 
   }        sum=a[i][j]; 
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   if (mobilav==1) {          big=dum; 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          imax=i; 
     movingaverage(agedeb, fage, ageminpar, mobaverage);        } 
   }      } 
       if (j != imax) { 
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for (k=1;k<=n;k++) { 
   if (stepm<=12) stepsize=1;          dum=a[imax][k]; 
            a[imax][k]=a[j][k]; 
   agelim=AGESUP;          a[j][k]=dum; 
          } 
   hstepm=1;        *d = -(*d); 
   hstepm=hstepm/stepm;        vv[imax]=vv[j]; 
        } 
   if (popforecast==1) {      indx[j]=imax; 
     if((ficpop=fopen(popfile,"r"))==NULL) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
       printf("Problem with population file : %s\n",popfile);exit(0);      if (j != n) { 
     }        dum=1.0/(a[j][j]); 
     popage=ivector(0,AGESUP);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     popeffectif=vector(0,AGESUP);      } 
     popcount=vector(0,AGESUP);    } 
        free_vector(vv,1,n);  /* Doesn't work */
     i=1;    ;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  } 
      
     imx=i;  void lubksb(double **a, int n, int *indx, double b[]) 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  { 
   }    int i,ii=0,ip,j; 
     double sum; 
   for(cptcov=1;cptcov<=i2;cptcov++){   
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for (i=1;i<=n;i++) { 
       k=k+1;      ip=indx[i]; 
       fprintf(ficrespop,"\n#******");      sum=b[ip]; 
       for(j=1;j<=cptcoveff;j++) {      b[ip]=b[i]; 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       fprintf(ficrespop,"******\n");      else if (sum) ii=i; 
       fprintf(ficrespop,"# Age");      b[i]=sum; 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    } 
       if (popforecast==1)  fprintf(ficrespop," [Population]");    for (i=n;i>=1;i--) { 
            sum=b[i]; 
       for (cpt=0; cpt<=0;cpt++) {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        b[i]=sum/a[i][i]; 
            } 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  } 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  void pstamp(FILE *fichier)
            {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           oldm=oldms;savm=savms;  }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
          /************ Frequencies ********************/
           for (h=0; h<=nhstepm; h++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             if (h==(int) (calagedate+YEARM*cpt)) {  {  /* Some frequencies */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    
             }    int i, m, jk, j1, bool, z1,j;
             for(j=1; j<=nlstate+ndeath;j++) {    int first;
               kk1=0.;kk2=0;    double ***freq; /* Frequencies */
               for(i=1; i<=nlstate;i++) {                  double *pp, **prop;
                 if (mobilav==1)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    char fileresp[FILENAMELENGTH];
                 else {    
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    pp=vector(1,nlstate);
                 }    prop=matrix(1,nlstate,iagemin,iagemax+3);
               }    strcpy(fileresp,"p");
               if (h==(int)(calagedate+12*cpt)){    strcat(fileresp,fileres);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
                   /*fprintf(ficrespop," %.3f", kk1);      printf("Problem with prevalence resultfile: %s\n", fileresp);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
               }      exit(0);
             }    }
             for(i=1; i<=nlstate;i++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
               kk1=0.;    j1=0;
                 for(j=1; j<=nlstate;j++){    
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    j=cptcoveff;
                 }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }    first=1;
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
           }    /*    j1++; */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       }          scanf("%d", i);*/
          for (i=-5; i<=nlstate+ndeath; i++)  
   /******/          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {              freq[i][jk][m]=0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for (i=1; i<=nlstate; i++)  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(m=iagemin; m <= iagemax+3; m++)
           nhstepm = nhstepm/hstepm;            prop[i][m]=0;
                  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        dateintsum=0;
           oldm=oldms;savm=savms;        k2cpt=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for (i=1; i<=imx; i++) {
           for (h=0; h<=nhstepm; h++){          bool=1;
             if (h==(int) (calagedate+YEARM*cpt)) {          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            for (z1=1; z1<=cptcoveff; z1++)       
             }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
             for(j=1; j<=nlstate+ndeath;j++) {                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
               kk1=0.;kk2=0;                bool=0;
               for(i=1; i<=nlstate;i++) {                              /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                      bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
               }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
             }              } 
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
         }          if (bool==1){
       }            for(m=firstpass; m<=lastpass; m++){
    }              k2=anint[m][i]+(mint[m][i]/12.);
   }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                  if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if (popforecast==1) {                if (m<lastpass) {
     free_ivector(popage,0,AGESUP);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     free_vector(popeffectif,0,AGESUP);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     free_vector(popcount,0,AGESUP);                }
   }                
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  dateintsum=dateintsum+k2;
   fclose(ficrespop);                  k2cpt++;
 }                }
                 /*}*/
 /***********************************************/            }
 /**************** Main Program *****************/          }
 /***********************************************/        } /* end i */
          
 int main(int argc, char *argv[])        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 {        pstamp(ficresp);
         if  (cptcovn>0) {
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          fprintf(ficresp, "\n#********** Variable "); 
   double agedeb, agefin,hf;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          fprintf(ficresp, "**********\n#");
           fprintf(ficlog, "\n#********** Variable "); 
   double fret;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double **xi,tmp,delta;          fprintf(ficlog, "**********\n#");
         }
   double dum; /* Dummy variable */        for(i=1; i<=nlstate;i++) 
   double ***p3mat;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   int *indx;        fprintf(ficresp, "\n");
   char line[MAXLINE], linepar[MAXLINE];        
   char title[MAXLINE];        for(i=iagemin; i <= iagemax+3; i++){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          if(i==iagemax+3){
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            fprintf(ficlog,"Total");
            }else{
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];            if(first==1){
               first=0;
   char filerest[FILENAMELENGTH];              printf("See log file for details...\n");
   char fileregp[FILENAMELENGTH];            }
   char popfile[FILENAMELENGTH];            fprintf(ficlog,"Age %d", i);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          }
   int firstobs=1, lastobs=10;          for(jk=1; jk <=nlstate ; jk++){
   int sdeb, sfin; /* Status at beginning and end */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   int c,  h , cpt,l;              pp[jk] += freq[jk][m][i]; 
   int ju,jl, mi;          }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          for(jk=1; jk <=nlstate ; jk++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            for(m=-1, pos=0; m <=0 ; m++)
   int mobilav=0,popforecast=0;              pos += freq[jk][m][i];
   int hstepm, nhstepm;            if(pp[jk]>=1.e-10){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              if(first==1){
                 printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double bage, fage, age, agelim, agebase;              }
   double ftolpl=FTOL;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   double **prlim;            }else{
   double *severity;              if(first==1)
   double ***param; /* Matrix of parameters */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double  *p;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double **matcov; /* Matrix of covariance */            }
   double ***delti3; /* Scale */          }
   double *delti; /* Scale */  
   double ***eij, ***vareij;          for(jk=1; jk <=nlstate ; jk++){
   double **varpl; /* Variances of prevalence limits by age */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double *epj, vepp;              pp[jk] += freq[jk][m][i];
   double kk1, kk2;          }       
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
              pos += pp[jk];
             posprop += prop[jk][i];
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";          }
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
               if(first==1)
   char z[1]="c", occ;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 #include <sys/time.h>              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 #include <time.h>            }else{
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /* long total_usecs;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   struct timeval start_time, end_time;            }
              if( i <= iagemax){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              if(pos>=1.e-5){
   getcwd(pathcd, size);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   printf("\n%s",version);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   if(argc <=1){              }
     printf("\nEnter the parameter file name: ");              else
     scanf("%s",pathtot);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   }            }
   else{          }
     strcpy(pathtot,argv[1]);          
   }          for(jk=-1; jk <=nlstate+ndeath; jk++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            for(m=-1; m <=nlstate+ndeath; m++)
   /*cygwin_split_path(pathtot,path,optionfile);              if(freq[jk][m][i] !=0 ) {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/              if(first==1)
   /* cutv(path,optionfile,pathtot,'\\');*/                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);              }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          if(i <= iagemax)
   chdir(path);            fprintf(ficresp,"\n");
   replace(pathc,path);          if(first==1)
             printf("Others in log...\n");
 /*-------- arguments in the command line --------*/          fprintf(ficlog,"\n");
         }
   strcpy(fileres,"r");        /*}*/
   strcat(fileres, optionfilefiname);    }
   strcat(fileres,".txt");    /* Other files have txt extension */    dateintmean=dateintsum/k2cpt; 
    
   /*---------arguments file --------*/    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_vector(pp,1,nlstate);
     printf("Problem with optionfile %s\n",optionfile);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     goto end;    /* End of Freq */
   }  }
   
   strcpy(filereso,"o");  /************ Prevalence ********************/
   strcat(filereso,fileres);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if((ficparo=fopen(filereso,"w"))==NULL) {  {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   }       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
   /* Reads comments: lines beginning with '#' */    */
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);    int i, m, jk, j1, bool, z1,j;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    double **prop;
     fputs(line,ficparo);    double posprop; 
   }    double  y2; /* in fractional years */
   ungetc(c,ficpar);    int iagemin, iagemax;
     int first; /** to stop verbosity which is redirected to log file */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    iagemin= (int) agemin;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    iagemax= (int) agemax;
 while((c=getc(ficpar))=='#' && c!= EOF){    /*pp=vector(1,nlstate);*/
     ungetc(c,ficpar);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     fgets(line, MAXLINE, ficpar);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     puts(line);    j1=0;
     fputs(line,ficparo);    
   }    /*j=cptcoveff;*/
   ungetc(c,ficpar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
        first=1;
   covar=matrix(0,NCOVMAX,1,n);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   cptcovn=0;      /*for(i1=1; i1<=ncodemax[k1];i1++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        j1++;*/
         
   ncovmodel=2+cptcovn;        for (i=1; i<=nlstate; i++)  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
   /* Read guess parameters */       
   /* Reads comments: lines beginning with '#' */        for (i=1; i<=imx; i++) { /* Each individual */
   while((c=getc(ficpar))=='#' && c!= EOF){          bool=1;
     ungetc(c,ficpar);          if  (cptcovn>0) {
     fgets(line, MAXLINE, ficpar);            for (z1=1; z1<=cptcoveff; z1++) 
     puts(line);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fputs(line,ficparo);                bool=0;
   }          } 
   ungetc(c,ficpar);          if (bool==1) { 
              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(i=1; i <=nlstate; i++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for(j=1; j <=nlstate+ndeath-1; j++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficparo,"%1d%1d",i1,j1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       printf("%1d%1d",i,j);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for(k=1; k<=ncovmodel;k++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         fscanf(ficpar," %lf",&param[i][j][k]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         printf(" %lf",param[i][j][k]);                  prop[s[m][i]][iagemax+3] += weight[i]; 
         fprintf(ficparo," %lf",param[i][j][k]);                } 
       }              }
       fscanf(ficpar,"\n");            } /* end selection of waves */
       printf("\n");          }
       fprintf(ficparo,"\n");        }
     }        for(i=iagemin; i <= iagemax+3; i++){  
            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            posprop += prop[jk][i]; 
           } 
   p=param[1][1];          
            for(jk=1; jk <=nlstate ; jk++){     
   /* Reads comments: lines beginning with '#' */            if( i <=  iagemax){ 
   while((c=getc(ficpar))=='#' && c!= EOF){              if(posprop>=1.e-5){ 
     ungetc(c,ficpar);                probs[i][jk][j1]= prop[jk][i]/posprop;
     fgets(line, MAXLINE, ficpar);              } else{
     puts(line);                if(first==1){
     fputs(line,ficparo);                  first=0;
   }                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   ungetc(c,ficpar);                }
               }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            } 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          }/* end jk */ 
   for(i=1; i <=nlstate; i++){        }/* end i */ 
     for(j=1; j <=nlstate+ndeath-1; j++){      /*} *//* end i1 */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    } /* end j1 */
       printf("%1d%1d",i,j);    
       fprintf(ficparo,"%1d%1d",i1,j1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for(k=1; k<=ncovmodel;k++){    /*free_vector(pp,1,nlstate);*/
         fscanf(ficpar,"%le",&delti3[i][j][k]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         printf(" %le",delti3[i][j][k]);  }  /* End of prevalence */
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }  /************* Waves Concatenation ***************/
       fscanf(ficpar,"\n");  
       printf("\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       fprintf(ficparo,"\n");  {
     }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   }       Death is a valid wave (if date is known).
   delti=delti3[1][1];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   /* Reads comments: lines beginning with '#' */       and mw[mi+1][i]. dh depends on stepm.
   while((c=getc(ficpar))=='#' && c!= EOF){       */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    int i, mi, m;
     puts(line);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     fputs(line,ficparo);       double sum=0., jmean=0.;*/
   }    int first;
   ungetc(c,ficpar);    int j, k=0,jk, ju, jl;
      double sum=0.;
   matcov=matrix(1,npar,1,npar);    first=0;
   for(i=1; i <=npar; i++){    jmin=100000;
     fscanf(ficpar,"%s",&str);    jmax=-1;
     printf("%s",str);    jmean=0.;
     fprintf(ficparo,"%s",str);    for(i=1; i<=imx; i++){
     for(j=1; j <=i; j++){      mi=0;
       fscanf(ficpar," %le",&matcov[i][j]);      m=firstpass;
       printf(" %.5le",matcov[i][j]);      while(s[m][i] <= nlstate){
       fprintf(ficparo," %.5le",matcov[i][j]);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     }          mw[++mi][i]=m;
     fscanf(ficpar,"\n");        if(m >=lastpass)
     printf("\n");          break;
     fprintf(ficparo,"\n");        else
   }          m++;
   for(i=1; i <=npar; i++)      }/* end while */
     for(j=i+1;j<=npar;j++)      if (s[m][i] > nlstate){
       matcov[i][j]=matcov[j][i];        mi++;     /* Death is another wave */
            /* if(mi==0)  never been interviewed correctly before death */
   printf("\n");           /* Only death is a correct wave */
         mw[mi][i]=m;
       }
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */      wav[i]=mi;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      if(mi==0){
      strcat(rfileres,".");    /* */        nbwarn++;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        if(first==0){
     if((ficres =fopen(rfileres,"w"))==NULL) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          first=1;
     }        }
     fprintf(ficres,"#%s\n",version);        if(first==1){
              fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     /*-------- data file ----------*/        }
     if((fic=fopen(datafile,"r"))==NULL)    {      } /* end mi==0 */
       printf("Problem with datafile: %s\n", datafile);goto end;    } /* End individuals */
     }  
     for(i=1; i<=imx; i++){
     n= lastobs;      for(mi=1; mi<wav[i];mi++){
     severity = vector(1,maxwav);        if (stepm <=0)
     outcome=imatrix(1,maxwav+1,1,n);          dh[mi][i]=1;
     num=ivector(1,n);        else{
     moisnais=vector(1,n);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     annais=vector(1,n);            if (agedc[i] < 2*AGESUP) {
     moisdc=vector(1,n);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     andc=vector(1,n);              if(j==0) j=1;  /* Survives at least one month after exam */
     agedc=vector(1,n);              else if(j<0){
     cod=ivector(1,n);                nberr++;
     weight=vector(1,n);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                j=1; /* Temporary Dangerous patch */
     mint=matrix(1,maxwav,1,n);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     anint=matrix(1,maxwav,1,n);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     s=imatrix(1,maxwav+1,1,n);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     adl=imatrix(1,maxwav+1,1,n);                  }
     tab=ivector(1,NCOVMAX);              k=k+1;
     ncodemax=ivector(1,8);              if (j >= jmax){
                 jmax=j;
     i=1;                ijmax=i;
     while (fgets(line, MAXLINE, fic) != NULL)    {              }
       if ((i >= firstobs) && (i <=lastobs)) {              if (j <= jmin){
                        jmin=j;
         for (j=maxwav;j>=1;j--){                ijmin=i;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              }
           strcpy(line,stra);              sum=sum+j;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }            }
                  }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          else{
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            k=k+1;
             if (j >= jmax) {
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);              jmax=j;
         for (j=ncovcol;j>=1;j--){              ijmax=i;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
         }            else if (j <= jmin){
         num[i]=atol(stra);              jmin=j;
                      ijmin=i;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         i=i+1;            if(j<0){
       }              nberr++;
     }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /* printf("ii=%d", ij);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        scanf("%d",i);*/            }
   imx=i-1; /* Number of individuals */            sum=sum+j;
           }
   /* for (i=1; i<=imx; i++){          jk= j/stepm;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          jl= j -jk*stepm;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          ju= j -(jk+1)*stepm;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     }*/            if(jl==0){
    /*  for (i=1; i<=imx; i++){              dh[mi][i]=jk;
      if (s[4][i]==9)  s[4][i]=-1;              bh[mi][i]=0;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            }else{ /* We want a negative bias in order to only have interpolation ie
                      * to avoid the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
   /* Calculation of the number of parameter from char model*/              bh[mi][i]=ju;
   Tvar=ivector(1,15);            }
   Tprod=ivector(1,15);          }else{
   Tvaraff=ivector(1,15);            if(jl <= -ju){
   Tvard=imatrix(1,15,1,2);              dh[mi][i]=jk;
   Tage=ivector(1,15);                    bh[mi][i]=jl;       /* bias is positive if real duration
                                       * is higher than the multiple of stepm and negative otherwise.
   if (strlen(model) >1){                                   */
     j=0, j1=0, k1=1, k2=1;            }
     j=nbocc(model,'+');            else{
     j1=nbocc(model,'*');              dh[mi][i]=jk+1;
     cptcovn=j+1;              bh[mi][i]=ju;
     cptcovprod=j1;            }
                if(dh[mi][i]==0){
     strcpy(modelsav,model);              dh[mi][i]=1; /* At least one step */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              bh[mi][i]=ju; /* At least one step */
       printf("Error. Non available option model=%s ",model);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       goto end;            }
     }          } /* end if mle */
            }
     for(i=(j+1); i>=1;i--){      } /* end wave */
       cutv(stra,strb,modelsav,'+');    }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    jmean=sum/k;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       /*scanf("%d",i);*/    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       if (strchr(strb,'*')) {   }
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {  /*********** Tricode ****************************/
           cptcovprod--;  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
           cutv(strb,stre,strd,'V');  {
           Tvar[i]=atoi(stre);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
           cptcovage++;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
             Tage[cptcovage]=i;     * Boring subroutine which should only output nbcode[Tvar[j]][k]
             /*printf("stre=%s ", stre);*/     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
         }     * nbcode[Tvar[j]][1]= 
         else if (strcmp(strd,"age")==0) {    */
           cptcovprod--;  
           cutv(strb,stre,strc,'V');    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
           Tvar[i]=atoi(stre);    int modmaxcovj=0; /* Modality max of covariates j */
           cptcovage++;    int cptcode=0; /* Modality max of covariates j */
           Tage[cptcovage]=i;    int modmincovj=0; /* Modality min of covariates j */
         }  
         else {  
           cutv(strb,stre,strc,'V');    cptcoveff=0; 
           Tvar[i]=ncovcol+k1;   
           cutv(strb,strc,strd,'V');    for (k=-1; k < maxncov; k++) Ndum[k]=0;
           Tprod[k1]=i;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);    /* Loop on covariates without age and products */
           Tvar[cptcovn+k2]=Tvard[k1][1];    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
           for (k=1; k<=lastobs;k++)                                 modality of this covariate Vj*/ 
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
           k1++;                                      * If product of Vn*Vm, still boolean *:
           k2=k2+2;                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
         }                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
       }        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
       else {                                        modality of the nth covariate of individual i. */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        if (ij > modmaxcovj)
        /*  scanf("%d",i);*/          modmaxcovj=ij; 
       cutv(strd,strc,strb,'V');        else if (ij < modmincovj) 
       Tvar[i]=atoi(strc);          modmincovj=ij; 
       }        if ((ij < -1) && (ij > NCOVMAX)){
       strcpy(modelsav,stra);            printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          exit(1);
         scanf("%d",i);*/        }else
     }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 }        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        /* getting the maximum value of the modality of the covariate
   printf("cptcovprod=%d ", cptcovprod);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   scanf("%d ",i);*/           female is 1, then modmaxcovj=1.*/
     fclose(fic);      }
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     /*  if(mle==1){*/      cptcode=modmaxcovj;
     if (weightopt != 1) { /* Maximisation without weights*/      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
       for(i=1;i<=n;i++) weight[i]=1.0;     /*for (i=0; i<=cptcode; i++) {*/
     }      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     /*-calculation of age at interview from date of interview and age at death -*/        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
     agev=matrix(1,maxwav,1,imx);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
           ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     for (i=1; i<=imx; i++) {        }
       for(m=2; (m<= maxwav); m++) {        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
          anint[m][i]=9999;      } /* Ndum[-1] number of undefined modalities */
          s[m][i]=-1;  
        }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
       }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     }         modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     for (i=1; i<=imx; i++)  {         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);         variables V1_1 and V1_2.
       for(m=1; (m<= maxwav); m++){         nbcode[Tvar[j]][ij]=k;
         if(s[m][i] >0){         nbcode[Tvar[j]][1]=0;
           if (s[m][i] >= nlstate+1) {         nbcode[Tvar[j]][2]=1;
             if(agedc[i]>0)         nbcode[Tvar[j]][3]=2;
               if(moisdc[i]!=99 && andc[i]!=9999)      */
                 agev[m][i]=agedc[i];      ij=1; /* ij is similar to i but can jumps over null modalities */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
            else {        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
               if (andc[i]!=9999){          /*recode from 0 */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
               agev[m][i]=-1;            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
               }                                       k is a modality. If we have model=V1+V1*sex 
             }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           }            ij++;
           else if(s[m][i] !=9){ /* Should no more exist */          }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          if (ij > ncodemax[j]) break; 
             if(mint[m][i]==99 || anint[m][i]==9999)        }  /* end of loop on */
               agev[m][i]=1;      } /* end of loop on modality */ 
             else if(agev[m][i] <agemin){    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
               agemin=agev[m][i];    
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
             }    
             else if(agev[m][i] >agemax){    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
               agemax=agev[m][i];     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
             }     Ndum[ij]++; 
             /*agev[m][i]=anint[m][i]-annais[i];*/   } 
             /*   agev[m][i] = age[i]+2*m;*/  
           }   ij=1;
           else { /* =9 */   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
             agev[m][i]=1;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
             s[m][i]=-1;     if((Ndum[i]!=0) && (i<=ncovcol)){
           }       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
         }       Tvaraff[ij]=i; /*For printing (unclear) */
         else /*= 0 Unknown */       ij++;
           agev[m][i]=1;     }else
       }         Tvaraff[ij]=0;
       }
     }   ij--;
     for (i=1; i<=imx; i++)  {   cptcoveff=ij; /*Number of total covariates*/
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {  }
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;  
         }  /*********** Health Expectancies ****************/
       }  
     }  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  {
     /* Health expectancies, no variances */
     free_vector(severity,1,maxwav);    int i, j, nhstepm, hstepm, h, nstepm;
     free_imatrix(outcome,1,maxwav+1,1,n);    int nhstepma, nstepma; /* Decreasing with age */
     free_vector(moisnais,1,n);    double age, agelim, hf;
     free_vector(annais,1,n);    double ***p3mat;
     /* free_matrix(mint,1,maxwav,1,n);    double eip;
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);    pstamp(ficreseij);
     free_vector(andc,1,n);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
        for(i=1; i<=nlstate;i++){
     wav=ivector(1,imx);      for(j=1; j<=nlstate;j++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficreseij," e%1d%1d ",i,j);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      }
          fprintf(ficreseij," e%1d. ",i);
     /* Concatenates waves */    }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fprintf(ficreseij,"\n");
   
     
       Tcode=ivector(1,100);    if(estepm < stepm){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      printf ("Problem %d lower than %d\n",estepm, stepm);
       ncodemax[1]=1;    }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    else  hstepm=estepm;   
          /* We compute the life expectancy from trapezoids spaced every estepm months
    codtab=imatrix(1,100,1,10);     * This is mainly to measure the difference between two models: for example
    h=0;     * if stepm=24 months pijx are given only every 2 years and by summing them
    m=pow(2,cptcoveff);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
    for(k=1;k<=cptcoveff; k++){     * to the curvature of the survival function. If, for the same date, we 
      for(i=1; i <=(m/pow(2,k));i++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
        for(j=1; j <= ncodemax[k]; j++){     * to compare the new estimate of Life expectancy with the same linear 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){     * hypothesis. A more precise result, taking into account a more precise
            h++;     * curvature will be obtained if estepm is as small as stepm. */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    /* For example we decided to compute the life expectancy with the smallest unit */
          }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        }       nhstepm is the number of hstepm from age to agelim 
      }       nstepm is the number of stepm from age to agelin. 
    }       Look at hpijx to understand the reason of that which relies in memory size
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       and note for a fixed period like estepm months */
       codtab[1][2]=1;codtab[2][2]=2; */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
    /* for(i=1; i <=m ;i++){       survival function given by stepm (the optimization length). Unfortunately it
       for(k=1; k <=cptcovn; k++){       means that if the survival funtion is printed only each two years of age and if
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
       printf("\n");    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       scanf("%d",i);*/  
        agelim=AGESUP;
    /* Calculates basic frequencies. Computes observed prevalence at single age    /* If stepm=6 months */
        and prints on file fileres'p'. */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          
      /* nhstepm age range expressed in number of stepm */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* if (stepm >= YEARM) hstepm=1;*/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        
     /* For Powell, parameters are in a vector p[] starting at p[1]    for (age=bage; age<=fage; age ++){ 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
     if(mle==1){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }      /* If stepm=6 months */
          /* Computed by stepm unit matrices, product of hstepma matrices, stored
     /*--------- results files --------------*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      
        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
    jk=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("%d|",(int)age);fflush(stdout);
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      for(k=1; k <=(nlstate+ndeath); k++){      
        if (k != i)      /* Computing expectancies */
          {      for(i=1; i<=nlstate;i++)
            printf("%d%d ",i,k);        for(j=1; j<=nlstate;j++)
            fprintf(ficres,"%1d%1d ",i,k);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
            for(j=1; j <=ncovmodel; j++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              printf("%f ",p[jk]);            
              fprintf(ficres,"%f ",p[jk]);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
              jk++;  
            }          }
            printf("\n");  
            fprintf(ficres,"\n");      fprintf(ficreseij,"%3.0f",age );
          }      for(i=1; i<=nlstate;i++){
      }        eip=0;
    }        for(j=1; j<=nlstate;j++){
  if(mle==1){          eip +=eij[i][j][(int)age];
     /* Computing hessian and covariance matrix */          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     ftolhess=ftol; /* Usually correct */        }
     hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficreseij,"%9.4f", eip );
  }      }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      fprintf(ficreseij,"\n");
     printf("# Scales (for hessian or gradient estimation)\n");      
      for(i=1,jk=1; i <=nlstate; i++){    }
       for(j=1; j <=nlstate+ndeath; j++){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         if (j!=i) {    printf("\n");
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficlog,"\n");
           printf("%1d%1d",i,j);    
           for(k=1; k<=ncovmodel;k++){  }
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
             jk++;  
           }  {
           printf("\n");    /* Covariances of health expectancies eij and of total life expectancies according
           fprintf(ficres,"\n");     to initial status i, ei. .
         }    */
       }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      }    int nhstepma, nstepma; /* Decreasing with age */
        double age, agelim, hf;
     k=1;    double ***p3matp, ***p3matm, ***varhe;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double **dnewm,**doldm;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double *xp, *xm;
     for(i=1;i<=npar;i++){    double **gp, **gm;
       /*  if (k>nlstate) k=1;    double ***gradg, ***trgradg;
       i1=(i-1)/(ncovmodel*nlstate)+1;    int theta;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/    double eip, vip;
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for(j=1; j<=i;j++){    xp=vector(1,npar);
         fprintf(ficres," %.5e",matcov[i][j]);    xm=vector(1,npar);
         printf(" %.5e",matcov[i][j]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficres,"\n");    
       printf("\n");    pstamp(ficresstdeij);
       k++;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     }    fprintf(ficresstdeij,"# Age");
        for(i=1; i<=nlstate;i++){
     while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=nlstate;j++)
       ungetc(c,ficpar);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fgets(line, MAXLINE, ficpar);      fprintf(ficresstdeij," e%1d. ",i);
       puts(line);    }
       fputs(line,ficparo);    fprintf(ficresstdeij,"\n");
     }  
     ungetc(c,ficpar);    pstamp(ficrescveij);
     estepm=0;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    fprintf(ficrescveij,"# Age");
     if (estepm==0 || estepm < stepm) estepm=stepm;    for(i=1; i<=nlstate;i++)
     if (fage <= 2) {      for(j=1; j<=nlstate;j++){
       bage = ageminpar;        cptj= (j-1)*nlstate+i;
       fage = agemaxpar;        for(i2=1; i2<=nlstate;i2++)
     }          for(j2=1; j2<=nlstate;j2++){
                cptj2= (j2-1)*nlstate+i2;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            if(cptj2 <= cptj)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          }
        }
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficrescveij,"\n");
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    if(estepm < stepm){
     puts(line);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fputs(line,ficparo);    }
   }    else  hstepm=estepm;   
   ungetc(c,ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);     * if stepm=24 months pijx are given only every 2 years and by summing them
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     * we are calculating an estimate of the Life Expectancy assuming a linear 
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     * progression in between and thus overestimating or underestimating according
           * to the curvature of the survival function. If, for the same date, we 
   while((c=getc(ficpar))=='#' && c!= EOF){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     ungetc(c,ficpar);     * to compare the new estimate of Life expectancy with the same linear 
     fgets(line, MAXLINE, ficpar);     * hypothesis. A more precise result, taking into account a more precise
     puts(line);     * curvature will be obtained if estepm is as small as stepm. */
     fputs(line,ficparo);  
   }    /* For example we decided to compute the life expectancy with the smallest unit */
   ungetc(c,ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;       Look at hpijx to understand the reason of that which relies in memory size
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fscanf(ficpar,"pop_based=%d\n",&popbased);       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficparo,"pop_based=%d\n",popbased);         means that if the survival funtion is printed only each two years of age and if
   fprintf(ficres,"pop_based=%d\n",popbased);         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   while((c=getc(ficpar))=='#' && c!= EOF){    */
     ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     fgets(line, MAXLINE, ficpar);  
     puts(line);    /* If stepm=6 months */
     fputs(line,ficparo);    /* nhstepm age range expressed in number of stepm */
   }    agelim=AGESUP;
   ungetc(c,ficpar);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    /* if (stepm >= YEARM) hstepm=1;*/
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 while((c=getc(ficpar))=='#' && c!= EOF){    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     ungetc(c,ficpar);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     puts(line);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fputs(line,ficparo);  
   }    for (age=bage; age<=fage; age ++){ 
   ungetc(c,ficpar);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
       /* If stepm=6 months */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
 /*------------ gnuplot -------------*/      
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
 /*------------ free_vector  -------------*/      /* Computing  Variances of health expectancies */
  chdir(path);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           decrease memory allocation */
  free_ivector(wav,1,imx);      for(theta=1; theta <=npar; theta++){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        for(i=1; i<=npar; i++){ 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            xp[i] = x[i] + (i==theta ?delti[theta]:0);
  free_ivector(num,1,n);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
  free_vector(agedc,1,n);        }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
  fclose(ficparo);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
  fclose(ficres);    
         for(j=1; j<= nlstate; j++){
 /*--------- index.htm --------*/          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
              }
   /*--------------- Prevalence limit --------------*/          }
          }
   strcpy(filerespl,"pl");       
   strcat(filerespl,fileres);        for(ij=1; ij<= nlstate*nlstate; ij++)
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          for(h=0; h<=nhstepm-1; h++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   }          }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      }/* End theta */
   fprintf(ficrespl,"#Prevalence limit\n");      
   fprintf(ficrespl,"#Age ");      
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      for(h=0; h<=nhstepm-1; h++)
   fprintf(ficrespl,"\n");        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   prlim=matrix(1,nlstate,1,nlstate);            trgradg[h][j][theta]=gradg[h][theta][j];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       for(ij=1;ij<=nlstate*nlstate;ij++)
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(ji=1;ji<=nlstate*nlstate;ji++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          varhe[ij][ji][(int)age] =0.;
   k=0;  
   agebase=ageminpar;       printf("%d|",(int)age);fflush(stdout);
   agelim=agemaxpar;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   ftolpl=1.e-10;       for(h=0;h<=nhstepm-1;h++){
   i1=cptcoveff;        for(k=0;k<=nhstepm-1;k++){
   if (cptcovn < 1){i1=1;}          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   for(cptcov=1;cptcov<=i1;cptcov++){          for(ij=1;ij<=nlstate*nlstate;ij++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(ji=1;ji<=nlstate*nlstate;ji++)
         k=k+1;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        }
         fprintf(ficrespl,"\n#******");      }
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* Computing expectancies */
         fprintf(ficrespl,"******\n");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
              for(i=1; i<=nlstate;i++)
         for (age=agebase; age<=agelim; age++){        for(j=1; j<=nlstate;j++)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           fprintf(ficrespl,"%.0f",age );            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
           for(i=1; i<=nlstate;i++)            
           fprintf(ficrespl," %.5f", prlim[i][i]);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           fprintf(ficrespl,"\n");  
         }          }
       }  
     }      fprintf(ficresstdeij,"%3.0f",age );
   fclose(ficrespl);      for(i=1; i<=nlstate;i++){
         eip=0.;
   /*------------- h Pij x at various ages ------------*/        vip=0.;
          for(j=1; j<=nlstate;j++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          eip += eij[i][j][(int)age];
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   printf("Computing pij: result on file '%s' \n", filerespij);        }
          fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   stepsize=(int) (stepm+YEARM-1)/YEARM;      }
   /*if (stepm<=24) stepsize=2;*/      fprintf(ficresstdeij,"\n");
   
   agelim=AGESUP;      fprintf(ficrescveij,"%3.0f",age );
   hstepm=stepsize*YEARM; /* Every year of age */      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
   k=0;          for(i2=1; i2<=nlstate;i2++)
   for(cptcov=1;cptcov<=i1;cptcov++){            for(j2=1; j2<=nlstate;j2++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              cptj2= (j2-1)*nlstate+i2;
       k=k+1;              if(cptj2 <= cptj)
         fprintf(ficrespij,"\n#****** ");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         for(j=1;j<=cptcoveff;j++)            }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         fprintf(ficrespij,"******\n");      fprintf(ficrescveij,"\n");
             
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           oldm=oldms;savm=savms;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"# Age");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1; i<=nlstate;i++)    printf("\n");
             for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficlog,"\n");
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");    free_vector(xm,1,npar);
            for (h=0; h<=nhstepm; h++){    free_vector(xp,1,npar);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
             for(i=1; i<=nlstate;i++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               for(j=1; j<=nlstate+ndeath;j++)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  }
             fprintf(ficrespij,"\n");  
              }  /************ Variance ******************/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           fprintf(ficrespij,"\n");  {
         }    /* Variance of health expectancies */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   }    /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    
     int movingaverage();
   fclose(ficrespij);    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
   /*---------- Forecasting ------------------*/    int k;
   if((stepm == 1) && (strcmp(model,".")==0)){    double *xp;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    double **gp, **gm;  /* for var eij */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double ***gradg, ***trgradg; /*for var eij */
   }    double **gradgp, **trgradgp; /* for var p point j */
   else{    double *gpp, *gmp; /* for var p point j */
     erreur=108;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double ***p3mat;
   }    double age,agelim, hf;
      double ***mobaverage;
     int theta;
   /*---------- Health expectancies and variances ------------*/    char digit[4];
     char digitp[25];
   strcpy(filerest,"t");  
   strcat(filerest,fileres);    char fileresprobmorprev[FILENAMELENGTH];
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    if(popbased==1){
   }      if(mobilav!=0)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
   strcpy(filerese,"e");    else 
   strcat(filerese,fileres);      strcpy(digitp,"-stablbased-");
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  strcpy(fileresv,"v");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcat(fileresv,fileres);      }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }    strcpy(fileresprobmorprev,"prmorprev"); 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    sprintf(digit,"%-d",ij);
   calagedate=-1;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   k=0;    strcat(fileresprobmorprev,fileres);
   for(cptcov=1;cptcov<=i1;cptcov++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       k=k+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficrest,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
       fprintf(ficrest,"******\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
       fprintf(ficreseij,"\n#****** ");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficreseij,"******\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
       fprintf(ficresvij,"\n#****** ");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       for(j=1;j<=cptcoveff;j++)    }  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresprobmorprev,"\n");
       fprintf(ficresvij,"******\n");    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       oldm=oldms;savm=savms;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    pstamp(ficresvij);
       oldm=oldms;savm=savms;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    if(popbased==1)
          fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficresvij,"# Age");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    for(i=1; i<=nlstate;i++)
       fprintf(ficrest,"\n");      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       epj=vector(1,nlstate+1);    fprintf(ficresvij,"\n");
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    xp=vector(1,npar);
         if (popbased==1) {    dnewm=matrix(1,nlstate,1,npar);
           for(i=1; i<=nlstate;i++)    doldm=matrix(1,nlstate,1,nlstate);
             prlim[i][i]=probs[(int)age][i][k];    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          
         fprintf(ficrest," %4.0f",age);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    gpp=vector(nlstate+1,nlstate+ndeath);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    gmp=vector(nlstate+1,nlstate+ndeath);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    
           }    if(estepm < stepm){
           epj[nlstate+1] +=epj[j];      printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
     else  hstepm=estepm;   
         for(i=1, vepp=0.;i <=nlstate;i++)    /* For example we decided to compute the life expectancy with the smallest unit */
           for(j=1;j <=nlstate;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             vepp += vareij[i][j][(int)age];       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       nstepm is the number of stepm from age to agelin. 
         for(j=1;j <=nlstate;j++){       Look at function hpijx to understand why (it is linked to memory size questions) */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficrest,"\n");       means that if the survival funtion is printed every two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     }       results. So we changed our mind and took the option of the best precision.
   }    */
 free_matrix(mint,1,maxwav,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    agelim = AGESUP;
     free_vector(weight,1,n);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   fclose(ficreseij);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   fclose(ficresvij);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficrest);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficpar);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   free_vector(epj,1,nlstate+1);      gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
   /*------- Variance limit prevalence------*/    
   
   strcpy(fileresvpl,"vpl");      for(theta=1; theta <=npar; theta++){
   strcat(fileresvpl,fileres);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        }
     exit(0);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
         if (popbased==1) {
   k=0;          if(mobilav ==0){
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              prlim[i][i]=probs[(int)age][i][ij];
       k=k+1;          }else{ /* mobilav */ 
       fprintf(ficresvpl,"\n#****** ");            for(i=1; i<=nlstate;i++)
       for(j=1;j<=cptcoveff;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       fprintf(ficresvpl,"******\n");        }
          
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        for(j=1; j<= nlstate; j++){
       oldm=oldms;savm=savms;          for(h=0; h<=nhstepm; h++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  }          }
         }
   fclose(ficresvpl);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   /*---------- End : free ----------------*/           as a weighted average of prlim.
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end probability of death */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_matrix(matcov,1,npar,1,npar);   
   free_vector(delti,1,npar);        if (popbased==1) {
   free_matrix(agev,1,maxwav,1,imx);          if(mobilav ==0){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   if(erreur >0)          }else{ /* mobilav */ 
     printf("End of Imach with error or warning %d\n",erreur);            for(i=1; i<=nlstate;i++)
   else   printf("End of Imach\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          }
          }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   /*------ End -----------*/          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
  end:          }
 #ifdef windows        }
   /* chdir(pathcd);*/        /* This for computing probability of death (h=1 means
 #endif           computed over hstepm matrices product = hstepm*stepm months) 
  /*system("wgnuplot graph.plt");*/           as a weighted average of prlim.
  /*system("../gp37mgw/wgnuplot graph.plt");*/        */
  /*system("cd ../gp37mgw");*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
  strcpy(plotcmd,GNUPLOTPROGRAM);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
  strcat(plotcmd," ");        }    
  strcat(plotcmd,optionfilegnuplot);        /* end probability of death */
  system(plotcmd);  
         for(j=1; j<= nlstate; j++) /* vareij */
 #ifdef windows          for(h=0; h<=nhstepm; h++){
   while (z[0] != 'q') {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     /* chdir(path); */          }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     if (z[0] == 'c') system("./imach");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     else if (z[0] == 'e') system(optionfilehtm);        }
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);      } /* End theta */
   }  
 #endif      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 }  
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* #include <gnu/libc-version.h> */ /* Only on gnu */
   #include <stdint.h>
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(". ");fprintf(ficlog,". ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
   #elif __unix__ // all unices, not all compilers
       // Unix
   #elif __linux__
       // linux
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit.\n"); fprintf(ficlog," 32-bit.\n");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit.\n"); fprintf(ficlog," 64-bit.\n");/* 64-bit */
   #else
      printf(" wtf-bit.\n"); fprintf(ficlog," wtf-bit.\n");/* wtf */
   #endif
   
   /* struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
             */
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf("GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, "GNU C version %d.\n", __GNUC_VERSION__);
   #endif
   #if defined(_MSC_VER)
      /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
      /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   #endif
      
     /* printf("GNU libc version: %s\n", gnu_get_libc_version()); */
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.42  
changed lines
  Added in v.1.171


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>